JP2012229146A - METHOD FOR MANUFACTURING SILICON FINE PARTICLE, AND Si INK, SOLAR CELL AND SEMICONDUCTOR DEVICE USING THE SILICON FINE PARTICLE - Google Patents

METHOD FOR MANUFACTURING SILICON FINE PARTICLE, AND Si INK, SOLAR CELL AND SEMICONDUCTOR DEVICE USING THE SILICON FINE PARTICLE Download PDF

Info

Publication number
JP2012229146A
JP2012229146A JP2011099516A JP2011099516A JP2012229146A JP 2012229146 A JP2012229146 A JP 2012229146A JP 2011099516 A JP2011099516 A JP 2011099516A JP 2011099516 A JP2011099516 A JP 2011099516A JP 2012229146 A JP2012229146 A JP 2012229146A
Authority
JP
Japan
Prior art keywords
fine particles
fine particle
particle
hydrofluoric acid
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011099516A
Other languages
Japanese (ja)
Other versions
JP2012229146A5 (en
Inventor
Hikari Kobayashi
光 小林
Masaaki Maeda
譲章 前田
Yosuke Fukaya
洋介 深谷
Woo-Byoung Kim
佑柄 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011099516A priority Critical patent/JP2012229146A/en
Publication of JP2012229146A publication Critical patent/JP2012229146A/en
Publication of JP2012229146A5 publication Critical patent/JP2012229146A5/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Abstract

PROBLEM TO BE SOLVED: To form a silicon (Si) fine particle having high surface stability and a particle size of at least several hundreds nm or less from a silicon substrate, and create a solar cell by using it.SOLUTION: By dispersion treating the Si fine particle which is obtained from a silicon substrate by pulverizing it and thereafter pulverizing it by a bead mill method and has at least a particle size of several hundreds nm or less, only in a hydrofluoric acid aqueous solution (HF), the Si fine particle can be achieved which exhibits a low spontaneous oxide fim growth and has high surface stability in such that the SiOlayer on the Si particle surface after the treatment is about zero, and the SiOlayer thickness is at most about 0.6 nm even if it is left in the atmosphere for one month, and a solar cell is created by using it.

Description

本発明は、シリコンウェハ材料から、プリンタブル電子材料としても利用し得て、薄膜の太陽電池やシリコン半導体装置に好適に利用可能なSi微細粒子として、粒径が数百ナノメートル(nm)以下のシリコン(Si)極微細粒子を得る場合に、不純物の少ない、かつ表面安定的な微細粒子を低コストで実現するSi微細粒子の製造方法及びそれを用いたSiインク、太陽電池並びに半導体装置に関する。   The present invention can be used as a printable electronic material from a silicon wafer material, and as Si fine particles that can be suitably used for thin film solar cells and silicon semiconductor devices, the particle size is several hundred nanometers (nm) or less. The present invention relates to a Si fine particle manufacturing method that realizes low-impurity and surface-stable fine particles at low cost when obtaining silicon (Si) ultrafine particles, and an Si ink, a solar cell, and a semiconductor device using the same.

従来、この種のSi微細粒子を得る場合に、例えば、粒径50〜1000μmのSi微細粒子を,例えばシリコンをフッ化水素酸と硝酸を同時に用いて酸エッチングすることによって、高純度Si微細粒子を製造すること、そして、その酸エッチング工程にフッ化水素酸と硝酸を同時に用いることを必須とするエッチング工程であるが、この酸エッチング工程では、Si表面を溶解してポーラスシリコンを得るのであり、粒径数百nm以下の微細粒子を安定的に得ることが極めて困難である。   Conventionally, when obtaining this kind of Si fine particles, for example, Si fine particles having a particle size of 50 to 1000 μm, for example, high-purity Si fine particles are obtained by acid etching using, for example, silicon simultaneously with hydrofluoric acid and nitric acid. This is an etching process that requires the simultaneous use of hydrofluoric acid and nitric acid in the acid etching process. In this acid etching process, porous silicon is obtained by dissolving the Si surface. It is extremely difficult to stably obtain fine particles having a particle size of several hundred nm or less.

一方、Siの微細粒子は、有機材料の性能限界を突破し得るプリンタブル電子材料としても注目されるが、薄膜電子材料として利用され得るSi微細粒子となると、粒径数百nm以下の極微細粒子が望ましく、そのような極微細サイズの粒子を製造するのは主としてレーザーアブレーション法、CVD法あるいは高周波スパッター法により行われているが、いずれも製造するには、製造設備が高コストであり、量産性に欠ける、などの難点がある。   On the other hand, fine particles of Si are also attracting attention as printable electronic materials that can break the performance limit of organic materials, but when they become Si fine particles that can be used as thin film electronic materials, ultrafine particles with a particle size of several hundred nm or less It is desirable to manufacture such ultrafine particles mainly by laser ablation, CVD, or high-frequency sputtering. There are difficulties such as lack of sex.

また、粒径数百nm以下のSi極微細粒子になると、粒径に対する表面積比率が著しく大で、上述のフッ化水素酸と硝酸を同時に用いるような従来の酸エッチング工程では、表面溶出率が高いことから、表面からの溶出損が大きくて粒子径制御が難しく、工業的利用には現実的でない。   In addition, when the Si ultrafine particles with a particle size of several hundred nm or less are used, the surface area ratio with respect to the particle size is remarkably large. Since it is high, the elution loss from the surface is large and it is difficult to control the particle size, which is not practical for industrial use.

本発明の目的は、有機材料の性能限界を突破し得るプリンタブル電子材料として注目されるようなSi極微細粒子の実現にあり、少なくとも粒径数百nm以下という,一層の粒径微細化を実現する技術と共に、表面処理技術によって表面安定性の向上を図ること、さらには、表面からの溶出損の小さい、より低コストの製造方法およびそのSi極微細粒子を用いた低コストのSiインク並びに太陽電池や半導体装置を提供することにある。   The object of the present invention is to realize ultrafine Si particles that are attracting attention as printable electronic materials that can break the performance limit of organic materials, and achieve further miniaturization of particle sizes of at least several hundred nm or less. And surface treatment technology to improve surface stability, and further, a low-cost production method with low elution loss from the surface, and low-cost Si ink and solar using the Si ultrafine particles The object is to provide a battery and a semiconductor device.

本発明は、少なくとも粒径数百nm以下のSi微細粒子を、フッ化水素(HF)の水溶液(以下、フッ化水素酸水溶液という)中に分散させて処理することのみで、処理直後の表面の酸化膜がほとんどゼロとなる,Si微細粒子の製造方法を提供し、本発明によるSi微細粒子では大気中に1ヶ月以上の長時間放置しても酸化膜の膜厚がせいぜい0.6nm程度になるだけで、いわゆる自然酸化のよるSiO膜の成長が極めて少ない、表面安定性の高い、工業的利用にも適用性の高いSi微細粒子を実現することができた。 In the present invention, the surface immediately after the treatment can be obtained only by dispersing and treating Si fine particles having a particle size of several hundred nm or less in an aqueous solution of hydrogen fluoride (HF) (hereinafter referred to as hydrofluoric acid aqueous solution). The present invention provides a method for producing Si fine particles in which the oxide film becomes almost zero. With the Si fine particles according to the present invention, the film thickness of the oxide film is at most about 0.6 nm even if it is left in the atmosphere for a long time of one month or longer. As a result, it was possible to realize Si fine particles with very little growth of SiO 2 film by so-called natural oxidation, high surface stability, and high applicability for industrial use.

本発明は、少なくとも粒径数百nm以下のSi微細粒子を、フッ化水素酸水溶液中に分散させて、室温程度の低温で、数分程度の短時間に処理する処理方法を提供する。   The present invention provides a treatment method in which at least Si fine particles having a particle size of several hundred nm or less are dispersed in an aqueous hydrofluoric acid solution and treated at a low temperature of about room temperature in a short time of about several minutes.

本発明は、少なくとも粒径数百nm以下のSi微細粒子を、フッ化水素酸水溶液中に分散させて処理する工程を含むSi微細粒子の製造方法およびそれにより得られたSi極微細粒子を用いるSiインク並びに太陽電池や半導体装置を提供する。   The present invention uses a method for producing Si fine particles, including a step of dispersing and treating at least Si fine particles having a particle size of several hundred nm or less in an aqueous hydrofluoric acid solution, and Si ultrafine particles obtained thereby. Si ink, solar cell and semiconductor device are provided.

本発明によると、例えばビーズミル法を用いて得られた,平均粒径数百nm程度のSi極微細粒子を、フッ化水素酸水溶液中に分散させて処理するという独自の条件の処理により、サイズが均一で、処理直後の表面の酸化被膜がほとんどゼロあるいは極薄という良好な表面状態のSi微細粒子を得ることが可能となり、さらに、その微細粒子を用いたSiインク並びに太陽電池や半導体装置を実現することができる。   According to the present invention, for example, the ultrafine Si particles having an average particle diameter of about several hundreds of nanometers obtained by using a bead mill method are dispersed in a hydrofluoric acid aqueous solution and processed under a unique condition. It is possible to obtain Si fine particles with a good surface state that is uniform and has almost no oxide film on the surface immediately after the treatment, or a very thin surface. Further, Si ink using such fine particles, solar cells and semiconductor devices can be obtained. Can be realized.

また、例えば、ビーズミル法で粉砕して得たSi微細粒子を、フィルターで透過して粒径数百nm以下のSi極微細粒子を得て、さらにHF所定濃度のフッ化水素酸水溶液中で分散処理することで、表面のSiO膜が処理直後の表面の酸化膜がほとんどゼロ,大気中に1ヶ月以上の長時間放置しても酸化膜の膜厚が高だか0.6nm程度になるだけの、表面のSiO膜の成長度合いの著しく小さいSi微細粒子を得ることができる。 For example, Si fine particles obtained by pulverization by a bead mill method are passed through a filter to obtain Si ultrafine particles having a particle size of several hundred nm or less, and further dispersed in an aqueous hydrofluoric acid solution having a predetermined concentration of HF By processing, the oxide film on the surface of the SiO 2 film on the surface is almost zero, and even if it is left in the atmosphere for a long time of one month or longer, the film thickness of the oxide film is only about 0.6 nm. Si fine particles having a remarkably small growth degree of the surface SiO 2 film can be obtained.

本発明によると、少なくとも粒径数百nm以下のSi微細粒子を、所定HF濃度のフッ化水素酸水溶液中に分散させて処理する処理方法を実現することで、例えばプリンタブル電子材料として高性能が期待される低コストの機能材料のSi微細粒子を形成できる。   According to the present invention, by realizing a processing method in which at least Si fine particles having a particle size of several hundred nm or less are dispersed and processed in a hydrofluoric acid aqueous solution having a predetermined HF concentration, high performance as a printable electronic material can be achieved. Si fine particles of the expected low-cost functional material can be formed.

また、本発明によると、少なくとも粒径数百nm以下のSi微細粒子を、所定HF濃度のフッ化水素酸水溶液中に分散させて処理する工程を含むSi微細粒子の製造方法により、例えば太陽電池用の薄膜形成プリンタブル材料として、光電変換層の厚みが1〜10μmの極めて薄層に成し得て、変換効率の高い,Si微細粒子による太陽電池を実現できる。   Further, according to the present invention, a method for producing Si fine particles including a step of dispersing and processing at least Si fine particles having a particle size of several hundred nm or less in an aqueous hydrofluoric acid solution having a predetermined HF concentration, for example, a solar cell As a thin film-forming printable material, a photoelectric conversion layer can be formed into a very thin layer having a thickness of 1 to 10 μm, and a solar cell using Si fine particles with high conversion efficiency can be realized.

本発明の実施例で得られたSi微細粒子の走査電子顕微鏡(SEM)による観察図である。It is an observation figure by the scanning electron microscope (SEM) of the Si fine particle obtained in the Example of this invention. 透過電子顕微鏡(TEM)による観察図である。It is an observation figure by a transmission electron microscope (TEM). 本発明の実施で得られたSi粒子のフッ酸処理前後のSi 2pエネルギー領域のX線光電子分光スペクトル(XPS)観察図である。It is a X-ray photoelectron spectroscopy (XPS) observation figure of the Si2p energy area | region before and behind the hydrofluoric acid process of the Si particle obtained by implementation of this invention. 本発明の実施例のビーズミル法での処理前のSi粒子分布図である。It is Si particle distribution map before the process by the bead mill method of the Example of this invention. 本発明の実施例のビーズミル法での処理後のSi粒子分布図である。It is Si particle distribution map after the process by the bead mill method of the Example of this invention. 本発明で得られた他例による処理前のSi粒子分布図である。It is Si particle distribution map before the process by the other example obtained by this invention. 本発明で得られた他例による処理後のSi粒子分布図である。It is Si particle distribution map after the process by the other example obtained by this invention. 実施例装置の電流電圧特性図である。It is a current-voltage characteristic figure of an Example apparatus. 実施例装置の光電変換特性図である。It is a photoelectric conversion characteristic figure of an example device.

つぎに、本発明を、実施の形態である実施例装置により、図面を参照して詳細に述べる。   Next, the present invention will be described in detail with reference to the drawings by an example device as an embodiment.

<第1実施形態>
本発明の実施の形態を、図面を参照して詳細に述べる。
<First Embodiment>
Embodiments of the present invention will be described in detail with reference to the drawings.

p型の単結晶Siウェハを粉砕して細粒子化し、さらに、ビーズミル法で処理したのち、水中に分散し、次いで、テフロン(登録商標)製のフィルター(孔径0.1μm)を用いて吸引ろ過により分級(篩い分け)した。そして、この水中ろ過分散したSi粒子をHF濃度60%のフッ化水素酸中に徐々に滴下した。徐々の滴下は、室温でのフッ化水素酸水溶液の温度を、50℃以下、好ましくは室温に近い状態が維持できるようにするためであり、その滴下量は経験的に定めた。このときのフッ化水素酸水溶液中のHF濃度には、60%に限らず、25%および5%でも経験しており、作用上の制限はないが、工業的にHF濃度5%以上、好ましくはHF濃度30%超〜99%のフッ化水素酸水溶液が選択して利用でき、とりわけ、HF濃度50%超〜99%のフッ化水素酸水溶液を用いると短時間の処理に適当である。なお、ここで利用される単結晶Siウェハは、p型に限らず、n型でもよく、導電度も任意に選択することが可能である。   The p-type single crystal Si wafer is pulverized into fine particles, further processed by a bead mill method, dispersed in water, and then suction filtered using a Teflon (registered trademark) filter (pore size 0.1 μm). Classification (screening). Then, the Si particles dispersed by filtration in water were gradually dropped into hydrofluoric acid having an HF concentration of 60%. The gradual dripping is performed so that the temperature of the hydrofluoric acid aqueous solution at room temperature can be maintained at 50 ° C. or less, preferably close to room temperature, and the dripping amount is determined empirically. At this time, the HF concentration in the hydrofluoric acid aqueous solution is not limited to 60%, but is experienced even at 25% and 5%, and there is no operational limitation, but industrially, the HF concentration is 5% or more, preferably Can be used by selectively using a hydrofluoric acid aqueous solution having an HF concentration of more than 30% to 99%, and in particular, a hydrofluoric acid aqueous solution having an HF concentration of more than 50% to 99% is suitable for a short-time treatment. Note that the single crystal Si wafer used here is not limited to p-type but may be n-type, and the conductivity can be arbitrarily selected.

ビーズミル法での処理は、Si粒体を適度なビーズ球とともに容器内で揺動再粉砕するもので、ビーズ球の寸径及び揺動時間を適宜選定して、所望の微細粒子に加工することが可能である。   The processing by the bead mill method involves re-grinding Si particles together with appropriate bead spheres in a container, and processing them into desired fine particles by selecting the sphere diameter and oscillating time appropriately. Is possible.

また、Siの粒子化に当たっては、単結晶や多結晶Siウェハから粉砕して細粒子化したものに限らず、単結晶または多結晶のSi基材(インゴット)から薄板の基板(ウェハ)を形成する際の,ワイヤーソーを用いて切り出すときに生じる,いわゆる切粉と称されるSi粒子を素材として、これをボールミル法、ビーズミル法、衝撃波法あるいはジェットミル法で再微細化処理したものも、実用できる。この場合生じる切粉は、廃棄対象であり、そのままの粒体としては現在利用されていないので、素材コストとしては全く発生しないため、極めて低コストのSi微細粒子を製造できる。   In addition, the formation of Si particles is not limited to pulverized fine particles from single crystal or polycrystalline Si wafers, and thin substrates (wafers) are formed from single crystal or polycrystalline Si substrates (ingots). As a raw material, so-called chips, which are generated when cutting using a wire saw, the material that has been refined again by the ball mill method, bead mill method, shock wave method or jet mill method, Can be used practically. The chips generated in this case are to be discarded and are not currently used as intact granules, so that no raw material costs are generated, so extremely low-cost Si fine particles can be produced.

フッ化水素酸水溶液中への徐々の滴下後、30分間静止した後、遠心分離機で分離、さらに静止して上澄み液を除去し、次いでエタノール中で超音波をかけながら分散させた。そして、この懸濁の湿潤分散中から、室温で乾燥窒素(N)ブローにより風乾して、Si微細粒子を取出した。図1は処理直後におけるSi粒子の顕微鏡観察写真図であり、図1(a)はSEMによる見かけ観察写真図、図1(b)はTEMによる単粒子の実態観察写真図である。これから推察すると、図1(a)では,微細なSi粒子が一部凝集してやや大きな微粒子を形成しているが,個別のSi粒子径が例えば図1(b)のような約5nm(短径)の極微細な単粒子(図中の中央部の丸囲いで示す短径約5nm、長径約10nmの粒子物)であり、実態はかかる微細粒子が粒子径数nm〜数百nmで分布する,いわゆるSiナノ粒子物と称してよいものであることが分かった。 After gradually dropping into the aqueous hydrofluoric acid solution, the mixture was allowed to stand for 30 minutes, separated by a centrifuge, further stopped to remove the supernatant, and then dispersed in ethanol while applying ultrasonic waves. Then, from the wet dispersion of this suspension, it was air-dried by dry nitrogen (N 2 ) blow at room temperature to extract Si fine particles. FIG. 1 is a microscopic observation photograph of Si particles immediately after processing, FIG. 1 (a) is an apparent observation photograph using SEM, and FIG. 1 (b) is an actual observation photograph of single particles using TEM. Inferring from this, in FIG. 1 (a), some of the fine Si particles are agglomerated to form slightly larger particles, but the individual Si particle diameter is about 5 nm (short diameter, for example) as shown in FIG. 1 (b). ) Ultrafine single particles (particles having a minor axis of about 5 nm and a major axis of about 10 nm indicated by a circle in the center of the figure), and in reality, such fine particles are distributed with a particle diameter of several nm to several hundred nm. It has been found that it may be called a so-called Si nanoparticle.

また、図2は、この実施で得られたSi粒子をHF処理した前後のSi 2pエネルギー領域のXPSスペクトル特性であり、図中の特性は下から上へ順に、処理前(>〜10nm), 処理直後(〜0nm), 一週間後(0.24nm)及び一ヶ月後(0.58nm)の各測定を示す。なお、上記括弧内の各数値はSiOの厚さ推定値である。これによると結晶性Siのピークに対してSiOの検出量は極めて小さいことが明らかで、とりわけ、処理直後にはSi粒子表面の酸化膜が殆ど完全に除去されていた。大気中に1ヶ月間の放置でも、全SiO層厚は高々0.6nm程度(図2から確認したところでは全SiO層厚0.58nm)であることから、自然酸化によるSiO層の成長は著しく遅く、十分に安定であることが分かった。これは本フッ化水素酸水溶液処理により、Si微細粒子表面に水素による終端結合が生じ、酸化膜形成を有効に阻害しているからと考えられる。 FIG. 2 shows the XPS spectral characteristics of the Si 2p energy region before and after the HF treatment of the Si particles obtained in this implementation. The characteristics in the figure are in order from bottom to top before treatment (> 10 nm), Each measurement is shown immediately after treatment (˜0 nm), after one week (0.24 nm) and after one month (0.58 nm). Each numerical value in the parentheses is an estimated thickness of SiO 2 . According to this, it was clear that the detected amount of SiO 2 was very small with respect to the peak of crystalline Si, and in particular, the oxide film on the surface of the Si particles was almost completely removed immediately after the treatment. Even when left for one month into the atmosphere, since all the SiO 2 layer thickness is at most about 0.6nm (all SiO 2 layer thickness of 0.58nm in a place that was confirmed from FIG. 2), the SiO 2 layer by natural oxidation Growth was found to be remarkably slow and stable enough. This is presumably because the hydrogen fluoride acid aqueous solution treatment causes termination bonding due to hydrogen on the surface of the Si fine particles, effectively inhibiting the formation of the oxide film.

さらに、図3は、切粉によるSi粒子の粒子分布図であり、図3(a)はビーズミル法での処理前、図3(b)はビーズミル法での処理後の各分布である。これによると、ビーズミル法での処理で粒子分布は、5〜500nmに分布していることが確認された。   Further, FIG. 3 is a particle distribution diagram of Si particles by chips, FIG. 3 (a) is a distribution before processing by the bead mill method, and FIG. 3 (b) is each distribution after processing by the bead mill method. According to this, it was confirmed that the particle distribution was distributed to 5 to 500 nm by the treatment by the bead mill method.

図4(a),(b)は、Si粒子の再粉砕による微細化を行うに当たり、ボールミル法のみ、およびボールミル法と衝撃波粉砕法とを組合せて行った場合に得られる粒子分布図であり、図中の各特性曲線は、図4(a)で30分(min)のボールミル法のみを特性1.、30分(min)のボールミル法と衝撃波粉砕法とを組み合わせて、図4(b)で衝撃波粉砕1 pass 2.、衝撃波粉砕3 pass 3.及び衝撃波粉砕6 pass 4.の場合の各粉砕事例を表している。この場合でも、Si粒子の再粉砕による微細化を行って、粒子分布を5〜500nmに特定することが十分に可能であることを示す。   4 (a) and 4 (b) are particle distribution diagrams obtained when performing refinement by re-grinding of Si particles only when the ball mill method is used, and when the ball mill method and the shock wave grinding method are combined. Each characteristic curve in FIG. 4 is obtained by applying only the ball mill method for 30 minutes (min) in FIG. 30 minutes (min) in combination with a ball mill method and a shock wave grinding method, shock wave grinding 1 pass in FIG. , Shock wave grinding 3 pass And shock wave grinding 6 pass Each crushing case in the case of. Even in this case, it is shown that it is sufficiently possible to specify the particle distribution to 5 to 500 nm by refining the Si particles by regrinding.

本実施の形態で得られるSi粒子表面のSiOがほぼゼロあるいは極薄で安定であるため、近接の相互Si粒子間での電荷の挙動は、接触粒子間の直接移動、あるいは表面に極薄酸化被膜のある場合にはトンネル効果で移動が可能であり、太陽電池等での光電効果で生じたキャリア(電荷)の移動には殆ど支障がない。したがって、この種Si微細粒子(Siナノ粒子)により、例えばプリント技術等で薄膜半導体層を形成して、太陽電池やLSIなどの半導体デバイス用素材に利用することが可能である。 Since SiO 2 on the surface of the Si particles obtained in the present embodiment is almost zero or extremely thin and stable, the charge behavior between adjacent mutual Si particles can be directly transferred between contact particles or extremely thin on the surface. When there is an oxide film, it can move by the tunnel effect, and there is almost no hindrance to the movement of carriers (charges) generated by the photoelectric effect in a solar cell or the like. Therefore, it is possible to form a thin-film semiconductor layer with these kinds of Si fine particles (Si nanoparticles), for example, by a printing technique or the like, and use it for a semiconductor device material such as a solar cell or LSI.

本実施の形態によると、少なくとも数百nm以下の粒径に得られたSi微細粒子がHF濃度20%以上のフッ酸中に分散させて処理する工程を含むSi微細粒子の処理方法または製造方法により、表面安定性極めて高く実現でき、低コストにSi微細粒子を創製することが可能で、工業的利用上の意義は真に大である。また本Si微細粒子に適宜なバインダー材料や分散材を調合して、さらに有効なSiインク材料を製造することが可能である。
<第2実施形態>
シリコンインゴットを固定式砥粒法で切断してp型の単結晶シリコンウェハを切断する際生成する切粉を、ビーズミルと衝撃波で粉砕した。粉砕した切粉を25%のフッ化水素酸水溶液でエッチングして表面に存在する酸化膜を除去した。得られたシリコン微細粒子に吸着している水とフッ化水素を除去するために、シリコン微細粒子をエタノールに分散し遠心分離する操作を三回反復した。このようにして得られたシリコン微細粒子を、エタノールに分散した。次に、このシリコン微細粒子を分散したエタノール溶液と、エチルセルロースとαティフェネオールをエタノールに分散した溶液とを混合した。この混合液中のエタノールはロータリーエバポレーターを用いて除去し、塗布用シリコンインク(シリコンペースト)とした。このシリコンインク中には、シリコン、エチルセルロース、αティフェネオールが15:5:80(重量)の割合で含まれている。このシリコンペーストをn型単結晶シリコンウェハに塗布し、窒素中450℃で30分加熱してバインダー(セルロースとαティフェネオール)を除去した。その後、窒素中30分かけて900℃まで昇温し900℃で1分間保持することによって、Si粒子層を作製した。その後、表面と裏面にアルミニウム電極を作製した。
図5(a)は、作製した試料の電流-電圧特性である。上部電極に正電圧を印加した際のみ電流が流れる整流性を示している。整流性を示すことは、太陽電池や半導体デバイスに応用する場合の必須条件であり、開発したシリコンペーストがこれらの半導体製品に利用できる可能性を示している。
図5(b)は、作製した試料に光を照射した際に観測された電流-電圧曲線、すなわち光起電力と光電流との関係である。光起電力と光起電力を発生しており、開発したシリコンペーストが太陽電池に応用可能なことを示している。
According to the present embodiment, the Si fine particle processing method or manufacturing method includes a step of dispersing and processing Si fine particles obtained to a particle size of at least several hundred nm or less in hydrofluoric acid having an HF concentration of 20% or more. Therefore, it is possible to realize extremely high surface stability and to create Si fine particles at low cost, and the significance for industrial use is really great. Further, it is possible to produce a more effective Si ink material by blending an appropriate binder material or dispersion material with the Si fine particles.
Second Embodiment
Chips generated when a silicon ingot was cut by a fixed abrasive method to cut a p-type single crystal silicon wafer were pulverized by a bead mill and a shock wave. The crushed chips were etched with a 25% aqueous hydrofluoric acid solution to remove the oxide film present on the surface. In order to remove water and hydrogen fluoride adsorbed on the obtained silicon fine particles, the operation of dispersing the silicon fine particles in ethanol and centrifuging them was repeated three times. The silicon fine particles thus obtained were dispersed in ethanol. Next, an ethanol solution in which the silicon fine particles were dispersed was mixed with a solution in which ethyl cellulose and α-thiophene were dispersed in ethanol. Ethanol in the mixed solution was removed using a rotary evaporator to obtain a coating silicon ink (silicon paste). This silicon ink contains silicon, ethyl cellulose, and α-tifeneol in a ratio of 15: 5: 80 (weight). This silicon paste was applied to an n-type single crystal silicon wafer and heated in nitrogen at 450 ° C. for 30 minutes to remove the binder (cellulose and α-tifeneol). Thereafter, the temperature was raised to 900 ° C. in nitrogen over 30 minutes and held at 900 ° C. for 1 minute to produce a Si particle layer. Thereafter, aluminum electrodes were formed on the front and back surfaces.
FIG. 5A shows current-voltage characteristics of the manufactured sample. This shows rectification in which current flows only when a positive voltage is applied to the upper electrode. Showing rectification is an indispensable condition when applied to solar cells and semiconductor devices, and indicates that the developed silicon paste can be used for these semiconductor products.
FIG. 5B shows a current-voltage curve observed when the prepared sample is irradiated with light, that is, the relationship between the photovoltaic force and the photocurrent. Photovoltaic power and photovoltaic power are generated, indicating that the developed silicon paste can be applied to solar cells.

また、本実施の形態によると、太陽電池用の薄膜を塗布形成するプリンタブル材料として用いて、光電変換層の厚みが1〜10μmの極めて薄層で、変換効率にも優れた高性能の機能素子、とりわけ、結晶性Si、多結晶Siまたは非結晶性Siや本Si微細粒子による第一の光電変換層に重ねてSi微細粒子による塗布形成の第二の薄膜光電変換層を設けた多層構造の太陽電池に適用して、光電変換効率をさらに向上させた高性能太陽電池を実現できる。   In addition, according to the present embodiment, a high-performance functional element having a very thin photoelectric conversion layer having a thickness of 1 to 10 μm and excellent conversion efficiency is used as a printable material for coating and forming a thin film for a solar cell. In particular, a multilayer structure in which a second thin film photoelectric conversion layer formed by coating with Si fine particles is provided on top of the first photoelectric conversion layer with crystalline Si, polycrystalline Si, amorphous Si, or Si fine particles. When applied to a solar cell, a high-performance solar cell with further improved photoelectric conversion efficiency can be realized.

本発明は、Si微細粒子、少なくとも粒径数百nm以下のSi微細粒子を低コストで得られ、また、その表面安定性においても、高い信頼性があり、薄膜形成プリンタブル材料としての利用性が高く、このSi粒子を用いて作製したシリコンペーストは太陽電池の外にも、半導体デバイスや液晶TFT等に適する薄膜形成の素材として利用でき、したがって、本発明はSi微細粒子を利用した太陽電池や半導体装置に適用ができる。
The present invention can obtain Si fine particles, at least Si fine particles having a particle size of several hundred nm or less, at low cost, and also has high reliability in terms of surface stability, and can be used as a printable material for forming a thin film. The silicon paste produced using this Si particle can be used as a material for forming a thin film suitable for a semiconductor device, a liquid crystal TFT, etc. in addition to the solar cell. It can be applied to semiconductor devices.

Claims (8)

Si微細粒子を、フッ化水素酸水溶液のみに分散させて処理する工程をそなえたSi微細粒子の製造方法。   A method for producing Si fine particles, comprising a step of dispersing and treating Si fine particles only in a hydrofluoric acid aqueous solution. 粉砕して得た,少なくとも粒径数百nm以下のSi微細粒子を、フッ化水素酸水溶液中に分散させる工程をそなえたSi微細粒子の製造方法。   A method for producing Si fine particles, comprising a step of dispersing Si fine particles having a particle size of several hundred nm or less obtained by pulverization in an aqueous hydrofluoric acid solution. シリコンの粉砕法として、ビーズミル、ボールミル、ジェットミル、衝撃波粉砕法のいずれかまたはそれらの組み合わせ工程によって形成する請求項1〜2のいずれか1つに記載のSi微細粒子の製造方法。 The method for producing Si fine particles according to any one of claims 1 to 2, wherein the silicon is pulverized by any one of a bead mill, a ball mill, a jet mill, a shock wave pulverization method, or a combination thereof. 切粉のSi粒子を素材として、粉砕して得られた,少なくとも粒径数百nm以下のSi微細粒子を、フッ化水素酸水溶液中に分散させる工程をそなえたSi微細粒子の製造方法。   A method for producing Si fine particles, comprising a step of dispersing Si fine particles having a particle size of several hundred nm or less obtained by pulverization using Si powder particles as a raw material in a hydrofluoric acid aqueous solution. フッ化水素酸水溶液の温度を、工程中50℃以下の常温に維持する請求項1〜4のいずれか1つに記載のSi微細粒子の製造方法。   The manufacturing method of the Si fine particle as described in any one of Claims 1-4 which maintains the temperature of hydrofluoric acid aqueous solution at the normal temperature of 50 degrees C or less during a process. 請求項1〜5のいずれか1つに記載のSi微細粒子の製造方法で得られた,Si微細粒子を含有するSiインク。 A Si ink containing Si fine particles, obtained by the method for producing Si fine particles according to claim 1. 請求項1〜5のいずれか1つに記載のSi微細粒子の製造方法で得られた,Si微細粒子を光電変換層にそなえた太陽電池。   The solar cell which provided the photoelectric conversion layer with the Si fine particle obtained by the manufacturing method of Si fine particle as described in any one of Claims 1-5. 請求項1〜5のいずれか1つに記載のSi微細粒子の製造方法で得られた,Si微細粒子をそなえた半導体装置。   A semiconductor device provided with the Si fine particles obtained by the method for producing Si fine particles according to claim 1.
JP2011099516A 2011-04-27 2011-04-27 METHOD FOR MANUFACTURING SILICON FINE PARTICLE, AND Si INK, SOLAR CELL AND SEMICONDUCTOR DEVICE USING THE SILICON FINE PARTICLE Pending JP2012229146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011099516A JP2012229146A (en) 2011-04-27 2011-04-27 METHOD FOR MANUFACTURING SILICON FINE PARTICLE, AND Si INK, SOLAR CELL AND SEMICONDUCTOR DEVICE USING THE SILICON FINE PARTICLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011099516A JP2012229146A (en) 2011-04-27 2011-04-27 METHOD FOR MANUFACTURING SILICON FINE PARTICLE, AND Si INK, SOLAR CELL AND SEMICONDUCTOR DEVICE USING THE SILICON FINE PARTICLE

Publications (2)

Publication Number Publication Date
JP2012229146A true JP2012229146A (en) 2012-11-22
JP2012229146A5 JP2012229146A5 (en) 2014-06-05

Family

ID=47431058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011099516A Pending JP2012229146A (en) 2011-04-27 2011-04-27 METHOD FOR MANUFACTURING SILICON FINE PARTICLE, AND Si INK, SOLAR CELL AND SEMICONDUCTOR DEVICE USING THE SILICON FINE PARTICLE

Country Status (1)

Country Link
JP (1) JP2012229146A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065312A (en) * 2013-09-25 2015-04-09 京セラ株式会社 Quantum dot and solar cell
WO2015189926A1 (en) * 2014-06-11 2015-12-17 小林 光 Negative electrode material for lithium ion batteries, lithium ion battery, method and apparatus for producing negative electrode for lithium ion batteries, and method and apparatus for producing negative electrode material for lithium ion batteries
JP2016001613A (en) * 2015-07-30 2016-01-07 小林 光 Negative electrode material of lithium ion battery, lithium ion battery, and method of manufacturing negative electrode or negative electrode material of lithium ion battery
JP2016506441A (en) * 2012-12-20 2016-03-03 ナノグラム・コーポレイションNanoGram Corporation Silicon / germanium nanoparticle paste with ultra-low concentration metal contaminants
JP2017100919A (en) * 2015-12-02 2017-06-08 小林 光 Manufacturing method of silicon fine particle and manufacturing device therefor, and silicon fine particle
JP2017188329A (en) * 2016-04-06 2017-10-12 小林 光 Method for producing negative electrode material of lithium ion battery, lithium ion battery, method of manufacturing negative electrode material of lithium ion battery, and manufacturing apparatus thereof
JP2020169119A (en) * 2013-09-05 2020-10-15 日新化成株式会社 Silicon microparticles for producing hydrogen

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278612A (en) * 2000-03-31 2001-10-10 Nippei Toyama Corp Method of recovering silicon
JP2006523021A (en) * 2003-04-14 2006-10-05 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Sintered semiconductor material
JP2008019115A (en) * 2006-07-11 2008-01-31 Catalysts & Chem Ind Co Ltd Method for producing silicon fine particle
JP2008019113A (en) * 2006-07-11 2008-01-31 Catalysts & Chem Ind Co Ltd Method for producing silicon particulate-containing liquid and method for producing silicon particulate
JP2008115040A (en) * 2006-11-02 2008-05-22 Sharp Corp Silicon reclamation apparatus and method of reclaiming silicon
JP2009504423A (en) * 2005-08-11 2009-02-05 イノヴァライト インコーポレイテッド Stable passivated group IV semiconductor nanoparticles, method for producing the same, and composition thereof
JP2010184854A (en) * 2009-02-10 2010-08-26 Korea Inst Of Energy Research Apparatus for producing silicon nanocrystal using icp
JP2010241650A (en) * 2009-04-08 2010-10-28 Mitsubishi Materials Techno Corp Method for producing silicon ingot, apparatus for producing silicon ingot, and method for producing silicon crystal
JP2010534141A (en) * 2007-05-31 2010-11-04 ジ アドミニストレイターズ オブ ザ チューレン エデュケイショナル ファンド Method for forming stable functional nanoparticles
WO2011041468A1 (en) * 2009-09-29 2011-04-07 Georgia Tech Research Corporation Electrodes, lithium-ion batteries, and methods of making and using same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278612A (en) * 2000-03-31 2001-10-10 Nippei Toyama Corp Method of recovering silicon
JP2006523021A (en) * 2003-04-14 2006-10-05 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Sintered semiconductor material
JP2009504423A (en) * 2005-08-11 2009-02-05 イノヴァライト インコーポレイテッド Stable passivated group IV semiconductor nanoparticles, method for producing the same, and composition thereof
JP2008019115A (en) * 2006-07-11 2008-01-31 Catalysts & Chem Ind Co Ltd Method for producing silicon fine particle
JP2008019113A (en) * 2006-07-11 2008-01-31 Catalysts & Chem Ind Co Ltd Method for producing silicon particulate-containing liquid and method for producing silicon particulate
JP2008115040A (en) * 2006-11-02 2008-05-22 Sharp Corp Silicon reclamation apparatus and method of reclaiming silicon
JP2010534141A (en) * 2007-05-31 2010-11-04 ジ アドミニストレイターズ オブ ザ チューレン エデュケイショナル ファンド Method for forming stable functional nanoparticles
JP2010184854A (en) * 2009-02-10 2010-08-26 Korea Inst Of Energy Research Apparatus for producing silicon nanocrystal using icp
JP2010241650A (en) * 2009-04-08 2010-10-28 Mitsubishi Materials Techno Corp Method for producing silicon ingot, apparatus for producing silicon ingot, and method for producing silicon crystal
WO2011041468A1 (en) * 2009-09-29 2011-04-07 Georgia Tech Research Corporation Electrodes, lithium-ion batteries, and methods of making and using same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6014051700; 佐藤 慶介: 'ナノシリコン粒子大量製造法 多分野で利用できる可視発光機能を付加したナノシリコン粒子' クリーンテクノロジー vol.17 No.7, 20070701, Page. 27-30 *
JPN6014051701; Armin REINDL, et al.: 'Dispersing silicon nanoparticles with a stirred media mill and subsequent functionalization with phe' Colloids and Surfaces A: Physicochemical and Engineering Aspects Volume 301 issues 1-3, 20070705, Page. 382-387 *
JPN6014051702; Sabrina NIESAR, et al.: 'Low-Cost Post-Growth Treatments of Crystalline Silicon Nanoparticles Improving Surface and Electroni' Advanced Functional Materials vol.22 No.6, 20120321, Page. 1190-1198 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506441A (en) * 2012-12-20 2016-03-03 ナノグラム・コーポレイションNanoGram Corporation Silicon / germanium nanoparticle paste with ultra-low concentration metal contaminants
JP2020169119A (en) * 2013-09-05 2020-10-15 日新化成株式会社 Silicon microparticles for producing hydrogen
US11840450B2 (en) 2013-09-05 2023-12-12 Nisshin Kasei Co., Ltd. Hydrogen production apparatus, hydrogen production method, silicon fine particles for hydrogen production, and production method for silicon fine particles for hydrogen production
JP2015065312A (en) * 2013-09-25 2015-04-09 京セラ株式会社 Quantum dot and solar cell
WO2015189926A1 (en) * 2014-06-11 2015-12-17 小林 光 Negative electrode material for lithium ion batteries, lithium ion battery, method and apparatus for producing negative electrode for lithium ion batteries, and method and apparatus for producing negative electrode material for lithium ion batteries
JP5866589B1 (en) * 2014-06-11 2016-02-17 小林 光 Method for producing negative electrode or negative electrode material of lithium ion battery
JP2016001613A (en) * 2015-07-30 2016-01-07 小林 光 Negative electrode material of lithium ion battery, lithium ion battery, and method of manufacturing negative electrode or negative electrode material of lithium ion battery
JP2017100919A (en) * 2015-12-02 2017-06-08 小林 光 Manufacturing method of silicon fine particle and manufacturing device therefor, and silicon fine particle
JP2017188329A (en) * 2016-04-06 2017-10-12 小林 光 Method for producing negative electrode material of lithium ion battery, lithium ion battery, method of manufacturing negative electrode material of lithium ion battery, and manufacturing apparatus thereof
JP2021170542A (en) * 2016-04-06 2021-10-28 日新化成株式会社 Negative electrode material for lithium-ion battery, lithium-ion battery, manufacturing method of negative electrode material for lithium-ion battery, and manufacturing device of the same

Similar Documents

Publication Publication Date Title
JP2012229146A (en) METHOD FOR MANUFACTURING SILICON FINE PARTICLE, AND Si INK, SOLAR CELL AND SEMICONDUCTOR DEVICE USING THE SILICON FINE PARTICLE
WO2018037752A1 (en) Hydrogen-containing liquid, production method for hydrogen-containing liquid, and production device for hydrogen-containing liquid, and hydrogen generation material for living body
JP6271716B2 (en) Printing ink containing silicon / germanium nanoparticles and a high viscosity alcohol solvent
JP4834814B2 (en) Method for producing structured particles composed of silicon or silicon-based materials and their use in lithium batteries
CN106415897B (en) Negative electrode material for lithium ion battery, method for producing negative electrode or negative electrode material for lithium ion battery, and apparatus for producing negative electrode or negative electrode material for lithium ion battery
CN104136554A (en) Silicon/germanium nanoparticle inks and methods of forming inks with desired printing properties
KR101650184B1 (en) Method for recovering of silicon particles, and manufacturing of cathode material for secondary battery
JP4837465B2 (en) Method for producing silicon fine particle-containing liquid and method for producing silicon fine particle
JP2023109877A (en) Anode material for lithium ion battery, lithium ion battery, manufacturing method for anode material for lithium ion battery, and device for the same
JP6696632B1 (en) Graphene dispersion, method for producing the same, and electrode for secondary battery
JP2021185576A (en) Negative electrode material of lithium ion battery, lithium ion battery, method and apparatus for manufacturing negative electrode or negative electrode material of lithium ion battery
JP2013544432A (en) Manufacture of solar cells with silicon nanoparticles
JP2012229146A5 (en) Silicon fine particles, method of manufacturing the same, and Si ink provided with silicon fine particles, solar cell, and semiconductor device
JP2016001613A (en) Negative electrode material of lithium ion battery, lithium ion battery, and method of manufacturing negative electrode or negative electrode material of lithium ion battery
JP2012507114A (en) Group IVA small particle compositions and related methods
Kuddus et al. Synthesis of Si NPs from river sand using the mechanochemical process and its applications in metal oxide heterojunction solar cells
JP2005332913A (en) Method for forming silicon film for solar battery, and solar battery
CN109455756B (en) Preparation method of SnS quantum dot/graphene memristor
JP7224594B2 (en) Method for producing silicon microparticles having surface pores, and silicon microparticles
JP2013177264A (en) METHOD FOR FORMING THIN FILM LAYER BY Si FINE PARTICLE, SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, AND SOLAR CELL AND METHOD OF MANUFACTURING SOLAR CELL
CN113871615B (en) Fluorinated graphene electrode active material and preparation method and application thereof
JP7224593B2 (en) Method for producing silicon microparticles having fine projections, and silicon microparticles
CN107117606A (en) A kind of method that graphene is prepared based on laser ultrasonic stripping
TW201421772A (en) Preparatory processes of silicon-containing materials and application thereof
CN112456498A (en) Nano silicon material with hydrophobic coating layer, preparation method and application

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006