JPWO2017179138A1 - パターン計測装置およびパターン計測方法 - Google Patents

パターン計測装置およびパターン計測方法 Download PDF

Info

Publication number
JPWO2017179138A1
JPWO2017179138A1 JP2018511808A JP2018511808A JPWO2017179138A1 JP WO2017179138 A1 JPWO2017179138 A1 JP WO2017179138A1 JP 2018511808 A JP2018511808 A JP 2018511808A JP 2018511808 A JP2018511808 A JP 2018511808A JP WO2017179138 A1 JPWO2017179138 A1 JP WO2017179138A1
Authority
JP
Japan
Prior art keywords
pattern
dimension
sample
charged particle
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018511808A
Other languages
English (en)
Other versions
JP6511193B2 (ja
Inventor
太田 洋也
洋也 太田
谷本 憲史
憲史 谷本
友浩 田盛
友浩 田盛
山本 琢磨
琢磨 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Publication of JPWO2017179138A1 publication Critical patent/JPWO2017179138A1/ja
Application granted granted Critical
Publication of JP6511193B2 publication Critical patent/JP6511193B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2814Measurement of surface topography
    • H01J2237/2815Depth profile

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

本発明は、深溝や深孔の形成精度によらず、高精度に溝底や孔底等を測定することが可能なパターン計測装置の提供を目的とする。そのために本発明では、荷電粒子線装置にて得られた信号に基づいて、試料上に形成されたパターンの寸法を測定する演算装置を備えたパターン計測装置であって、前記演算装置は、前記試料に対する荷電粒子ビームの走査に基づいて得られた検出信号から、パターンの第1の部分と当該第1の部分とは異なる高さにある第2の部分とのずれと、前記パターンの寸法値を求め、当該検出信号から求められたずれと、前記パターンの寸法と前記ずれとの関係を示す関係情報を用いて、前記パターンの寸法値を補正するパターン計測装置を提案する。

Description

本発明は、半導体デバイス上に形成されたパターンを計測する装置、及び方法に係り、特に、深孔や深溝等のアスペクト比の大きなパターンの計測を行う装置、方法に関する。
半導体デバイスの製造では、近年、微細化の進行が鈍化し、微細化に頼る集積化が困難となりつつある。一方で、高集積化への要望は高く、微細化の代替としての構造の3次元化が進みつつある。また、デバイスの3次元化によって、異層間の重ね合わせ誤差や、深い溝や穴の寸法が重要な評価項目になりつつある。例えば、いわゆる3D−NANDのような積層デバイスでは、高集積のために層数が増え、デバイス全体として厚くなる方向にある。
一方、微細化と3次元化が進む半導体デバイスを測定する装置として走査電子顕微鏡が知られている。しかし、深い溝や穴の計測では、パターン底部からの信号電子の脱出が少なく、表面の計測に比較して精度が低くなる傾向にある。このため、上層と下層を透過するエネルギーの電子を用いて重ね合せを測定する測定法が知られている(特許文献1、2)。また、深溝穴の深さ測定にも電子線の計測装置を用いることも行われている(特許文献3)。
上記の深い穴や、溝の形成にはエッチングによる加工が用いられ、形状を正しく形成するためにはエッチングプロセスの制御が重要である。深溝や深穴には、開口の寸法に対する深さの比(aspect ratio)が10以上のパターンが含まれている。溝穴のエッチングでは、垂直加工のウエハ面内均一性が高いレベルで要求されており、面内分布を計測しエッチング装置へフィードバックすることが歩留まり向上の鍵である。特に、膜厚が厚く、結果として高アスペクト比となるようなパターンは、ウエハの外周部で加工均一性が低下する傾向にあり、傾いて加工されることがある。
半導体パターンに限らず、立体形状を走査電子顕微鏡にて観察計測する際には、試料台または電子線を傾け、試料に対する入射角度を変え、上面からの照射とは異なる複数の画像でいわゆるステレオ観察を用いて、パターンの高さ、側壁の角度などの断面形状や、3次元再構成を行うビームチルト計測ができることが知られている(特許文献4)。試料とビームの設定角度精度が得られた断面形状や再構成された3次元形状の精度に大きく影響することが課題であり、このために角度校正を高精度に行うことが実施されている(特許文献5)。
特許第5722719号公報(対応米国特許USP9,046,475) 特開2014−86393号公報(対応米国特許USP9,224,575) 特開2015−106530号公報 特許第4689002号公報(対応米国特許USP6,452,175) 特許第4500653号公報(対応米国特許USP7,164,128)
深孔や深溝のアスペクト比が大きくなると、深孔や深溝の底部から放出される電子の検出効率が低下する。また、発明者らの検討によって、検出効率の低下だけではなく、高アスペクト化に起因する異なる測定精度低下要因があることが明らかになった。深孔や深溝パターンは、試料表面の垂線方向から見て、上部と底部の中心が一致していることが望ましいが、アスペクト比が大きい程、適正な加工を行うことが困難となる。そして、発明者らは、上部と底部間の位置ずれが底部の測定精度に影響を与えると共に、その影響がある傾向を持つことを新たに見出した。特許文献1乃至5には、3次元構造の試料の観察や測定を行うための種々の手法が説明されているが、パターンの上部と底部のずれに起因する測定精度低下を解消する手法については何等言及されていない。
以下に、深溝や深孔の形成精度によらず、高精度に溝底や孔底等を測定することを目的とするパターン計測装置、パターン計測方法を提案する。
上記目的を達成するための一態様として、荷電粒子線装置にて得られた信号に基づいて、試料上に形成されたパターンの寸法を測定する演算装置を備えたパターン計測装置であって、前記演算装置は、前記試料に対する荷電粒子ビームの走査に基づいて得られた検出信号から、パターンの第1の部分と当該第1の部分とは異なる高さにある第2の部分とのずれと、前記パターンの寸法値を求め、当該検出信号から求められたずれと、前記パターンの寸法と前記ずれとの関係を示す関係情報を用いて、前記パターンの寸法値を補正するパターン計測装置、及び方法を提案する。
上記構成によれば、深溝や深孔の形成精度によらず、高精度に溝底や孔底等を測定することが可能となる。
走査電子顕微鏡を含むパターン計測装置の概要を示す図。 溝状パターンの断面図、画像、及び信号波形を示す図。 傾いた溝状パターンの断面図、画像、及び信号波形を示す図。 上部寸法値、底部寸法値、及び上下のずれ量の関係を示す図。 底部寸法と上下のずれ量の関係を示す図。 深穴パターンの画像、及び信号波形を示す図。 パターンの測定工程を示すフローチャート。 パターンの測定工程を示すフローチャート。 測定値の面内分布を示す図。 異なる検出器によって検出された検出信号に基づいて生成された画像と信号波形を示す図。 底部寸法、上下ずれ量、及び両者の関係情報に基づいて、正確な底部寸法を求める工程を示すフローチャート。
以下に説明する実施例は主に、電子線を用いたパターン計測装置で、深溝穴の底部の寸法や、パターンの傾きを精度よく行うためのものである。アスペクト比の高いいわゆる深い溝、深い穴のパターンの傾きや底部の寸法を精度良く計測することが半導体デバイスとしての良品の取得率を決定する大きな要因となる。いわゆる走査型電子顕微鏡を応用したパターン計測装置は、エネルギーを持った電子線を試料に照射し、試料に侵入した電子と物質の相互作用に基づく散乱現象で発生した2次電子や後方散乱電子を検出する装置である。固体内での散乱は入射する電子のエネルギーに依存して一定の広がりを持ち、溝や穴の側壁と底から発生した電子の区別がし難いだけでなく、発生した電子が側壁に衝突して消滅したり、側壁を透過して試料表面から出射されるため、平坦な試料に比較して信号量が極端に減少し、信号ノイズ比の低い画像や信号強度波形にならざるを得ない。
さらに、パターンが傾きを持っている場合、側壁での局所的な透過や散乱で複雑な挙動となるため、パターンの傾き角度や底部の寸法を測定する精度が不足する。
以下に説明する実施例は、アスペクト比の高い穴または溝の寸法を精度よく計測することが可能なパターン計測装置、及びパターン計測方法に関する。
以下に説明する実施例では、例えば、基板上に形成されたパターンに対して一次電子線を走査して照射する一次電子線照射手段と、一次電子線が照射された前記基板から放出される電子を検出する2つ以上の電子検出手段と、それぞれの電子検出手段で検出した電子の信号強度に応じた2つ以上の電子線像を形成する像形成手段とを有し、1つまたは2つの検出器からの電子線像を選択し、2つ以上の寸法を算出する手段と、2つ以上の像中心位置を算出する手段と、あらかじめ決定されたパラメータから寸法の値を変換する変換手段とを設けて寸法の値を変換するパターン計測装置を例に採って説明する。なお、検出器は1つ以上あれば良く、深孔等の深い部分(第1の部分)と相対的に浅い部分(第2の部分)のそれぞれの情報を適正に取得できれば良い。
また、上記パラメータは、電子ビームを複数の入射角から照射することによって得られる測定値に基づいて生成されるものであり、パターンの上下ずれの変化と底部寸法の変化を関数化、或いはテーブル化したものである。関数やテーブルのような関係情報を生成するための測定処理を実行する動作プログラムを所定の記憶媒体に記憶させておくことによって、上記パラメータを自動で抽出することが可能となる。更に、ビーム傾斜角度を評価するための評価用試料を備え、当該評価用試料を用いてビームの照射角度を校正し、一次電子線の傾斜角度と像中心位置の差からパターンの傾斜角度を算出する演算装置を備えることもできる。
上記構成によれば、半導体デバイスの製造工程で発生するパターンの傾きや、パターン底部の寸法を精度よく計測することができる。
以下、図面に基づいて、パターンの底部等を高精度に測定することができるパターン測定装置を説明する。なお、本発明の実施態様は、後述する実施例に限定されるものではなく、その技術思想の範囲において、種々の変形が可能である。
図1に、本実施例で使用する荷電粒子線装置の一例を示す。本実施例では、荷電粒子線装置の一態様である走査電子顕微鏡(Scanning Electron Microscope:SEM)を例にとって説明するが、パターン計測装置の信号波形取得装置として、イオンビームの走査に基づいて信号波形や画像を生成するイオンビーム装置等の他の荷電粒子線装置を用いても良い。走査電子顕微鏡本体は、電子光学カラム1と試料室2で構成される。
カラム1の内側には、電子を発生させ特定の加速電圧でエネルギーを与えられた一次電子線(以下、電子ビーム)の放出源である電子銃3、電子ビームを集束するコンデンサレンズ4、電子ビームを試料(ウエハ11)上で走査する偏向器7、及び電子ビームを集束して試料に照射する対物レンズ8が備えられている。更に、カラム1内には電子ビームを理想光軸から離軸させ、離軸したビームを理想光軸に対して傾斜した方向に向かって偏向することで、傾斜ビームとする偏向器5が設けられている。ウエハ11から放出された2次電子等は、E×B偏向器(直交電磁界発生器)6によって、検出器9に向かって偏向される。ウエハ11には図示しない負電圧印加電源より、負電圧が印加されており、ウエハ11から放出された2次電子は、ウエハ11と対物レンズ8との間に形成される電界によって、電子銃3方向に向かって加速される。ウエハ11と対物レンズ8との間には、主に後方散乱電子を検出するための検出器10が配置されている。
電子線は、電子線走査コントローラ17から与えられる信号で駆動される偏向器7により走査される。走査は、例えばX方向に1ラインを走査し、Y方向に1ライン(通常は画素に相当)分だけ位置をずらして、次のラインを走査する。これを繰り返して面状に走査する。走査信号と、後述する電子検出器から出力される信号を同期させることにより、画像を形成する。試料室2に設置されるXYステージ13は、ステージコントローラ18から与えられる信号に従いウエハ11を移動させる。XYステージ13上には、電子線の校正に使用する標準試料12が取り付けられている。また、XYステージ上に試料であるウエハを導入載置(ウエハロード)した際に、位置や回転を検出しアライメントを行うための光学顕微鏡14を有している。
電子検出器9および電子検出器10から出力される検出信号は、アンプ15および16において信号変換され、画像処理装置19に入力される。画像処理装置19は、検出信号を必要に応じて加算やあらかじめ決定された方式での信号変換をして画像化する。本実施例では、検出器9は2次電子を主として検出し、その検出信号は主にウエハ表面(上層)のパターン情報を示し、電子検出器10は主に後方散乱電子を検出し、その検出信号は主にパターンの下層の情報を示す。なお、パターンの上側と下側の信号を検出するために、例えば下層のパターンまで到達し得る高加速の電子ビームをウエハ11に照射するようにしても良い。また、深溝の底部を測定する場合に、試料表面を帯電させるためのビームを照射した後に、測定用の電子ビームを走査することによって、孔底測定を行うための検出信号を取得するようにしても良い。
さらに、画像処理装置19は、得られた画像から、例えば試料上のパターンの寸法などの特徴量を算出する機能を持つ。この特徴量を算出する演算は、複数の電子検出器から得た複数の画像を対象にすることも可能である。制御PC20は、電子線計測装置全体の動作を制御する制御装置であり、上記画像処理や信号処理を総合的に制御する。また、後述する寸法値を変換する機能や、パターン角度を算出する機能、更にこれらの変換や算出に必要なパラメータを測定データから決定する計算プログラム機能などが内蔵されている。また、制御PC20には、表示装置21が接続されており、画像や演算結果や測定結果を表示する機能をもつ。
偏向器5は、少なくとも1段の偏向器を有するビーム傾斜用の偏向器である。1段偏向を行う場合には、偏向器5は対物レンズ8の物点位置に配置される。対物レンズ8の振り戻し作用によって、理想光軸に対して傾斜した方向からビームを照射する。また、2段の偏向器を用いる場合には、上段の偏向器によって電子ビームを理想光軸から離軸させ、下段の偏向器によって、所望の傾斜角となるように電子ビームを偏向する。図1は、2段の偏向器を有する傾斜ビーム用偏向器を例示しているが、目的や要求精度に応じて多段を装備してもよい。また、XYステージを傾斜させることによって、試料に傾斜ビームを照射するようにしても良い。本実施例では、角度を変えて設定する速度が速い電子光学的に傾斜させる方法を用いたが、効果はXYステージを傾斜させる方法も同一である。
電子ビームの入射角は、XYステージあるいは試料に対して校正することができる。例えば、標準試料12としてピラミッド形状のパターンを備え、画像に現れるピラミッドの4つの面が同じ形状となるように、偏向器5によって電子ビームを偏向することによって、電子ビーム軌道を理想光軸と一致させることができる。また、ピラミッドの各面の幾何学的演算に基づいて、所望の傾斜角となるように、電子ビームの軌道を調整することもできる。このような演算に基づいて、偏向器5の偏向条件(制御値)を決定する。
複数の角度毎に、電子ビームが正確な傾斜角となるようにビームの軌道を校正し、その際の偏向器5の制御値を記憶することで、後述する複数の照射角度でのビーム照射を適正に行うことができる。予め校正された偏向条件にて、ビーム照射を行うことによって、傾斜ビームを用いた測定を自動的に実行することが可能となる。本実施例では、試料と電子ビームの相対角度をビーム入射角度とするが、理想光軸と電子ビームの相対角度をビーム入射角度と定義するようにしても良い。通常の電子線計測装置(SEM)では基本的に、電子ビーム軌道は、XYステージの移動軌道(X方向とY方向)に対して垂直に設定されている。Z方向をゼロ度と定義し、X方向、Y方向共に傾斜角をプラス、マイナスの数字で示す。XとYを組み合わせてあらゆる方向の角度の設定が可能である。
次に、ビーム走査によって得られる波形信号(プロファイル波形)を用いたパターン測定法の概要について、図2を用いて説明する。図2(a)は、溝形状パターンの断面図である。溝の上部に対して下部の寸法が小さく形成されており、側壁は試料の垂線(Z軸)に対し、0.1度から0.2度の相対角を持っている。図2(b)は、図2(a)に例示したパターンに対するビーム走査に基づいて得られる画像の一例を示す図である。図2(b)に例示する画像には、Y方向を長手方向とする溝状のパターンが表示されている。ビーム走査を行う場合には、X方向にライン状に走査すると共に、走査位置をY方向に移動させることによって、2次元走査を行う。画像の中心部が溝底に相当し、通常は上部よりも暗く見える。図2(c)は、A−A’の位置での1ラインの信号強度波形を示す。ここでは、説明のため、ノイズを除去して表示してある。概ね、波形の高い部分は形状の上部に相当し、低い部分は底部に相当する。溝底から放出される電子は、試料表面から放出される電子と比較すると、側壁に衝突する電子の分、相対的に数が少なく、結果として試料表面と比較して溝底の輝度が低くなる。
本実施例では、閾値設定に基づいて、パターン寸法を測定する。閾値と信号波形の交点間の距離をパターンの寸法値として出力することによって、半導体デバイス製造工程の管理を行う。例えば、閾値1を設定すれば交点a1とa2のx座標の差を寸法Aとして算出できる。また、閾値2を設定すれば、交点b1とb2の座標の差を寸法Bとして算出することができる。ここでは、閾値aは信号波形の全高の90%、閾値bは信号波形の10%とした。閾値1は信号のノイズに埋もれない範囲で高い方が良く、閾値2についても、ノイズに埋もれない範囲で低い位置に設定することによって、溝底の寸法を正確に測定することができる。
ここで、寸法Aをパターン上部の寸法、寸法Bをパターンの底部の寸法と定義する。また、図2(c)の信号プロファイルを異なるY方向の位置で複数取得し、当該複数の信号波形を加算平均することによって、シグナルノイズ比が向上し、結果として、計測精度を高めることができる。図2(d)は、別の加速電圧や検出器の画像の例を示す。パターン底部の信号波形の形状が異なっている。この場合には、閾値2を全波高の0%とすることも可能である。
図3(a)は、図2(a)に対し、溝形状パターンが傾いている例を示す図である。この例では、左側の溝側壁に対して右側の側壁の方が垂直に近い。両側の側壁の傾きの平均値をパターンの傾きと定義する。例えば、左側の側壁が垂直に対して0.3度左側(−0.3度)に、右側の側壁が垂直に対して0.1度右側(0.1度)に傾いていたとすると、パターンの傾きは、左側に0.1(−0.1度)度となる。図3(b)は、図3(a)に例示した溝状パターンのSEM画像を示す図である。図3(b)に例示する画像では、底部が右側に移動しており、パターンが傾いていることが確認できる。図3(b)のB−B’の信号強度波形を図3(c)示す。信号波形も非対称になっている。図2と同一の閾値(全高の10%と90%)を設定すると、図2に例示するパターンと、図3に例示するパターンの実際のパターン寸法が同じであったとしても、図3の交点b1とb2間の寸法は、図2の寸法に対して小さくなる。図2(a)のパターンと、図3(a)のパターンの底部の形状は同一であるにもかかわらず、パターン傾きがある場合には、測定の誤差が生じている。即ち、測定対象となるパターン部位ではなく、その他の要因(パターンの上下ずれ)によって、測定値が変化することになる。
図3(d)は、(a1+a2)/2、及び(b1+b2)/2を求めることによって、a3、b3を算出した例を示す図である。交点a1とa2の中心位置がa3、交点b1とb2の中心位置がb3となる。ここで、a3とb3の座標の差を上下のずれと定義すると、このずれ量はパターンの傾き角度を表す指標値となる。
本実施例では、ビームの入射角度を1つ設定し、その角度でビームを走査して画像を形成し、次に入射角度を変えて再び画像を形成させることを複数回繰り返し、得られた複数の画像それぞれで、上部寸法、底部寸法、及び上下のずれ量を計測した。図4(a)は、複数の入射角毎に上部寸法、底部寸法、上下のずれ量を計測し、それぞれの値をプロットしたグラフの一例を示す図である。本実施例では、ビームの入射角度を−0.5度から+0.5度まで、0.05度ずつ変化させたときの上記寸法値、及びずれ量を取得した。上部寸法は、ビーム入射角度の変化に寄らず、一定の値を維持する傾向にある一方、底部寸法は、傾斜角が大きくなる程、減少する傾向にある。更に、上下ずれ量と入射角度は比例する関係となった。
図4(a)は図2に例示するような上下ずれのないパターンに対するビーム走査によって得られた結果を示すものであり、ビーム入射角がゼロのときに、上下ずれもゼロとなる。換言すれば、ビームの入射方向と、上側パターンの中心と下側パターンの中心を結ぶ接続線の方向が一致したときに、上下ずれがゼロとなる。また、ビーム入射角度と、接続線とZ軸との間の相対角度が一致したときに、底部の寸法が最大となる。即ち、上下のずれ量が0になるビーム入射角度は、パターンの傾きを示し、上下のずれ量が0になる角度で、底部寸法が最大値を示す。
図4(b)は、図3に例示したような傾いたパターンに対する電子ビーム走査によって、上部寸法、底部寸法、上下のずれ量を測定し、その結果をプロットしたグラフを示す図である。ビーム照射角の変化に応じて、底部寸法が変化する点、上下ずれとビーム入射角度が比例の関係にある点は図4(a)と同一であるが、底部寸法が最大値をとる点が、ビーム入射角0度から移動し、上下のずれ量が0となる位置も同様に移動している点が異なる。
上述のような測定結果は、ビーム入射角度が、パターンの傾き角度とビーム入射角が平行になった角度で、上下ずれ量が0でかつ底部寸法が最大になることを示している。
図4(c)は、上記傾向に基づいて、上下のずれと底部寸法の関係に変換してプロットしたグラフの一例を示す図である。複数のパターンを用いて計測を実施し、それぞれを上記のように変換すると、パターンの傾き角度に依存せず、上下のずれ量が0になる点で底部寸法が最大となる概ね1つの曲線上に表すことができた。
このことは、計測すべきパターンをあらかじめ複数の入射角で測定し、それぞれのパターン傾き角度によらずこの曲線に乗ることが分かっていれば、1種類のビーム入射角度(例えば0度)でも、上下のずれ量から底部寸法に補正値を加える演算が可能であることを示している。
図5は、複数の溝状パターンに対する複数の入射角度のビーム照射に基づいて、複数の入射角度に応じたパターンの底部寸法と、上下ずれ量を求め、当該複数の測定結果に基づいて、上下ずれ量の変化と底部寸法の変化を関数化した例を示す図である。図5(a)は最大値の両側で直線的に減少する場合、図5(b)は曲線で減少する場合、図5(c)は最大値近傍で入射角度依存が少なく平坦な領域がある場合である。図5(a)で、傾きaはあらかじめ同種の複数のパターンを計測して得られたものである。
まず、あるパターンにビーム入射角0度のビームを照射することによって取得される検出信号を用いて、上下のずれ量D、底部寸法Bを計測する。これらの測定結果と、式(1)を用いて、パターンの上下ずれによらない、本来の底部寸法B´を求める。
B´=a×D+B・・・(式1)
aは、上下ずれ量の変化に対する底部寸法の変化を示す係数であり、このような係数を予め求めておき、実際の底部寸法と上下ずれ量の計測を行うことによって、本来の底部寸法を算出する。また、係数aはずれの方向に応じて符号を変える必要がある。
図5(b)は、上下ずれ量の変化に応じて、底部寸法が二次関数的に変化する場合の両者の関係を示すグラフである。曲線は2次関数で近似できるため、
B´=a×D+b×D+c+B・・・(式2)
で表すことができる。ここで、a、b、cはあらかじめ求めた定数である。
また、図5(c)(d)は、上下ずれが小さい範囲では、上下ずれの変動が底部寸法の計測値に大きな影響を与えず、上下ずれが大きい範囲では、上下ずれの変動が底部寸法の計測値に大きな影響を与える場合の底部寸法と上下ずれとの関係を示すグラフである。上下ずれの計測値が所定範囲内(−D1〜+D1)である場合には、図5(c)に例示するように、計測値と本来の寸法値が同じ(式3)であるものとして計測値を出力し、上下ずれの計測値が所定範囲外である場合には、上下ずれに応じた測定値の変動があるものとして、図5(d)に例示するように、式4を用いて計測値を出力する。式3、式4に例示するような演算式を予め所定の記憶媒体に記憶させておくことによって、正確な底部寸法を求めることが出来る。
B´=B(−D1 < D <D1の場合)・・・(式3)
B´=a×D+B(−D1>D またはD>D1の場合)・・・(式4)
ここで、aはあらかじめ求めた定数である。これらの補正演算は、演算装置で測定毎に演算を行ってもよいし、画像処理装置内でハードウェアのテーブル変換を用いてもよい。また、測定毎ではなく、1試料の測定がすべて終了した時点でまとめて複数点の演算を行ってもよい。ここで、D1の演算に必要なパラメータは、あらかじめ測定して決定しておく。
図11は、予め記憶された補正情報を用いて、パターンの底部を測定する工程を示すフローチャートである。まず、測定対象となるパターンが形成されたウエハをSEMの真空試料室に導入(ステップ1101)し、測定対象となるパターンにビーム走査を行うことによって得られる信号を検出し、プロファイル波形を生成する(ステップ1102)。本実施例では、パターン底部の寸法を正確に測定するために、パターン底部だけではなく、上下ずれも併せて取得する(ステップ1103、1104)。上下ずれ量を計測するために、ウエハに到達する電子ビームのエネルギー(ランディングエネルギー)を2つの状態に変化させ、それぞれの状態で得られたパターンのエッジ情報に基づいて、パターンの重心(或いは中心)を求め、重心間のずれを上下ずれ量とすることが考えられる。また、測定用のビーム走査に基づいて、上部の画像を取得し、更に試料表面を正帯電させるためのビーム走査を行った後に、下部の画像を取得するためのビーム走査を行うようにしても良い。重心は例えば、SEM画像に基づいてエッジの輪郭線を抽出し、エッジを基準とした距離画像を生成することによって、求めることができる。
プロファイル波形に基づいて、下部の測定値の取得を行うと共に、上記のような上下ずれ量の取得を行うことによって、上述のような演算式を用いた下部寸法の演算を実行する(ステップ1105)。なお、本実施例では制御PC20に記憶された演算式やテーブルに基づいて上記演算を行う例について説明したが、他の演算装置によって上記演算を行うようにしても良い。
また、上述の実施例では、パターンの最表面と底部との間のずれに基づいて、底部の寸法を補正する例について説明したが、これに限られることはなく、例えば深溝や深孔の中間部位(上部と底部との間にある所望の測定個所)と上部、或いは底部とのずれ量の測定に基づいて、底部や中間層の寸法値を補正するようにしても良い。
上記の底部寸法の補正と同様に、ビーム入射角0度で計測した上下のずれ量から、パターンの傾斜角度を演算することができる。図4(a)や図4(b)において、ビーム入射角とずれ量の比例関係があらかじめ求められておりビーム入射角0度で計測した上下のずれ量から、パターンの傾斜角度を算出できる。このように、パラメータである比例関係の係数をあらかじめ求めておけば、ビーム入射角度0度での上下のずれ量を一度だけ測定することで、パターンの角度を算出することが可能となる。通常、パターンの深さが未知の場合には、ずれ量から角度を算出することはできないが、本方法ではビーム入射角を角度で校正しているため、ずれ量から直接、角度の数値を算出することが可能である。
上記実施例は溝パターンを例として説明してきたが、穴パターンも断面を選択すれば同様の信号波形となることが得られている。図6(a)は穴パターンの画像を示す。溝と同様に底部と側壁が観察できる。断面A−A’の信号波形を図6(b)に示す。閾値1を設定することで上部寸法を、閾値2を設定することで底部寸法を測定できる。また、画像上で別の角度(方位角とする)断面B−B’でも同様の波形を得られることは自明である。ただし、底部寸法を計測する際には、断面は穴の仮想的な中心を通る必要があり、これは得られた画像全面で閾値を設定し、その交点位置に楕円形を近似することで求めることができ、中心位置の決定と寸法としての穴径を計測することができる。
図6(c)は傾いた穴のパターンの画像である。断面C−C’を選択した場合の信号波形を図6(d)に示す。この場合も、溝パターンで示したように、プロファイルの非対称性からパターンに傾斜があることがわかる。閾値1の中心と閾値2の中心位置の差から、傾きの大きさと、傾きの方位角方向を得ることができる。底部寸法の補正には、あらかじめ例えばXY方向を4分割する16方向の入射角度を方位角度ごとに変えてビーム入射角度と底部寸法、上下の中心位置のずれ量の関係をパラメータとして取得しておけばよい。
なお、A−A´方向の底部の寸法を測定する場合に、上部中心と底部中心との間のずれの方向が、A−A´方向に対しθ方向に発生している場合は、底部の寸法は例えば、
B´=cosθ×a×D+B・・・(式5)
によって求めることができる。この場合、パターン上部中心と底部中心間のずれ量だけではなく、そのずれの方向をも画像処理を用いて求めることによって、ずれの方向によらず、正確な底部寸法を求めることができる。ずれの方向に応じた寸法値補正法は例えば式2、3、4等にも適用することができる。
次に、測定のシーケンスについて説明する。図7に測定の全体フローを示す。代表的な試料(ウエハ)を装置内のXYステージにロードし(ステップS1)、複数の箇所でビーム入射角度を変えながら測定を行う(ステップS2)。パターン上部の寸法、パターン底部の寸法、それぞれの中心位置の差のビーム角度依存性を測定する。さらに、寸法値を補正する補正パラメータを算出する(ステップS3)。次に、ビーム入射角度0度(試料に対して垂直入射)で試料上のあらかじめ決められた場所の測定を行う(ステップS4)。ステップS3で決定された補正パラメータでパターンの角度や寸法値を演算する(ステップS5)。ここで演算された値(例えば上下のずれや、当該ずれから求められる上下パターンの中心点間を結ぶ線分と、理想光軸との間の相対角)が、あらかじめユーザーが指定した規定の値を超えているかの判断を行う(ステップS6)。規定値の範囲を超えていなければ、最後の試料かを判断し(ステップS8)、最後の試料でなければ次の試料をロードする(ステップS9)。この後、ステップS4に戻って次の試料の測定を開始する。ステップS8で最後の試料であれば、測定を終了する。
ステップS6であらかじめユーザーが指定した規定値を超えている場合には、その場所の再測定を行う。このとき、角度が規定の値を超えている方向にビームを補正パラメータ算出に用いた角度よりも大きく傾斜させて測定を行う(ステップS7)。また、ユーザーが指定した規定値を超えている場合には、再度測定することを行わず、試料上のその箇所は一定値を超えたという属性を記憶して次の工程に進む方法もある。
上記に述べた補正パラメータを算出する工程を1度行えば、同一の製造工程の試料には適用可能である。図7に示すステップS1からステップS3までを1度行えば、試料を入れ替えてS4からS9までを繰り返せばよく、この間は、ビーム入射角は通常条件の0度のままで変化させる時間を要することがなく、スループットの低下を招くこともない。このときのフローを図8に示す。ステップに関する内容は図7に用いた符号と同一である。大量生産を行う半導体製造では、同一品種同一工程のウエハを大量に処理することが多いため、本方法は有効である。
得られた底部寸法や角度の演算結果は、数値をリスト形式で表示することが通常行われるが、視覚的に傾向を分かりやすくする目的で、試料上でのパターン位置に合わせて表示する(マップ表示)を行うことが効果的である。図9に、試料であるウエハ上での面内分布を表示した例を示す。ウエハ内の場所に応じてあらかじめ指定した規定値よりも小さい場合や大きい場合、あるいは、ビーム入射角度の範囲外で測定不能などを色や記号を用いて表示することが有効である。また、傾き角度の方向と大きさをベクトル表示する方法もある。これを加工装置などのプロセス装置にフィードバックすることで調整(チューニング)を行ったり、装置の異常、例えばエッチング装置のメンテナンスの時期を決定することなどに適用可能で生産管理や良品の収率(歩留まり)向上に適用することが可能である。
上記実施例では、1つの検出器による画像を用いたが、上部寸法を計測する画像と、下部寸法を計測する画像を形成する検出器を別の検出器としてもよい。走査電子顕微鏡等を備えたパターン計測装置では、検出する電子の種類として、2次電子と後方散乱電子に大別される。2次電子は、放出エネルギーが低いが、発生率が高く、物質の表面の情報を多く持っている特徴がある。また、電子ビームが30kV程度の到達エネルギーを持つ場合、深孔や深溝の底で反射する後方散乱電子は、深溝や深孔の側壁に突入し、試料表面から脱出できるエネルギーを持つことになる。このような後方散乱電子の軌道は、電子ビームの理想光軸に対する相対角が大きいため、対物レンズ8の下(検出器9より試料側)に配置された検出器10は、溝底や孔底から放出された電子を効率良く検出することができる。例えば、図10(a)は、図1に示す検出器9で得られた2次電子の像と信号波形である。また、図10(b)は図1に示す検出器10で得られた後方散乱電子像と信号波形である。上部寸法を図10(a)の寸法Aを、下部寸法を図10(b)の寸法Bとし、2つのそれぞれの中心位置の座標値から、上下のずれ量を算出することができる。装置上で、図10(a)と図10(b)を同期して同時に取得すれば、画像を構成する画素は同一の場所を表し、1枚の画像を用いた場合と同様に底部寸法、上下ずれ量、およびこれらからパターンの角度計測や底部寸法の補正を行うことができる。
1:カラム、2:試料室、3:電子銃、4:コンデンサレンズ、5:ビームアライナ、6:E×B偏向器、7:偏向器、8:対物レンズ、9:電子検出器、10:電子検出器、11:ウエハ、12:標準試料、13:XYステージ、14:光学顕微鏡、15、16:アンプ、17:電子線走査コントローラ、18:ステージコントローラ、19:画像処理装置、20:制御PC、21:表示装置

Claims (11)

  1. 荷電粒子線装置にて得られた信号に基づいて、試料上に形成されたパターンの寸法を測定する演算装置を備えたパターン計測装置において、
    前記演算装置は、前記試料に対する荷電粒子ビームの走査に基づいて得られた検出信号から、パターンの第1の部分と当該第1の部分とは異なる高さにある第2の部分とのずれと、前記パターンの寸法値を求め、当該検出信号から求められたずれと、前記パターンの寸法と前記ずれとの関係を示す関係情報を用いて、前記パターンの寸法値を補正することを特徴とするパターン計測装置。
  2. 請求項1において、
    前記演算装置は、前記検出信号から求められたパターンの寸法値に、前記第1の部分と第2の部分のずれに応じた補正値を加算することを特徴とするパターン計測装置。
  3. 請求項1において、
    前記パターンの寸法値は、前記パターンの底部の寸法値であることを特徴とするパターン計測装置。
  4. 荷電粒子源から放出される荷電粒子ビームの試料への照射に基づいて得られる荷電粒子を検出する検出器と、当該検出器の出力に基づいて前記試料に形成されたパターンの寸法を測定する制御装置を備えたパターン計測装置において、
    前記制御装置は、前記試料に対する荷電粒子ビームの走査に基づいて得られた検出信号から、パターンの第1の部分と当該第1の部分とは異なる高さにある第2の部分とのずれと、前記パターンの寸法値を求め、当該検出信号から求められたずれと、前記パターンの寸法と前記ずれとの関係を示す関係情報を用いて、前記パターンの寸法値を補正することを特徴とするパターン計測装置。
  5. 請求項4において、
    前記荷電粒子ビームの理想光軸に対して傾斜した方向から前記試料に対して前記荷電粒子ビームを照射するために前記荷電粒子ビームを偏向する傾斜用偏向器、或いは前記試料を傾斜させる傾斜ステージの少なくとも1つを含む傾斜ビーム照射機構を備え、前記制御装置は、前記傾斜用偏向器、或いは傾斜ステージの少なくとも1つを制御して、複数の傾斜角度におけるパターンの寸法値を測定し、当該複数の傾斜角度におけるパターンの寸法値に基づいて、前記関係情報を生成することを特徴とするパターン計測装置。
  6. 請求項4において、
    前記荷電粒子ビームの理想光軸に対して傾斜した方向から前記試料に対して前記荷電粒子ビームを照射するために前記荷電粒子ビームを偏向する傾斜用偏向器、或いは前記試料を傾斜させる傾斜ステージの少なくとも1つを含む傾斜ビーム照射機構を備え、前記制御装置は、前記ずれと前記荷電粒子ビームの傾斜角度から、前記パターンの傾斜角度を算出することを特徴とするパターン計測装置。
  7. 請求項4において、
    前記検出器は、第1の検出器と、当該第1の検出器より試料側に配置された第2の検出器を含み、前記制御装置は、前記第1の検出器と前記第2の検出器の出力に基づいて、前記第1の部分と前記第2の部分との間のずれを求めることを特徴とするパターン計測装置。
  8. 請求項4において、
    前記制御装置は、前記検出信号に基づいて求められる値が、規定値を超えているか否かを判定することを特徴とするパターン計測装置。
  9. 荷電粒子線装置にて得られた信号に基づいて、試料上に形成されたパターンの寸法を測定するパターン計測方法において、
    前記試料に対する荷電粒子ビームの走査に基づいて得られた検出信号から、パターンの第1の部分と当該第1の部分とは異なる高さにある第2の部分とのずれと、前記パターンの寸法値を求め、当該検出信号から求められたずれと、前記パターンの寸法と前記ずれとの関係を示す関係情報を用いて、前記パターンの寸法値を補正することを特徴とするパターン計測方法。
  10. 請求項9において、
    前記試料に対し、複数の異なる傾斜角度の荷電粒子ビームを照射することによって得られる検出信号に基づいて、前記関係情報を生成することを特徴とするパターン計測方法。
  11. 請求項9において、
    前記検出信号に基づいて求められる値が、規定値を超えているか否かを判定することを特徴とするパターン計測方法。
JP2018511808A 2016-04-13 2016-04-13 パターン計測装置およびパターン計測方法 Active JP6511193B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061853 WO2017179138A1 (ja) 2016-04-13 2016-04-13 パターン計測装置およびパターン計測方法

Publications (2)

Publication Number Publication Date
JPWO2017179138A1 true JPWO2017179138A1 (ja) 2018-12-06
JP6511193B2 JP6511193B2 (ja) 2019-05-15

Family

ID=60042000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018511808A Active JP6511193B2 (ja) 2016-04-13 2016-04-13 パターン計測装置およびパターン計測方法

Country Status (5)

Country Link
US (1) US10816332B2 (ja)
JP (1) JP6511193B2 (ja)
KR (1) KR101986115B1 (ja)
CN (1) CN108700412B (ja)
WO (1) WO2017179138A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11776112B2 (en) 2020-07-09 2023-10-03 Kioxia Corporation Misalignment measuring apparatus and misalignment measuring method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6640057B2 (ja) * 2016-09-14 2020-02-05 株式会社日立ハイテクノロジーズ 電子顕微鏡装置及びそれを用いた傾斜ホールの測定方法
US11353798B2 (en) 2017-10-13 2022-06-07 Hitachi High-Technologies Corporation Pattern measurement device and pattern measurement method
JP6865465B2 (ja) * 2017-11-10 2021-04-28 株式会社日立ハイテク パターン計測装置および計測方法
JP2019185972A (ja) * 2018-04-06 2019-10-24 株式会社日立ハイテクノロジーズ 走査電子顕微鏡システム及びパターンの深さ計測方法
JP7120873B2 (ja) * 2018-10-09 2022-08-17 株式会社日立製作所 計測装置及び試料の表面の計測方法
KR20210064361A (ko) * 2018-11-05 2021-06-02 주식회사 히타치하이테크 패턴 계측 방법, 계측 시스템 및 컴퓨터 가독 매체
US11139142B2 (en) * 2019-05-23 2021-10-05 Applied Materials, Inc. High-resolution three-dimensional profiling of features in advanced semiconductor devices in a non-destructive manner using electron beam scanning electron microscopy
JP2021034163A (ja) * 2019-08-20 2021-03-01 株式会社日立ハイテク 荷電粒子ビームシステム、及び重ね合わせずれ量測定方法
US20220319804A1 (en) * 2019-08-23 2022-10-06 Hitachi High-Tech Corporation Overlay Measurement System and Overlay Measurement Device
JP7391810B2 (ja) * 2020-09-29 2023-12-05 株式会社日立製作所 荷電粒子線装置及びそれを用いる試料観察方法
JP7048778B2 (ja) * 2021-02-03 2022-04-05 株式会社日立ハイテク 荷電粒子線装置およびパターン計測方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233309A (ja) * 1990-02-07 1991-10-17 Toshiba Corp パターン形状測定方法及び装置
JP2001082931A (ja) * 1999-09-09 2001-03-30 Toshiba Corp 穴深さ測定方法及び穴深さ測定装置
JP2002083849A (ja) * 1999-11-05 2002-03-22 Nec Corp 半導体デバイス検査装置
JP2003157790A (ja) * 2001-11-20 2003-05-30 Advantest Corp 微細凹凸量測定装置及び走査型電子顕微鏡
JP2005181058A (ja) * 2003-12-18 2005-07-07 Semiconductor Leading Edge Technologies Inc 開口パターン評価方法及び半導体検査装置
JP2009099540A (ja) * 2007-09-27 2009-05-07 Hitachi High-Technologies Corp 試料の検査,測定方法、及び走査電子顕微鏡
JP2014022040A (ja) * 2012-07-12 2014-02-03 Hitachi High-Technologies Corp 荷電粒子線装置
US20160040986A1 (en) * 2014-08-08 2016-02-11 International Business Machines Corporation Reducing the impact of charged particle beams in critical dimension analysis

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722719A (en) 1980-07-17 1982-02-05 Mitsubishi Electric Corp Juicer
JPS63205506A (ja) * 1987-02-21 1988-08-25 Sumitomo Electric Ind Ltd 段差測定精度の評価法
US6452175B1 (en) 1999-04-15 2002-09-17 Applied Materials, Inc. Column for charged particle beam device
CN100382272C (zh) * 1999-11-05 2008-04-16 拓普康株式会社 半导体器件检查装置
JP4500653B2 (ja) 2003-11-25 2010-07-14 株式会社日立ハイテクノロジーズ 試料の観察方法及びその装置
US7164128B2 (en) 2003-11-25 2007-01-16 Hitachi High-Technologies Corporation Method and apparatus for observing a specimen
US9046475B2 (en) 2011-05-19 2015-06-02 Applied Materials Israel, Ltd. High electron energy based overlay error measurement methods and systems
CN102410829A (zh) * 2011-08-11 2012-04-11 上海华碧检测技术有限公司 一种bga器件或者pcb翘曲的判断方法
JP5965819B2 (ja) 2012-10-26 2016-08-10 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び重ね合わせずれ量測定方法
JP6316578B2 (ja) 2013-12-02 2018-04-25 株式会社日立ハイテクノロジーズ 走査電子顕微鏡システム及びそれを用いたパターン計測方法並びに走査電子顕微鏡
KR101957007B1 (ko) * 2014-06-30 2019-03-11 가부시키가이샤 히다치 하이테크놀로지즈 패턴 측정 방법 및 패턴 측정 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233309A (ja) * 1990-02-07 1991-10-17 Toshiba Corp パターン形状測定方法及び装置
JP2001082931A (ja) * 1999-09-09 2001-03-30 Toshiba Corp 穴深さ測定方法及び穴深さ測定装置
JP2002083849A (ja) * 1999-11-05 2002-03-22 Nec Corp 半導体デバイス検査装置
JP2003157790A (ja) * 2001-11-20 2003-05-30 Advantest Corp 微細凹凸量測定装置及び走査型電子顕微鏡
JP2005181058A (ja) * 2003-12-18 2005-07-07 Semiconductor Leading Edge Technologies Inc 開口パターン評価方法及び半導体検査装置
JP2009099540A (ja) * 2007-09-27 2009-05-07 Hitachi High-Technologies Corp 試料の検査,測定方法、及び走査電子顕微鏡
JP2014022040A (ja) * 2012-07-12 2014-02-03 Hitachi High-Technologies Corp 荷電粒子線装置
US20160040986A1 (en) * 2014-08-08 2016-02-11 International Business Machines Corporation Reducing the impact of charged particle beams in critical dimension analysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11776112B2 (en) 2020-07-09 2023-10-03 Kioxia Corporation Misalignment measuring apparatus and misalignment measuring method

Also Published As

Publication number Publication date
CN108700412B (zh) 2020-05-08
US10816332B2 (en) 2020-10-27
US20200292308A1 (en) 2020-09-17
CN108700412A (zh) 2018-10-23
KR20180097720A (ko) 2018-08-31
JP6511193B2 (ja) 2019-05-15
WO2017179138A1 (ja) 2017-10-19
KR101986115B1 (ko) 2019-06-05

Similar Documents

Publication Publication Date Title
WO2017179138A1 (ja) パターン計測装置およびパターン計測方法
CN109765254B (zh) 图案测量装置以及测量方法
KR102392338B1 (ko) 패턴 계측 장치 및 패턴 계측 방법
US8604431B2 (en) Pattern-height measuring apparatus and pattern-height measuring method
US8330104B2 (en) Pattern measurement apparatus and pattern measurement method
JP6068624B2 (ja) 試料観察装置
WO2018020627A1 (ja) パターン測定方法、及びパターン測定装置
US10665424B2 (en) Pattern measuring method and pattern measuring apparatus
JP5188529B2 (ja) 電子ビーム照射方法、及び走査電子顕微鏡
JP5932428B2 (ja) 走査電子顕微鏡
TW202145287A (zh) 圖案量測方法,量測系統,及電腦可讀媒體
KR20190138736A (ko) 패턴 측정 방법, 패턴 측정 툴, 및 컴퓨터 가독 매체
KR102278301B1 (ko) 하전 입자선 장치
JP5880134B2 (ja) パターン計測方法およびパターン計測装置
JP2016139531A (ja) 試料の観察、検査、測定方法、及び走査電子顕微鏡
US11177112B2 (en) Pattern measurement device and non-transitory computer readable medium having stored therein program for executing measurement
WO2021149117A1 (ja) 荷電粒子線画像用解析装置、検査システムおよびプログラム
US20230238210A1 (en) Observation system, observation method, and program
CN113785170B (zh) 图案测量装置以及测量方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190405

R150 Certificate of patent or registration of utility model

Ref document number: 6511193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350