JPWO2017159190A1 - 組成物、膜、硬化膜、光学センサおよび膜の製造方法 - Google Patents

組成物、膜、硬化膜、光学センサおよび膜の製造方法 Download PDF

Info

Publication number
JPWO2017159190A1
JPWO2017159190A1 JP2018505362A JP2018505362A JPWO2017159190A1 JP WO2017159190 A1 JPWO2017159190 A1 JP WO2017159190A1 JP 2018505362 A JP2018505362 A JP 2018505362A JP 2018505362 A JP2018505362 A JP 2018505362A JP WO2017159190 A1 JPWO2017159190 A1 JP WO2017159190A1
Authority
JP
Japan
Prior art keywords
group
composition
resin
mass
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018505362A
Other languages
English (en)
Other versions
JP6688875B2 (ja
Inventor
哲志 宮田
哲志 宮田
貴規 田口
貴規 田口
祐継 室
祐継 室
秀知 高橋
秀知 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2017159190A1 publication Critical patent/JPWO2017159190A1/ja
Application granted granted Critical
Publication of JP6688875B2 publication Critical patent/JP6688875B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Photolithography (AREA)

Abstract

厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*が35〜85であり、かつ、一ヶ月経時後の濃度ムラが抑制された膜を製造できる組成物、膜、硬化膜、光学センサ及び膜の製造方法を提供する。組成物は、粒子と樹脂とを含み、粒子が少なくとも波長589nmの光に対する屈折率が2.1以上である粒子を含み、樹脂が少なくとも波長589nmの光に対する屈折率が1.5以下である樹脂を含む。

Description

本発明は、組成物、膜、硬化膜、光学センサおよび膜の製造方法に関する。
樹脂および粒子を含む組成物を用いて膜を製造することが知られている(特許文献1および2参照)。特に特許文献1には、酸化チタンなどの白色顔料である粒子を含む組成物を用いて膜を製造することが記載されている。
WO2014/126013A 特開2012−212114号公報
樹脂および粒子を含む組成物を用いた膜は、白色の膜として、半導体を用いた光学センサ用途に用いることができる。半導体を用いた光学センサ用途の膜では、膜は薄膜でありながら光学センサを隠蔽可能な遮蔽度を持ち、同時に光学センサを駆動させて受光量の変化を検出するために十分な光を通す遮蔽膜が求められる。純白色に近いCIE1976のL*a*b*表色系におけるL*が85を超える領域の膜では光の透過率が低く、光学センサを駆動させて受光量の変化を検出するために十分な量の光を透過しにくい。薄膜とした場合も光学センサを隠蔽させる観点から、膜は白色度としてCIE1976のL*a*b*表色系におけるL*が35以上であることが必要である。そのため、遮蔽度と透過率を両立するためにはL*が35〜85の領域である膜であることが求められている。
一方、本発明者らが、屈折率1.6程度の樹脂を膜のバインダーまたは粒子の分散剤として用い、粒子および樹脂を含む組成物から得られた白色の膜の検討を行ったところ、経時後に濃度ムラが認められることが分かった。具体的には、常温で一ヶ月経時後の組成物を用いて白色の膜を形成すると、明らかに通常よりも白色の濃度の濃い部分と薄い部分が見られるという新規な課題を見出した。以下、常温で一ヶ月経時後の組成物を用いて白色の膜を形成した場合における、膜の白色の濃度ムラを、一ヶ月経時後の濃度ムラという。
ここで、特許文献1には白色の遮光パターンが記載されている。しかしながら、特許文献1には一ヶ月経時後の濃度ムラの抑制に関する示唆は無い。
一方、特許文献2には白色の膜は記載されていない。当然に、膜の白色の濃度ムラは生じず、一ヶ月経時後の濃度ムラの抑制に関する示唆は無い。
また、特許文献1および2には、波長589nmの光に対する屈折率が1.5以下の樹脂と屈折率の高い粒子を組み合わせることについて示唆が無い。
本発明の解決しようとする課題は、厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*が35〜85であり、かつ、一ヶ月経時後の濃度ムラが抑制された膜を製造できる組成物を提供することにある。
かかる状況のもと、本発明者らが鋭意検討を行った結果、以下の構成とすることにより上記課題を解決できることを見出し、本発明を完成させるに至った。本発明および本発明の好ましい構成は以下のとおりである。
[1] 粒子と樹脂とを含み、
粒子が波長589nmの光に対する屈折率が2.1以上である粒子を少なくとも含み、
樹脂が波長589nmの光に対する屈折率が1.5以下である樹脂を少なくとも含む、組成物。
[2] 粒子と樹脂とを含む組成物であって、
上記粒子のうち、組成物に含まれる最も屈折率の高い粒子の波長589nmの光に対する屈折率と、上記樹脂のうち、組成物に含まれる最も屈折率の低い樹脂の波長589nmの光に対する屈折率との差が1.22以上である、組成物。
[3] 組成物が硬化性組成物である、[1]または[2]に記載の組成物。
[4] 組成物を用いて厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*が35〜85である[1]〜[3]のいずれか一つに記載の組成物。[5] 粒子は、無機粒子を含む[1]〜[4]のいずれか一つに記載の組成物。
[6] 無機粒子は、白色顔料を含む[5]に記載の組成物。
[7] 無機粒子は、酸化チタンを含む[5]または[6]に記載の組成物。
[8] 粒子の全質量に対する、波長589nmの光に対する屈折率が2.1以上の粒子の含有量が80質量%以上である[1]〜[7]のいずれか一つに記載の組成物。
[9] 樹脂の全質量に対する、波長589nmの光に対する屈折率が1.5以下の樹脂の含有量が5質量%以上である[1]〜[8]のいずれか一つに記載の組成物。
[10] 樹脂がアルカリ可溶性樹脂である[1]〜[9]のいずれか一つに記載の組成物。
[11] 樹脂がポリシロキサン系樹脂である[1]〜[10]のいずれか一つに記載の組成物。
[12] ポリシロキサン系樹脂の側鎖のうち50モル%以上が炭素数1〜4のアルキル基および炭素数1〜4のアルコキシ基のうち少なくとも一方である[11]に記載の組成物。
[13] 組成物が、さらにラジカル重合性化合物および光重合開始剤を有する[1]〜[12]のいずれか一つに記載の組成物。
[14] ラジカル重合性化合物の全質量中における、波長589nmの光に対する屈折率が1.5以下のラジカル重合性化合物の含有量が80質量%以上である[13]に記載の組成物。
[15] 組成物が、さらに着色防止剤を有する[1]〜[14]のいずれか一つに記載の組成物。
[16] [1]〜[15]のいずれか一つに記載の組成物から形成された、膜。
[17] [16]に記載の膜を硬化した、硬化膜。
[18] [17]に記載の硬化膜を有する、光学センサ。
[19] [1]〜[15]のいずれか一つに記載の組成物を、パターンを有するマスクを介して露光する工程と、
露光された組成物を現像してパターン形成する工程とを含む、膜の製造方法。
本発明によれば、厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*が35〜85であり、かつ、一ヶ月経時後の濃度ムラが抑制された膜を製造できる組成物を提供できる。
また、本発明によれば、膜、硬化膜、光学センサおよび膜の製造方法を提供できる。
パターン形状の評価の基準を示す図である。
以下において、本発明の内容について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されない。
本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
本明細書において、「(メタ)アクリレート」は、アクリレート及びメタアクリレートを表し、「(メタ)アクリル」は、アクリル及びメタクリルを表し、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルを表す。
本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた描画も露光に含める。また、露光に用いられる光としては、一般的に、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線または放射線が挙げられる。
本明細書において、重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により測定したポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、HLC−8220(東ソー(株)製)を用い、カラムとしてTSKgel Super AWM−H(東ソー(株)製、6.0mm(内径)×15.0cm)を、溶離液として10mmol/L リチウムブロミドNMP(N−メチルピロリジノン)溶液を用いることによって求めることができる。
[組成物]
本発明の組成物の第1の態様は、粒子と樹脂とを含み、
粒子が波長589nmの光に対する屈折率が2.1以上である粒子を少なくとも含み、
樹脂が波長589nmの光に対する屈折率が1.5以下である樹脂を少なくとも含む。
本発明の組成物の第2の態様は、粒子と樹脂とを含む組成物であって、
組成物に含まれる最も屈折率の高い粒子(以下、最高屈折率の粒子とも言う)の波長589nmの光に対する屈折率と、組成物に含まれる最も屈折率の低い樹脂(以下、最低屈折率の樹脂とも言う)の波長589nmの光に対する屈折率との差が1.22以上である。
これらのような構成により、厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*が35〜85であり、かつ、一ヶ月経時後の濃度ムラが抑制された膜を製造できる組成物を提供できる。
本発明者らが、屈折率1.6程度の樹脂を膜のバインダーまたは粒子の分散剤として用い、粒子および樹脂を含む組成物を製造した。しかしながら、常温で一ヶ月経時後の組成物を用いて白色の膜を形成すると、明らかに通常よりも白色の濃度の濃い部分と薄い部分が見られた。
粒子が凝集しただけであれば白色の濃度の濃い部分以外は白色の濃度は平均的に薄くなると考えられる。周囲よりも白色の濃度の薄い部分の存在は、粒子以外の固形分が偏在していることを示していると考えられる。
一方、低屈折率の化合物は、例えばカルボン酸基やπ共役系のような分子間相互作用を引き起こす置換基が少ない傾向にあるなど、電子密度が低い傾向にある。本発明の組成物の第1の態様では、少なくとも波長589nmの光に対する屈折率が1.5以下である樹脂(低屈折率の樹脂)を用いることで、低屈折率の樹脂同士の相互作用が低減し、少なくとも波長589nmの光に対する屈折率が2.1以上である粒子(高屈折率の粒子)と樹脂との相互作用が有利になり、組成物中での樹脂および粒子の偏在が解消する。その結果、一ヶ月経時後の濃度ムラが抑制できたと推定される。また、本発明の組成物の第2の態様では、粒子の屈折率と樹脂の屈折率との差を大きくすることで、樹脂同士の相互作用が低減し、樹脂と粒子の相互作用が有利になり、組成物中での樹脂および粒子の偏在が解消する。その結果、一ヶ月経時後の濃度ムラが抑制できたと推定される。
さらに、本発明の組成物の第1の態様でも本発明の組成物の第2の態様でも、粒子の屈折率と樹脂の屈折率との差を大きくすることで、組成物から形成される膜の反射率を高め、厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*が35〜85を達成することができたと推定される。
以下、本発明の組成物の好ましい態様について説明する。以下において、特に断りが無く組成物という場合は、本発明の組成物の第1の態様と、本発明の組成物の第2の態様の両方を含む。
<特性>
本発明の組成物は、硬化性組成物であることが好ましい。「硬化性組成物」とは、後述する硬化性化合物を含む組成物をいう。硬化性組成物は、光硬化性組成物であってもよく、熱硬化性組成物であってもよい。
本発明の組成物の特性の詳細を説明する。
<<L*>>
本発明の組成物は、組成物を用いて厚さ3.0μmの膜を形成した場合にCIE1976のL*a*b*表色系におけるL*が35〜85であることが好ましい。組成物を用いて厚さ3.0μmの膜を形成した場合にCIE1976のL*a*b*表色系におけるL*の上限は80未満であることがより好ましく、75以下であることがさらに好ましく、70以下であることが特に好ましい。組成物を用いて厚さ3.0μmの膜を形成した場合にCIE1976のL*a*b*表色系におけるL*の下限は40以上であることがより好ましく、50以上であることが特に好ましい。なお、CIE1976のL*a*b*表色系におけるL*の値は、後述する実施例に記載の方法で測定した値である。
<<a*およびb*>>
本発明の組成物は、組成物を用いて厚さ3.0μmの膜を形成した場合にCIE1976のL*a*b*表色系におけるa*およびb*は−30〜30が好ましく、−20〜20がより好ましく、−10〜10が特に好ましい。
<<固形分沈降率>>
本発明の組成物は、室温(25℃)にて、3500rpm(rotations per minute)の条件で47分間遠心分離した時の組成物の固形分沈降率が10質量%以下であることが好ましく、5質量%以下がより好ましい。組成物の固形分沈降率を低くする方法としては、組成物の粘度を高める方法や、組成物の固形分濃度を下げる方法や、組成物中における固形分(好ましくは粒子)の分散性を高める方法や、粒子の密度を低くする方法や、粒子の粒子径を小さくする方法などが挙げられる。本明細書中における「固形分」は、特に断りが無い限り、以下の「遠心処理の前の固形分」を意味する。組成物を、オーブンを用いて160℃1時間の条件で揮発分を乾燥させ、乾燥前後の乾燥減量を測定することで揮発量を求め、組成物の乾燥前の質量と揮発量との差を計算して、「遠心処理の前の固形分」を算出する。
組成物を、室温、3500rpmの条件で47分間遠心処理を行った後の上澄み液について、上記と同様の方法で「遠心処理の後の固形分」を算出する。「遠心処理の後の固形分」と「遠心処理の前の固形分」との差を、「遠心処理の前の固形分」で割り、百分率として固形分沈降率を算出する。
<<固形分濃度>>
組成物の固形分濃度は、20〜75質量%が好ましい。上限は、60質量%以下がより好ましい。下限は、30質量%以上がより好ましい。組成物の固形分濃度が上記の範囲とすることで、組成物の粘度を高めて、粒子の沈降などを効果的に抑制でき、一ヶ月経時後の濃度ムラをより効果的に改良できる。
<組成物の組成>
以下、組成物の組成について詳細に説明する。
<<粒子>>
本発明の組成物は、粒子を含む。
本発明の組成物は、組成物に含まれる最も屈折率の高い粒子の波長589nmの光に対する屈折率と、組成物に含まれる最も屈折率の低い樹脂の波長589nmの光に対する屈折率との差が1.22以上であることが好ましく、1.27以上であることがより好ましい。この範囲であると、厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*を高くしやすく、好ましい。
(波長589nmの光に対する屈折率が2.1以上である粒子)
本発明の組成物は、粒子が少なくとも波長589nmの光に対する屈折率が2.1以上である粒子を含むことが好ましい。
組成物が粒子を2種類以上含む場合、組成物は、波長589nmの光に対する屈折率が2.1以上である粒子を少なくとも1種類含むことが好ましく、波長589nmの光に対する屈折率が2.1以上である粒子のみを含むことがより好ましい。
本発明の組成物は、粒子の全質量に対する、波長589nmの光に対する屈折率が2.1以上の粒子の含有量(屈折率2.1以上の粒子の含有量)が80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが特に好ましい。
波長589nmの光に対する屈折率が2.1以上である粒子の波長589nmの光に対する屈折率は、2.1〜2.75であることが好ましく、2.5〜2.75であることがより好ましい。粒子の波長589nmの光に対する屈折率が2.1以上であれば、厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*を大きくすることができ、好ましい。
粒子の屈折率は以下の方法で測定される。
まず、屈折率が既知である分散剤とPGMEAを用いて分散を行う。その後、作製した分散液と屈折率が既知の樹脂を、粒子の固形分中の濃度がそれぞれ10質量%、20質量%、30質量%、40質量%になるように混合し、4種類の塗布液を作製する。これらの塗布液をSiウェハ上に300nmで製膜した後、得られる膜の屈折率をエリプソメトリー(ラムダエースRE−3300(商品名)、大日本スクリーン製造(株))を用いて測定する。その後、粒子濃度と屈折率をプロットし、外挿し、粒子の屈折率を導出する。
また、組成物、膜または硬化膜から粒子を以下の方法で取り出した後で、同様に上記の実施例に記載の方法で粒子の屈折率を測定することもできる。
膜または硬化膜から取り出した粒子について屈折率を測定する場合、粒子を膜から取り出す方法として、例えば、膜または硬化膜(組成物であれば塗布し、膜にする)に2〜6mol/Lの塩基性溶液を膜または硬化膜の質量の10〜30質量%加え、12時間加熱還流後、ろ過および洗浄することで粒子成分を得る。
波長589nmの光に対する屈折率が2.1以上である粒子は、平均一次粒子径が50〜300nmであることが好ましく、60〜200nmであることが一ヶ月経時後の濃度ムラの観点からより好ましく、70〜200nmであることがL*の観点から特に好ましい。平均一次粒子径50〜300nmの粒子は、粒子を撮影した透過型電子顕微鏡の写真において、円状粒子であることが好ましい。平均一次粒子径50〜300nmの粒子は、厳密な円状粒子ではなく、後述の長軸と短軸を有する粒子であってもよい。
波長589nmの光に対する屈折率が2.1以上である粒子は、粒子径50〜300nmの粒子の割合が高いほど好ましい。具体的には、波長589nmの光に対する屈折率が2.1以上である粒子は、粒子径50〜300nmの粒子を30質量%以上の割合で含有することが好ましく、粒子径50〜300nmの粒子を50質量%以上の割合で含有することがより好ましい。粒子径50〜300nmの粒子が30質量%以上であると、厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*を35〜85に制御しやすく、かつ、液経時安定性が優れる組成物を提供しやすい。
本発明において、粒子の一次粒子径は、粉体粒子を透過型電子顕微鏡(TEM)で観察し、粒子が凝集していない部分を観測することで求めることができる。本発明において、粒子の粒度分布は、一次粒子である粉体粒子を、透過型電子顕微鏡を用いて透過型電子顕微鏡写真を撮影した後、その写真を用いて画像処理装置で粒度分布を測定して求める。本発明において、粒子の平均一次粒子径は、粒度分布から算出された個数基準の算術平均径をもって平均一次粒子径とした。本明細書では、透過型電子顕微鏡として(株)日立製作所製電子顕微鏡(H−7000)を用い、画像処理装置として(株)ニレコ製ルーゼックスAPを用いる。
波長589nmの光に対する屈折率が2.1以上である粒子は、平均長軸長が50〜150nmの粒子であってもよい。平均長軸長が50〜150nmの粒子は、平均長軸長が60〜140nmであることが好ましく、80〜130nmであることがより好ましい。
平均長軸長が50〜150nmの粒子は、長軸と短軸を有する粒子であることが好ましい。本明細書中、「粒子の長軸」とは、粒子を撮影した透過型電子顕微鏡の写真において、粒子の最も長い径のことを言う。本明細書中、「粒子の短軸」とは、粒子を撮影した透過型電子顕微鏡の写真において、粒子の最も短い径のことを言う。長軸と短軸を有する粒子は、棒状粒子または楕円状粒子と言われることもある。
本発明における平均長軸長が50〜150nmの粒子は、平均短軸長が5〜50nmであることが好ましく、10〜30nmであることがより好ましく、10〜20nmであることが特に好ましい。平均長軸長が50〜150nmの粒子は、平均長軸長が平均短軸長の2〜10倍であることが好ましく、3〜6倍であることがより好ましく、4〜5倍であることが特に好ましい。
本発明の組成物では、平均長軸長が50〜150nmの粒子は、長軸長が50〜150nmの粒子を30〜60質量%の割合で含有することが好ましく、長軸長が50〜150nmの粒子を35〜50質量%の割合で含有することがより好ましい。長軸長が50〜150nmの粒子が30質量%以上であると、厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*を35〜85に制御しやすく、かつ、液経時安定性が優れる組成物を提供しやすい。平均長軸長が50〜150nmの粒子は、長軸長が60〜140nmの粒子を30〜60質量%の割合で含有することが好ましく、長軸長が80〜130nmの粒子を30〜50質量%の割合で含有することがより好ましい。
本発明において、粒子の長軸長および短軸長は、粉体粒子を透過型電子顕微鏡(TEM)で観察し、粒子が凝集していない部分を観測することで求めることができる。本発明において、粒子の粒度分布は、一次粒子である粉体粒子を、透過型電子顕微鏡を用いて透過型電子顕微鏡写真を撮影した後、その写真を用いて画像処理装置で粒子の長軸長および短軸長の粒度分布を測定して求める。本発明において、粒子の平均長軸長および平均短軸長は、粒度分布から算出された個数基準の算術平均径をもって平均長軸長および平均短軸長とした。本明細書では、透過型電子顕微鏡として(株)日立製作所製電子顕微鏡(H−7000)を用い、画像処理装置として(株)ニレコ製ルーゼックスAPを用いる。
波長589nmの光に対する屈折率が2.1以上である粒子の密度は、1.0〜6.0g/cm3が好ましい。下限は、2.5g/cm3以上がより好ましく、3.0g/cm3以上がさらに好ましい。上限は、4.5g/cm3以下がより好ましい。波長589nmの光に対する屈折率が2.1以上である粒子の密度が好ましい範囲の上限値より小さいほど、組成物中に粒子の沈降が生じにくく、一ヶ月経時後の濃度ムラ、パターン形状をより効果的に改善することができる。また、粒子全量中における、密度が2.5g/cm3以上(好ましくは、3.0g/cm3以上)の粒子の割合は、5質量%以上が好ましく、10質量%以上がより好ましい。上限は、100質量%とすることもでき、99質量%以下とすることもできる。
波長589nmの光に対する屈折率が2.1以上である粒子の種類としては特に制限はない。
波長589nmの光に対する屈折率が2.1以上である粒子としては、従来公知の種々の無機粒子および有機粒子を挙げることができる。波長589nmの光に対する屈折率が2.1以上である粒子は、無機粒子を少なくとも含むことが好ましい。無機粒子は、有機粒子に比べて密度が大きいものが多く、密度が大きい粒子ほど組成物中において沈降が生じやすい。本発明の組成物の第1の態様によれば、波長589nmの光に対する屈折率が2.1以上である粒子を波長589nmの光に対する屈折率が1.5以下である樹脂と併用するため、粒子として無機粒子を用いる場合であっても、無機粒子の沈降を抑制して、一ヶ月経時後の濃度ムラが抑制された膜を製造できる。本発明の組成物の第2の態様によれば、組成物に含まれる最も屈折率の高い粒子の波長589nmの光に対する屈折率と、組成物に含まれる最も屈折率の低い樹脂の波長589nmの光に対する屈折率との差が1.22以上であるため、粒子として無機粒子を用いる場合であっても、無機粒子の沈降を抑制して、一ヶ月経時後の濃度ムラが抑制された膜を製造できる。
無機粒子は、金属を含む粒子であることが好ましい。金属を含む粒子は、金属単体または金属酸化物を含むことがより好ましい。
波長589nmの光に対する屈折率が2.1以上である粒子としては、顔料、セラミック材料、磁性体材料やその他の粒子などを挙げることができ、顔料が好ましい。
本発明の組成物では、無機粒子は、白色顔料であることが好ましい。無機粒子として白色顔料を用いることで、組成物を用いて厚さ3.0μmの膜を形成した場合において、CIE1976のL*a*b*表色系におけるL*を好ましい範囲に制御しやすい。本発明において、白色顔料は純白色のみならず、白に近い明るい灰色(例えば灰白色、薄灰色など)の顔料などを含むこととする。
白色顔料は、密度が大きい傾向にあり、組成物中において沈降が生じやすい。本発明の組成物の第1の態様によれば、波長589nmの光に対する屈折率が2.1以上である粒子を波長589nmの光に対する屈折率が1.5以下である樹脂と併用するため、粒子として白色顔料を用いる場合であっても、無機粒子の沈降を抑制して、一ヶ月経時後の濃度ムラが抑制された膜を製造できる。本発明の組成物の第2の態様によれば、組成物に含まれる最も屈折率の高い粒子の波長589nmの光に対する屈折率と、組成物に含まれる最も屈折率の低い樹脂の波長589nmの光に対する屈折率との差が1.22以上であるため、粒子として白色顔料を用いる場合であっても、無機粒子の沈降を抑制して、一ヶ月経時後の濃度ムラが抑制された膜を製造できる。
白色顔料は、例えば、酸化チタン、チタン酸ストロンチウム、チタン酸バリウム、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム、酸化アルミニウム、硫酸バリウム、シリカ、タルク、マイカ、水酸化アルミニウム、ケイ酸カルシウム、ケイ酸アルミニウム、中空樹脂粒子、硫化亜鉛などが挙げられる。白色顔料は、チタン原子を有する粒子が好ましく、酸化チタンがより好ましい。すなわち、本発明の組成物では、無機粒子は、酸化チタンを含むことが好ましい。
酸化チタンは、二酸化チタン(TiO2)の純度が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることが更に好ましい。酸化チタンは、Tin2n-1(nは2〜4の数を表す。)で表される低次酸化チタン、酸窒化チタン等の含有量は30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることが更に好ましい。
酸化チタンは、ルチル型酸化チタンでもアナターゼ型酸化チタンでもよく、着色性、液経時安定性の観点から、ルチル型酸化チタンが好ましい。特にルチル型酸化チタンを用いた組成物を硬化して得られる硬化膜は、硬化膜を加熱しても、色差の変化が少なく、良好な着色性を有している。また、酸化チタンのルチル化率は、95%以上が好ましく、99%以上がより好ましい。
ルチル型酸化チタンとしては、公知のものを使用することができる。ルチル型酸化チタンの製造方法には、硫酸法と塩素法の2種類あり、本発明では、いずれの製造方法により製造されたものも好適に使用することができる。ここで、硫酸法は、イルメナイト鉱石やチタンスラグを原料とし、これを濃硫酸に溶解して鉄分を硫酸鉄として分離し、溶液を加水分解することにより水酸化物の沈殿物を得、これを高温で焼成してルチル型酸化チタンを取り出す製造方法をいう。一方、塩素法は、合成ルチルや天然ルチルを原料とし、これを約1000℃の高温で塩素ガスとカーボンに反応させて四塩化チタンを合成し、これを酸化してルチル型酸化チタンを取り出す製造方法をいう。ルチル型酸化チタンは、塩素法で得られるルチル型酸化チタンが好ましい。
波長589nmの光に対する屈折率が2.1以上である酸化チタン粒子は、光を散乱して白色に見せることができ、組成物を用いて厚さ3.0μmの膜を形成した場合にCIE1976のL*a*b*表色系におけるL*を35〜85に制御しやすい。酸化チタン粒子の平均一次粒子径の好ましい範囲は、波長589nmの光に対する屈折率が2.1以上である粒子の平均一次粒子径の好ましい範囲と同様である。
酸化チタンの比表面積は、BET(Brunauer, Emmett, Teller)法にて測定した値が10〜400m2/gであることが好ましく、10〜200m2/gであることがより好ましく、10〜150m2/gであることが更に好ましく、10〜40m2/gであることが特に好ましく、10〜20m2/gであることが最も好ましい。
酸化チタンのpH(power of hydrogen)は、6〜8が好ましい。
酸化チタンの吸油量(g/100g)は、10〜60(g/100g)であることが好ましく、10〜40(g/100g)であることがより好ましい。
酸化チタンは、Fe23、Al23、SiO2、Nb25、Na2Oの合計量が、0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましく、0.02質量%以下であることがさらに好ましく、実質含まないことが特に好ましい。
酸化チタンの形状には特に制限はない。例えば、等方性形状(例えば、球状、多面体状等)、異方性形状(例えば、針状、棒状、板状等)、不定形状等などの形状が挙げられる。
酸化チタンの硬度(モース硬度)は、5〜8であることが好ましく、7〜7.5であることがより好ましい。
酸化チタンの真比重(密度)は、1.0〜6.0g/cm3であることが好ましく、3.9〜4.5g/cm3であることがより好ましい。
酸化チタンの嵩比重は0.1g/cm3〜1.0g/cm3であることが好ましく、0.2g/cm3〜0.4g/cm3であることがより好ましい。
酸化チタンなどの無機粒子は、有機化合物などの表面処理剤により表面処理されたものであってもよい。表面処理に用いる表面処理剤の例には、ポリオール、酸化アルミニウム、水酸化アルミニウム、シリカ(酸化ケイ素)、含水シリカ、アルカノールアミン、ステアリン酸、オルガノシロキサン、酸化ジルコニウム、ハイドロゲンジメチコン、シランカップリング剤、チタネートカップリング剤などが挙げられる。中でもシランカップリング剤が好ましい。また、酸化チタンなどの無機粒子は、Al(アルミニウム)、Si(ケイ素)及び有機物の表面処理剤で処理されたものであることが好ましい。表面処理は、1種類単独の表面処理剤でも、2種類以上の表面処理剤を組み合わせて実施してもよい。また、酸化チタンなどの無機粒子の表面が、酸化アルミニウム、シリカ、酸化ジルコニウムなどの酸化物により覆われていることもまた好ましい。これにより、より耐光性および分散性が向上する。
酸化チタンなどの無機粒子は、塩基性金属酸化物又は塩基性金属水酸化物により被覆されていることも好ましい。塩基性金属酸化物又は塩基性金属水酸化物として、マグネシウム、ジルコニウム、セリウム、ストロンチウム、アンチモン、バリウム又はカルシウム等を含有する金属化合物が挙げられる。
塩基性金属酸化物又は塩基性金属水酸化物により被覆された無機粒子は、例えば以下のようにして得ることができる。
水又は水を主成分とする液中に無機粒子を分散させ、スラリーを得る。必要に応じてサンドミル又はボールミル等により、無機粒子を粉砕する。次いで、スラリーのpHを中性又はアルカリ性、場合によっては酸性にする。その後、被覆材料の原料となる水溶性塩をスラリーに添加し、無機粒子の表面を被覆する。その後、スラリーを中和し、無機粒子を回収する。回収した無機粒子は、乾燥又は乾式粉砕してもよい。
酸化チタンなどの無機粒子は、酸性部位を有し、酸性部位と反応可能な化合物により表面処理されていることが好ましい。無機顔料の酸性部位と反応可能な化合物としては、トリメチロールプロパン、トリメチロールエタン、ジトリメチロールプロパン、トリメチロールプロパンエトキシレートもしくはペンタエリスリトール等の多価アルコール、モノエタノールアミン、モノプロパノールアミン、ジエタノールアミン、ジプロパノールアミン、トリエタノールアミンもしくはトリプロパノールアミン等のアルカノールアミン、クロロシラン又はアルコキシシラン等が挙げられる。
無機粒子と、無機粒子の酸性部位と反応可能な化合物とを反応させる方法として、(1)流体エネルギー粉砕機もしくは衝撃粉砕機等の乾式粉砕機に上記化合物と無機粒子とを投入し、無機顔料を粉砕する方法、(2)ヘンシェルミキサーもしくはスーパーミキサー等の高速攪拌機を用いて、上記化合物と、乾式粉砕した無機粒子とを攪拌し、混合する方法、(3)無機粒子の水性スラリー中に上記化合物を添加し、撹拌する方法等が挙げられる。
無機粒子は、市販されているものを好ましく用いることができる。酸化チタンの市販品としては、例えば、石原産業(株)製の商品名タイペークR−550、R−580、R−630、R−670、R−680、R−780、R−780−2、R−820、R−830、R−850、R−855、R−930、R−980、CR−50、CR−50−2、CR−57、CR−58、CR−58−2、CR−60、CR−60−2、CR−63、CR−67、CR−Super70、CR−80、CR−85、CR−90、CR−90−2、CR−93、CR−95、CR−953、CR−97、PF−736、PF−737、PF−742、PF−690、PF−691、PF−711、PF−739、PF−740、PC−3、S−305、CR−EL、PT−301、PT−401M、PT−401L、PT−501A、PT−501R、UT771、TTO−51C、TTO−80A、TTO−S−2、A−220、MPT−136、MPT−140、MPT−141;
堺化学工業(株)製の商品名R−3L、R−5N、R−7E、R−11P、R−21、R−25、R−32、R−42、R−44、R−45M、R−62N、R−310、R−650、SR−1、D−918、GTR−100、FTR−700、TCR−52、A−110、A−190、SA−1、SA−1L、STR−100A−LP、STR−100C−LP、TCA−123E;
テイカ(株)製の商品名JR、JRNC、JR−301、JR−403、JR−405、JR−600A、JR−600E、JR−603、JR−605、JR−701、JR−800、JR−805、JR−806、JR−1000、MT−01、MT−05、MT−10EX、MT−100S、MT−100TV、MT−100Z、MT−100AQ、MT−100WP、MT−100SA、MT−100HD、MT−150EX、MT−150W、MT−300HD、MT−500B、MT−500SA、MT−500HD、MT−600B、MT−600SA、MT−700B、MT−700BS、MT−700HD、MT−700Z;
チタン工業(株)製の商品名KR−310、KR−380、KR−380N、ST−485SA15;
富士チタン工業(株)製の商品名TR−600、TR−700、TR−750、TR−840、TR−900;
白石カルシウム(株)製の商品名Brilliant1500等が挙げられる。また、特開2015−67794号公報の段落0025〜0027に記載の酸化チタンを用いることもできる。
チタン酸ストロンチウムの市販品としては、SW−100(チタン工業(株)製)などが挙げられる。硫酸バリウムの市販品としては、BF−1L(堺化学工業(株)製)などが挙げられる。酸化亜鉛の市販品としては、Zincox Super F−1(ハクスイテック(株)製)などが挙げられる。酸化ジルコニウムの市販品としては、Z−NX(太陽鉱工(株)製)などが挙げられる。
酸化チタンの市販品を、分級処理してから本発明の組成物に用いてもよい。例えば、CR−90−2の分級処理品やMPT−141の分級処理品を好ましく用いることができる。
無機粒子の市販品の物性と不純物について以下に示す。
本発明において、無機粒子は、単一の無機物からなるものだけでなく、他の素材と複合させた粒子を用いてもよい。例えば、内部に空孔や他の素材を有する粒子、コア粒子に無機粒子を多数付着させた粒子、ポリマー粒子からなるコア粒子と無機ナノ微粒子からなるシェル層とからなるコアおよびシェル複合粒子を用いることが好ましい。上記ポリマー粒子からなるコア粒子と無機ナノ微粒子からなるシェル層とからなるコアおよびシェル複合粒子としては、例えば、特開2015−47520号公報の段落0012〜0042の記載を参酌することができ、この内容は本明細書に組み込まれる。
波長589nmの光に対する屈折率が2.1以上である粒子の含有量は、組成物の全固形分に対して1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることが特に好ましい。上限としては特に制限はなく、組成物の全固形分に対して70質量%以下であることがより好ましく、60質量%以下であることがさらに好ましく、50質量%以下であることが最も好ましい。
また、波長589nmの光に対する屈折率が2.1以上である粒子中における、無機粒子の割合は、50質量%以上が好ましく、80質量%以上がより好ましい。上限は、100質量%とすることもでき、99質量%以下とすることもできる。白色度、透過率、リソグラフィー特性の観点から99質量%以下が好ましく、95質量%以下が更に好ましい。
また、波長589nmの光に対する屈折率が2.1以上である粒子中における、白色顔料の割合は50質量%以上が好ましく、80質量%以上がより好ましい。上限は、100質量%とすることもでき、99質量%以下とすることもできる。白色度、透過率、リソグラフィー特性の観点から99質量%以下が好ましく、95質量%以下が更に好ましい。
また、波長589nmの光に対する屈折率が2.1以上である粒子中における、酸化チタンの割合は、50質量%以上が好ましく、80質量%以上がより好ましい。上限は、100質量%とすることもでき、99質量%以下とすることもできる。白色度、透過率、リソグラフィー特性の観点から99質量%以下が好ましく、95質量%以下が更に好ましい。
また、波長589nmの光に対する屈折率が2.1以上である粒子中における、密度が1.0〜6.0g/cm3の粒子の割合は、50質量%以上が好ましく、80質量%以上がより好ましい。上限は、100質量%とすることもでき、99質量%以下とすることもできる。白色度、透過率、リソグラフィー特性の観点から99質量%以下が好ましく、95質量%以下が更に好ましい。
<<その他の着色剤>>
組成物は波長589nmの光に対する屈折率が2.1以上である粒子以外の、その他の着色剤を含有してもよい。その他の着色剤を含有することで、組成物を用いて厚さ3.0μmの膜を形成した場合にCIE1976のL*a*b*表色系におけるa*およびb*を好ましい範囲に制御しやすい。その他の着色剤としては、有彩色着色剤や黒色着色剤などが挙げられる。
(有彩色着色剤)
本発明の組成物は、有彩色着色剤を含有することができる。本発明において、「有彩色着色剤」とは、白色着色剤(白色顔料を含む)および黒色着色剤以外の着色剤を意味する。有彩色着色剤は、波長400nm以上650nm未満の範囲に吸収極大を有する着色剤であることが好ましい。
有彩色着色剤は、有彩色顔料であってもよく、染料であってもよい。
有彩色顔料は、有機顔料であることが好ましい。有機顔料としては特に限定されず、公知の有彩色顔料を用いることができる。有機顔料として、例えば、以下のものを挙げることができる。但し本発明は、これらに限定されない。
カラーインデックス(C.I.)Pigment Yellow 1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,20,24,31,32,34,35,35:1,36,36:1,37,37:1,40,42,43,53,55,60,61,62,63,65,73,74,77,81,83,86,93,94,95,97,98,100,101,104,106,108,109,110,113,114,115,116,117,118,119,120,123,125,126,127,128,129,137,138,139,147,148,150,151,152,153,154,155,156,161,162,164,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214等(以上、黄色顔料)、
C.I.Pigment Orange 2,5,13,16,17:1,31,34,36,38,43,46,48,49,51,52,55,59,60,61,62,64,71,73等(以上、オレンジ色顔料)、
C.I.Pigment Red 1,2,3,4,5,6,7,9,10,14,17,22,23,31,38,41,48:1,48:2,48:3,48:4,49,49:1,49:2,52:1,52:2,53:1,57:1,60:1,63:1,66,67,81:1,81:2,81:3,83,88,90,105,112,119,122,123,144,146,149,150,155,166,168,169,170,171,172,175,176,177,178,179,184,185,187,188,190,200,202,206,207,208,209,210,216,220,224,226,242,246,254,255,264,270,272,279等(以上、赤色顔料)、
C.I.Pigment Green 7,10,36,37,58,59等(以上、緑色顔料)、
C.I.Pigment Violet 1,19,23,27,32,37,42等(以上、紫色顔料)、
C.I.Pigment Blue 1,2,15,15:1,15:2,15:3,15:4,15:6,16,22,60,64,66,79,80等(以上、青色顔料)
有機顔料は、単独または2つ以上を組合せて用いることができる。
染料としては特に制限はなく、公知の染料が使用できる。化学構造としては、ピラゾールアゾ系、アニリノアゾ系、トリフェニルメタン系、アントラキノン系、アントラピリドン系、ベンジリデン系、オキソノール系、ピラゾロトリアゾールアゾ系、ピリドンアゾ系、シアニン系、フェノチアジン系、ピロロピラゾールアゾメチン系、キサンテン系、フタロシアニン系、ベンゾピラン系、インジゴ系、ピロメテン系等の染料が使用できる。また、これらの染料の多量体を用いてもよい。また、特開2015−028144号公報、特開2015−34966号公報に記載の染料を用いることもできる。
また、染料は、酸性染料およびその誘導体が好適に使用できる。その他、直接染料、塩基性染料、媒染染料、酸性媒染染料、アゾイック染料、分散染料、油溶染料、食品染料、および、これらの誘導体等も有用に使用することができる。以下に酸性染料の具体例を挙げるが、これらに限定されない。例えば、以下の染料、及び、これらの染料の誘導体が挙げられる。
Acid Alizarin violet N、
Acid Blue 1,7,9,15,18,23,25,27,29,40〜45,62,70,74,80,83,86,87,90,92,103,112,113,120,129,138,147,158,171,182,192,243,324:1、
Acid Chrome violet K、
Acid Fuchsin;acid green 1,3,5,9,16,25,27,50、
Acid Orange 6,7,8,10,12,50,51,52,56,63,74,95、
Acid Red 1,4,8,14,17,18,26,27,29,31,34,35,37,42,44,50,51,52,57,66,73,80,87,88,91,92,94,97,103,111,114,129,133,134,138,143,145,150,151,158,176,183,198,211,215,216,217,249,252,257,260,266,274、
Acid Violet 6B,7,9,17,19、
Acid Yellow 1,3,7,9,11,17,23,25,29,34,36,42,54,72,73,76,79,98,99,111,112,114,116,184,243、
Food Yellow 3。
また、上記以外の、アゾ系、キサンテン系、フタロシアニン系の酸性染料も好ましく、C.I.Solvent Blue 44、38;C.I.Solvent orange 45;Rhodamine B、Rhodamine 110等の酸性染料及びこれらの染料の誘導体も好ましく用いられる。
本発明の組成物が、有彩色着色剤を含有する場合、有彩色着色剤の含有量は、本発明の組成物の全固形分中0.1〜70質量%とすることが好ましい。下限は、0.5質量%以上がより好ましく、1.0質量%以上が特に好ましい。上限は、60質量%以下がより好ましく、50質量%以下が特に好ましい。本発明の組成物が、有彩色着色剤を2種類以上含む場合、その合計量が上記範囲内であることが好ましい。
(黒色着色剤)
本発明の組成物は、黒色着色剤を含有することができる。黒色着色剤としては、無機系黒色着色剤であってもよく、有機系黒色着色剤であってもよい。
有機系黒色着色剤としては、例えば、ビスベンゾフラノン化合物、アゾメチン化合物、ペリレン化合物、アゾ系化合物などが挙げられ、ビスベンゾフラノン化合物、ペリレン化合物が好ましい。ビスベンゾフラノン化合物としては、特表2010−534726号公報、特表2012−515233号公報、特表2012−515234号公報などに記載のものが挙げられ、例えば、BASF社製の「Irgaphor Black」として入手可能である。ペリレン化合物としては、C.I.Pigment Black 31、32などが挙げられる。アゾメチン化合物としては、特開平1−170601号公報、特開平2−34664号公報などに記載のものが挙げられ、例えば、大日精化社製の「クロモファインブラックA1103」として入手できる。
無機系黒色着色剤としては、特に限定されず、公知のものを用いることができる。例えば、カーボンブラック、チタンブラック、グラファイト等が挙げられ、カーボンブラック、チタンブラックが好ましく、チタンブラックがより好ましい。チタンブラックとは、チタン原子を含有する黒色粒子であり、低次酸化チタンや酸窒化チタンが好ましい。チタンブラックは、分散性向上、凝集性抑制などの目的で必要に応じ、表面を修飾することが可能である。例えば、酸化珪素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化マグネシウム、又は、酸化ジルコニウムでチタンブラックの表面を被覆することが可能である。また、特開2007−302836号公報に表されるような撥水性物質での処理も可能である。黒色顔料として、具体的には、C.I.Pigment Black 1,7,チタン黒顔料等が挙げられる。
チタンブラックは、個々の粒子の一次粒子径及び平均一次粒子径のいずれもが小さいものが好ましい。具体的には、平均一次粒子径で10nm〜45nmの範囲のものが好ましい。
チタンブラックの比表面積は特に制限されず、BET(Brunauer, Emmett, Teller)法にて測定した値が5m2/g以上150m2/g以下であることが好ましく、20m2/g以上120m2/g以下であることがより好ましい。チタンブラックの市販品の例としては、チタンブラック10S、12S、13R、13M、13M−C、13R、13R−N、13M−T(商品名:三菱マテリアル(株)製)、ティラック(Tilack)D(商品名:赤穂化成(株)製)などが挙げられる。
チタンブラックは、分散物として用いることもできる。例えば、チタンブラック粒子とシリカ粒子とを含み、分散物中のSi原子とTi原子との含有比を0.20〜0.50の範囲に制御した分散物などが挙げられる。上記分散物については、特開2012−169556号公報の段落0020〜0105の記載を参酌でき、この内容は本明細書に組み込まれる。
<<樹脂>>
本発明の組成物は、樹脂を含む。樹脂は、例えば、顔料などの粒子を組成物中で分散させる用途、バインダーの用途で配合される。なお、主に粒子を組成物中で分散させるために用いられる樹脂を分散剤ともいう。ただし、樹脂のこのような用途は一例であって、このような用途以外の目的で使用することもできる。
(波長589nmの光に対する屈折率が1.5以下である樹脂)
本発明の組成物は、波長589nmの光に対する屈折率が1.5以下である樹脂を含むことが好ましい。
組成物が樹脂を2種類以上含む場合、組成物は、波長589nmの光に対する屈折率が1.5以下である樹脂を少なくとも1種類含むことが好ましく、波長589nmの光に対する屈折率が1.5以下である樹脂のみを含むことがより好ましい。
本発明の組成物は、樹脂の全質量に対する、波長589nmの光に対する屈折率が1.5以下の樹脂の含有量が5質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。
組成物が樹脂を2種類以上含む場合、組成物に含まれるすべての樹脂の波長589nmの光に対する質量平均の屈折率(樹脂の質量平均の屈折率)が1.5以下であることが好ましく、1.49以下であることがより好ましく、1.47以下であることが特に好ましく、1.45以下であることがより特に好ましい。「組成物に含まれるすべての樹脂の波長589nmの光に対する質量平均の屈折率」とは、i番目の樹脂の波長589nmの光に対する屈折率niと、i番目の樹脂の組成物に含まれるすべての樹脂(ただし、全樹脂中に1質量%以上含まれる樹脂のみを計算に入れる)に対する質量比率Xiとの積を、組成物に含まれるすべての樹脂について足し合わせたものをいう。具体的には、nを2以上の整数、iを1以上の整数とした場合に、以下の計算式で計算される値のことをいう。

組成物に含まれるすべての樹脂の波長589nmの光に対する質量平均の屈折率の好ましい範囲は、樹脂の波長589nmの光に対する屈折率の好ましい範囲と同様である。
樹脂の屈折率は、以下の方法で未硬化の状態で測定することができる。
具体的な測定方法は、Siウェハ上に測定対象となる樹脂のみからなる膜を300nmで製膜した後、得られた膜の屈折率をエリプソメトリー(ラムダエースRE−3300(商品名)、大日本スクリーン製造(株))を用いて測定する。
樹脂の重量平均分子量(Mw)は、1000〜200000が好ましく、より好ましくは2000〜100000である。これらの範囲であると、樹脂と組成物中の全ての成分との相溶性とL*の観点から好ましい。
波長589nmの光に対する屈折率が1.5以下である樹脂の含有量は、組成物の全固形分に対して5〜90質量%であることが好ましく、より好ましくは10〜60質量%であり、特に好ましくは10〜50質量%である。これらの範囲であるとパターン形状、耐熱性、L*の観点から好ましい。波長589nmの光に対する屈折率が1.5以下である樹脂を、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、その合計量が上記範囲となることが好ましい。
波長589nmの光に対する屈折率が1.5以下である樹脂としては、フッ素系樹脂や、ポリシロキサン系樹脂などを挙げることができる。本発明では、樹脂が、ポリシロキサン系樹脂(ポリシロキサンが主骨格であることが好ましい)であることが好ましく、波長589nmの光に対する屈折率が1.5以下であるポリシロキサン系樹脂であることがより好ましく、波長589nmの光に対する屈折率が1.5以下であるアルカリ可溶性樹脂でもあるポリシロキサン系樹脂であることが特に好ましい。
アルカリ可溶性樹脂でもあるポリシロキサン系樹脂の、アルカリ可溶性樹脂としての好ましい性質については、その他のバインダーとして用いるアルカリ可溶性樹脂の好ましい性質と同様である。
波長589nmの光に対する屈折率が1.5以下である樹脂は、アルカリ可溶性を付与するため、後述のアルカリ可溶性樹脂が有するアルカリ可溶を促進する基を含む繰り返し単位を有することも好ましい。好ましいアルカリ可溶を促進する基は後述のものと同じである。
−フッ素系樹脂−
フッ素系樹脂としては、樹脂にフッ素原子が含まれていれば特に限定されない。例えば、(a)一般式(F1)で示されるモノマーに由来する繰り返し単位を有する高分子化合物をフッ素系樹脂として用いることも好ましい。

一般式(F1)中、Rfは、フルオロアルキル基またはパーフルオロアルキル基含有の置換基であり、nは1または2を表し、R1は水素原子またはメチル基を表す。
Rfはフッ素原子の数が9以上のフルオロアルキル基またはパーフルオロアルキル基含有の置換基であることが好ましい。フッ素原子の数が9以上のフルオロアルキル基またはパーフルオロアルキル基含有の置換基としては、具体的には次のようなフルオロアルキル(メタ)アクリレートが挙げられる。
CH2=CRCO2(CH2mn2n+1
mは1または2を示し、nは4〜12の整数を示す。また、Rは炭素数1〜4のアルキル基を示す。
CH2=CRCO2(CH2m(CF2n
mは1または2を示し、nは4〜12の整数を示す。またRは炭素数1〜4のアルキル基を示す。
特に、フルオロアルキル基またはパーフルオロアルキル基含有の置換基あたりのフッ素原子の数が9〜30のものが好ましく、より好ましくは、13〜25である。
また、フッ素原子含有不飽和単量体に由来する繰り返し単位を有する高分子化合物をフッ素系樹脂として用いることも好ましい。フッ素原子含有不飽和単量体としては、ポリフルオロアルキル基またはポリフルオロエーテル基を有するラジカル重合性単量体が挙げられ、パーフルオロアルキル基としては、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パーフルオロデシル基、パーフルオロドデシル基、パーフルオロテトラデシル基が好適である。
このようなフッ素原子含有不飽和単量体としては、CH2=C(CH3)COOCH2(CF24CF3、CH2=C(CH3)COOCH2CH2(CF26CF3、CH2=CHCOO(CF26CF3、CH2=CHCOOCH2CH2(CF27CF3、CH2=CHCOOCH2CH2(CF25CF(CF32、CH2=C(CH3)COOCH(OCOCH3)CH2(CF26CF(CF32、CH2=CHCOOCH2CH(OH)CH2(CF26CF(CF32、CH2=CHCOOCH2CH2(CF28CF3、CH2=C(CH3)COOCH2CH2NHCO(CF28CF3、CH2=CHOCONHCO(CF27CF(CF2Cl)CF3、CH2=CHCOOCH2CH2N(C37)SO2(CF27CF3、CH2=CHCOOCH2CH2CH2CH2(CF27CF3、CH2=C(CH3)COOCH2CH2N(C25)SO2(CF27CF3、CH2=CHCOOCH2CH2NHCO(CF27CF3、CH2=CHCOO(CH23(CF26CF(CF32、CH2=CHCOOCH2(CF210H、CH2=C(CH3)COOCH2(CF210CF2Cl、CH2=CHCONHCH2CH2OCOCF(CF3)OC37、CH2=CHCONHCH2CH2OCOCF(CF3)(OC362OC37が好適である。
フッ素原子含有不飽和単量体は、1種類を単独で使用することができ、または2種類以上を併用することもできる。フッ素原子含有不飽和単量体としては、市販品を使用することもできる。例えば、共栄社化学社製、商品名ライトエステルFM−108、ライトエステルM−3F、ライトエステルM−4F;日本メクトロン社製、商品名CHEMINOX FAAC、CHEMINOX FAMAC、CHEMINOX FAAC−M、CHEMINOX FAMAC−M、CHEMINOX PFAE、CHEMINOX PFOE等がある。
また、(a)一般式(F1)で示されるモノマーに由来する繰り返し単位およびフッ素原子含有不飽和単量体に由来する繰り返し単位のうち少なくとも一方と、アルカリ可溶を促進する基を有する繰り返し単位を有する高分子化合物もフッ素系樹脂として用いることができる。アルカリ可溶を促進する基の好ましい範囲は、後述のアルカリ可溶性樹脂が有するアルカリ可溶を促進する基の好ましい範囲と同様である。
フッ素系樹脂の例として、特開平2−804号公報の第6ページ右下カラムから第9ページ右上カラムに記載のフッ素系界面活性剤も参酌でき、この内容は本明細書に組み込まれる。
フッ素系樹脂の好ましい具体例を以下に記載する。
−ポリシロキサン系樹脂−
ポリシロキサン系樹脂としては特に制限はない。例えば、ポリシロキサン系樹脂としては、下記一般式(1)で示される化合物を単独で加水分解物縮合して得られるポリシロキサン系樹脂や、下記一般式(1)で示される化合物と他のシラン化合物と共加水分解物縮合して得られるポリシロキサン系樹脂を用いることができる。ポリシロキサン系樹脂として、特開2014−66988号公報の<0014>〜<0035>に記載を参酌でき、この内容は本明細書に組み込まれる。
ポリシロキサン系樹脂は、下記一般式(1)で示される化合物に加えて、さらに下記一般式(2)で示される化合物を含むアルコキシシラン化合物を共加水分解物縮合して得られるポリシロキサン系樹脂を用いることが、耐溶剤性を高める観点から好ましい。
ポリシロキサン系樹脂は、下記一般式(1)で示される化合物に加えて、さらに下記一般式(3)で示される化合物を含むアルコキシシラン化合物を共加水分解物縮合して得られるポリシロキサン系樹脂を用いることが、ポリシロキサン系樹脂の酸価を高くし、パターン形状を改善する観点から好ましい。また、下記一般式(3)で示される化合物を含むアルコキシシラン化合物を共加水分解物縮合して得られるポリシロキサン系樹脂は、アルカリ可溶性樹脂として用いることもできる。
一般式(1)
1 2Si(OR22
一般式(1)におけるR1はそれぞれ独立してアルキル基またはフェニル基を表し、R2はそれぞれ独立して水素原子又はアルキル基を表す。
一般式(1)におけるR1およびR2は炭素数1〜6のアルキル基であることが好ましく、炭素数1〜4のアルキル基であることがより好ましく、炭素数1〜3のアルキル基であることが特に好ましく、炭素数1または2のアルキル基であることがより特に好ましく、メチル基であることが最も好ましい。具体的には、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基等が挙げられ、中でも、メチル基又はエチル基が特に好ましい。なお、同一分子内にR1が複数存在する場合、それらは同一でも異なっていてもよい。一般式(1)におけるR2においても同様である。一般式(1)におけるR1およびR2におけるアルキル基は、直鎖状、分岐状及び環状のいずれでもよく、直鎖状であることが好ましい。
一般式(2)におけるR3はメチル基又は水素原子を表し、R4は炭素数1〜4のアルキレン基を表し、R5はそれぞれ独立して水素原子又は炭素数1〜4のアルキル基を表し、R6はそれぞれ独立して炭素数1〜6のアルキル基を表し、nは1〜3の整数を表す。
一般式(2)におけるR4は炭素数1〜3のアルキレン基であることが好ましく、炭素数3のアルキレン基であることがより好ましい。
一般式(2)におけるR6およびR5の好ましい範囲は、それぞれ一般式(1)におけるR1およびR2の好ましい範囲と同様である。
一般式(2)におけるnは2または3であることが好ましく、3であることがより好ましい。
一般式(3)におけるlは0〜2の整数を表し、mは0〜3の整数を表し、R7は炭素数1〜4のアルキレン基を表し、R8はそれぞれ独立して水素原子又は炭素数1〜4のアルキル基を表し、R9はそれぞれ独立して炭素数1〜6のアルキル基を表す。
一般式(3)におけるlは1であることがより好ましい。
一般式(3)におけるmは2または3であることが好ましく、3であることがより好ましい。
一般式(3)におけるR7は炭素数1〜3のアルキレン基であることが好ましく、炭素数3のアルキレン基であることがより好ましい。
一般式(3)におけるR9およびR8の好ましい範囲は、それぞれ一般式(1)におけるR1およびR2の好ましい範囲と同様である。
一般式(1)で示される化合物としては、例えば、ジメトキシジメチルシラン、ジエトキシジメチルシラン、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジヒドロキシジフェニルシラン、ジメトキシ(メチル)(フェニル)シラン、ジエトキシ(メチル)(フェニル)シラン、ジメトキシ(メチル)(フェネチル)シラン、ジシクロペンチルジメトキシシラン又はシクロヘキシルジメトキシ(メチル)シラン、メチルトリメトキシシラン、エチルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、フェニルトリエトキシシラン、が挙げられる。
一般式(1)で示される化合物は、ジメトキシジメチルシラン、ジメトキシジフェニルシラン、フェニルトリメトキシシランが好ましく、ジメトキシジメチルシランがより好ましい。
共加水分解物縮合に供するアルコキシシラン化合物に占める、一般式(1)で示される化合物の割合は、25〜75モル%であることが好ましく、35〜75モル%であることがより好ましく、50〜70モル%であることが特に好ましい。また、共加水分解物縮合に供するアルコキシシラン化合物に占める、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン及びジヒドロキシジフェニルシランの割合は、0〜50モル%であることが好ましく、0〜45モル%であることがより好ましく、0〜30モル%であることがさらに好ましく、0〜10モル%であることが特に好ましい。
一般式(2)で示される化合物としては、例えば、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−アクリロキシプロピルメチルジメトキシシラン、3−アクリロキシプロピルトリエトキシシラン又は3−アクリロキシプロピルメチルジエトキシシランが挙げられる。
一般式(2)で示される化合物は、3−メタクリロキシプロピルトリメトキシシランが好ましい。
共加水分解物縮合に供するアルコキシシラン化合物に占める、一般式(2)で示される化合物の割合は、10〜45モル%であることが好ましく、10〜30モル%であることがより好ましく、15〜20モル%であることが特に好ましい。共加水分解物縮合に供するアルコキシシラン化合物として一般式(2)で示される化合物を用いることで、耐溶剤性を高めることができる。
一般式(3)で示される化合物としては、例えば、3−トリメトキシシリルプロピル無水コハク酸、3−トリエトキシシリルプロピル無水コハク酸、3−トリメトキシシリルエチル無水コハク酸又は3−トリメトキシシリルブチル無水コハク酸、3−ジエトキシメチルシリルプロピル無水コハク酸、3−ジメトキシメチルシリルエチル無水コハク酸又は3−ジメトキシメチルシリルブチル無水コハク酸が挙げられる。
一般式(3)で示される化合物は、3−トリメトキシシリルプロピル無水コハク酸が好ましい。
共加水分解物縮合に供するアルコキシシラン化合物に占める、一般式(3)で示される化合物の割合は、ポリシロキサン系樹脂の酸価を高めてパターン形状を改善する観点から1〜30モル%であることが好ましく、1〜25モル%であることがより好ましく、1〜20モル%であることがさらに一ヶ月経時後の濃度ムラも抑制する観点から特に好ましい。
共加水分解物縮合に供するアルコキシシラン化合物は、一般式(5)で示される化合物をさらに含むことが好ましい。
一般式(5)
12Si(OR133
一般式(5)におけるR12はエポキシ基を有する1価の有機基を表し、R13はそれぞれ独立して、アルキル基を表す。
一般式(5)におけるR12で表されるエポキシ基を有する1価の有機基は、エポキシ基を1〜5個有することが好ましく、1または2個有することがより好ましく、1個有することが特に好ましい。一般式(5)におけるR12で表されるエポキシ基を有する1価の有機基は、連結基を介して末端にエポキシ基が結合した基であることが好ましく、アルキレン基(好ましくは炭素数1〜10、より好ましくは炭素数1〜6、特に好ましくは炭素数1〜3)および酸素原子のうち少なくとも一方を介して末端にエポキシ基が結合した基であることがより好ましい。
一般式(5)におけるR13の好ましい範囲は、一般式(1)におけるR2の好ましい範囲と同様である。
一般式(5)で示される化合物としては、例えば、3−グリシジロキシプロピルトリメトキシシラン、3−グリシジロキシプロピルトリエトキシシラン、3−(3,4−エポキシシクロヘキシル)プロピルトリメトキシシラン、3−(3,4−エポキシシクロヘキシル)プロピルトリエトキシシランが挙げられる。
一般式(5)で示される化合物は、3−グリシジロキシプロピルトリメトキシシラン、3−(3,4−エポキシシクロヘキシル)プロピルトリメトキシシランが好ましい。
共加水分解物縮合に供するアルコキシシラン化合物に占める、一般式(5)で示される化合物の割合は、10モル%以下であることが好ましく、8モル%以下であることがより好ましく、5モル%以下であることが特に好ましい。
共加水分解物縮合に供するアルコキシシラン化合物は、一般式(1)〜(3)及び(5)で示される化合物以外のその他のアルコキシシラン化合物を含んでいてもよい。一般式(1)〜(3)及び(5)で示される化合物以外のその他のアルコキシシラン化合物としては、例えば、フェネチルトリメトキシシラン、ナフチルトリメトキシシラン、フェネチルトリエトキシシラン、ナフチルトリエトキシシラン、テトラメトキシシラン又はテトラエトキシシランが挙げられる。
共加水分解物縮合に供するアルコキシシラン化合物に占める、その他のアルコキシシラン化合物の割合は、一ヶ月経時後の濃度ムラを抑制し、耐溶剤性を改善する観点から、3モル%以下であることが好ましく、2モル%以下であることがより好ましく、1モル%以下であることが特に好ましい。
本発明では、ポリシロキサン系樹脂の側鎖のうち20モル%以上(好ましくは40モル%以上、より好ましくは50モル%以上、特に好ましくは60モル%以上)が、炭素数1〜4のアルキル基および炭素数1〜4のアルコキシ基のうち少なくとも一方であることが、波長589nmの光に対する屈折率が1.5以下に制御しやすい観点から好ましく、炭素数1〜3のアルキル基および炭素数1〜3のアルコキシ基のうち少なくとも一方であることがより好ましく、炭素数1または2のアルキル基および炭素数1または2のアルコキシ基のうち少なくとも一方であることがさらに好ましく、炭素数1または2のアルキル基であることが特に好ましい。
ポリシロキサン系樹脂の側鎖のうちフェニル基を含む側鎖が20モル%以下であることがポリシロキサン系樹脂の屈折率を低くする観点から好ましく、10モル%以下であることがより好ましく、5モル%以下であることが特に好ましい。
ポリシロキサン系樹脂は、アルコキシシラン化合物を共加水分解物縮合、すなわち、加水分解及び部分縮合させることにより得られる。共加水分解物縮合には、一般的な方法を用いることができる。例えば、混合物に有機溶剤、水及び必要に応じて触媒を添加し、50〜150℃で0.5〜100時間程度加熱撹拌する方法を用いることができる。なお、加熱撹拌中、必要に応じて、蒸留によって加水分解副生物(メタノール等のアルコール)や縮合副生物(水)の留去を行っても構わない。
ポリシロキサン系樹脂の好ましい例として、下記表に記載のアルコキシシラン化合物であるモノマーを共加水分解物縮合させることにより得られるポリシロキサン系樹脂を挙げることができる。


(その他のバインダー)
本発明の組成物は、波長589nmの光に対する屈折率が1.5以下である樹脂のほかに、その他のバインダーを含んでいてもよい。その他のバインダーを含有することで、膜特性が向上する。その他のバインダーは、公知のものを任意に使用できる。好ましくは水現像あるいは弱アルカリ水現像を可能とするために、水あるいは弱アルカリ水に可溶性又は膨潤性の樹脂が選択される。例えば、アルカリ可溶性の樹脂を用いるとアルカリ現像が可能になる。このような樹脂としては、側鎖にカルボキシ基を有するラジカル重合体、例えば特開昭59−44615号公報、特公昭54−34327号公報、特公昭58−12577号公報、特公昭54−25957号公報、特開昭54−92723号公報、特開昭59−53836号公報、特開昭59−71048号公報に記載されているポリマー、すなわち、カルボキシ基を有するモノマーを単独あるいは共重合させた樹脂、酸無水物を有するモノマーを単独あるいは共重合させ酸無水物ユニットを加水分解若しくはハーフエステル化若しくはハーフアミド化させた樹脂、エポキシ樹脂を不飽和モノカルボン酸及び酸無水物で変性させたエポキシアクリレート等が挙げられる。カルボキシ基を有するモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、4−カルボキシスチレン等があげられ、酸無水物を有するモノマーとしては、無水マレイン酸等が挙げられる。また、側鎖にカルボキシ基を有する酸性セルロース誘導体がある。また、水酸基を有する重合体に環状酸無水物を付加させた重合体も挙げられる。その他のバインダーは、アルカリ現像液に可溶な樹脂(アルカリ可溶性樹脂ともいう)であることも好ましい。また、その他バインダーとして、エポキシ樹脂やメラミン樹脂などの熱硬化性化合物である樹脂を用いることもできる。
アルカリ可溶性樹脂は、アルカリ可溶を促進する基を有するポリマーから適宜選択することができる。
アルカリ可溶性樹脂の数平均分子量(Mn)は、1000〜20,000であることが好ましい。
アルカリ可溶性樹脂の酸価は、30〜500mgKOH/gが好ましい。下限は、50mgKOH/g以上がより好ましく、70mgKOH/g以上が更に好ましい。上限は、400mgKOH/g以下がより好ましく、200mgKOH/g以下がさらに好ましく、150mgKOH/g以下が特に好ましく、120mgKOH/g以下が最も好ましい。
アルカリ可溶性樹脂は、耐熱性の観点からは、ポリヒドロキシスチレン系樹脂、ポリシロキサン系樹脂、アクリル系樹脂、アクリルアミド系樹脂、アクリル/アクリルアミド共重合体樹脂が好ましく、現像性制御の観点からは、アクリル系樹脂、アクリルアミド系樹脂、アクリル/アクリルアミド共重合体樹脂がより好ましい。アルカリ可溶を促進する基(以下、酸基ともいう)としては、例えば、カルボキシ基、リン酸基、スルホ基、フェノール性ヒドロキシ基などが挙げられ、カルボキシ基が好ましい。酸基は、1種類のみであってもよいし、2種類以上であってもよい。
アルカリ可溶性樹脂は、例えば、公知のラジカル重合法で合成できる。ラジカル重合法でアルカリ可溶性樹脂を製造する際の温度、圧力、ラジカル開始剤の種類およびその量、溶剤の種類等々の重合条件は、当業者において容易に設定可能であり、実験的に条件を定めることもできる。
アルカリ可溶性樹脂は、側鎖にカルボキシ基を有するポリマーが好ましく、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体、ノボラック型樹脂などのアルカリ可溶性フェノール樹脂等、並びに側鎖にカルボキシ基を有する酸性セルロース誘導体、ヒドロキシ基を有するポリマーに酸無水物を付加させたものが挙げられる。特に、(メタ)アクリル酸と、これと共重合可能な他のモノマーとの共重合体が、アルカリ可溶性樹脂として好適である。(メタ)アクリル酸と共重合可能な他のモノマーとしては、特開2015−34961号公報の段落0017〜0019に記載のモノマーが挙げられる。例えば、アルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物、N位置換マレイミドモノマーなどが挙げられる。
アルキル(メタ)アクリレートおよびアリール(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレート等、ビニル化合物としては、スチレン、α−メチルスチレン、ビニルトルエン、アクリロニトリル、ビニルアセテート、N−ビニルピロリドン、ポリスチレンマクロモノマー、ポリメチルメタクリレートマクロモノマー等、特開平10−300922号公報に記載のN位置換マレイミドモノマーとして、N−フェニルマレイミド、N−シクロヘキシルマレイミド等を挙げることができる。なお、これらの(メタ)アクリル酸と共重合可能な他のモノマーは1種類のみであってもよいし、2種類以上であってもよい。
アルカリ可溶性樹脂は、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/2−ヒドロキシエチル(メタ)アクリレート共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体が好ましく用いることができる。また、2−ヒドロキシエチル(メタ)アクリレートを共重合したもの、特開平7−140654号公報に記載の、2−ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2−ヒドロキシ−3−フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2−ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、2−ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体なども好ましく用いることができる。また、市販品としては、例えばFF−426(藤倉化成(株)製)などを用いることもできる。
また、アルカリ可溶性樹脂は、重合性基を有するアルカリ可溶性樹脂を使用してもよい。この態様によれば、得られる膜の耐溶剤性が向上する傾向にある。重合性基としては、(メタ)アリル基、(メタ)アクリロイル基等が挙げられる。重合性基を有するアルカリ可溶性樹脂は、重合性基を側鎖に有するアルカリ可溶性樹脂等が有用である。重合性基を有するアルカリ可溶性樹脂としては、ダイヤナ−ルNRシリーズ(三菱レイヨン(株)製)、Photomer6173(COOH含有 polyurethane acrylic oligomer.Diamond Shamrock Co.,Ltd.製)、ビスコートR−264、KSレジスト106(いずれも大阪有機化学工業(株)製)、サイクロマーPシリーズ(例えば、ACA230AA)、プラクセル CF200シリーズ(いずれも(株)ダイセル製)、Ebecryl3800(ダイセルユーシービー(株)製)、アクリキュアーRD−F8(日本触媒(株)製)などが挙げられる。
アルカリ可溶性樹脂は、下記式(ED1)で示される化合物および下記式(ED2)で表される化合物(以下、これらの化合物を「エーテルダイマー」と称することもある。)のうち少なくとも一方を含むモノマー成分を重合してなるポリマーを含むことも好ましい。エーテルダイマーを含むモノマー成分を重合してなるポリマーの詳細については、特開2015−34961号公報の段落0022〜0031を参酌でき、この内容は本明細書に組み込まれる。
式(ED1)中、R1およびR2は、それぞれ独立して、水素原子または置換基を有していてもよい炭素数1〜25の炭化水素基を表す。

式(ED2)中、Rは、水素原子または炭素数1〜30の有機基を表す。式(ED2)の具体例としては、特開2010−168539号公報の記載を参酌できる。
エーテルダイマーの具体例としては、例えば、特開2013−29760号公報の段落0317を参酌することができ、この内容は本明細書に組み込まれる。エーテルダイマーは、1種類のみであってもよいし、2種類以上であってもよい。
アルカリ可溶性樹脂は、下記式(X)で示される化合物に由来する構造単位を含んでいてもよい。

式(X)において、R1は、水素原子またはメチル基を表し、R2は炭素数2〜10のアルキレン基を表し、R3は、水素原子またはベンゼン環を含んでもよい炭素数1〜20のアルキル基を表す。nは1〜15の整数を表す。
上記式(X)において、R2のアルキレン基の炭素数は、2〜3が好ましい。また、R3のアルキル基の炭素数は1〜20であり、より好ましくは1〜10であり、R3のアルキル基はベンゼン環を含んでもよい。R3で表されるベンゼン環を含むアルキル基としては、ベンジル基、2−フェニル(イソ)プロピル基等を挙げることができる。
アルカリ可溶性樹脂の具体例としては、例えば、下記の樹脂が挙げられる。また、特開2015−34961号公報の段落0037に記載の樹脂も挙げられる。これらの樹脂の中でも、下記の重合性基を有するアルカリ可溶性樹脂であることが、耐溶剤性の観点から好ましい。
アルカリ可溶性樹脂は、特開2012−208494号公報の段落0558〜0571(対応する米国特許出願公開第2012/0235099号明細書の<0685>〜<0700>)の記載を参酌でき、これらの内容は本明細書に組み込まれる。さらに、特開2012−32767号公報に記載の段落番号0029〜0063に記載の共重合体(B)および実施例で用いられているアルカリ可溶性樹脂、特開2012−208474号公報の段落番号0088〜0098に記載のバインダー樹脂および実施例で用いられているバインダー樹脂、特開2012−137531号公報の段落番号0022〜0032に記載のバインダー樹脂および実施例で用いられているバインダー樹脂、特開2013−024934号公報の段落番号0132〜0143に記載のバインダー樹脂および実施例で用いられているバインダー樹脂、特開2011−242752号公報の段落番号0092〜0098および実施例で用いられているバインダー樹脂、特開2012−032770号公報の段落番号0030〜0072に記載のバインダー樹脂を用いることもできる。これらの内容は本明細書に組み込まれる。
その他のバインダーの含有量は、組成物の全固形分に対して、0〜60質量%が好ましい。上限は、60質量%以下が好ましく、50質量%以下がより好ましい。組成物は、その他のバインダーを、1種類のみを含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、その合計量が上記範囲となることが好ましい。
(分散剤)
本発明の組成物は、樹脂として分散剤を含有することができる。分散剤は、酸性樹脂、塩基性樹脂および両性樹脂から選ばれる1種類以上を含むことが好ましく、酸性樹脂および両性樹脂から選ばれる少なくとも1種類がより好ましい。この態様によれば、粒子の分散性が良好である。
本発明において、「酸性樹脂」とは、酸基を有する樹脂であって、酸価が5mgKOH/g以上、アミン価が5mgKOH/g未満の樹脂を意味する。酸性樹脂は、塩基性基を有さないことが好ましい。酸性樹脂が有する酸基としては、例えば、カルボキシ基、リン酸基、スルホン酸基、フェノール性ヒドロキシル基などが挙げられ、カルボキシ基が好ましい。酸性樹脂の酸価は、5〜200mgKOH/gが好ましい。下限は、10mgKOH/g以上がより好ましく、20mgKOH/g以上がさらに好ましい。上限は、100mgKOH/g以下がより好ましく、60mgKOH/g以下がさらに好ましい。また、酸性樹脂のアミン価は、2mgKOH/g以下が好ましく、1mgKOH/g以下がより好ましい。
本発明において、「塩基性樹脂」とは、塩基性基を有する樹脂であって、アミン価が5mgKOH/g以上、酸価が5mgKOH/g未満の樹脂を意味する。塩基性樹脂は、酸基を有さないことが好ましい。塩基性樹脂が有する塩基性基としては、アミノ基が好ましい。塩基性樹脂のアミン価は、5〜200mgKOH/gが好ましく、5〜150mgKOH/gがより好ましく、5〜100mgKOH/gがさらに好ましい。
本発明において、「両性樹脂」とは、酸基と塩基性基を有する樹脂であって、酸価が5mgKOH/g以上で、アミン価が5mgKOH/g以上である樹脂を意味する。酸基としては、前述したものが挙げられ、カルボキシ基が好ましい。塩基性基としては、アミノ基が好ましい。
両性樹脂は、酸価が5mgKOH/g以上で、アミン価が5mgKOH/g以上であることが好ましい。酸価は、5〜200mgKOH/gが好ましい。下限は、10mgKOH/g以上がより好ましく、20mgKOH/g以上がさらに好ましい。上限は、150mgKOH/g以下がより好ましく、100mgKOH/g以下がさらに好ましい。アミン価は、5〜200mgKOH/gが好ましい。下限は、10mgKOH/g以上がより好ましく、20mgKOH/g以上がさらに好ましい。上限は、150mgKOH/g以下がより好ましく、100mgKOH/g以下がさらに好ましい。両性樹脂の酸価とアミン価の比率は、酸価:アミン価=1:4〜4:1が好ましく、1:3〜3:1がより好ましい。
分散剤としては、高分子分散剤〔例えば、アミン基を有する樹脂(ポリアミドアミンとその塩など)、オリゴイミン系樹脂、ポリカルボン酸とその塩、高分子量不飽和酸エステル、変性ポリウレタン、変性ポリエステル、変性ポリ(メタ)アクリレート、(メタ)アクリル系共重合体、ナフタレンスルホン酸ホルマリン重縮合物〕等を挙げることができる。高分子分散剤は、その構造から更に直鎖状高分子、末端変性型高分子、グラフト型高分子、ブロック型高分子に分類することができる。
分散剤は、顔料に対する吸着能を有する部位を有することが好ましい(以下、「吸着部位」と総称する)。吸着部位としては、酸基、ウレア基、ウレタン基、配位性酸素原子を有する基、塩基性窒素原子を有する基、複素環基、アルキルオキシカルボニル基、アルキルアミノカルボニル基、カルボキシ基、スルホンアミド基、アルコキシシリル基、エポキシ基、イソシアネート基及び水酸基よりなる群から選択される基を少なくとも1種類有する1価の置換基等が挙げられる。吸着部位は、酸系吸着部位であることが好ましい。酸系吸着部位としては酸基等が挙げられる。なかでも、酸系吸着部位がリン原子含有基およびカルボキシ基の少なくとも一方であることが好ましい。リン原子含有基としては、リン酸エステル基、ポリリン酸エステル基、リン酸基等が挙げられる。吸着部位の詳細については、特開2015−34961号公報の段落0073〜0080を参酌でき、この内容は本明細書に組み込まれる。
本発明において、樹脂(分散剤)は、下記式(111)で表される樹脂が好ましい。
上記式(111)中、R1は、(m+n)価の連結基を表し、R2は単結合又は2価の連結基を表す。A1は、酸基、ウレア基、ウレタン基、配位性酸素原子を有する基、塩基性窒素原子を有する基、複素環基、アルキルオキシカルボニル基、アルキルアミノカルボニル基、カルボキシ基、スルホンアミド基、アルコキシシリル基、エポキシ基、イソシアネート基及び水酸基よりなる群から選択される基を少なくとも1種類有する1価の置換基を表す。n個のA1及びR2は、それぞれ、同一であっても、異なっていてもよい。mは8以下の正の数を表し、nは1〜9を表し、m+nは3〜10を満たす。P1は1価のポリマー鎖を表す。m個のP1は、同一であっても、異なっていてもよい。
式(111)で表される樹脂が有する、置換基A1は、顔料(例えば、酸化チタンなどの無機粒子)と相互作用することができるので、式(111)で表される樹脂は、n個(1〜9個)の置換基A1を有することにより、顔料(例えば、酸化チタンなどの無機粒子)と強固に相互作用して、組成物中における顔料の分散性を向上できる。また、式(111)で表される樹脂がm個有するポリマー鎖P1は立体反発基として機能することができ、m個有することにより良好な立体反発力を発揮して、顔料(例えば、酸化チタンなどの無機粒子)を均一に分散することができる。
式(111)において、R1は、(m+n)価の連結基を表す。(m+n)価の連結基としては、1から100個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、1個から200個までの水素原子、および0個から20個までの硫黄原子から成り立つ基が含まれる。(m+n)価の連結基は、具体的な例として、下記の構造単位または以下の構造単位が2以上組み合わさって構成される基(環構造を形成していてもよい)を挙げることができる。(m+n)価の連結基の詳細については、特開2007−277514号公報の段落0076〜0084を参酌でき、この内容は本明細書に組み込まれる。
式(111)において、P1は、1価のポリマー鎖を表す。1価のポリマー鎖は、ビニル化合物由来の繰り返し単位を有する1価のポリマー鎖が好ましい。ポリマー鎖の詳細については、特開2007−277514号公報の段落0087〜0098を参酌でき、この内容は本明細書に組み込まれる。
式(111)において、R2は単結合又は2価の連結基を表す。2価の連結基としては、1から100個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、1個から200個までの水素原子、および0個から20個までの硫黄原子から成り立つ基が含まれ、無置換でも置換基を更に有していてもよい。2価の連結基は、具体的な例として、下記の構造単位または以下の構造単位が2以上組み合わさって構成される基を挙げることができる。2価の連結基の詳細については、特開2007−277514号公報の段落0071〜0075を参酌でき、この内容は本明細書に組み込まれる。
式(111)においてA1が表す1価の置換基の詳細については、特開2007−277514号公報の段落0041〜0070を参酌でき、この内容は本明細書に組み込まれる。
上記式(111)で表される高分子化合物としては、特開2007−277514号公報の段落0039(対応する米国特許出願公開第2010/0233595号明細書の<0053>)以降の記載、および、特開2015−34961号公報の段落0081〜0117の記載を参酌でき、これらの内容は本明細書に組み込まれる。
本発明において、樹脂(分散剤)は、下記式(11)〜式(14)のいずれかで表される繰り返し単位を含むグラフト共重合体を用いることもできる。
式(11)〜式(14)において、W1、W2、W3、及びW4はそれぞれ独立に酸素原子、または、NHを表し、X1、X2、X3、X4、及びX5はそれぞれ独立に水素原子又は1価の基を表し、Y1、Y2、Y3、及びY4はそれぞれ独立に2価の連結基を表し、Z1、Z2、Z3、及びZ4はそれぞれ独立に1価の基を表し、R3はアルキレン基を表し、R4は水素原子又は1価の基を表し、n、m、p、及びqはそれぞれ独立に1〜500の整数を表し、j及びkはそれぞれ独立に2〜8の整数を表し、式(13)において、pが2〜500のとき、複数存在するR3は互いに同じであっても異なっていてもよく、式(14)において、qが2〜500のとき、複数存在するX5及びR4は互いに同じであっても異なっていてもよい。
1、W2、W3、及びW4は酸素原子であることが好ましい。X1、X2、X3、X4、及びX5は、水素原子又は炭素数1〜12のアルキル基であることが好ましく、それぞれ独立に、水素原子又はメチル基であることがより好ましく、メチル基が特に好ましい。Y1、Y2、Y3、及びY4は、それぞれ独立に、2価の連結基を表し、連結基は特に構造上制約されない。Z1、Z2、Z3、及びZ4が表す1価の基は、特に限定されず、具体的には、アルキル基、水酸基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオエーテル基、アリールチオエーテル基、ヘテロアリールチオエーテル基、及びアミノ基などが挙げられる。これらの中でも、Z1、Z2、Z3、及びZ4で表される有機基としては、特に分散性向上の観点から、立体反発効果を有するものが好ましく、各々独立に炭素数5〜24のアルキル基又はアルコキシ基が好ましく、その中でも、特に各々独立に炭素数5〜24の分岐状アルキル基、炭素数5〜24の環状アルキル基、又は、炭素数5〜24のアルコキシ基が好ましい。なお、アルコキシ基中に含まれるアルキル基は、直鎖状、分岐鎖状、環状のいずれでもよい。
式(11)〜式(14)において、n、m、p、及びqは、それぞれ独立に、1〜500の整数である。また、式(11)及び式(12)において、j及びkは、それぞれ独立に、2〜8の整数を表す。式(11)及び式(12)におけるj及びkは、分散安定性、現像性の観点から、4〜6の整数が好ましく、5が最も好ましい。
式(13)中、R3はアルキレン基を表し、炭素数1〜10のアルキレン基が好ましく、炭素数2又は3のアルキレン基がより好ましい。pが2〜500のとき、複数存在するR3は互いに同じであっても異なっていてもよい。
式(14)中、R4は水素原子又は1価の基を表す。1価の基としては特に構造上限定はされない。R4として好ましくは、水素原子、アルキル基、アリール基、及びヘテロアリール基が挙げられ、更に好ましくは、水素原子、又はアルキル基である。R4がアルキル基である場合、炭素数1〜20の直鎖状アルキル基、炭素数3〜20の分岐状アルキル基、又は炭素数5〜20の環状アルキル基が好ましく、炭素数1〜20の直鎖状アルキル基がより好ましく、炭素数1〜6の直鎖状アルキル基が特に好ましい。式(14)において、qが2〜500のとき、グラフト共重合体中に複数存在するX5及びR4は互いに同じであっても異なっていてもよい。
上記グラフト共重合体については、特開2012−255128号公報の段落番号0025〜0094の記載を参酌でき、本明細書には上記内容が組み込まれる。上記グラフト共重合体の具体例としては、例えば、以下の樹脂が挙げられる。また、特開2012−255128号公報の段落番号0072〜0094に記載の樹脂が挙げられ、この内容は本明細書に組み込まれる。
本発明において、樹脂(分散剤)は、主鎖及び側鎖の少なくとも一方に塩基性窒素原子を含むオリゴイミン系分散剤も好ましい。オリゴイミン系分散剤としては、pKa(power of Ka;Kaは酸解離定数)14以下の官能基を有する部分構造Xを有する繰り返し単位と、原子数40〜10,000のオリゴマー鎖又はポリマー鎖Yを含む側鎖とを有し、かつ主鎖及び側鎖の少なくとも一方に塩基性窒素原子を有する樹脂が好ましい。この樹脂は、窒素原子と、構造Xが有するpKa14以下の官能基との双方で、顔料(例えば、酸化チタンなどの無機粒子)と相互作用し、さらに樹脂が原子数40〜10,000のオリゴマー鎖又はポリマー鎖Yを有するために、例えば、オリゴマー鎖又はポリマー鎖Yが立体反発基として機能することにより、良好な分散性を発揮して、酸化チタンなどの無機粒子を均一に分散することができる。また、オリゴマー鎖又はポリマー鎖Yと溶剤とが相互作用を行うことにより、酸化チタンなどの無機粒子の沈降を長期間抑制することができる。さらに、オリゴマー鎖又はポリマー鎖Yが立体反発基として機能することで顔料(例えば、酸化チタンなどの無機粒子)の凝集が防止されるため、顔料(好ましくは、酸化チタンなどの無機粒子)の含有量を高くしても、優れた分散性が得られる。
ここで、「塩基性窒素原子」とは、塩基性を呈する窒素原子であれば特に制限はなく、樹脂がpKb(power of Kb;Kbは塩基解離定数)14以下の窒素原子を有する構造を含有することが好ましく、pKb10以下の窒素原子を有する構造を含有することがより好ましい。本発明において「pKb(塩基強度)」とは、水温25℃でのpKbをいい、塩基の強さを定量的に表すための指標のひとつであり、塩基性度定数と同義である。塩基強度pKbと、酸強度pKaとは、pKb=14−pKaの関係にある。
部分構造Xが有するpKa14以下の官能基は、特に限定はなく、物性がこの条件を満たすものであれば、その構造などは特に限定されない。特にpKaが12以下の官能基が好ましく、pKaが11以下の官能基が最も好ましい。具体的には、例えば、カルボキシ基(pKa 3〜5程度)、スルホ基(pKa −3〜−2程度)、−COCH2CO−基(pKa 8〜10程度)、−COCH2CN基(pKa 8〜11程度)、−CONHCO−基、フェノール性水酸基、−RFCH2OH基又は−(RF2CHOH基(RFはペルフルオロアルキル基を表す。pKa 9〜11程度)、スルホンアミド基(pKa 9〜11程度)等が挙げられる。pKa14以下の官能基を有する部分構造Xは、窒素原子を含有する繰り返し単位における塩基性窒素原子に直接結合することが好ましく、塩基性窒素原子を含有する繰り返し単位の塩基性窒素原子と部分構造Xとは、共有結合のみならず、イオン結合して塩を形成する態様で連結していてもよい。
オリゴイミン系分散剤は、pKa14以下の官能基を有する部分構造Xが結合する塩基性窒素原子を含有する繰り返し単位と、側鎖に原子数40〜10,000のオリゴマー鎖又はポリマー鎖Yとを有する樹脂であることが好ましい。
また、オリゴイミン系分散剤は、(i)ポリ(低級アルキレンイミン)系繰り返し単位、ポリアリルアミン系繰り返し単位、ポリジアリルアミン系繰り返し単位、メタキシレンジアミン−エピクロルヒドリン重縮合物系繰り返し単位、及びポリビニルアミン系繰り返し単位から選択される少なくとも1種類の、塩基性窒素原子を含有する繰り返し単位であって、塩基性窒素原子に結合し、かつ、pKa14以下の官能基を有する部分構造Xを有する繰り返し単位と、側鎖に(ii)原子数40〜10,000のオリゴマー鎖又はポリマー鎖Yとを有する樹脂が好ましい。なお、本発明において、ポリ(低級アルキレンイミン)における「低級」とは炭素数が1〜5であることを示し、「低級アルキレンイミン」とは炭素数1〜5のアルキレンイミンを表す。
原子数40〜10,000のオリゴマー鎖又はポリマー鎖Yとしては、樹脂の主鎖部と連結できるポリエステル、ポリアミド、ポリイミド、ポリ(メタ)アクリル酸エステル等の公知のポリマー鎖が挙げられる。オリゴマー鎖又はポリマー鎖Yの樹脂との結合部位は、オリゴマー鎖又はポリマー鎖Yの末端であることが好ましい。
オリゴマー鎖又はポリマー鎖Yは、ポリ(低級アルキレンイミン)系繰り返し単位、ポリアリルアミン系繰り返し単位、ポリジアリルアミン系繰り返し単位、メタキシレンジアミン−エピクロルヒドリン重縮合物系繰り返し単位、及びポリビニルアミン系繰り返し単位から選択される少なくとも1種類の窒素原子を含有する繰り返し単位の窒素原子と結合していることが好ましい。ポリ(低級アルキレンイミン)系繰り返し単位、ポリアリルアミン系繰り返し単位、ポリジアリルアミン系繰り返し単位、メタキシレンジアミン−エピクロルヒドリン重縮合物系繰り返し単位、及びポリビニルアミン系繰り返し単位から選択される少なくとも1種類の窒素原子を含有する繰り返し単位などの主鎖部とYとの結合様式は、共有結合、イオン結合、又は、共有結合及びイオン結合の混合である。Yと主鎖部の結合様式の比率は、共有結合:イオン結合=100:0〜0:100であり、95:5〜5:95が好ましい。Yは、窒素原子を含有する繰り返し単位の窒素原子とアミド結合、又はカルボン酸塩としてイオン結合していることが好ましい。
オリゴマー鎖又はポリマー鎖Yの原子数としては、分散性、分散安定性および現像性の観点から、50〜5,000が好ましく、60〜3,000がより好ましい。また、Yの数平均分子量はGPC法でのポリスチレン換算値により測定することができる。Yの数平均分子量は、1,000〜50,000が好ましく、1,000〜30,000がより好ましい。
オリゴイミン系分散剤は、例えば、式(I−1)で表される繰り返し単位と、式(I−2)で表される繰り返し単位および式(I−2a)で表される繰り返し単位の少なくとも一方とを含む樹脂などが挙げられる。

1及びR2は、各々独立に、水素原子、ハロゲン原子又はアルキル基(炭素数1〜6が好ましい)を表す。
aは、各々独立に、1〜5の整数を表す。*は繰り返し単位間の連結部を表す。
8及びR9はR1と同義の基である。
Lは単結合、アルキレン基(炭素数1〜6が好ましい)、アルケニレン基(炭素数2〜6が好ましい)、アリーレン基(炭素数6〜24が好ましい)、ヘテロアリーレン基(炭素数1〜6が好ましい)、イミノ基(炭素数0〜6が好ましい)、エーテル基、チオエーテル基、カルボニル基、またはこれらの組合せに係る連結基である。なかでも、単結合もしくは−CR56−NR7−(イミノ基がXもしくはYの方になる)であることが好ましい。ここで、R5、R6は各々独立に、水素原子、ハロゲン原子、アルキル基(炭素数1〜6が好ましい)を表す。R7は水素原子または炭素数1〜6のアルキル基である。
aはCR8CR9とNとともに環構造形成する構造部位であり、CR8CR9の炭素原子と合わせて炭素数3〜7の非芳香族複素環を形成する構造部位であることが好ましい。より好ましくは、CR8CR9の炭素原子及びN(窒素原子)を合わせて5〜7員の非芳香族複素環を形成する構造部位であり、さらに好ましくは5員の非芳香族複素環を形成する構造部位であり、ピロリジンを形成する構造部位であることが特に好ましい。この構造部位はさらにアルキル基等の置換基を有していてもよい。XはpKa14以下の官能基を有する基を表す。Yは原子数40〜10,000のオリゴマー鎖又はポリマー鎖を表す。
上記分散剤(オリゴイミン系分散剤)は、さらに式(I−3)、式(I−4)、および、式(I−5)で表される繰り返し単位から選ばれる1種類以上を共重合成分として含有していてもよい。上記分散剤が、このような繰り返し単位を含むことで、粒子の分散性を更に向上させることができる。
1、R2、R8、R9、L、L、a及び*は式(I−1)、(I−2)、(I−2a)における規定と同義である。Yaはアニオン基を有する原子数40〜10,000のオリゴマー鎖又はポリマー鎖を表す。
オリゴイミン系分散剤については、特開2015−34961号公報の段落番号0118〜0190の記載を参酌でき、本明細書には上記内容が組み込まれる。オリゴイミン系分散剤の具体例としては、例えば、下記の樹脂や、特開2015−34961号公報の段落番号0169〜0190に記載の樹脂を用いることができる。
本発明では、ポリシロキサン系樹脂である分散剤を用いることが、組成物に含まれるすべての樹脂の波長589nmの光に対する質量平均の屈折率を1.5以下にする観点から好ましい。ポリシロキサン系樹脂である分散剤が有する吸着部位としては特に制限はなく、例えば酸基を吸着部位として有することが好ましい。
ポリシロキサン系樹脂である分散剤は、酸基を有する繰り返し単位と、シロキサン結合を有する繰り返し単位とを少なくとも含むことが好ましい。酸基を有する繰り返し単位としては、(メタ)アクリル酸由来の繰り返し単位などを挙げることができる。
ポリシロキサン系樹脂である分散剤として、波長589nmの光に対する屈折率が1.5以下である樹脂を用いてもよい。ポリシロキサン系樹脂である分散剤の好ましい態様は、波長589nmの光に対する屈折率が1.5以下である樹脂の好ましい態様と同様である。
分散剤は、市販品としても入手可能であり、そのような具体例としては、BYK Chemie(株)製「Disperbyk−101(ポリアミドアミン燐酸塩)、107(カルボン酸エステル)、110、180(酸基を含む共重合物)、130(ポリアミド)、161、162、163、164、165、166、170(高分子共重合物)」、BYK Chemie(株)製「BYK−P104、P105(高分子量不飽和ポリカルボン酸)」、EFKA(株)製「EFKA4047、4050、4010、4165(ポリウレタン系)、EFKA4330、4340(ブロック共重合体)、4400、4402(変性ポリアクリレート)、5010(ポリエステルアミド)、5765(高分子量ポリカルボン酸塩)、6220(脂肪酸ポリエステル)、6745(フタロシアニン誘導体)、6750(アゾ顔料誘導体)」、味の素ファインテクノ(株)製「アジスパーPB821、PB822」、共栄社化学(株)製「フローレンTG−710(ウレタンオリゴマー)」、共栄社化学(株)製「ポリフローNo.50E、No.300(アクリル系共重合体)」、楠本化成(株)製「ディスパロンKS−860、873SN、874、#2150(脂肪族多価カルボン酸)、#7004(ポリエーテルエステル)、DA−703−50、DA−705、DA−725」、花王(株)製「デモールRN、N(ナフタレンスルホン酸ホルマリン重縮合物)、MS、C、SN−B(芳香族スルホン酸ホルマリン重縮合物)」、花王(株)製「ホモゲノールL−18(高分子ポリカルボン酸)」、花王(株)製「エマルゲン920、930、935、985(ポリオキシエチレンノニルフェニルエーテル)」、「アセタミン86(ステアリルアミンアセテート)」、Lubrizol(株)製「ソルスパース5000(Solsperse 5000)(フタロシアニン誘導体)、22000(アゾ顔料誘導体)、13240(ポリエステルアミン)、3000、17000、27000(末端部に機能部を有する高分子)、24000、26000、28000、32000、36000、38500(グラフト型高分子)、41000、46000」、日光ケミカルズ(株)製「ニッコールT106(ポリオキシエチレンソルビタンモノオレート)、MYS−IEX(ポリオキシエチレンモノステアレート)」等が挙げられる。
また、酸系吸着部位としてリン原子含有基(例えば、リン酸基等)を有する分散剤の市販品として、Lubrizol(株)製「ソルスパース26000(Solsperse 26000)、36000、41000」が挙げられる。これらを好適に用いることができる。
ポリシロキサン系樹脂である分散剤としては、例えば、アクリルポリマーとジメチルポリシロキサンを含むグラフト共重合体であるKP−578、ポリシロキサン樹脂系分散剤であるX−22−3701E(いずれも信越化学工業(株)製)などが挙げられる。
分散剤は、1種類単独で、あるいは2種類以上を組み合わせて用いることができる。
分散剤は、上述したその他のバインダーで説明した樹脂を用いることもできる。また、分散剤は、波長589nmの光に対する屈折率が1.5以下である樹脂を用いてもよい。
本発明の組成物は、分散助剤として、酸基と架橋性基を有する分散助剤を含有していてもよい。好ましい酸基としてはスルホン酸基、リン酸基、ホスホン酸基およびカルボン酸基が挙げられ、リン酸基がより好ましい。架橋性基としては、エチレン性不飽和結合を有する基、エポキシ基およびメルカプト基等が挙げられ、エチレン性不飽和結合を有する基がより好ましい。エチレン性不飽和結合を有する基としては、重合性化合物の説明で挙げる付加重合可能なエチレン基も含まれる。
分散助剤の市販品としては、ライトエステルP−1M、ライトエステルP−2M、ライトエステルHO−MS、ライトエステルHO−HH(以上、共栄社化学(株)製)ホスマーM、ホスマーPE、ホスマーMH、ホスマーCL、ホスマーPP(以上、ユニケミカル(株)製)、TBAS−Q、TBAS−R(以上、MRCユニテック(株)製)などが挙げられる。
分散剤の含有量は、組成物の全固形分に対して、1〜80質量%であることがL*、パターン形状および密着性の観点から好ましい。上限は、70質量%以下が好ましく、60質量%以下がより好ましく、25質量%以下が特に好ましく、22質量%以下が最も好ましい。下限は、1.5質量%以上が好ましく、2質量%以上がより好ましく、18質量%以上が特に好ましい。
また、分散剤の含有量は、顔料100質量部に対して、1〜100質量部が好ましい。上限は、80質量部以下が好ましく、60質量部以下がさらに好ましい。下限は、2.5質量部以上が好ましく、5質量部以上がさらに好ましい。
また、分散剤の含有量は、無機顔料100質量部に対して、1〜100質量部が好ましい。上限は、80質量部以下が好ましく、60質量部以下がさらに好ましい。下限は、2.5質量部以上が好ましく、5質量部以上がさらに好ましい。
また、分散剤の含有量は、酸化チタン100質量部に対して、1〜100質量部が好ましい。上限は、80質量部以下が好ましく、60質量部以下がさらに好ましい。下限は、2.5質量部以上が好ましく、5質量部以上がさらに好ましい。
<<溶剤>>
本発明の組成物は溶剤を含有することが好ましい。溶剤は種々の有機溶剤を用いて構成することができる。有機溶剤としては、アセトン、メチルエチルケトン、シクロヘキサン、酢酸エチル、エチレンジクロライド、テトラヒドロフラン、トルエン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、アセチルアセトン、シクロヘキサノン、ジアセトンアルコール、エチレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテルアセテート、3−メトキシプロパノール、メトキシメトキシエタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3−メトキシプロピルアセテート、N,N−ジメチルホルムアミド、ジメチルスルホキシド、γ−ブチロラクトン、乳酸メチル、乳酸エチルなどが挙げられる。これらの有機溶剤は、単独あるいは混合して使用することができる。
本発明において、溶剤は、金属含有量が少ない溶剤を用いることが好ましい。溶剤の金属含有量は、例えば、10質量ppb以下であることが好ましい。必要に応じて質量pptレベルのものを用いてもよく、そのような高純度溶剤は、例えば、東洋合成社が提供している(化学工業日報、2015年11月13日)。
溶剤から金属等の不純物を除去する方法としては、例えば、蒸留(分子蒸留や薄膜蒸留等)やフィルタを用いた濾過を挙げることができる。濾過に用いるフィルタのフィルタ孔径としては、ポアサイズ10nm以下が好ましく、5nm以下がより好ましく、3nm以下が更に好ましい。フィルタとしては、ポリテトラフロロエチレン製、ポリエチレン製、または、ナイロン製のフィルタが好ましい。
溶剤には、異性体(同じ原子数で異なる構造の化合物)が含まれていてもよい。また、異性体は、1種類のみが含まれていてもよいし、複数種類含まれていてもよい。
溶剤の含有量は、組成物の固形分濃度が25〜70質量%となる量が好ましく、組成物の固形分濃度が30〜60質量%となる量がより好ましい。
<<硬化性化合物>>
本発明の組成物は、硬化性化合物を含有することが好ましい。
硬化性化合物は、ラジカル、酸、熱により架橋(重合および縮合を含む)可能な化合物である。本発明で用いる硬化性化合物は、例えば、エチレン性不飽和結合を有する基を有する化合物、エポキシ基を有する化合物、メチロール基を有する化合物などが挙げられ、エチレン性不飽和結合を有する基を有する化合物が好ましい。エチレン性不飽和結合を有する基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基などが挙げられる。
本発明において、硬化性化合物は、ラジカル重合性化合物が好ましい。ラジカル重合性化合物としては、エチレン性不飽和結合を有する基を有する化合物などが挙げられる。本発明の組成物は硬化性化合物として、後述のエポキシ基を有する化合物を有していてもよい。以下において、特に断りが無く重合性化合物という場合は、ラジカル重合性化合物のことを言う。
硬化性化合物の含有量は、組成物の全固形分に対して、1〜70質量%が好ましい。下限は、3質量%以上が好ましく、5質量%以上がより好ましく、9質量%以上が特に好ましい。上限は、60質量%以下が好ましく、50質量%以下がより好ましく、12質量%以下が特に好ましい。これらの範囲であるとパターン形状、耐熱性、L*の観点から好ましい。組成物に用いられる硬化性化合物は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
硬化性化合物として、重合性化合物を用いる場合、重合性化合物の含有量は、組成物の全固形分に対し、1〜70質量%が好ましい。下限は、3質量%以上が好ましく、5質量%以上がより好ましい。上限は、60質量%以下が好ましく、50質量%以下がより好ましい。組成物に用いられる重合性化合物は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
また、重合性化合物の含有量は、硬化性化合物の全質量に対して、10〜100質量%が好ましく、30〜100質量%がより好ましい。
(重合性化合物)
本発明の組成物は、ラジカル重合性化合物の全質量中における、波長589nmの光に対する屈折率が1.55以下(好ましくは1.52以下、より好ましくは1.5以下)のラジカル重合性化合物の含有量が80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。
重合性化合物としては、少なくとも1個のエチレン性不飽和結合を有する基を有する化合物が好ましく、末端エチレン性不飽和結合を有する基を少なくとも1個(好ましくは2個以上)有する化合物がより好ましい。また、重合性化合物は、エチレン性不飽和結合を有する基を1〜8個有する化合物が好ましく、エチレン性不飽和結合を有する基を2〜6個有する化合物がより好ましく、エチレン性不飽和結合を有する基を3〜4個有する化合物がさらに好ましい。重合性化合物は、エチレン性不飽和結合を有する基を上記範囲で有し、かつ、分子内にSi原子を有する重合性化合物であることが特に好ましい。
エチレン性不飽和結合を有する基は、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基が好ましい。また、重合性化合物は、ラジカル重合性化合物であることが好ましい。
重合性化合物は、モノマー、ポリマーのいずれの形態であってもよく、モノマーが好ましい。モノマータイプの重合性化合物は、分子量が100〜3000であることが好ましい。上限は、2000以下が好ましく、1500以下が更に好ましい。下限は、150以上が好ましく、250以上が更に好ましい。
重合性化合物は、1〜8官能の(メタ)アクリレート化合物であることが好ましく、2〜6官能の(メタ)アクリレート化合物であることがより好ましく、3〜4官能の(メタ)アクリレート化合物であることがさらに好ましい。この態様によれば、得られる膜の耐溶剤性や、基材と密着性を向上できる。また、重合性化合物は、6官能以上の(メタ)アクリレート化合物であることも好ましい。
重合性化合物は、少なくとも1個の付加重合可能なエチレン基を有する、常圧下で100℃以上の沸点を持つエチレン性不飽和結合を有する基を持つ化合物も好ましい。その例としては、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の単官能のアクリレートやメタアクリレート;ポリエチレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート及びこれらの混合物を挙げることができ、ペンタエリスリトールテトラ(メタ)アクリレートであることが好ましい。
重合性化合物は、下記式(MO−1)〜(MO−5)で表される、重合性化合物も好適に用いることができる。なお、式中、Tがオキシアルキレン基の場合には、炭素原子側の末端がRに結合する。
上記の式において、nは0〜14の整数であり、mは1〜8の整数である。同一分子内に複数存在するR、T、は、各々同一であっても、異なっていてもよい。
上記式(MO−1)〜(MO−5)で表される重合性化合物の各々において、複数のRの内の少なくとも1つは、−OC(=O)CH=CH2、又は、−OC(=O)C(CH3)=CH2で表される基を表す。
上記式(MO−1)〜(MO−5)で表される、重合性化合物の具体例としては、特開2007−269779号公報の段落0248〜0251に記載されている化合物が挙げられる。
また、特開平10−62986号公報に記載の、多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後に(メタ)アクリレート化した化合物も、重合性化合物として用いることができる。
重合性化合物は、ペンタエリスリトールテトラアクリレート(市販品としては、NKエステル A−TMMT;新中村化学工業(株)製)、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D−330;日本化薬(株)製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D−320;日本化薬(株)製)ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては
KAYARAD D−310;日本化薬(株)製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA;日本化薬(株)製)が好ましく、ペンタエリスリトールテトラアクリレートがパターン形状の観点からより好ましい。
重合性化合物は、カルボキシ基、スルホ基、リン酸基等の酸基を有していてもよい。酸基を有する重合性化合物は、多官能アルコールの一部のヒドロキシ基を(メタ)アクリレート化し、残ったヒドロキシ基に酸無水物を付加反応させてカルボキシ基とするなどの方法で得られる。酸基を有する重合性化合物としては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルなどが挙げられる。酸基を有する重合性化合物は、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシ基に、非芳香族カルボン酸無水物を反応させて酸基を持たせた化合物が好ましく、特に好ましくは、このエステルにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトールおよびジペンタエリスリトールのうち少なくとも一方であるものである。市販品としては、例えば、東亞合成(株)製の多塩基酸変性アクリルオリゴマーとして、アロニックスシリーズのM−305、M−510、M−520などが挙げられる。酸基を有する重合性化合物の酸価は、0.1〜40mgKOH/gが好ましい。下限は5mgKOH/g以上が好ましい。上限は、30mgKOH/g以下が好ましい。
また、重合性化合物は、カプロラクトン構造を有する重合性化合物も好ましい態様である。カプロラクトン構造を有する重合性化合物としては、分子内にカプロラクトン構造を有する限り特に限定されず、例えば、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、トリメチロールメラミン等の多価アルコールと、(メタ)アクリル酸及びε−カプロラクトンをエステル化することにより得られる、ε−カプロラクトン変性多官能(メタ)アクリレートを挙げることができる。カプロラクトン構造を有する重合性化合物は、下記式(Z−1)で表される化合物が好ましい。
式(Z−1)中、6個のRは全てが式(Z−2)で表される基であるか、又は6個のRのうち1〜5個が式(Z−2)で表される基であり、残余が式(Z−3)で表される基である。

式(Z−2)中、R1は水素原子又はメチル基を示し、mは1又は2の数を示し、「*」は結合手であることを示す。

式(Z−3)中、R1は水素原子又はメチル基を示し、「*」は結合手であることを示す。
カプロラクトン構造を有する重合性化合物は、例えば、日本化薬(株)からKAYARAD DPCAシリーズとして市販されており、DPCA−20(上記式(Z−1)〜(Z−3)においてm=1、式(Z−2)で表される基の数=2、R1が全て水素原子である化合物)、DPCA−30(同式、m=1、式(Z−2)で表される基の数=3、R1が全て水素原子である化合物)、DPCA−60(同式、m=1、式(Z−2)で表される基の数=6、R1が全て水素原子である化合物)、DPCA−120(同式においてm=2、式(Z−2)で表される基の数=6、R1が全て水素原子である化合物)等が挙げられる。
重合性化合物は、式(Z−4)又は(Z−5)で表される化合物を用いることもできる。
式(Z−4)及び(Z−5)中、Eは、各々独立に、−((CH2yCH2O)−、又は−((CH2yCH(CH3)O)−を表し、yは、各々独立に0〜10の整数を表し、Xは、各々独立に、(メタ)アクリロイル基、水素原子、又はカルボキシ基を表す。
式(Z−4)中、(メタ)アクリロイル基の合計は3個又は4個であり、mは各々独立に0〜10の整数を表し、各mの合計は0〜40の整数である。
式(Z−5)中、(メタ)アクリロイル基の合計は5個又は6個であり、nは各々独立に0〜10の整数を表し、各nの合計は0〜60の整数である。
式(Z−4)中、mは、0〜6の整数が好ましく、0〜4の整数がより好ましい。
また、各mの合計は、2〜40の整数が好ましく、2〜16の整数がより好ましく、4〜8の整数が特に好ましい。
式(Z−5)中、nは、0〜6の整数が好ましく、0〜4の整数がより好ましい。
また、各nの合計は、3〜60の整数が好ましく、3〜24の整数がより好ましく、6〜12の整数が特に好ましい。
また、式(Z−4)又は式(Z−5)中の−((CH2yCH2O)−又は−((CH2yCH(CH3)O)−は、酸素原子側の末端がXに結合する形態が好ましい。
式(Z−4)又は式(Z−5)で表される化合物は1種類単独で用いてもよいし、2種類以上併用してもよい。特に、式(Z−5)において、6個のX全てがアクリロイル基である形態が好ましい。
また、式(Z−4)又は式(Z−5)で表される化合物の重合性化合物中における全含有量としては、20質量%以上が好ましく、50質量%以上がより好ましい。
式(Z−4)又は式(Z−5)で表される化合物は、従来公知の工程である、ペンタエリスリト−ル又はジペンタエリスリトールにエチレンオキシド又はプロピレンオキシドを開環付加反応により開環骨格を結合する工程と、開環骨格の末端ヒドロキシ基に、例えば(メタ)アクリロイルクロライドを反応させて(メタ)アクリロイル基を導入する工程と、から合成することができる。各工程は良く知られた工程であり、当業者は容易に式(Z−4)又は式(Z−5)で表される化合物を合成することができる。
式(Z−4)又は式(Z−5)で表される化合物の中でも、ペンタエリスリトール誘導体およびジペンタエリスリトール誘導体のうち少なくとも一方がより好ましい。
具体的には、下記式(a)〜(f)で表される化合物(以下、「例示化合物(a)〜(f)」とも称する。)が挙げられ、中でも、例示化合物(a)、(b)、(e)、(f)が好ましい。
式(Z−4)、(Z−5)で表される重合性化合物の市販品としては、例えばサートマー(株)製のエチレンオキシ基を4個有する4官能アクリレートであるSR−494、日本化薬(株)製のペンチレンオキシ基を6個有する6官能アクリレートであるDPCA−60、イソブチレンオキシ基を3個有する3官能アクリレートであるTPA−330などが挙げられる。
重合性化合物は、特公昭48−41708号公報、特開昭51−37193号公報、特公平2−32293号公報、特公平2−16765号公報に記載されているようなウレタンアクリレート類や、特公昭58−49860号公報、特公昭56−17654号公報、特公昭62−39417号公報、特公昭62−39418号公報記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。また、特開昭63−277653号公報、特開昭63−260909号公報、特開平1−105238号公報に記載される、分子内にアミノ構造やスルフィド構造を有する付加重合性化合物類をも好ましい。
重合性化合物の市販品としては、ウレタンオリゴマーUAS−10、UAB−140(山陽国策パルプ(株)製)、U−4HA、U−6LPA、UA−32P、U−10HA、U−10PA、UA−122P、UA−1100H、UA−7200(新中村化学工業(株)製)、DPHA−40H(日本化薬(株)製)、UA−306H、UA−306T、UA−306I、AH−600、T−600、AI−600(共栄社化学(株)製)、UA−9050、UA−9048(BASF(株)製)などが挙げられる。
また、重合性化合物は、分子内にSi原子を有する重合性化合物も好ましい態様である。特に本発明では、波長589nmの光に対する屈折率が1.5以下のラジカル重合性化合物として分子内にSi原子を有する重合性化合物を用いることが、好ましい。波長589nmの光に対する屈折率が1.5以下のラジカル重合性化合物を含む組成物を用いて膜を形成し、硬化して硬化膜とすることで、後述の硬化膜の粒子以外の成分の波長589nmの光に対する屈折率を1.5以下にしやすい。
分子内にSi原子を有する重合性化合物の市販品としては、シロキサン結合含有の多官能アクリレートであるEBECRYL1360(ダイセルオルネクス(株)製)、Si原子含有多官能ビニル化合物であるVINYLTRIISOPROPENOXYSILANE(アズマックス株式会社製)などが挙げられる。
これらの重合性化合物について、その構造、単独使用か併用か、添加量等の使用方法の詳細は、組成物の最終的な性能設計にあわせて任意に設定できる。例えば、感度の観点では、1分子あたりのエチレン性不飽和結合を有する基の含有量が多い構造が好ましく、多くの場合は2官能以上が好ましい。また、硬化膜の強度を高める観点では、3官能以上の化合物が好ましく、さらに、官能数および重合性基(例えばアクリル酸エステル、メタクリル酸エステル、スチレン系化合物、ビニルエーテル系化合物)のうち少なくとも一方が異なる化合物を併用することで、感度と強度の両方を調節する方法も有効である。さらに、3官能以上の化合物であって、エチレンオキサイド鎖長の異なる重合性化合物を併用することも好ましい。この態様によれば、組成物の現像性を調節することができ、優れたパターン形成が得られる。また、組成物に含まれる他の成分(例えば、光重合開始剤、樹脂等)との相溶性および分散性のうち少なくとも一方に対しても、重合性化合物の選択および使用方法のうち少なくとも一方は好ましい要因であり、例えば、低純度化合物の使用や2種類以上の併用により、相溶性などを向上することができる。
(エポキシ基を有する化合物)
本発明の組成物は、硬化性化合物としてエポキシ基を有する化合物を用いることもできる。この態様によれば、得られる膜の耐溶剤性を向上できる。エポキシ基を有する化合物としては、単官能または多官能グリシジルエーテル化合物や、多官能脂肪族グリシジルエーテル化合物などが挙げられる。また、グリシジル(メタ)アクリレートやアリルグリシジルエーテル等のエポキシ基をグリシジル基の一部として有する化合物や、脂環式エポキシ基を有する化合物を用いることもできる。
エポキシ基を有する化合物は、1分子にエポキシ基を1つ以上有する化合物が挙げられる。エポキシ基は、1分子に1〜100個有することが好ましい。上限は、例えば、10個以下とすることもでき、5個以下とすることもできる。下限は、2個以上が好ましい。
エポキシ基を有する化合物は、エポキシ当量(=エポキシ基を有する化合物の分子量/エポキシ基の数)が500g/当量以下であることが好ましく、100〜400g/当量であることがより好ましく、100〜300g/当量であることがさらに好ましい。
エポキシ基を有する化合物は、低分子化合物(例えば、分子量1000未満)でもよいし、高分子化合物(macromolecule)(例えば、分子量1000以上、ポリマーの場合は、重量平均分子量が1000以上)のいずれでもよい。エポキシ基を有する化合物の重量平均分子量は、200〜100000が好ましく、500〜50000がより好ましい。重量平均分子量の上限は、10000以下が好ましく、5000以下がより好ましく、3000以下が更に好ましい。
エポキシ基を有する化合物は、脂肪族エポキシ樹脂であることが、耐溶剤性の観点から好ましい。
エポキシ基を有する化合物は、特開2013−011869号公報の段落番号0034〜0036、特開2014−043556号公報の段落番号0147〜0156、特開2014−089408号公報の段落番号0085〜0092に記載された化合物を用いることもできる。これらの内容は、本明細書に組み込まれる。市販品としては、例えば、ビスフェノールA型エポキシ樹脂としては、jER825、jER827、jER828、jER834、jER1001、jER1002、jER1003、jER1055、jER1007、jER1009、jER1010(以上、三菱化学(株)製)、EPICLON860、EPICLON1050、EPICLON1051、EPICLON1055(以上、DIC(株)製)等であり、ビスフェノールF型エポキシ樹脂としては、jER806、jER807、jER4004、jER4005、jER4007、jER4010(以上、三菱化学(株)製)、EPICLON830、EPICLON835(以上、DIC(株)製)、LCE−21、RE−602S(以上、日本化薬(株)製)等であり、フェノールノボラック型エポキシ樹脂としては、jER152、jER154、jER157S70、jER157S65(以上、三菱化学(株)製)、EPICLON N−740、EPICLON N−770、EPICLON N−775(以上、DIC(株)製)等であり、クレゾールノボラック型エポキシ樹脂としては、EPICLON N−660、EPICLON N−665、EPICLON N−670、EPICLON N−673、EPICLON N−680、EPICLON N−690、EPICLON N−695(以上、DIC(株)製)、EOCN−1020(以上、日本化薬(株)製)等であり、脂肪族エポキシ樹脂としては、ADEKA RESIN EP−4080S、同EP−4085S、同EP−4088S(以上、(株)ADEKA製)、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085、EHPE3150、EPOLEAD PB 3600、同PB 4700(以上、(株)ダイセル製)、デナコール EX−212L、EX−214L、EX−216L、EX−321L、EX−850L(以上、ナガセケムテックス(株)製)等である。その他にも、ADEKA RESIN EP−4000S、同EP−4003S、同EP−4010S、同EP−4011S(以上、(株)ADEKA製)、NC−2000、NC−3000、NC−7300、XD−1000、EPPN−501、EPPN−502(以上、(株)ADEKA製)、jER1031S(三菱化学(株)製)等が挙げられる。
エポキシ基を有する化合物は、特開2009−265518号公報の段落0045等に記載の化合物を用いることもでき、この内容は本明細書に組み込まれる。
<<重合開始剤>>
本発明の組成物は、重合開始剤を含むことが好ましい。
重合開始剤の含有量は、組成物の全固形分に対し0.1〜50質量%が耐溶剤性、着色性の観点から好ましく、より好ましくは0.5〜30質量%であり、さらに好ましくは1〜10質量%である。組成物は、重合開始剤を、1種類のみを含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、その合計量が上記範囲となることが好ましい。
重合開始剤としては、光重合開始剤または熱重合開始剤が好ましく、光重合開始剤が好ましい。熱重合開始剤としては特に制限は無く、公知の化合物を用いることができる。
(光重合開始剤)
本発明の組成物は、光重合開始剤を含有することができる。特に、組成物が、重合性化合物を含む場合、光重合開始剤を含有することが好ましい。光重合開始剤としては、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外線領域から可視領域の光線に対して感光性を有するものが好ましい。光重合開始剤は、光ラジカル重合開始剤が好ましい。また、光重合開始剤は、約300nm〜800nm(330nm〜500nmがより好ましい。)の範囲内に少なくとも約50のモル吸光係数を有する化合物を、少なくとも1種類含有していることが好ましい。
光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するものなど)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノン化合物、ヒドロキシアセトフェノンなどが挙げられる。トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53−133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.Schaeferら著、J.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載の化合物、米国特許第4212976号明細書に記載されている化合物などが挙げられる。
また、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α−ヒドロキシケトン化合物、α−アミノケトン化合物、アシルホスフィン化合物、フォスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリルイミダゾールダイマー、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物及びその誘導体、シクロペンタジエン−ベンゼン−鉄錯体及びその塩、ハロメチルオキサジアゾール化合物、3−アリール置換クマリン化合物からなる群より選択される化合物が好ましい。トリハロメチルトリアジン化合物である光重合開始剤としては、トリクロロメチルトリアジン化合物であるであるトリアジンPP(BASF製)を用いることができる。
光重合開始剤としては、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、及び、アシルホスフィン化合物も好適に用いることができる。より具体的には、例えば、特開平10−291969号公報に記載のアミノアセトフェノン系開始剤、特許第4225898号公報に記載のアシルホスフィン系開始剤も用いることができる。ヒドロキシアセトフェノン系開始剤としては、IRGACURE 184、DAROCUR 1173、IRGACURE 500、IRGACURE 2959、IRGACURE 127(商品名:いずれもBASF(株)製)を用いることができる。アミノアセトフェノン系開始剤としては、市販品であるIRGACURE 907、IRGACURE 369、及び、IRGACURE 379、IRGACURE 379EG(商品名:いずれもBASF(株)製)を用いることができる。アミノアセトフェノン系開始剤は、365nm又は405nm等の長波光源に吸収波長がマッチングされた特開2009−191179号公報に記載の化合物も用いることができる。
アシルホスフィン系開始剤としては、市販品であるIRGACURE 819やIRGACURE TPO(商品名:いずれもBASF(株)製)を用いることができる。
着色性の観点からアミノアセトフェノン系開始剤またはアシルホスフィン系開始剤が好ましく、着色性および密着性の観点からアシルホスフィン系開始剤がより好ましい。
光重合開始剤は、オキシム化合物を好ましく用いることもできる。オキシム化合物としては、オキシムエステル化合物がより好ましい。オキシム化合物の具体例としては、特開2001−233842号公報記載の化合物、特開2000−80068号公報記載の化合物、特開2006−342166号公報記載の化合物、特開2016−21012号公報に記載の化合物を用いることができる。
本発明において、好適に用いることのできるオキシム化合物としては、例えば、3−ベンゾイルオキシイミノブタン−2−オン、3−アセトキシイミノブタン−2−オン、3−プロピオニルオキシイミノブタン−2−オン、2−アセトキシイミノペンタン−3−オン、2−アセトキシイミノ−1−フェニルプロパン−1−オン、2−ベンゾイルオキシイミノ−1−フェニルプロパン−1−オン、3−(4−トルエンスルホニルオキシ)イミノブタン−2−オン、及び2−エトキシカルボニルオキシイミノ−1−フェニルプロパン−1−オンなどが挙げられる。また、J.C.S.Perkin II(1979年)pp.1653−1660、J.C.S.Perkin II(1979年)pp.156−162、Journal of Photopolymer Science and Technology(1995年)pp.202−232、特開2000−66385号公報記載の化合物、特開2000−80068号公報、特表2004−534797号公報、特開2006−342166号公報の各公報に記載の化合物等も挙げられる。市販品ではIRGACURE OXE01(BASF(株)製)、IRGACURE OXE02(BASF(株)製)も好適に用いられる。また、TR−PBG−304(常州強力電子新材料有限公司社製)、アデカアークルズNCI−930、アデカオプトマーN−1919(以上、(株)ADEKA製)も用いることができる。
また上記以外のオキシム化合物として、カルバゾールN位にオキシムが連結した特表2009−519904号公報に記載の化合物、ベンゾフェノン部位にヘテロ置換基が導入された米国特許第7626957号公報に記載の化合物、色素部位にニトロ基が導入された特開2010−15025号公報及び米国特許公開2009−292039号記載の化合物、国際公開特許2009−131189号公報に記載のケトオキシム化合物、トリアジン骨格とオキシム骨格を同一分子内に含有する米国特許7556910号公報に記載の化合物、405nmに吸収極大を有しg線光源に対して良好な感度を有する特開2009−221114号公報記載の化合物、特開2014−137466号公報の段落番号0076〜0079に記載された化合物などを用いてもよい。
好ましくは、例えば、特開2013−29760号公報の段落0274〜0275を参酌することができ、この内容は本明細書に組み込まれる。
具体的には、オキシム化合物としては、下記式(OX−1)で表される化合物が好ましい。オキシム化合物は、オキシムのN−O結合が(E)体のオキシム化合物であっても、オキシムのN−O結合が(Z)体のオキシム化合物であってもよく、(E)体と(Z)体との混合物であってもよい。
式(OX−1)中、RおよびBは各々独立に一価の置換基を表し、Aは二価の有機基を表し、Arはアリール基を表す。
式(OX−1)中、Rで表される一価の置換基としては、一価の非金属原子団であることが好ましい。
一価の非金属原子団としては、アルキル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環基、アルキルチオカルボニル基、アリールチオカルボニル基等が挙げられる。また、これらの基は、1以上の置換基を有していてもよい。また、前述した置換基は、さらに他の置換基で置換されていてもよい。
置換基としてはハロゲン原子、アリールオキシ基、アルコキシカルボニル基またはアリールオキシカルボニル基、アシルオキシ基、アシル基、アルキル基、アリール基等が挙げられる。
式(OX−1)中、Bで表される一価の置換基としては、アリール基、複素環基、アリールカルボニル基、又は、複素環カルボニル基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。
式(OX−1)中、Aで表される二価の有機基としては、炭素数1〜12のアルキレン基、シクロアルキレン基、アルキニレン基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。
本発明は、光重合開始剤として、フルオレン環を有するオキシム化合物を用いることもできる。フルオレン環を有するオキシム化合物の具体例としては、特開2014−137466号公報記載の化合物が挙げられる。この内容は本明細書に組み込まれる。
本発明は、光重合開始剤として、フッ素原子を有するオキシム化合物を用いることもできる。フッ素原子を有するオキシム化合物の具体例としては、特開2010−262028号公報記載の化合物、特表2014−500852号公報記載の化合物24、36〜40、特開2013−164471号公報記載の化合物(C−3)などが挙げられる。この内容は本明細書に組み込まれる。
本発明は、光重合開始剤として、ニトロ基を有するオキシム化合物を用いることができる。ニトロ基を有するオキシム化合物は、二量体とすることも好ましい。ニトロ基を有するオキシム化合物の具体例としては、特開2013−114249号公報の段落0031〜0047、特開2014−137466号公報の段落0008〜0012、0070〜0079に記載されている化合物、特許第4223071号公報の段落0007〜0025に記載されている化合物、アデカアークルズNCI−831((株)ADEKA製)が挙げられる。
本発明において好ましく使用されるオキシム化合物の具体例を以下に示すが、本発明はこれらに限定されない。

オキシム化合物は、350nm〜500nmの波長領域に極大吸収波長を有する化合物が好ましく、360nm〜480nmの波長領域に吸収波長を有する化合物がより好ましく、365nm及び405nmの吸光度が高い化合物が特に好ましい。
オキシム化合物の365nm又は405nmにおけるモル吸光係数は、感度の観点から、1,000〜300,000であることが好ましく、2,000〜300,000であることがより好ましく、5,000〜200,000であることが特に好ましい。化合物のモル吸光係数の測定は、公知の方法を用いることができ、具体的には、紫外可視分光光度計(Varian(株)製、Cary−5 spectrophotometer)にて、酢酸エチルを用い、0.01g/Lの濃度で測定することが好ましい。
本発明において、光重合開始剤は、2種類以上併用することも好ましい。例えば、メタノール中での365nmの吸光係数が1.0×103mL/gcm以上の光重合開始剤と、メタノール中での365nmの吸光係数が1.0×102mL/gcm以下であり、254nmの吸光係数が1.0×103mL/gcm以上の光重合開始剤とを併用することも好ましい。具体例として、アミノアセトフェノン化合物と、オキシム化合物との併用が挙げられる。この態様によれば、低温条件下であっても、硬化性に優れた膜を製造することができる。例えば、パターン形成工程において、現像工程前および現像工程後の2段階で組成物を露光することにより、最初の露光で組成物を適度に硬化させることができ、次の露光で組成物全体をほぼ硬化させることができる。このため、低温条件でも、組成物の硬化性を向上させることができる。
<<着色防止剤>>
本発明の組成物は、着色防止剤を含有することが好ましい。
本明細書に記載の着色防止剤は酸化防止剤としても使用でき、酸化防止剤は着色防止剤としても使用できる。
着色防止剤としては、フェノール化合物、亜リン酸エステル化合物、チオエーテル化合物などが挙げられ、分子量500以上のフェノール化合物、分子量500以上の亜リン酸エステル化合物又は分子量500以上のチオエーテル化合物がより好ましい。また、着色防止剤は、フェノール化合物が好ましく、分子量500以上のフェノール化合物がより好ましい。
フェノール化合物としては、フェノール系着色防止剤として知られる任意のフェノール化合物を使用することができる。好ましいフェノール化合物としては、ヒンダードフェノール化合物が挙げられる。特に、フェノール性水酸基に隣接する部位(オルト位)に置換基を有する化合物が好ましい。前述の置換基としては炭素数1〜22の置換又は無置換のアルキル基が好ましく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、イソペンチル基、t−ペンチル基、ヘキシル基、オクチル基、イソオクチル基、2−エチルへキシル基がより好ましい。また、同一分子内にフェノール基と亜リン酸エステル基を有する化合物も好ましい。
フェノール系水酸基含有化合物類としては、特に多置換フェノール系化合物が好適に用いられる。
多置換フェノール系化合物には、安定なフェノキシラジカル生成に起因する、捕捉するパーオキシラジカルへの反応性から、その置換位置および構造の違う3種類:下記式(A)ヒンダードタイプ、式(B)セミヒンダードタイプおよび式(C)レスヒンダードタイプがある。

着色防止機能を発現する構造部分である上記式(A)〜(C)において、Rは置換基であり、水素原子、ハロゲン原子、置換基を有してもよいアミノ基、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、置換基を有してもよいアルキルアミノ基、置換基を有してもよいアリールアミノ基、置換基を有してもよいアルキルスルホニル基、置換基を有してもよいアリールスルホニル基などが挙げられ、なかでも置換基を有してもよいアミノ基、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、置換基を有してもよいアルキルアミノ基、置換基を有してもよいアリールアミノ基が好ましい。
さらに好ましい形態は、上記式(A)〜(C)で表される着色防止機能を発現する構造が同一分子内に複数存在する複合系着色防止剤であり、具体的には上記式(A)〜(C)で表される着色防止機能を発現する構造が同一分子内に2〜4個存在する化合物が好ましい。これらの中では、式(B)セミヒンダードタイプが着色性の観点からより好ましい。
フェノール系水酸基含有化合物としては、例えばパラメトキシフェノール、ジ−t−ブチル−パラクレゾール、ピロガロール、t−ブチルカテコール、4,4−チオビス(3−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、フェノール樹脂類、及びクレゾール樹脂類からなる群より選択される化合物などが挙げられる。
市販品として入手できる代表例には、(A)としてはSumilizer BHT(住友化学製)、Irganox 1010、1222(BASF製)、アデカスタブAO−20、AO−50、AO−60(ADEKA製)などがあり、(B)としてはSumilizer BBM−S(住友化学製)、Irganox 245(BASF製)、アデカスタブAO−80(ADEKA製)などがあり、(C)としてはアデカスタブAO−30、AO−40(ADEKA製)などがある。
亜リン酸エステル化合物としてはトリス[2−[[2,4,8,10−テトラキス(1,1−ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサホスフェピン−6−イル]オキシ]エチル]アミン、トリス[2−[(4,6,9,11−テトラ−tert−ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン−2−イル)オキシ]エチル]アミン、および亜りん酸エチルビス(2,4−ジtert−ブチル−6−メチルフェニル)からなる群から選ばれる少なくとも1種類の化合物が挙げられる。
チオエーテル化合物としては、例えば、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類、および、ペンタエリスリトールテトラ(β−アルキルチオプロピオン酸)エステル類;ペンタエリスリチルテトラキス(3−ラウリルチオプロピオネート)、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート等;テトラキス[メチレン−3−(ラウリルチオ)プロピオネート]メタン、ビス(メチル−4−[3−n−アルキル(C12/C14)チオプロピオニルオキシ]5−t−ブチルフェニル)スルファイド、ジトリデシル−3,3’−チオジプロピオネート、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3´−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート、ラウリル/ステアリルチオジプロピオネート、4,4’−チオビス(6−t−ブチル−m−クレゾール)、2,2’−チオビス(6−t−ブチル−p−クレゾール)、ジステアリル−ジサルファイドが好ましい。
チオエーテル化合物として市販品として入手できる代表例には、アデカスタブ AO−412S(CAS:29598−76−3、(株)ADEKA製)、アデカスタブ AO−503(CAS:10595−72−9、(株)ADEKA製)、KEMINOX PLS(CAS:29598−76−3、ケミプロ化成(株)製)を挙げることができる。
着色防止剤は、市販品として容易に入手可能であり、市販品として入手できる代表例とした上述したもののほかに、アデカスタブ AO−50F、アデカスタブ AO−60G、アデカスタブ AO−330、アデカスタブ PEP−36A((株)ADEKA製)などが挙げられる。
着色防止剤の含有量は、組成物の全固形分に対して、0.01〜20質量%であることが着色性および耐溶剤性の観点から好ましく、0.1〜15質量%がより好ましく、0.3〜5質量%が特に好ましい。着色防止剤は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
<<紫外線吸収剤>>
本発明の組成物は、紫外線吸収剤を含有してもよい。紫外線吸収剤は、共役ジエン系化合物が好ましく、下記式(I)で表される化合物がより好ましい。
式(I)において、R1及びR2は、各々独立に、水素原子、炭素原子数1〜20のアルキル基、又は炭素原子数6〜20のアリール基を表し、R1とR2とは互いに同一でも異なっていてもよいが、同時に水素原子を表すことはない。
1及びR2は、R1及びR2が結合する窒素原子と共に、環状アミノ基を形成してもよい。環状アミノ基としては、例えば、ピペリジノ基、モルホリノ基、ピロリジノ基、ヘキサヒドロアゼピノ基、ピペラジノ基等が挙げられる。
1及びR2は、各々独立に、炭素原子数1〜20のアルキル基が好ましく、炭素原子数1〜10のアルキル基がより好ましく、炭素原子数1〜5のアルキル基がさらに好ましい。
3及びR4は、電子求引基を表す。ここで電子求引基は、ハメットの置換基定数σp
(以下、単に「σp値」という。)が、0.20以上1.0以下の電子求引基である。好ましくは、σp値が0.30以上0.8以下の電子求引基である。R3及びR4は互いに結合して環を形成してもよい。R3及びR4は、アシル基、カルバモイル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、シアノ基、ニトロ基、アルキルスルホニル基、アリールスルホニル基、スルホニルオキシ基、スルファモイル基が好ましく、アシル基、カルバモイル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、シアノ基、アルキルスルホニル基、アリールスルホニル基、スルホニルオキシ基、スルファモイル基がより好ましい。
上記のR1、R2、R3、及びR4の少なくとも1つは、連結基を介して、ビニル基と結合したモノマーより導かれるポリマーの形になっていてもよい。他のモノマーとの共重合体であっても良い。
式(I)で示される紫外線吸収剤の置換基の説明は、WO2009/123109Aの段落0024〜0033(対応する米国特許出願公開第2011/0039195号明細書の<0040>〜<0059>)の記載を参酌でき、これらの内容は本明細書に組み込まれる。式(I)で表される化合物の好ましい具体例は、WO2009/123109Aの段落0034〜0037(対応する米国特許出願公開第2011/0039195号明細書の<0060>)の例示化合物(1)〜(14)の記載を参酌でき、これらの内容は本明細書に組み込まれる。
式(I)で示される紫外線吸収剤の具体例としては、下記化合物(後述の実施例で用いる紫外線吸収剤I−1)が挙げられる。
紫外線吸収剤の含有量は、組成物の全固形分に対して、0.1〜10質量%であることがパターン形状および耐溶剤性の観点から好ましく、0.1〜7質量%であることがより好ましく、0.1〜5質量%であることがさらに好ましく、0.1〜3質量%であることが特に好ましい。また、本発明においては、紫外線吸収剤は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
<<密着剤>>
本発明の組成物は、さらに密着剤を含有することが好ましい。密着剤としては特に制限は無く、公知の密着剤が使用できる。密着剤としては、例えば、シランカップリング剤を挙げることができる。この態様によれば、膜の基材との密着性を良化できる。
本発明において、「シランカップリング剤」は、加水分解性基とそれ以外の官能基とを有するシラン化合物を意味する。また、「加水分解性基」とは、珪素原子に直結し、加水分解反応および縮合反応のうち少なくとも一方によってシロキサン結合を生じ得る置換基をいう。加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基などが挙げられ、アルコキシ基が好ましい。すなわち、シランカップリング剤は、アルコキシシリル基を有する化合物が好ましい。また、加水分解性基以外の官能基は、樹脂との間で相互作用もしくは結合形成して親和性を示す基を有が好ましい。例えば、(メタ)アクリロイル基、フェニル基、メルカプト基、エポキシ基、オキセタニル基が挙げられ、(メタ)アクリロイル基およびエポキシ基が好ましい。即ち、シランカップリング剤は、アルコキシシリル基と、(メタ)アクリロイル基およびエポキシ基のうち少なくとも一方と、を有する化合物が好ましい。
アルコキシシリル基におけるアルコキシ基の炭素数は、1〜5が好ましく、1〜3がより好ましく、1または2が特に好ましい。アルコキシシリル基は、同一分子内に2個以上有することが好ましく、2〜3個有することがさらに好ましい。
シランカップリング剤の具体例としては、例えば、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、1,6−ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン、ヘキサメチルジシラザン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、パラスチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、N−2−(アミノメチルエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩、トリス−(トリメトキシシリルプロピル)イソシアヌレート、3−ウレイドプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシランなどが挙げられる。また、上記以外にアルコキシオリゴマーを用いることができる。また、下記化合物を用いることもできる。
市販品としては、信越シリコーン(株)製のKBM−13、KBM−22、KBM−103、KBE−13、KBE−22、KBE−103、KBM−3033、KBE−3033、KBM−3063、KBM−3066、KBM−3086、KBE−3063、KBE−3083、KBM−3103、KBM−3066、KBM−7103、SZ−31、KPN−3504、KBM−1003、KBE−1003、KBM−303、KBM−402、KBM−403、KBE−402、KBE−403、KBM−1403、KBM−502、KBM−503、KBE−502、KBE−503、KBM−5103、KBM−602、KBM−603、KBM−903、KBE−903、KBE−9103、KBM−573、KBM−575、KBM−9659、KBE−585、KBM−802、KBM−803、KBE−846、KBE−9007、X−40−1053、X−41−1059A、X−41−1056、X−41−1805、X−41−1818、X−41−1810、X−40−2651、X−40−2655A、KR−513、KC−89S、KR−500、KR−516、KR−517、X−40−9296、X−40−9225、X−40−9246、X−40−9250、KR−401N、X−40−9227、X−40−9247、KR−510、KR−9218、KR−213、X−40−2308、X−40−9238などが挙げられる。また、シランカップリング剤は、特開2009−288703号公報の段落番号0018〜0036に記載の化合物、特開2009−242604号公報の段落0056〜0066に記載の化合物が挙げられ、この内容は本明細書に組み込まれる。
また、アルコキシシリル基を有する化合物は、アルコキシシリル基を側鎖に有するポリマーを用いることもできる。
シランカップリング剤として、特開2009−288703号公報の<0011>〜<0037>に記載の特定シラン化合物も参酌して使用でき、この内容は本明細書に組み込まれる。
シランカップリング剤の中では、分子内にケイ素原子と窒素原子と重合性基とを含むシラン化合物が好ましい。
密着剤の含有量は、組成物の全固形分に対して、0.01〜10質量%が好ましく、0.1〜7質量%がより好ましく、1〜5質量%が特に好ましい。これらの範囲であると密着性と一ヶ月経時後の濃度ムラの観点から好ましい。また、本発明においては、組成物が含有する密着剤は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
<<連鎖移動剤>>
本発明の組成物は、連鎖移動剤を含有することが好ましい。この態様によれば、パターン形成時の露光において、露光により膜表面(パターン表面)の硬化を促進できる。このため、露光時の膜の厚さの減少などを抑制でき、より矩形性および密着性に優れたパターンを形成しやすい。
連鎖移動剤としては、N,N−ジアルキルアミノ安息香酸アルキルエステルや、チオール化合物などが挙げられ、チオール化合物が好ましい。チオール化合物は、分子内に2個以上(好ましくは2〜8個、より好ましくは3〜6個)のメルカプト基を有する化合物が好ましい。チオール化合物の具体例としては、2−メルカプトベンゾチアゾール、2−メルカプトベンゾオキサゾール、2−メルカプトベンゾイミダゾール、N−フェニルメルカプトベンゾイミダゾール、1,3,5−トリス(3−メルカプトブチルオキシエチル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオンなどの複素環を有するチオール化合物、ペンタエリスリトールテトラキス(3−メルカプトブチレート)、1,4−ビス(3−メルカプトブチリルオキシ)ブタンなどの脂肪族系のチオール化合物などが挙げられる。
また、連鎖移動剤の市販品としては、PEMP(SC有機化学株式会社製、チオール化合物)、サンセラー M(三新化学工業(株)製、チオール化合物)、カレンズMT BD1(昭和電工(株)製、チオール化合物)などが挙げられる。
また、下記化合物を用いることも好ましい。
連鎖移動剤の含有量は、組成物の全固形分に対して0.2〜5.0質量%が好ましく、0.4〜3.0質量%がより好ましい。
連鎖移動剤の含有量は、重合性化合物の100質量部に対し、1〜40質量部が好ましく、2〜20質量部がより好ましい。
連鎖移動剤は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
<<増感剤>>
本発明の組成物は、光重合開始剤のラジカル発生効率の向上、感光波長の長波長化の目的で、増感剤を含有していてもよい。増感剤としては、光重合開始剤に対し、電子移動機構又はエネルギー移動機構で増感させるものが好ましい。増感剤は、300nm〜450nmの波長領域に吸収波長を有するものが挙げられる。具体的には、特開2010−106268号公報の段落0231〜0253(対応する米国特許出願公開第2011/0124824号明細書の<0256>〜<0273>)の説明を参酌でき、これらの内容は本明細書に組み込まれる。
増感剤の含有量は、組成物の全固形分に対して、0.1〜20質量%が好ましく、0.5〜15質量%がより好ましい。増感剤は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
<<共増感剤>>
本発明の組成物は、更に共増感剤を含有することも好ましい。共増感剤は、光重合開始剤や増感剤の活性放射線に対する感度を一層向上させる、あるいは、酸素の重合性化合物の重合阻害を抑制する等の作用を有する。共増感剤としては、具体的には、特開2010−106268号公報の段落0254〜0257(対応する米国特許出願公開第2011/0124824号明細書の<0277>〜<0279>)の説明を参酌でき、これらの内容は本明細書に組み込まれる。
共増感剤の含有量は、重合成長速度と、硬化速度の向上の観点から、組成物の全固形分に対して、0.1〜30質量%が好ましく、1〜25質量%がより好ましく、1.5〜20質量%が更に好ましい。共増感剤は1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
<<重合禁止剤>>
本発明の組成物は、組成物の製造中あるいは保存中において重合性化合物などの不要な重合を阻止するために、重合禁止剤を添加することが好ましい。
重合禁止剤としては、
フェノール系水酸基含有化合物(好ましくは、ハイドロキノン、パラメトキシフェノール、ジ−t−ブチル−パラクレゾール、ピロガロール、t−ブチルカテコール、ベンゾキノン、4,4−チオビス(3−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,6−ジ−t−ブチル−4−メチルフェノール(BHT)、フェノール樹脂類、及びクレゾール樹脂類からなる群より選択される化合物);
N−オキシド化合物類(好ましくは、5,5−ジメチル−1−ピロリンN−オキシド、4−メチルモルホリンN−オキシド、ピリジンN−オキシド、4−ニトロピリジンN−オキシド、3−ヒドロキシピリジンN−オキシド、ピコリン酸N−オキシド、ニコチン酸N−オキシド、及びイソニコチン酸N−オキシドからなる群より選択される化合物);
ピペリジン1−オキシルフリーラジカル化合物類(好ましくは、ピペリジン1−オキシルフリーラジカル、2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカル、4−オキソ−2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカル、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカル、4−アセトアミド−2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカル、4−マレイミド−2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカル、及び4−ホスホノキシ−2,2,6,6−テトラメチルピペリジン1−オキシルフリーラジカルからなる群より選択される化合物);
ピロリジン1−オキシルフリーラジカル化合物類(好ましくは、3−カルボキシプロキシルフリーラジカル(3−カルボキシ−2,2,5,5−テトラメチルピロリジン1−オキシルフリーラジカル));
N−ニトロソフェニルヒドロキシアミン類(好ましくは、N−ニトロソフェニルヒドロキシアミン第一セリウム塩及びN−ニトロソフェニルヒドロキシアミンアルミニウム塩からなる化合物群から選択される化合物);
ジアゾニウム化合物類(好ましくは、4−ジアゾフェニルジメチルアミンの硫酸水素塩、4−ジアゾジフェニルアミンのテトラフルオロホウ酸塩、及び3−メトキシ−4−ジアゾジフェニルアミンのヘキサフルオロリン酸塩からなる群より選択される化合物);
カチオン染料類;
スルフィド基含有化合物類;
ニトロ基含有化合物類;
FeCl3、CuCl2等の遷移金属化合物類が挙げられる。また、これらの化合物類においては、フェノール骨格やリン含有骨格などの重合禁止機能を発現する構造が同一分子内に複数存在する複合系化合物であってもよい。例えば特開平10−46035号公報に記載の化合物なども好適に用いられる。
重合禁止剤の具体例としては、特開2015−34961号公報の段落0211〜0223に記載の化合物が挙げられ、この内容は本明細書に組み込まれる。
重合禁止剤の含有量は、光重合開始剤100質量部に対して、0.01質量部〜10質量部が好ましく、0.01〜8質量部がより好ましく、0.01〜5質量部が最も好ましい。上記範囲とすることで、非画像部における硬化反応抑制及び画像部における硬化反応促進が充分おこなわれ、パターン形状及び感度が良好となる。重合禁止剤は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
<<界面活性剤>>
本発明の組成物は、塗布適性をより向上させる観点から、各種類の界面活性剤を含有させてもよい。界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種類の界面活性剤を使用できる。
上記組成物にフッ素系界面活性剤を含有させることで、塗布液として調製したときの液特性(特に、流動性)がより向上し、塗布厚の均一性や省液性をより改善することができる。即ち、フッ素系界面活性剤を含有する組成物を適用した塗布液を用いて膜形成する場合においては、被塗布面と塗布液との界面張力が低下して、被塗布面への濡れ性が改善され、被塗布面への塗布適性が向上する。このため、厚みムラの小さい均一厚の膜形成をより好適に行うことができる。
フッ素系界面活性剤中のフッ素含有率は、3〜40質量%が好適であり、より好ましくは5〜30質量%であり、特に好ましくは7〜25質量%である。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性や省液性の点で効果的であり、組成物中における溶解性も良好である。
フッ素系界面活性剤として具体的には、特開2014−41318号公報の段落0060〜0064(対応する国際公開2014/17669号パンフレットの段落0060〜0064)等に記載の界面活性剤、特開2011−132503号公報の段落0117〜0132に記載の界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。フッ素系界面活性剤の市販品としては、例えば、メガファックF171、同F172、同F173、同F176、同F177、同F141、同F142、同F143、同F144、同R30、同F437、同F475、同F479、同F482、同F554、同F780(以上、DIC(株)製)、フロラードFC430、同FC431、同FC171(以上、住友スリーエム(株)製)、サーフロンS−382、同SC−101、同SC−103、同SC−104、同SC−105、同SC−1068、同SC−381、同SC−383、同S−393、同KH−40(以上、旭硝子(株)製)、PolyFox PF636、PF656、PF6320、PF6520、PF7002(OMNOVA社製)等が挙げられる。
フッ素系界面活性剤は、ブロックポリマーを用いることもできる。例えば特開2011−89090号公報に記載された化合物が挙げられる。フッ素系界面活性剤は、フッ素原子を有する(メタ)アクリレート化合物に由来する繰り返し単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する繰り返し単位と、を含む含フッ素高分子化合物も好ましく用いることができる。下記化合物も本発明で用いられるフッ素系界面活性剤として例示される。

上記の化合物の重量平均分子量は、好ましくは3,000〜50,000であり、例えば、14,000である。
また、フッ素系界面活性剤は、エチレン性不飽和結合を有する基を側鎖に有する含フッ素重合体を用いることもできる。具体例としては、特開2010−164965号公報0050〜0090段落および0289〜0295段落に記載された化合物、例えばDIC(株)製のメガファックRS−101、RS−102、RS−718K、RS−72−K等が挙げられる。フッ素系界面活性剤は、特開2015−117327号公報の段落0015〜0158に記載の化合物を用いることもできる。
ノニオン系界面活性剤としては、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレート及びプロポキシレート(例えば、グリセロールプロポキシレート、グリセリンエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル、プルロニックL10、L31、L61、L62、10R5、17R2、25R2(BASF社製)、テトロニック304、701、704、901、904、150R1(BASF社製)、ソルスパース20000(日本ルーブリゾール(株)製)、NCW−101、NCW−1001、NCW−1002(和光純薬工業(株)製)、パイオニンD−6112、D−6112−W、D−6315(竹本油脂(株)製)、オルフィンE1010、サーフィノール104、400、440(日信化学工業(株)製)などが挙げられる。
カチオン系界面活性剤としては、オルガノシロキサンポリマーKP341(信越化学工業(株)製)、(メタ)アクリル酸系(共)重合体ポリフローNo.75、No.90、No.95(共栄社化学(株)製)、W001(裕商(株)製)等が挙げられる。
アニオン系界面活性剤としては、W004、W005、W017(裕商(株)製)、サンデットBL(三洋化成(株)製)等が挙げられる。
シリコーン系界面活性剤としては、例えば、トーレシリコーンDC3PA、トーレシリコーンSH7PA、トーレシリコーンDC11PA、トーレシリコーンSH21PA、トーレシリコーンSH28PA、トーレシリコーンSH29PA、トーレシリコーンSH30PA、トーレシリコーンSH8400(以上、東レ・ダウコーニング(株)製)、TSF−4440、TSF−4300、TSF−4445、TSF−4460、TSF−4452(以上、モメンティブ・パフォーマンス・マテリアルズ社製)、KP341、KF6001、KF6002(以上、信越シリコーン株式会社製)、BYK307、BYK323、BYK330(以上、ビックケミー社製)等が挙げられる。
界面活性剤は、1種類のみを用いてもよいし、2種類以上を組み合わせてもよい。
界面活性剤の含有量は、組成物の全固形分に対して、0.001〜2.0質量%が好ましく、0.005〜1.0質量%がより好ましい。
<<その他の添加剤>>
更に、組成物に対しては、膜または硬化膜の物性を改良するために可塑剤や感脂化剤等の公知の添加剤を加えてもよい。可塑剤としては、例えば、ジオクチルフタレート、ジドデシルフタレート、トリエチレングリコールジカプリレート、ジメチルグリコールフタレート、トリクレジルホスフェート、ジオクチルアジペート、ジブチルセバケート、トリアセチルグリセリン等が挙げられる。可塑剤の含有量は、重合性化合物と樹脂との合計質量に対し10質量%以下が好ましい。
<組成物の調製方法>
上述の組成物は、前述の成分を混合して調製できる。
組成物の調製に際しては、各成分を一括配合してもよいし、各成分を溶剤に溶解および分散のうち少なくとも一方をした後に逐次配合してもよい。また、配合する際の投入順序や作業条件は特に制約を受けない。
また、顔料を分散させるプロセスとしては、顔料の分散に用いる機械力として、圧縮、圧搾、衝撃、剪断、キャビテーションなどを使用するプロセスが挙げられる。これらプロセスの具体例としては、ビーズミル、サンドミル、ロールミル、高速インペラー、サンドグラインダー、フロージェットミキサー、高圧湿式微粒化、超音波分散などが挙げられる。また「分散技術大全、株式会社情報機構発行、2005年7月15日」や「サスペンション(固/液分散系)を中心とした分散技術と工業的応用の実際 総合資料集、経営開発センター出版部発行、1978年10月10日」に記載のプロセス及び分散機を好適に使用出来る。
組成物の調製にあたり、異物の除去や欠陥の低減などの目的で、フィルタでろ過することが好ましい。フィルタとしては、従来からろ過用途等に用いられるものであれば特に限定されることなく用いることができる。例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂、ナイロン(例えばナイロン−6、ナイロン−6,6)等のポリアミド系樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量を含む)等を用いたフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)およびナイロンが好ましい。
フィルタの孔径は、0.01〜7.0μm程度が適しており、好ましくは0.01〜3.0μm程度、さらに好ましくは0.05〜0.5μm程度である。この範囲とすることにより、後工程において均一及び平滑な組成物の調製を阻害する、微細な異物を確実に除去することが可能となる。また、ファイバ状のフィルタを用いることも好ましく、フィルタとしては例えばポリプロピレンファイバ、ナイロンファイバ、グラスファイバ等が挙げられ、具体的にはロキテクノ(株)製のSBPタイプシリーズ(SBP008など)、TPRタイプシリーズ(TPR002、TPR005など)、SHPXタイプシリーズ(SHPX003など)のフィルタカートリッジを用いることができる。
フィルタを使用する際、異なるフィルタを組み合わせてもよい。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。
また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社(DFA4201NXEYなど)、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種類のフィルタの中から選択することができる。
第2のフィルタは、上述した第1のフィルタと同様の材料等で形成されたものを使用することができる。
例えば、第1のフィルタでのフィルタリングは、分散液のみで行い、他の成分を混合した後で、第2のフィルタリングを行ってもよい。
[膜]
本発明の膜は、本発明の組成物を用いて形成された膜である。
<L*>
本発明の膜は、CIE1976のL*a*b*表色系におけるL*が35〜85であることが好ましい。膜は、CIE1976のL*a*b*表色系におけるL*の上限は80未満であることがより好ましく、75以下であることが特に好ましく、70以下であることがより特に好ましい。膜は、CIE1976のL*a*b*表色系におけるL*の下限は40以上であることがより好ましく、50以上であることが特に好ましい。
<a*およびb*>
本発明の膜は、CIE1976のL*a*b*表色系におけるa*およびb*は−30〜30が好ましく、−20〜20がより好ましく、−10〜10が特に好ましい。
<厚さ>
本発明の膜は、厚さが10μm以下であることが好ましく、3μm以下であることがより好ましく、1μm以下であることが特に好ましい。厚さの下限値は、0.5μm以上であることが好ましい。
<平均透過率>
本発明の膜は、厚さ3μmの波長400〜700nmの範囲における平均透過率が1%以上であることが好ましく、10%以上であることがより好ましく、30%以上であることが特に好ましい。波長400〜700nmの範囲における平均透過率の上限値は、50%以下であることが好ましい。
<用途>
本発明の膜は、固体撮像素子などの各種類のセンサや、画像表示装置(例えば、液晶表示装置や有機エレクトロルミネッセンス(有機EL)表示装置など)に組み込んで用いることができる。また、光学部材の外観調整用途の材料として用いることもできる。
本発明の膜は、例えば、各種類のセンサや、画像表示装置などに組み込んで、光を適度に遮光ないし透過する部材や、光を散乱する部材として用いることもできる。また、発光ダイオード(LED)反射用途、有機EL光散乱層用途、導電材料、絶縁材料、太陽電池用材料などに用いることもできる。
[硬化膜]
本発明の硬化膜は、本発明の膜を硬化した、硬化膜である。硬化膜は、本発明の膜から溶剤を除去されたことが好ましい。また、硬化膜は、本発明の膜の重合性化合物を重合して硬化されたことが好ましい。
本発明の硬化膜は、硬化膜の状態でCIE1976のL*a*b*表色系におけるL*が35〜85であることが好ましい。本発明の硬化膜は、硬化膜の状態でCIE1976のL*a*b*表色系におけるL*の上限は80未満であることがより好ましく、75以下であることが特に好ましく、70以下であることがより特に好ましい。本発明の硬化膜は、硬化膜の状態でCIE1976のL*a*b*表色系におけるL*の下限は40以上であることがより好ましく、50以上であることが特に好ましい。
本発明の硬化膜は、粒子と樹脂を含み、粒子が少なくとも波長589nmの光に対する屈折率が2.1以上である粒子を含み、樹脂が少なくとも波長589nmの光に対する屈折率が1.5以下である樹脂を含むことが好ましい。本発明の硬化膜における波長589nmの光に対する屈折率の粒子の好ましい屈折率の範囲は、本発明の組成物における波長589nmの光に対する屈折率の粒子の好ましい屈折率の範囲と同様である。また、本発明の硬化膜における波長589nmの光に対する屈折率の樹脂の好ましい屈折率の範囲は、本発明の組成物における波長589nmの光に対する屈折率の樹脂の好ましい屈折率の範囲と同様である。
本発明の硬化膜は、粒子と樹脂を含み、粒子の波長589nmの光に対する屈折率と、樹脂の波長589nmの光に対する屈折率との差が1.22以上であることが好ましく、1.27以上であることがより好ましい。この範囲であると、硬化膜のCIE1976のL*a*b*表色系におけるL*を高くしやすい。
本発明の硬化膜の組成を、粒子と粒子以外の成分とに分類した場合、硬化膜の粒子以外の成分は、波長589nmの光に対する屈折率(粒子以外の成分の屈折率の平均値と同義)が1.5以下であることが好ましく、1.00〜1.45であることがより好ましく、1.10〜1.40であることがさらに好ましい。
[光学センサ]
本発明の光学センサは、本発明の硬化膜を有する光学センサである。光学センサとしては、固体撮像素子などを挙げることができる。
[膜の製造方法]
本発明の膜の製造方法は、本発明の組成物を、パターンを有するマスクを介して露光する工程と、
露光された組成物を現像してパターン形成する工程とを含む。
本発明の組成物を、パターンを有するマスクを介して露光する工程の前に、本発明の組成物を基材などに適用して膜を形成する工程、膜を乾燥する工程を経ることが好ましい。膜厚、積層構造などについては、目的に応じて適宜選択することができる。
膜を形成する工程において、組成物の適用方法としては、公知の方法を用いることができる。例えば、滴下法(ドロップキャスト);スリットコート法;スプレー法;ロールコート法;回転塗布法(スピンコーティング);流延塗布法;スリットアンドスピン法;プリウェット法(たとえば、特開2009−145395号公報に記載されている方法);インクジェット(例えばオンデマンド方式、ピエゾ方式、サーマル方式)、ノズルジェット等の吐出系印刷、フレキソ印刷、スクリーン印刷、グラビア印刷、反転オフセット印刷、メタルマスク印刷法などの各種類の印刷法;金型等を用いた転写法;ナノインプリント法などが挙げられる。インクジェットを用いた適用方法としては、組成物を吐出可能であれば特に限定されず、例えば「広がる・使えるインクジェット−特許に見る無限の可能性−、2005年2月発行、住ベテクノリサーチ」に示された特許公報に記載の方法(特に115ページ〜133ページ)や、特開2003−262716号公報、特開2003−185831号公報、特開2003−261827号公報、特開2012−126830号公報、特開2006−169325号公報などにおいて、吐出する組成物を本発明の組成物に置き換える方法が挙げられる。スピンコート法での塗布は、塗布適性の観点から、300〜6000rpmの範囲でスピン塗布することが好ましく、400〜3000rpmの範囲でスピン塗布することが更に好ましい。また、スピンコート時における基材温度は、10〜100℃が好ましく、20〜70℃がより好ましい。上記の範囲であれば、塗布均一性に優れた膜を製造しやすい。
滴下法(ドロップキャスト)の場合、所定の膜厚で、均一な膜が得られるように、基材上にフォトレジストを隔壁とする組成物の滴下領域を形成することが好ましい。組成物の滴下量および固形分濃度、滴下領域の面積を制御することで、所望の膜厚が得られる。乾燥後の膜の厚みとしては、特に制限はなく、目的に応じて適宜選択することができる。
基材としては、特に限定は無く、用途に応じて適宜選択できる。例えば、液晶表示装置等に用いられる無アルカリガラス、ソーダガラス、パイレックス(登録商標)ガラス、石英ガラス、及びこれらに透明導電膜を付着させた基材、固体撮像素子等に用いられる光電変換素子基材、シリコン基材等、相補性金属酸化膜半導体(CMOS)等が挙げられる。また、これらの基材上には、必要により、上部の層との密着改良、物質の拡散防止あるいは表面の平坦化のために下塗り層を設けてもよい。
膜を乾燥する工程において、乾燥条件としては、各成分、溶剤の種類、使用割合等によっても異なる。例えば、60〜150℃の温度で、30秒間〜15分間が好ましい。
本発明の組成物を、パターンを有するマスクを介して露光する工程と、露光された組成物を現像してパターン形成する工程としては、例えば、本発明の組成物を基材上に適用して膜状の組成物層を形成する工程と、組成物層をパターン形状に露光する工程と、未露光部を現像除去してパターンを形成する工程とを含む方法などが挙げられる。パターンを形成する工程としては、フォトリソグラフィ法でパターン形成してもよいし、ドライエッチング法でパターンを形成してもよい。
露光工程では、基材上に形成された膜をパターン形状に露光することが好ましい。例えば、基材上の膜に対し、ステッパー等の露光装置を用いて、所定のマスクパターンを有するマスクを介して露光することで、パターン露光することができる。これにより、露光部分を硬化することができる。
露光に際して用いることができる放射線(光)としては、g線、i線等の紫外線が好ましく(特に好ましくはi線)用いられる。照射量(露光量)は、例えば、0.03〜2.5J/cm2が好ましく、0.05〜1.0J/cm2がより好ましい。
露光時における酸素濃度については適宜選択することができ、大気下で行う他に、例えば酸素濃度が19体積%以下の低酸素雰囲気下(例えば、15体積%以下、さらには5体積%以下、特には実質的に無酸素)で露光してもよく、酸素濃度が21体積%を超える高酸素雰囲気下(例えば、22体積%以上、さらには30体積%以上、特には50体積%以上)で露光してもよい。また、露光照度は適宜設定することが可能であり、通常1000W/m2〜100000W/m2(例えば、5000W/m2以上、さらには15000W/m2以上、特には35000W/m2以上)の範囲から選択することができる。酸素濃度と露光照度は適宜条件を組み合わせてよく、例えば、酸素濃度10体積%で照度10000W/m2、酸素濃度35体積%で照度20000W/m2などとすることができる。
次に、未露光部を現像除去してパターンを形成することが好ましい。未露光部の現像除去は、現像液を用いて行うことができる。これにより、露光工程における未露光部の組成物層が現像液に溶出し、光硬化した部分だけが残る。現像液としては、下地の回路などにダメージを起さない、アルカリ現像液が望ましい。現像液として、本明細書に記載の溶剤を用いて現像してもよい。現像液の温度は、例えば、20〜30℃が好ましい。現像時間は、20〜180秒間が好ましく、20〜90秒間がより好ましい。
アルカリ現像液に用いるアルカリ剤としては、例えば、アンモニア水、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、コリン、ピロール、ピペリジン、1,8−ジアザビシクロ[5,4,0]−7−ウンデセン、ジメチルビス(2−ヒドロキシエチル)アンモニウムヒドロキシドなどの有機アルカリ性化合物が挙げられる。これらのアルカリ剤を濃度が0.001〜10質量%、好ましくは0.01〜1質量%となるように純水で希釈したアルカリ性水溶液が現像液として好ましく使用される。
また、現像液には無機アルカリを用いてもよい。無機アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、硅酸ナトリウム、メタ硅酸ナトリウムなどが好ましい。
また、現像液には、界面活性剤を用いてもよい。界面活性剤の例としては、上述した組成物で説明した界面活性剤が挙げられ、ノニオン系界面活性剤が好ましい。
なお、このようなアルカリ性水溶液からなる現像液を使用した場合には、一般に現像後純水で洗浄(リンス)することが好ましい。
その他の工程を含んでいても良い。その他の工程としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、基材の表面処理工程、前加熱工程(プリベーク工程)、後加熱工程(ポストベーク工程)などが挙げられる。現像後に、更に、加熱および露光のうち少なくとも一方を行ってもよい。この態様によれば、膜の硬化をさらに進行して、より強固に硬化した膜を製造できる。
前加熱工程および後加熱工程における加熱温度は、80〜200℃が好ましい。上限は150℃以下がより好ましい。下限は90℃以上がより好ましい。また、前加熱工程および後加熱工程における加熱時間は、30〜240秒間が好ましい。上限は180秒間以下がより好ましい。下限は60秒間以上がより好ましい。
加熱処理の方法としては、形成された上記膜の全面を加熱する方法が挙げられる。加熱処理により、パターンの膜強度が高められる。加熱温度は、100〜260℃が好ましい。下限は120℃以上がより好ましく、160℃以上が特に好ましい。上限は240℃以下がより好ましく、220℃以下が特に好ましい。加熱温度が上記範囲であれば、強度に優れた膜が得られやすい。加熱時間は、1〜180分間が好ましい。下限は3分間以上がより好ましい。上限は120分間以下がより好ましい。加熱装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、赤外線ヒータなどが挙げられる。
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。なお、特に断りのない限り、「部」及び「%」は質量基準である。
粘度は、E型粘度計(東機産業製RE85L)、コーンローターとして1°34’×R24を用いて、回転数5rpmの条件で測定した。なお、前述の条件で測定できない場合は、適宜、回転数を変更して測定した。
<重量平均分子量の測定>
樹脂の重量平均分子量は、以下の方法で測定した。
カラムの種類:TOSOH TSKgel Super HZM−Hと、TOSOH TSKgel Super HZ4000と、TOSOH TSKgel Super HZ2000とを連結したカラム
展開溶媒:テトラヒドロフラン
カラム温度:40℃
流量(サンプル注入量):1.0μL(サンプル濃度:0.1質量%)
装置名:東ソー(株)製 HLC−8220GPC
検出器:RI(屈折率)検出器
検量線ベース樹脂:ポリスチレン
<酸価の測定方法>
酸価は、固形分1gあたりの酸性成分を中和するのに要する水酸化カリウムの質量を表したものである。測定サンプルをテトラヒドロフラン/水=9/1(質量比)混合溶媒に溶解し、電位差滴定装置(商品名:AT−510、京都電子工業製)を用いて、得られた溶液を、25℃にて、0.1mol/L水酸化ナトリウム水溶液で中和滴定した。滴定pH曲線の変曲点を滴定終点として、次式により酸価を算出した。
A=56.11×Vs×0.5×f/w
A:酸価(mgKOH/g)
Vs:滴定に要した0.1mol/L水酸化ナトリウム水溶液の使用量(mL)
f:0.1mol/L水酸化ナトリウム水溶液の力価
w:測定サンプル質量(g)(固形分換算)
<アミン価の測定>
アミン価は、固形分1gあたりの塩基性成分と当量の水酸化カリウム(KOH)の質量で表したものである。測定サンプルを酢酸に溶解し、電位差滴定装置(商品名:AT−510、京都電子工業製)を用いて、得られた溶液を、25℃にて、0.1mol/L過塩素酸/酢酸溶液で中和滴定した。滴定pH曲線の変曲点を滴定終点として次式によりアミン価を算出した。
B=56.11×Vs×0.1×f/w
B:アミン価(mgKOH/g)
Vs:滴定に要した0.1mol/L過塩素酸/酢酸溶液の使用量(mL)
f:0.1mol/L過塩素酸/酢酸溶液の力価
w:測定サンプルの質量(g)(固形分換算)
<粒子の平均一次粒子径の測定>
粉体粒子の一次粒子径を、透過型電子顕微鏡(TEM)で観察し、粒子が凝集していない部分を観測することで求めた。また、粒子の粒度分布について、一次粒子である粉体粒子を、透過型電子顕微鏡を用いて透過型電子顕微鏡写真を撮影した後、その写真を用いて画像処理装置で粒度分布を測定した。粒子の平均一次粒子径は、粒度分布から算出された個数基準の算術平均径をもって平均一次粒子径とした。透過型電子顕微鏡として(株)日立製作所製電子顕微鏡(H−7000)を用い、画像処理装置として(株)ニレコ製ルーゼックスAPを用いた。
[実施例1〜44、比較例1〜3]
<分散液の製造>
下記組成の混合液に対し、循環型分散装置(ビーズミル)として、寿工業(株)製ウルトラアペックスミルを用いて、以下のようにして分散処理を行い、分散液を製造した。
<<混合液の組成>>
下記表に記載の粒子:30質量部
下記表に記載の分散剤:下記表に記載の量
溶剤:プロピレングリコール−1−モノメチルエーテル−2−アセテート(PGMEA):下記表に記載の量
また、循環型分散装置は以下の条件で運転した。
・ビーズ径:直径0.2mm
・ビーズ充填率:65体積%
・周速:6m/秒
・ポンプ供給量:10.8kg/時
・冷却水:水道水
・ビーズミル環状通路内容積:0.15L
・分散処理する混合液量:0.65kg
分散開始後、30分間隔で、粒子の平均粒子径の測定を行った。粒子の平均粒子径は分散時間とともに減少したが、次第にその変化量が少なくなった。粒度分布におけるd50(積算値50%)の変化量がなくなった時点で分散を終了した。
得られた分散液2〜19の組成を下記表に示す。
(粒子)
B−2〜B−13として、以下の表に示す粒子を用いた。
粒子の屈折率は以下の方法で測定される。
まず、屈折率が既知である分散剤とPGMEAを用いて分散を行う。その後、作製した分散液と屈折率が既知の樹脂を、粒子の固形分中の濃度がそれぞれ10質量%、20質量%、30質量%、40質量%になるように混合し、4種類の塗布液を作製する。これらの塗布液をSiウェハ上に300nmで製膜した後、得られる膜の屈折率をエリプソメトリー(ラムダエースRE−3300(商品名)、大日本スクリーン製造(株))を用いて測定する。その後、粒子濃度と屈折率をプロットし、外挿し、粒子の屈折率を導出する。
(分散剤)
F−1:Solsperse 36000、Lubrizol(株)製、屈折率1.52。
F−2:Solsperse 46000、Lubrizol(株)製、屈折率1.52。
F−3:下記構造の樹脂(Mw=20000、屈折率1.51)。各繰り返し単位に併記した数値は、各繰り返し単位の含有量〔質量比〕を表す。側鎖の繰り返し部位に併記される数値は、繰り返し部位の繰り返し数を示す。
F−4:下記構造の樹脂(Mw=22900、屈折率1.51)。各繰り返し単位に併記した数値は、各繰り返し単位の含有量〔質量比〕を表す。側鎖の繰り返し部位に併記される数値は、繰り返し部位の繰り返し数を示す。
F−5:ポリシロキサン樹脂系分散剤であるX−22−3701E(酸性吸着基を持つポリアルキルシロキサン)、信越シリコーン製、屈折率1.43。
<組成物の調製>
下記表に記載の原料を混合して、組成物を調製した。
<<原料>>
上記表に記載の原料は以下である。
(分散液)
分散液2〜19:上記にて製造した分散液2〜19。
(樹脂)
A−1:前述のフッ素系樹脂1であるフッ素系樹脂(酸価114.1mgKOH/g、MW=10000、下記構造)。
A−2:前述の具体例53であるポリシロキサン系樹脂(Mw=10000)。WO2014/126013Aの<0117>の合成例11および<0107>の合成例1を参考にして、以下の手順にしたがって合成した。この公報の内容は本明細書に組み込まれる。
500mLのナスフラスコに下記材料を仕込んで、室温で撹拌しながら2gのリン酸を54gの水で溶かした水溶液を30分間かけて滴下した。その後40℃で30分間撹拌した後、70℃で30分間撹拌した。最後に110℃で3時間加熱し、反応を終了した。溶媒はエバポレータで取り除いた。
−材料−
ジメトキシジメチルシラン 75質量部(62.6モル%)
3−アクリロキシプロピルトリメトキシシラン 42質量部(17.9モル%)
3−トリメトキシシリルプロピル無水コハク酸 39質量部(15モル%)
3−グリシジロキシプロピルトリメトキシシラン 12質量部(4.5モル%)
PGMEA 109質量部
A−3:前述の具体例54であるポリシロキサン系樹脂(Mw=10000)。材料を以下のとおりに変更した以外はA−2と同様の方法で合成した。
−材料−
ジメトキシジメチルシラン 84質量部(70モル%)
3−アクリロキシプロピルトリメトキシシラン 47質量部(20モル%)
3−トリメトキシシリルプロピル無水コハク酸 13質量部(5モル%)
3−グリシジロキシプロピルトリメトキシシラン 14質量部(5モル%)
PGMEA 102質量部
A−4:前述の具体例55であるポリシロキサン系樹脂(Mw=10000)。材料を以下のとおりに変更した以外はA−2と同様の方法で合成した。
−材料−
ジメトキシジメチルシラン 80質量部(66.3モル%)
3−アクリロキシプロピルトリメトキシシラン 44質量部(19モル%)
3−トリメトキシシリルプロピル無水コハク酸 26質量部(10モル%)
3−グリシジロキシプロピルトリメトキシシラン 13質量部(4.7モル%)
PGMEA 106質量部
A−5:前述の具体例56であるポリシロキサン系樹脂(Mw=10000)。材料を以下のとおりに変更した以外はA−2と同様の方法で合成した。
−材料−
ジメトキシジメチルシラン 71質量部(59モル%)
3−アクリロキシプロピルトリメトキシシラン 39質量部(16.8モル%)
3−トリメトキシシリルプロピル無水コハク酸 52質量部(20モル%)
3−グリシジロキシプロピルトリメトキシシラン 12質量部(4.2モル%)
PGMEA 113質量部
A−6:前述の具体例57であるポリシロキサン系樹脂(Mw=10000)。材料を以下のとおりに変更した以外はA−2と同様の方法で合成した。
−材料−
ジメトキシジメチルシラン 66質量部(55.3モル%)
3−アクリロキシプロピルトリメトキシシラン 37質量部(15.8モル%)
3−トリメトキシシリルプロピル無水コハク酸 66質量部(25モル%)
3−グリシジロキシプロピルトリメトキシシラン 11質量部(3.9モル%)
PGMEA 117質量部
A−7:前述の具体例58であるポリシロキサン系樹脂(Mw=10000。材料を以下のとおりに変更した以外はA−2と同様の方法で合成した。
−材料−
ジメトキシジメチルシラン 41質量部(80.0モル%)
3−トリメトキシシリルプロピル無水コハク酸 36質量部(15.0モル%)
3−グリシジロキシプロピルトリメトキシシラン 16質量部(5.0モル%)
PGMEA 129.93質量部
A−8:前述の具体例59であるポリシロキサン系樹脂(Mw=10000)。材料を以下のとおりに変更した以外はA−2と同様の方法で合成した。
−材料−
ジメトキシジメチルシラン 34質量部(55.0モル%)
3−アクリロキシプロピルトリメトキシシラン 44質量部(20.0モル%)
3−トリメトキシシリルプロピル無水コハク酸 29質量部(15.0モル%)
3−グリシジロキシプロピルトリメトキシシラン 10質量部(5.0モル%)
テトラエトキシシラン 10質量部(5.0モル%)
PGMEA 136.72質量部
A−10:下記構造のメタクリル系樹脂(酸価79.3mgKOH/g、Mw=17000、藤倉化成(株)製)。各繰り返し単位に併記した数値は、各繰り返し単位の含有量〔質量比〕を表す。
各樹脂の屈折率を、本明細書中に記載の方法で、未硬化の状態で測定した。
(エチレン性不飽和結合を有する重合性化合物)
D−1:多官能アクリレート、NKエステル A−TMMT(新中村化学工業(株)製、屈折率1.51)
D−2:Si原子含有の多官能ビニル化合物、VINYLTRIISOPROPENOXYSILANE(アズマックス株式会社製、屈折率1.44)
(重合開始剤)
E−1:トリハロメチルトリアジン化合物(トリクロロメチルトリアジン化合物)である光重合開始剤、トリアジンPP(BASF製)
E−2:オキシムエステル系の光重合開始剤、IRGACURE OXE01(BASF製)
(溶剤)
PGMEA:プロピレングリコール−1−モノメチルエーテル−2−アセテート
(着色防止剤)
G−1:チオエーテル系の着色防止剤、アデカスタブ AO−412S((株)ADEKA製)、下記構造。
G−2:フェノール系の着色防止剤、アデカスタブ AO−80((株)ADEKA製)、下記構造。
(エポキシ基を有する化合物)
H−1:EHPE3150((株)ダイセル製)
(紫外線吸収剤)
I−1:特開2009−217221号公報の化合物III、下記構造。
(密着剤)
J−1:特開2009−288703号公報の化合物C、下記構造。
[評価]
<L*>
上記で得られた各組成物を、下塗り層(富士フイルムエレクトロニクスマテリアルズ(株)製CT−4000L;膜厚0.1μm)付き8インチ(1インチは2.54cmである)ガラスウェハ上に乾燥後の膜厚が3.0μmになるようにスピンコータを用いて塗布し、110℃のホットプレートを用いて120秒間加熱処理(プリベーク)を行った。
次いで、i線ステッパー露光装置FPA−3000i5+(Canon(株)製)を使用して、365nmの波長光を1000mJ/cm2にて、2cm×2cmのパターンを有するマスクを介して露光した。
その後、露光された塗布膜が形成されているガラスウェハをスピンシャワー現像機(DW−30型、(株)ケミトロニクス製)の水平回転テーブル上に載置し、水酸化テトラメチルアンモニウム(TMAH)の0.3質量%水溶液を用い、23℃で60秒間パドル現像を行い、ガラスウェハ上に白色パターンを形成した。
白色パターンが形成されたガラスウェハを真空チャック方式で水平回転テーブルに固定し、回転装置によってガラスウェハを回転数50rpmで回転させつつ、その回転中心の上方より純水を噴出ノズルからシャワー状に供給してリンス処理を行い、その後スプレー乾燥した。本明細書中、L*は、膜に含まれる溶剤が1質量%以下になった状態で測定する。
分光測光器X−rite528(商品名、X−rite社製)を用いて、測定条件をD65光源、観測視野を2°、白色基準はX−rite528(商品名、X−rite社製)に付属のキャリブレーション基準板のホワイトパッチを用いて、得られた白色パターンを測定した。CIE1976のL*a*b*表色系におけるL*値を、以下の基準で評価した。A、BまたはCの評価であれば実用上問題ないと判断する。AまたはBの評価であることが好ましく、Aの評価であることがより好ましい。得られた結果を下記表に記載した。
A:厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*が50以上75以下である。
B:厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*が40以上50未満または75を超え80以下である。
C:厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*が35以上40未満または80を超え85以下である。
D:厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*が20以上35未満または85を超え90以下である。
E:厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*が20未満または90を超える。
なお、各組成物を用いて厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるa*およびb*は、下記以外の実施例の組成物を用いた場合は−10以上10以下であり、実施例22、29、30の組成物を用いた場合は−20以上−10未満または10を超え20以下であり、実施例21〜24の組成物を用いた場合は−30以上−20未満または20を超え30以下であった。
<一ヶ月経時後の濃度ムラ>
上記で得られた各組成物を用いて、常温(23℃)の条件で1ヶ月経時させた。1ヶ月経時した各組成物を用いてL*の測定方法と同様に白色パターンを作製した。その後、白色パターンの面内におけるL*の最大値と最小値の差を測定し、以下の基準で評価した。A、BまたはCの評価であれば実用上問題ないと判断する。AまたはBの評価であることが好ましく、Aの評価であることがより好ましい。得られた結果を下記表に記載した。
A:L*の最大値と最小値の差が1.0未満。
B:L*の最大値と最小値の差が1.0以上、1.5未満。
C:L*の最大値と最小値の差が1.5以上、2.0未満。
D:L*の最大値と最小値の差が2.0以上、5.0未満。
E:L*の最大値と最小値の差が5.0以上。
<塗布適性>
上記で得られた各組成物を、恒温オーブン中に50℃で12時間静置した。50℃に昇温された組成物を、ミカサ製スピンコータMS−B100を用い、300rpmで5秒間、メイン回転数で20秒間の条件で4インチウェハに塗布し、膜厚3.0μmの膜を製造した。その際のメイン回転数について、下記のように分類を行い、塗布適性の評価とした。A、B、CまたはDの評価であることが好ましく、A、BまたはCの評価であることがより好ましく、AまたはBの評価であることがさらに好ましく、Aの評価であることが特に好ましい。得られた結果を下記表に記載した。
A:メイン回転数1000以上2000rpm以下の範囲で膜厚3.0μmが塗布可能。
B:Aの条件では、膜厚3.0μmを塗布できないが、メイン回転数750以上1000rpm未満、2000より大きく2500rpm以下の範囲で膜厚3.0μmが塗布可能。
C:AおよびBの条件では、膜厚3.0μmを塗布できないが、メイン回転数500以上750rpm未満、2500より大きく3000rpm以下の範囲で膜厚3.0μmが塗布可能。
D:A、BおよびCの条件では、膜厚3.0μmを塗布できないが、メイン回転数3000より大きく4000rpm以下の範囲で膜厚3.0μmが塗布可能。
E:上記のメイン回転数の範囲内では膜厚3.0μmを得ることができない。
<耐溶剤性>
上記で得られた各組成物を、下塗り層付き8インチガラスウェハ上に乾燥後の膜厚が3.0μmになるようにスピンコータを用いて塗布し、110℃のホットプレートを用いて120秒間加熱処理(プリベーク)を行った。
次いで、i線ステッパー露光装置FPA−3000i5+(Canon(株)製)を使用して、365nmの波長光を1000mJ/cm2にて、2cm×2cmのパターンを有するマスクを介して露光した。
その後、露光された塗布膜が形成されているガラスウェハをスピンシャワー現像機(DW−30型、(株)ケミトロニクス製)の水平回転テーブル上に載置し、水酸化テトラメチルアンモニウム(TMAH)0.3質量%水溶液を用い、23℃で60秒間パドル現像を行い、ガラスウェハ上に白色パターンを形成した。
白色パターンが形成されたガラスウェハを真空チャック方式で水平回転テーブルに固定し、回転装置によってガラスウェハを回転数50rpmで回転させつつ、その回転中心の上方より純水を噴出ノズルからシャワー状に供給してリンス処理を行い、その後スプレー乾燥した。その後230℃のホットプレートを用いて5分間加熱処理(ポストベーク)を行った。
得られた白色パターンと、白色パターンをN−メチル−2−ピロリジノン中に5分間浸漬した後の白色パターンの波長400〜700nmにおける透過率をMCPD−3000(大塚電子(株)製)を使用して測定した。その分光変動(ΔT%)について、最も分光変動が大きい波長での変動をΔTmaxとし、耐溶剤性の評価とした。変動が小さいほど耐溶剤性が良好であり、より望ましい。A、B、CまたはDの評価であることが好ましく、A、BまたはCの評価であることがより好ましく、AまたはBの評価であることがさらに好ましく、Aの評価であることが特に好ましい。得られた結果を下記表に記載した。
A:ΔTmax<0.5%。
B:0.5%≦ΔTmax<1.0%。
C:1.0%≦ΔTmax<3.0%。
D:3.0%≦ΔTmax<5.0%。
E:ΔTmax≧5.0%。
<パターン形状>
上記で得られた各組成物を、塗布後の膜厚が3.0μmになるように、下塗り層付き8インチシリコンウェハ上にスピンコート法で塗布し、その後ホットプレート上で、100℃で2分間加熱して組成物層を得た。
次いで、得られた組成物層に対し、i線ステッパー露光装置FPA−3000i5+(Canon(株)製)を用い、20μm四方のアイランドパターンを、マスクを介して露光(露光量50〜1700mJ/cm2)した。
次いで、露光後の組成物層に対し、現像装置(東京エレクトロン製Act8)を使用して現像を行った。現像液には水酸化テトラメチルアンモニウム(TMAH)0.3質量%水溶液を用い、23℃で60秒間シャワー現像を行った。その後、純水を用いたスピンシャワーにてリンスを行い、パターンを得た。得られたパターンの形状を走査型電子顕微鏡(SEM)(S−4800H、(株)日立ハイテクノロジーズ製)を用いて観察(倍率:5000倍)し、評価した。パターン形状の評価基準は以下の通りである。A、B、CまたはDの評価であることが好ましく、A、BまたはCの評価であることがより好ましく、AまたはBの評価であることがさらに好ましく、Aの評価であることが特に好ましい。得られた結果を下記表に記載した。
A:図1の(a)のようにパターンの一辺が直線である。
B:図1の(b)のようにパターンの角がやや丸まっている。
C:図1の(c)のようにパターンの一辺がやや丸まっている。
D:図1の(d)のようにパターンが丸まっている。
E:図1の(e)のようにパターンが丸い。
<密着性>
パターン形状の評価で作製したパターンの中で20μmのパターンサイズのパターン群を光学顕微鏡(オリンパス(株)製)にて観察した。密着性の評価基準は以下の通りである。A、B、CまたはDの評価であることが好ましく、A、BまたはCの評価であることがより好ましく、AまたはBの評価であることが特に好ましく、Aの評価であることがより特に好ましい。得られた結果を下記表に記載した。
A:パターンに剥がれまたは欠けなし。
B:観測されるパターンの剥がれまたは欠けが0%より大きく5%未満である。
C:観測されるパターンの剥がれまたは欠けが5%以上10%未満である。
D:観測されるパターンの剥がれまたは欠けが10%以上30%未満である。
E:観測されるパターンの剥がれまたは欠けが30%以上である。
<着色性>
耐溶剤性の評価と同様の方法で作製したパターンの分光L*、a*、b*を分光測光器を用いて、測定条件をD65光源、観測視野を2°、白色基準はX−rite528(商品名、X−rite社製)に付属のキャリブレーション基準板のホワイトパッチを用いて測定した。分光測光器として、X−rite528(商品名、X−rite社製)を用いた。なお、測定の際には、パターンを形成したガラスウェハを、黒色レジストで被覆した台(黒色台)に置いて測定した。黒色台の黒色レジスト層のOD(Optical Density)は、400nmで3.5(透過率0.03%)、550nmで3.2(透過率0.06)、700nmで2.5(透過率0.32%)であり、400nm〜700nmの範囲における平均反射率は7%であった。黒色台のODは大塚電子(株)製「MCPD−3700」で測定し、反射率は日立ハイテクサイエンス(株)製「U−4100」で測定した。
作製したパターンを、265℃で15分間、ホットプレートを用いて加熱し、加熱後のパターンの分光を測定し、CIE1976のL*a*b*表色系における加熱前後のパターンの色差ΔE*abを算出した。なお、色差ΔE*abの算出式は以下の通りである。
ΔE*ab=〔(ΔL*)2+(Δa*)2+(Δb*)21/2
A:色差ΔE*abが0以上0.5未満である。
B:色差ΔE*abが0.5以上1.0未満である。
C:色差ΔE*abが1.0以上2.0未満である。
D:色差ΔE*abが2.0以上3.0未満である。
E:色差ΔE*abが3.0以上である。
A、B、CまたはDの評価であることが好ましく、A、BまたはCの評価であることがより好ましく、AまたはBの評価であることがさらに好ましく、Aの評価であることが特に好ましい。得られた結果を下記表に記載した。
上記表より、各実施例の組成物は、厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*が35〜85であり、かつ、一ヶ月経時後の濃度ムラが抑制された膜を製造できることがわかった。
これに対し、樹脂の波長589nmの光に対する屈折率が2.1を下回る粒子を用い、また、粒子の波長589nmの光に対する屈折率と樹脂の波長589nmの光に対する屈折率との差が1.22を下回る比較例1および2の組成物は、厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*が35未満または85を超えることがわかった。波長589nmの光に対する屈折率が1.5を超える樹脂を用い、また、粒子の波長589nmの光に対する屈折率と樹脂の波長589nmの光に対する屈折率との差が1.22を下回る比較例3の組成物は、一ヶ月経時後の濃度ムラが大きいことがわかった。
<平均透過率>
各実施例の組成物を用いて耐溶剤性の評価で形成したパターンである厚さ3.0μmの膜について、波長400〜700nmの範囲における透過率を、大塚電子(株)製MCPD−3000を用いて5nmピッチで測定し、その平均値を平均透過率とした。
その結果、各実施例の膜は、厚さ3.0μm換算時の波長400〜700nmの範囲における平均透過率が1〜45%であることがわかった。
<現像液の影響>
各実施例の組成物について、<パターン形状>の評価で用いた現像液の代わりに、本明細書に記載の溶剤で現像しても同様のパターンが得られる。
本発明の組成物から形成された膜は、厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*が35〜85であり、かつ、一ヶ月経時後の濃度ムラが抑制された膜である。このような膜は、硬化して硬化膜として固体撮像素子などの各種類の光学センサに利用した場合に、良好な光学センサ機能と意匠性の両立が可能であり、産業上の利用可能性が高い。

Claims (19)

  1. 粒子と樹脂とを含み、
    前記粒子が波長589nmの光に対する屈折率が2.1以上である粒子を少なくとも含み、
    前記樹脂が波長589nmの光に対する屈折率が1.5以下である樹脂を少なくとも含む、組成物。
  2. 粒子と樹脂とを含む組成物であって、
    前記粒子のうち、前記組成物に含まれる最も屈折率の高い粒子の波長589nmの光に対する屈折率と、前記樹脂のうち、前記組成物に含まれる最も屈折率の低い樹脂の波長589nmの光に対する屈折率との差が1.22以上である、組成物。
  3. 前記組成物が硬化性組成物である、請求項1または2に記載の組成物。
  4. 前記組成物を用いて厚さ3.0μmの膜を形成した場合のCIE1976のL*a*b*表色系におけるL*が35〜85である、請求項1〜3のいずれか一項に記載の組成物。
  5. 前記粒子は、無機粒子を含む、請求項1〜4のいずれか一項に記載の組成物。
  6. 前記無機粒子は、白色顔料を含む、請求項5に記載の組成物。
  7. 前記無機粒子は、酸化チタンを含む、請求項5または6に記載の組成物。
  8. 前記粒子の全質量に対する、波長589nmの光に対する屈折率が2.1以上の粒子の含有量が80質量%以上である、請求項1〜7のいずれか一項に記載の組成物。
  9. 前記樹脂の全質量に対する、波長589nmの光に対する屈折率が1.5以下の樹脂の含有量が5質量%以上である、請求項1〜8のいずれか一項に記載の組成物。
  10. 前記樹脂がアルカリ可溶性樹脂である、請求項1〜9のいずれか一項に記載の組成物。
  11. 前記樹脂がポリシロキサン系樹脂である、請求項1〜10のいずれか一項に記載の組成物。
  12. 前記ポリシロキサン系樹脂の側鎖のうち50モル%以上が炭素数1〜4のアルキル基および炭素数1〜4のアルコキシ基のうち少なくとも一方である、請求項11に記載の組成物。
  13. 前記組成物が、さらにラジカル重合性化合物および光重合開始剤を有する、請求項1〜12のいずれか一項に記載の組成物。
  14. 前記ラジカル重合性化合物の全質量中における、波長589nmの光に対する屈折率が1.5以下のラジカル重合性化合物の含有量が80質量%以上である、請求項13に記載の組成物。
  15. 前記組成物が、さらに着色防止剤を有する、請求項1〜14のいずれか一項に記載の組成物。
  16. 請求項1〜15のいずれか一項に記載の組成物から形成された、膜。
  17. 請求項16に記載の膜を硬化した、硬化膜。
  18. 請求項17に記載の硬化膜を有する、光学センサ。
  19. 請求項1〜15のいずれか一項に記載の組成物を、パターンを有するマスクを介して露光する工程と、
    露光された前記組成物を現像してパターン形成する工程と、を含む、膜の製造方法。
JP2018505362A 2016-03-14 2017-02-15 組成物、膜、硬化膜、光学センサおよび膜の製造方法 Active JP6688875B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016049982 2016-03-14
JP2016049982 2016-03-14
PCT/JP2017/005531 WO2017159190A1 (ja) 2016-03-14 2017-02-15 組成物、膜、硬化膜、光学センサおよび膜の製造方法

Publications (2)

Publication Number Publication Date
JPWO2017159190A1 true JPWO2017159190A1 (ja) 2018-12-27
JP6688875B2 JP6688875B2 (ja) 2020-04-28

Family

ID=59851914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018505362A Active JP6688875B2 (ja) 2016-03-14 2017-02-15 組成物、膜、硬化膜、光学センサおよび膜の製造方法

Country Status (3)

Country Link
JP (1) JP6688875B2 (ja)
TW (1) TW201800464A (ja)
WO (1) WO2017159190A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065562A1 (ja) * 2017-09-28 2019-04-04 東レ株式会社 感光性樹脂組成物、感光性シート、ならびにそれらの硬化膜、その製造方法、それを用いた中空構造体および電子部品
WO2019176785A1 (ja) * 2018-03-14 2019-09-19 東レ株式会社 ネガ型感光性着色組成物、硬化膜、それを用いたタッチパネル
JP7081337B2 (ja) * 2018-06-27 2022-06-07 Dic株式会社 光硬化性組成物及びその製造方法
JP6962958B2 (ja) * 2019-03-25 2021-11-05 株式会社タムラ製作所 感光性樹脂組成物
US20220348722A1 (en) * 2019-10-03 2022-11-03 Dow Toray Co., Ltd. Uv-curable organopolysiloxane composition and use thereof
EP4130147A4 (en) 2020-03-30 2023-08-09 FUJIFILM Corporation COMPOSITION, FILM AND OPTICAL SENSOR
KR20230166082A (ko) 2021-03-31 2023-12-06 미쯔비시 케미컬 주식회사 착색 감광성 수지 조성물, 경화물, 격벽, 컬러 필터 및 화상 표시 장치
KR20230164671A (ko) 2021-03-31 2023-12-04 미쯔비시 케미컬 주식회사 착색 감광성 수지 조성물, 경화물, 격벽, 유기 전계 발광 소자, 발광성 나노 결정 입자를 포함하는 컬러 필터 및 화상 표시 장치
WO2023054142A1 (ja) 2021-09-29 2023-04-06 富士フイルム株式会社 組成物、樹脂、膜および光センサ
TWI827161B (zh) * 2022-07-26 2023-12-21 台虹科技股份有限公司 鈦黑組合物、聚醯胺酸組合物、聚醯亞胺膜及其層疊體

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077159A1 (ja) * 2003-02-28 2004-09-10 Dai Nippon Printing Co., Ltd. 濡れ性パターン形成用塗工液およびパターン形成体の製造方法
WO2009090867A1 (ja) * 2008-01-15 2009-07-23 Sekisui Chemical Co., Ltd. レジスト材料及び積層体
JP2009251093A (ja) * 2008-04-02 2009-10-29 Konica Minolta Opto Inc 光学用複合材料、及び光学素子
JP2010235756A (ja) * 2009-03-31 2010-10-21 Hitachi Chem Co Ltd 光反射用熱硬化性樹脂組成物、これを用いた光半導体素子搭載用基板及びその製造方法、並びに光半導体装置
JP2010538147A (ja) * 2007-09-07 2010-12-09 スリーエム イノベイティブ プロパティズ カンパニー 表面改質高屈折率ナノ粒子を含む自己組織化反射防止コーティング
JP2012064928A (ja) * 2010-08-18 2012-03-29 Mitsubishi Chemicals Corp 半導体発光装置用樹脂成形体用材料及び樹脂成形体
JP2012124428A (ja) * 2010-12-10 2012-06-28 Mitsubishi Chemicals Corp 半導体発光装置用樹脂成形体
WO2012111183A1 (ja) * 2011-02-14 2012-08-23 積水化学工業株式会社 感光性組成物及びプリント配線板
JP2012216785A (ja) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp 半導体発光装置用パッケージ及び該パッケージを有してなる半導体発光装置並びにそれらの製造方法
JP2014145012A (ja) * 2013-01-28 2014-08-14 Mitsubishi Chemicals Corp 樹脂組成物、波長変換部材、発光装置、led照明器具、及び光学部材
WO2014126013A1 (ja) * 2013-02-14 2014-08-21 東レ株式会社 ネガ型感光性着色組成物、硬化膜、タッチパネル用遮光パターン及びタッチパネルの製造方法
JP2015048446A (ja) * 2013-09-03 2015-03-16 三菱化学株式会社 波長変換部材、発光装置、照明器具、及び、ディスプレイ
JP2016061818A (ja) * 2014-09-16 2016-04-25 東洋インキScホールディングス株式会社 光散乱層用樹脂組成物、光散乱層、および有機エレクトロルミネッセンス装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077159A1 (ja) * 2003-02-28 2004-09-10 Dai Nippon Printing Co., Ltd. 濡れ性パターン形成用塗工液およびパターン形成体の製造方法
JP2010538147A (ja) * 2007-09-07 2010-12-09 スリーエム イノベイティブ プロパティズ カンパニー 表面改質高屈折率ナノ粒子を含む自己組織化反射防止コーティング
WO2009090867A1 (ja) * 2008-01-15 2009-07-23 Sekisui Chemical Co., Ltd. レジスト材料及び積層体
JP2009251093A (ja) * 2008-04-02 2009-10-29 Konica Minolta Opto Inc 光学用複合材料、及び光学素子
JP2010235756A (ja) * 2009-03-31 2010-10-21 Hitachi Chem Co Ltd 光反射用熱硬化性樹脂組成物、これを用いた光半導体素子搭載用基板及びその製造方法、並びに光半導体装置
JP2012064928A (ja) * 2010-08-18 2012-03-29 Mitsubishi Chemicals Corp 半導体発光装置用樹脂成形体用材料及び樹脂成形体
JP2012124428A (ja) * 2010-12-10 2012-06-28 Mitsubishi Chemicals Corp 半導体発光装置用樹脂成形体
WO2012111183A1 (ja) * 2011-02-14 2012-08-23 積水化学工業株式会社 感光性組成物及びプリント配線板
JP2012216785A (ja) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp 半導体発光装置用パッケージ及び該パッケージを有してなる半導体発光装置並びにそれらの製造方法
JP2014145012A (ja) * 2013-01-28 2014-08-14 Mitsubishi Chemicals Corp 樹脂組成物、波長変換部材、発光装置、led照明器具、及び光学部材
WO2014126013A1 (ja) * 2013-02-14 2014-08-21 東レ株式会社 ネガ型感光性着色組成物、硬化膜、タッチパネル用遮光パターン及びタッチパネルの製造方法
JP2015048446A (ja) * 2013-09-03 2015-03-16 三菱化学株式会社 波長変換部材、発光装置、照明器具、及び、ディスプレイ
JP2016061818A (ja) * 2014-09-16 2016-04-25 東洋インキScホールディングス株式会社 光散乱層用樹脂組成物、光散乱層、および有機エレクトロルミネッセンス装置

Also Published As

Publication number Publication date
TW201800464A (zh) 2018-01-01
WO2017159190A1 (ja) 2017-09-21
JP6688875B2 (ja) 2020-04-28

Similar Documents

Publication Publication Date Title
JP6688875B2 (ja) 組成物、膜、硬化膜、光学センサおよび膜の製造方法
JP6692428B2 (ja) 積層体、キット、積層体の製造方法および光学センサ
JP6893236B2 (ja) 組成物、膜、光センサおよび分散剤
US10928726B2 (en) Dispersion liquid, composition, film, manufacturing method of film, and dispersant
JP6701324B2 (ja) 組成物、膜、硬化膜、光学センサおよび膜の製造方法
TWI795360B (zh) 硬化膜形成用組成物、硬化膜、彩色濾光片、遮光膜、固體攝像裝置及圖像顯示裝置
US10678131B2 (en) Composition, film, cured film, optical sensor, and method for producing film
JP6717930B2 (ja) 遠赤外線透過性組成物、形成体、積層体、遠赤外線透過フィルタ、固体撮像素子および赤外線カメラ
US11045834B2 (en) Method for producing film
WO2017056901A1 (ja) 組成物、硬化膜、パターン、パターンの製造方法、光学センサー、及び撮像素子
WO2017163818A1 (ja) 赤外線フィルタ、赤外線センサおよび赤外線フィルタ用組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R150 Certificate of patent or registration of utility model

Ref document number: 6688875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250