JPWO2017135386A1 - Carbon-based catalyst consisting of composite material - Google Patents

Carbon-based catalyst consisting of composite material Download PDF

Info

Publication number
JPWO2017135386A1
JPWO2017135386A1 JP2017565633A JP2017565633A JPWO2017135386A1 JP WO2017135386 A1 JPWO2017135386 A1 JP WO2017135386A1 JP 2017565633 A JP2017565633 A JP 2017565633A JP 2017565633 A JP2017565633 A JP 2017565633A JP WO2017135386 A1 JPWO2017135386 A1 JP WO2017135386A1
Authority
JP
Japan
Prior art keywords
carbon
ncnp
compound
composite material
based catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017565633A
Other languages
Japanese (ja)
Inventor
貴裕 石崎
貴裕 石崎
崇彦 木口
崇彦 木口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Institute of Technology
Original Assignee
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Institute of Technology filed Critical Shibaura Institute of Technology
Publication of JPWO2017135386A1 publication Critical patent/JPWO2017135386A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/58
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

耐久性を有するとともに、十分な酸素還元反応活性を発揮する、燃料電池のカソードに好適なカーボン材料からなる触媒を提供することにある。炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物からなるカーボン粒子、及び、カーボンナノファイバー、を含み、前記炭素化合物から生成されるカーボン粒子が前記カーボンナノファイバーに凝集していること、を特徴とする複合材料からなるカーボン系触媒、を提供する。It is an object of the present invention to provide a catalyst made of a carbon material suitable for the cathode of a fuel cell, which is durable and exhibits sufficient oxygen reduction reaction activity. A carbon particle comprising carbon and a carbon compound containing carbon and carbon, hydrogen, and another element other than oxygen and having at least one of a ring structure and an unsaturated bond, and carbon nanofibers, which are produced from the carbon compound The present invention provides a carbon-based catalyst comprising a composite material characterized in that the carbon particles to be collected are aggregated in the carbon nanofibers.

Description

本発明は、触媒活性サイトを豊富に有し、燃料電池に好適に用いられるカーボン系触媒に関する。   The present invention relates to a carbon-based catalyst which is rich in catalytic active sites and is suitably used in a fuel cell.

近年、自動車の排気ガスによる大都市の大気汚染の緩和、石油代替エネルギーの利用促進、地球温暖化防止に資する二酸化炭素の排出量低減等の観点から、燃料電池の研究開発及び実用化が盛んである。   In recent years, research and development and commercialization of fuel cells are thriving from the viewpoints of alleviating air pollution in big cities by automobile exhaust gas, promoting the use of alternative energy to petroleum, and reducing the emission of carbon dioxide contributing to the prevention of global warming. is there.

燃料電池は、比較的高効率で起電力を得られ、排ガスもクリーンであることから、環境負荷の少ない新しい電源として注目を集めており、なかでも、プロトン導電性の高分子電解質膜を使用する固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)が注目されている。   Fuel cells are attracting attention as a new power source with low environmental impact because they can obtain electromotive force with relatively high efficiency and clean exhaust gases. Above all, proton conductive polymer electrolyte membranes are used Polymer electrolyte fuel cells (PEFCs) are attracting attention.

このPEFCは、一般的にアノードと、カソードと、アノードとカソードとの間に配される高分子電解質膜とを含む、膜電極接合体によって構成されており、小型軽量化が可能で、100℃以下という低い温度で動作する。   This PEFC is generally composed of a membrane electrode assembly including an anode, a cathode, and a polymer electrolyte membrane disposed between the anode and the cathode, which can be reduced in size and weight, and can be 100 ° C. Operates at a temperature as low as

そして、PEFCは、アノードには、水素を酸化する水素酸化反応(HOR:Hydrogen Oxidation Reaction)を促進させる触媒が備えられ、カソードには、酸化剤を還元する酸素還元反応(ORR:Oxygen Reduction Reaction)を促進させる触媒が備えられている。   The PEFC is equipped with a catalyst that promotes the hydrogen oxidation reaction (HOR) that oxidizes hydrogen at the anode, and an oxygen reduction reaction (ORR) that reduces the oxidant at the cathode. A catalyst is provided to promote the

ここで、反応速度の遅いカソードには、高いORR活性を示す白金触媒が広く一般に使用されているが、白金触媒は価格が高いことや、PEFCに使用した場合の耐久性が低いこと等から、白金触媒に代わる新たな触媒が求められている。   Here, although a platinum catalyst showing high ORR activity is widely used generally for a cathode having a slow reaction rate, the platinum catalyst is expensive and has a low durability when used for PEFC, etc. There is a need for new catalysts to replace platinum catalysts.

例えば、特許文献1〜4においては、白金代替触媒の一つとして、異種元素含有カーボン材料等に代表されるカーボン系触媒が提案されている。異なる混成軌道を有する炭素は異なる成分系で構成されると捉えられ、それらの間に物理的・化学的な相互作用を見出すことができ、特にカーボン材料の結晶格子点に異種原子を置換した異種元素含有カーボン材料は、ORR活性を発現する。   For example, Patent Documents 1 to 4 propose carbon-based catalysts represented by foreign element-containing carbon materials as one of platinum alternative catalysts. Carbons having different hybrid orbitals can be considered to be composed of different component systems, and physical and chemical interactions can be found among them, and in particular, heterogeneity in which hetero atoms are substituted at the crystal lattice points of the carbon material The element-containing carbon material expresses the ORR activity.

特開2004−362802号公報JP 2004-362802 A 特開2010−270107号公報Unexamined-Japanese-Patent No. 2010-270107 特開2012−54157号公報JP 2012-54157 A 特開平08−165111号公報Unexamined-Japanese-Patent No. 08-165111

しかしながら、上記特許文献1〜4において提案されている異種元素含有カーボン材料では、十分な酸素還元反応活性が得られているとは言えず、触媒として用いるには未だ改善の余地があった。そこで、本発明の目的は、耐久性を有するとともに、十分な酸素還元反応活性を発揮する、燃料電池のカソードに好適なカーボン材料からなる触媒を提供することにある。   However, in the foreign element-containing carbon materials proposed in Patent Documents 1 to 4 above, it can not be said that sufficient oxygen reduction reaction activity is obtained, and there is still room for improvement in using it as a catalyst. Therefore, an object of the present invention is to provide a catalyst made of a carbon material suitable for a cathode of a fuel cell, which has durability and exhibits sufficient oxygen reduction reaction activity.

本発明者は上記目的を達成すべく、従来の異種元素含有カーボン材料について、その酸素還元反応活性を向上させる方法を鋭意検討した結果、カーボンナノファイバーと組み合わせることが極めて有効であることを見出し、本発明に到達した。   The inventors of the present invention have found that it is extremely effective to combine with carbon nanofibers as a result of earnestly examining a method for improving the oxygen reduction reaction activity of the conventional carbon element containing different elements in order to achieve the above object. The present invention has been reached.

即ち、本発明は、
炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物からなるカーボン粒子、及び、
カーボンナノファイバー、を含み、
前記カーボン粒子が前記カーボンナノファイバーに凝集していること、
を特徴とする複合材料からなるカーボン系触媒、
を提供するものである。
That is, the present invention
A carbon particle comprising a carbon compound containing carbon and carbon, hydrogen, and another element other than oxygen and having at least one of a ring structure and an unsaturated bond,
Carbon nanofibers, including
The carbon particles are aggregated in the carbon nanofibers,
Carbon-based catalyst comprising a composite material characterized by
To provide

このような構成を有する本発明のカーボン系触媒においては、前記炭素化合物を原料として生成されるカーボン粒子が、多孔質で比表面積が大きいため、酸素還元反応の触媒活性に寄与する活性サイトを数多く有し、また、カーボンナノファイバーが、高度に黒鉛化されており、網目状に構築されたコンポジット材料の導電パスとなり、電子の移動を促進させる。これらの相乗効果により、本発明のカーボン系触媒は、酸素還元反応に対する優れた触媒活性を発揮するのである。   In the carbon-based catalyst of the present invention having such a configuration, the carbon particles produced from the carbon compound as a raw material are porous and have a large specific surface area, so many active sites contributing to the catalytic activity of the oxygen reduction reaction In addition, carbon nanofibers are highly graphitized and become conductive paths of a composite material constructed in a network, which promotes electron transfer. Due to these synergistic effects, the carbon-based catalyst of the present invention exhibits excellent catalytic activity for the oxygen reduction reaction.

上記本発明の複合材料からなるカーボン系触媒においては、前記異種元素がホウ素及び/又はチッ素であること、が好ましい。   In the carbon-based catalyst composed of the composite material of the present invention, the different element is preferably boron and / or nitrogen.

また、前記環構造が、5員環及び/又は6員環を含む環構造であること、が好ましい。   Further, it is preferable that the ring structure is a ring structure containing a 5-membered ring and / or a 6-membered ring.

また、前記環式炭素化合物が、アニリン、ピリジン、ピラジン、トリアジン及びこれらの誘導体よりなる群から選択される少なくとも1種であること、が好ましい。更に、前記環式炭素化合物が2−シアノピリジンであること、が好ましい。   Further, it is preferable that the cyclic carbon compound is at least one selected from the group consisting of aniline, pyridine, pyrazine, triazine and derivatives thereof. Furthermore, it is preferable that the said cyclic carbon compound is 2-cyanopyridine.

また、前記不飽和結合を有する炭素化合物はエチレン性不飽和モノマーであること、が好ましい。更に、不飽和結合を有する炭素化合物がアクリロニトリルであること、が好ましい。   Moreover, it is preferable that the carbon compound which has the said unsaturated bond is an ethylenically unsaturated monomer. Furthermore, it is preferable that the carbon compound having an unsaturated bond is acrylonitrile.

本発明によれば、耐久性を有するとともに、十分な酸素還元反応活性を発揮する、燃料電池のカソードに好適なカーボン材料からなる触媒を提供することができる。   According to the present invention, it is possible to provide a catalyst made of a carbon material suitable for the cathode of a fuel cell, which exhibits durability and sufficient oxygen reduction reaction activity.

本発明の複合材料からなるカーボン系触媒を製造するためソリューションプラズマ処理を実施するために用いるソリューションプラズマ発生装置1の一例の構造を示す模式図である。It is a schematic diagram which shows the structure of an example of the solution plasma generator 1 used in order to implement solution plasma processing, in order to manufacture the carbon-type catalyst which consists of a composite material of this invention. 本発明の実施例におけるSEM像及びTEM像である。It is a SEM image and a TEM image in the Example of this invention. 本発明の実施例におけるX線光電子分光測定の結果を示すグラフである。It is a graph which shows the result of the X-ray photoelectron spectroscopy measurement in the Example of this invention. 本発明の実施例における触媒活性1(サイクリックボルタンメトリー)の測定結果を示すグラフである。It is a graph which shows the measurement result of catalyst activity 1 (cyclic voltammetry) in the Example of this invention. 本発明の実施例における触媒活性2(リニアスイープボルタンメトリー)の測定結果を示すグラフである。It is a graph which shows the measurement result of catalyst activity 2 (linear sweep voltammetry) in the Example of this invention. 本発明の実施例における触媒活性の劣化試験1の測定結果を示すグラフである。It is a graph which shows the measurement result of the deterioration test 1 of the catalyst activity in the Example of this invention. 本発明の実施例における触媒活性の劣化試験2の測定結果を示すグラフである。It is a graph which shows the measurement result of the deterioration test 2 of the catalyst activity in the Example of this invention. 本発明の実施例における触媒活性1(サイクリックボルタンメトリー)及び触媒活性2(リニアスイープボルタンメトリー)の測定結果を示すグラフである。It is a graph which shows the measurement result of catalyst activity 1 (cyclic voltammetry) and catalyst activity 2 (linear sweep voltammetry) in the Example of this invention. 本発明の実施例における触媒活性1(サイクリックボルタンメトリー)及び触媒活性2(リニアスイープボルタンメトリー)の測定結果を示すグラフである。It is a graph which shows the measurement result of catalyst activity 1 (cyclic voltammetry) and catalyst activity 2 (linear sweep voltammetry) in the Example of this invention. 本発明の実施例における触媒活性1(サイクリックボルタンメトリー)及び触媒活性2(リニアスイープボルタンメトリー)の測定結果を示すグラフである。It is a graph which shows the measurement result of catalyst activity 1 (cyclic voltammetry) and catalyst activity 2 (linear sweep voltammetry) in the Example of this invention.

以下、本発明の炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物からなるカーボン粒子、及び、カーボンナノファイバー、を含み、前記カーボン粒子が前記カーボンナノファイバーに凝集していること、を特徴とする複合材料からなるカーボン系触媒の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。   And carbon nanofibers comprising the carbon compound according to the present invention containing carbon and another element other than carbon, hydrogen and oxygen and having at least one of a ring structure and unsaturated bond, and carbon nanofibers, Although representative embodiments of a carbon-based catalyst comprising a composite material characterized in that the carbon particles are aggregated in the carbon nanofibers will be described in detail, the present invention is not limited to these. Absent.

[複合材料からなるカーボン系触媒]
本発明は、炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物からなるカーボン粒子(CNP:Carbon Nanoparticle)、及び、カーボンナノファイバー(CNF:Carbon Nanofiber)、を含み、前記カーボン粒子が前記カーボンナノファイバーに凝集していること、を特徴とする複合材料からなるカーボン系触媒、に関する。
[Carbon-based catalyst made of composite material]
The present invention provides a carbon particle (CNP: Carbon Nanoparticle) comprising a carbon compound containing carbon and another element other than carbon, hydrogen and oxygen and having at least one of a ring structure and an unsaturated bond, and a carbon nano The present invention relates to a carbon-based catalyst comprising a composite material characterized in that a fiber (CNF: Carbon Nanofiber) is included, and the carbon particles are aggregated in the carbon nanofibers.

(カーボン粒子)
まず、本発明の複合材料からなるカーボン系触媒を構成するカーボン粒子について説明する。本発明におけるカーボン粒子は、「炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物」を原料として生成されるカーボン粒子であり、換言すると、カーボン材料に異種元素を適切に導入し、電子軌道および結晶空間等を制御することで、酸素還元(ORR)触媒としての機能を発現させたものである。
(Carbon particles)
First, carbon particles constituting the carbon-based catalyst made of the composite material of the present invention will be described. The carbon particles in the present invention are carbon particles produced by using “a carbon compound containing carbon and carbon, hydrogen, and different elements other than oxygen and having at least one of a ring structure and unsaturated bond” as a raw material. In other words, the function as an oxygen reduction (ORR) catalyst is expressed by appropriately introducing a different element into the carbon material and controlling an electron orbit, a crystal space and the like.

代表的なカーボン材料であるグラファイトは、炭素原子がsp2結合してなる六員環構造を有するグラフェンシートが多数積層された構造を有している。このようなカーボン材料は、その結晶構造に特殊な「乱れ」が生じることで、酸素還元(ORR)反応に対する触媒作用を示すことが知られている。   Graphite, which is a typical carbon material, has a structure in which a large number of graphene sheets having a six-membered ring structure in which carbon atoms are sp 2 bonded are stacked. Such carbon materials are known to exhibit a catalytic effect on the oxygen reduction (ORR) reaction by the occurrence of a special "disturbance" in the crystal structure.

このような結晶構造の乱れは、例えば、カーボン材料を製造する際に鉄(Fe)やコバルト(Co)等の異種金属を添加してナノシェル化することや、グラフェン構造における炭素(C)サイトにチッ素(N)やホウ素(B)、ハロゲン原子等の異種原子を置換してドープカーボンとすること等で、導入することができる   Such disorder of the crystal structure may be caused, for example, by adding a different metal such as iron (Fe) or cobalt (Co) when producing a carbon material to form a nanoshell, or to a carbon (C) site in a graphene structure. It can be introduced by substituting hetero atoms such as nitrogen (N), boron (B) and halogen atoms to make doped carbon, etc.

本発明におけるカーボン粒子は、上記の特殊な「乱れ」を備えるカーボン材料の製造の場として、液中で発生するプラズマ(液中プラズマ)を利用し、原料化合物としての炭素化合物の重合反応を伴う炭素化を進行させることにより生成できる。    The carbon particles in the present invention use plasma (in-liquid plasma) generated in the liquid as a place of production of the carbon material provided with the above-mentioned special "disturbance" and involve the polymerization reaction of the carbon compound as a raw material compound. It can be generated by advancing carbonization.

ここで、上記カーボン粒子に含まれる上記異種元素としては、ホウ素(B)及び/又はチッ素(N)であるのが好ましい。 炭素(C)は原子番号6の元素であり、例えばグラフェンシートにおける炭素サイトには、元素周期律表で炭素の両側に位置するホウ素(原子番号5)又はチッ素(原子番号7)が比較的安定して存在し、グラフェンの活性化に効果的に寄与する。したがって、異種元素としてホウ素やチッ素等を含む炭素化合物が重合された形態のカーボン材料を形成することで、活性を高めることができる。   Here, as the foreign element contained in the carbon particles, boron (B) and / or nitrogen (N) is preferable. Carbon (C) is an element of atomic number 6, and for example, at a carbon site in a graphene sheet, boron (atomic number 5) or nitrogen (atomic number 7) located on both sides of carbon in the periodic table of elements is relatively It exists stably and contributes effectively to the activation of graphene. Therefore, the activity can be enhanced by forming a carbon material in a form in which a carbon compound containing boron, nitrogen or the like as a dissimilar element is polymerized.

また、上記カーボン粒子は、5員環及び/又は6員環を化学構造に有することを特徴としている。上記カーボン粒子は、原料化合物である環式炭素化合物及び/又は不飽和結合を有する炭素化合物の構造を基本として、これがいくつか重合された化学構造を有している。チッ素等の異種元素は、例えば、一例として、グラフェンシートの端部において、6員環のピリジン型の構造や、5員環のピロール型の構造を形成しつつ存在するため、原料化合物も5員環や6員環の環構造を有するものが好ましい。   In addition, the carbon particle is characterized by having a 5-membered ring and / or a 6-membered ring in a chemical structure. The carbon particles have a chemical structure in which some of them are polymerized based on the structures of a cyclic carbon compound which is a raw material compound and / or a carbon compound having an unsaturated bond. For example, since another element such as nitrogen is present while forming a six-membered ring pyridine type structure or a five-membered ring pyrrole type structure at the end of the graphene sheet, for example, 5 Those having a ring structure of 6-membered ring or 6-membered ring are preferable.

原料化合物としての環式炭素化合物としては、アニリン、ピリジン、ピラジン、トリアジン及びこれらの誘導体よりなる群から選択される少なくとも1種であるのが好ましい。より好ましくは、ピリジン又はその誘導体がよい。また、本発明における、炭素と炭素、水素及び酸素以外の異種元素とを含み、少なくとも一の環構造を有する環式炭素化合物としては、2−シアノピリジンが好ましい。   The cyclic carbon compound as a raw material compound is preferably at least one selected from the group consisting of aniline, pyridine, pyrazine, triazine and derivatives thereof. More preferably, pyridine or a derivative thereof is preferable. Moreover, 2-cyanopyridine is preferable as a cyclic carbon compound which contains carbon and different elements other than carbon, hydrogen, and oxygen in this invention, and has at least 1 ring structure.

ただし、上記カーボン粒子の原料化合物は、必ずしも5員環又は6員環を化学構造に有する必要はなく、例えば不飽和結合を有する炭素化合物等、重合した後に5員環及び/又は6員環を形成する炭素化合物でも良い。   However, the raw material compound of the carbon particle does not necessarily have a 5- or 6-membered ring in the chemical structure, and for example, a carbon compound having an unsaturated bond, etc., has a 5- and / or 6-membered ring after polymerization. It may be a carbon compound to be formed.

また、上記不飽和結合を有する炭素化合物は、エチレン性不飽和モノマーであることが好ましい。本発明における、炭素と炭素、水素及び酸素以外の異種元素とを含み、少なくとも一の不飽和結合を有する炭素化合物としては、アクリロニトリルが好ましい。   Moreover, it is preferable that the carbon compound which has the said unsaturated bond is an ethylenically unsaturated monomer. Acrylonitrile is preferable as a carbon compound having at least one unsaturated bond which contains carbon and carbon, hydrogen, and different elements other than oxygen in the present invention.

かかる本発明の、炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物を原料として生成されるカーボン粒子は、上記のとおり、原料化合物たる炭素化合物を含む液中でプラズマを発生させる、いわゆる「ソリューションプラズマ処理」を施すことで生成できる(例えば特開2014−100617号公報)。この方法によれば、原料化合物を重合させたカーボン材料を、異種元素を導入しつつ、生成することができる。   The carbon particles produced by using the carbon compound of the present invention containing carbon and another element other than carbon, hydrogen and oxygen and having at least one of a ring structure and unsaturated bond as a raw material are as described above, It can generate | occur | produce by performing what is called "solution plasma processing" which generate | occur | produces plasma in the liquid containing the carbon compound which is a raw material compound (for example, Unexamined-Japanese-Patent No. 2014-100617). According to this method, the carbon material obtained by polymerizing the raw material compound can be generated while introducing different elements.

原料化合物としては、(1)炭素と、(2)炭素、水素および酸素以外の異種元素とを含み、少なくとも一部に環構造又は不飽和結合あるいはその両方を有する炭素化合物を特に制限なく用いることができる。即ち、かかる異種元素と構造とを備える有機質の原料化合物を用いることができる。   As a raw material compound, a carbon compound containing (1) carbon and (2) a different element other than carbon, hydrogen and oxygen and having a ring structure and / or an unsaturated bond or both in at least a part is used without particular limitation. Can. That is, an organic raw material compound having such a different element and a structure can be used.

異種元素としては、炭素、水素及び酸素以外の各種の元素を考慮することができ、例えば、カーボン系触媒をナノシェル化したり、カーボン系触媒にドープ可能で、カーボン系触媒の結晶構造に特殊な「乱れ」を生じさせ得るものを特に制限なく採用することができる。   As different elements, various elements other than carbon, hydrogen and oxygen can be considered. For example, carbon-based catalysts can be made into nanoshells or can be doped into carbon-based catalysts, and the crystal structure of carbon-based catalysts is special. Those capable of causing "disturbance" can be employed without particular limitation.

異種元素の具体例としては、例えば、鉄(Fe)、コバルト(Co)等に代表される遷移金属、ホウ素(B)やケイ素(Si)、リン(P)に代表される半金属、窒素(N)や硫黄(S)に代表される非金属等を挙げることができる。より高い触媒活性を実現するためには、異種元素として、ホウ素及び/又はチッ素を含む炭素化合物を用いるのが好ましい。   Specific examples of the different elements include transition metals such as iron (Fe) and cobalt (Co), semimetals such as boron (B), silicon (Si), and phosphorus (P). N) and non-metals represented by sulfur (S) can be mentioned. In order to realize higher catalytic activity, it is preferable to use a carbon compound containing boron and / or nitrogen as a foreign element.

(カーボンナノファイバー)
本発明におけるカーボンナノファイバーは、特に制限なく種々のものを用いることができる。なかでも、反応に対する活性点となるエッジや欠陥の多いカーボンナノファイバー、具体的には、マルチウォールカーボンナノチューブ(MWCNT)や、stacked cupと呼ばれるカーボンナノファイバー等が、特に優れた触媒活性の向上が期待できる。
(Carbon nanofibers)
Various carbon nanofibers can be used in the present invention without particular limitation. Among them, carbon nanofibers having many edges and defects serving as active points for reaction, specifically, multi-wall carbon nanotubes (MWCNT), carbon nanofibers called stacked cup, and the like have particularly excellent improvement in catalytic activity. I can expect it.

[複合材料からなるカーボン系触媒の製造方法]
本発明の複合材料からなるカーボン系触媒は、上記の「炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物」と「カーボンナノファイバー」とを、混合し、ソリューションプラズマ処理を施すことにより、得られる。即ち、ソリューションプラズマ処理により、「炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物からなるカーボン粒子」を「カーボンナノファイバー」に凝集させて、本発明の複合材料からなるカーボン系触媒が得られる。
[Method of producing carbon-based catalyst comprising composite material]
The carbon-based catalyst comprising the composite material of the present invention comprises the above-mentioned "carbon compound containing carbon and different elements other than carbon, hydrogen and oxygen and having at least one of ring structure and unsaturated bond" and "carbon The nanofibers can be obtained by mixing and solution plasma treatment. That is, solution carbon treatment is performed to "carbon particles comprising a carbon compound containing carbon and different elements other than hydrogen, hydrogen and oxygen and having at least one of a ring structure and unsaturated bond". The carbon-based catalyst comprising the composite material of the present invention is obtained.

より具体的には、まず、「炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物」と「カーボンナノファイバー」とを、液相で混合して混合物とし(原料混合工程)、超音波バス内で撹拌した後、更にマグネティックスターラを用いて撹拌する(撹拌工程)。   More specifically, first, "a carbon compound containing carbon and carbon, hydrogen, and different elements other than oxygen and having at least one of a ring structure and unsaturated bond" and "carbon nanofibers", After mixing in the liquid phase to form a mixture (raw material mixing step) and stirring in an ultrasonic bath, the mixture is further stirred using a magnetic stirrer (stirring step).

ついで、上記の混合物にソリューションプラズマ処理を施す(ソリューションプラズマ処理工程)。このソリューションプラズマ処理は、例えば図1に示す装置により実施することができる。図1は、本発明の複合材料からなるカーボン系触媒を製造するためソリューションプラズマ処理を実施するために用いるソリューションプラズマ発生装置10の一例の模式図である。   Then, the above mixture is subjected to solution plasma processing (solution plasma processing step). This solution plasma processing can be implemented, for example, by the apparatus shown in FIG. FIG. 1 is a schematic view of an example of a solution plasma generator 10 used to perform solution plasma processing to produce a carbon-based catalyst comprising the composite material of the present invention.

ソリューションプラズマ発生装置10は、撹拌装置7を備え、液(液相)2中でソリューションプラズマ4を発生させるためのものであり、原料化合物を含む液2が、ガラス製のビーカーなどの容器5に入れられる。また、プラズマを発生させるための一対の電極6は所定の間隔を以て液2中に配設され、絶縁部材9を介して容器5に保持されている。   The solution plasma generator 10 is provided with a stirring device 7 for generating solution plasma 4 in a liquid (liquid phase) 2, and the liquid 2 containing the raw material compound is contained in a container 5 such as a glass beaker. It is put. Further, a pair of electrodes 6 for generating plasma is disposed in the liquid 2 at a predetermined interval, and is held by the container 5 via the insulating member 9.

電極6は外部電源8に接続されており、この外部電源8から所定の条件のパルス電圧が印加される。これによって、一対の電極6間に、定常的にソリューションプラズマ4を発生させることができる。   The electrode 6 is connected to an external power supply 8, and a pulse voltage of a predetermined condition is applied from the external power supply 8. Thus, the solution plasma 4 can be generated constantly between the pair of electrodes 6.

ここで、電極6としては、例えば、平板状電極や棒状電極及びその組合せ等の様々な形態であってよく、その材質についても特に制限はないが、なかでも、電界を局所的に集中させることが可能なタングステンからなる線状電極(針状電極)6を用いるのが好ましい。その他、鉄や白金等の他の金属材料からなる電極を用いるようにしてもよい   Here, the electrode 6 may have various forms such as, for example, a plate-like electrode, a rod-like electrode, and a combination thereof, and the material thereof is not particularly limited. It is preferable to use a linear electrode (needle electrode) 6 made of tungsten which can be used. Besides, electrodes made of other metal materials such as iron and platinum may be used.

かかる電極6は、電界集中を妨げる余分な電流を抑えるために、先端部(例えば、数mm程度)のみを露出させ、後の部分は絶縁部材9等で絶縁しておくことが望ましい。絶縁部材9は、例えばセラミック製、ゴム製又は樹脂(例えば、フッ素樹脂)製であればよい。図1においては、絶縁部材9は電極6を容器5に固定し、電極6と容器5との水密を保つための栓をも兼ねている。   It is desirable that such an electrode 6 exposes only the tip (for example, several mm) and insulate the later portion with the insulating member 9 or the like in order to suppress an extra current that hinders the concentration of the electric field. The insulating member 9 may be made of, for example, ceramic, rubber or resin (for example, fluorocarbon resin). In FIG. 1, the insulating member 9 fixes the electrode 6 to the container 5 and also serves as a plug for keeping the electrode 6 and the container 5 watertight.

かかる装置10において、ソリューションプラズマを発生させるためのパルス電圧の印加条件は、液2中に含まれる原料化合物の種類やその濃度等の条件、さらには装置10の構成条件等によって調整すればよく、例えば、電圧(二次電圧):約1.0〜2.0kV、周波数:約10〜30kHz、パルス幅:約0.5〜3.0μsの範囲とすればよい。   In the apparatus 10, the application conditions of the pulse voltage for generating the solution plasma may be adjusted according to the conditions such as the type of the raw material compound contained in the liquid 2 and the concentration thereof, and the configuration conditions of the apparatus 10. For example, the voltage (secondary voltage): about 1.0 to 2.0 kV, the frequency: about 10 to 30 kHz, and the pulse width: about 0.5 to 3.0 μs.

詳細にはわからないが、このようなソリューションプラズマ処理により、「カーボンナノファイバー」の表面に何らかの欠陥を作ることができ、この欠陥に、「炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物からなるカーボン粒子」が担持されて凝集し、かつ異種元素を「カーボンナノファイバー」にドープできるものと考えられる。   Although not known in detail, such solution plasma processing can make some defects on the surface of "carbon nanofibers", and the defects include "carbon and other elements other than carbon, hydrogen and oxygen and It is considered that a carbon particle consisting of a carbon compound having at least one of a ring structure and an unsaturated bond can be supported and aggregated, and different elements can be doped into "carbon nanofibers".

より具体的には、発生したソリューションプラズマは「カーボンナノファイバー」に対して、エッジや欠陥部分の結合を分解、活性化させ、様々な活性種による化学修飾を可能とする。その一方、ソリューションプラズマは「炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物」に対しては、化合物を細かく分解し、水素ラジカルや炭素ラジカルを始めとした活性種を発生させる。これらの活性種が再結合することで、異種元素を含むカーボン粒子が形成される。   More specifically, the generated solution plasma decomposes and activates the bonding of the edge and the defect part to "carbon nanofiber", and enables chemical modification with various active species. On the other hand, solution plasma finely decomposes a compound for "a carbon compound containing carbon and carbon, hydrogen, and foreign elements other than oxygen and having at least one of a ring structure and unsaturated bond", It generates active species including hydrogen radical and carbon radical. These active species recombine to form carbon particles containing different elements.

そして、「カーボンナノファイバー」と「炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物」を混合してソリューションプラズマ処理を行うことで、「カーボンナノファイバー」の活性化したエッジ及び欠陥部分と「炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物」由来の活性種が反応を起こし、異種元素を含むカーボン粒子が形成、担持されると考えられる。   Then, solution plasma processing is performed by mixing “carbon nanofibers” and “carbon compound containing carbon and carbon, hydrogen, and different elements other than oxygen and having at least one of a ring structure and unsaturated bond”. Thus, “carbon compounds containing activated edges and defects of carbon nanofibers and different elements other than carbon and carbon, hydrogen and oxygen and having at least one of ring structure and unsaturated bond” It is considered that the active species derived from it react to form and support carbon particles containing different elements.

上記のソリューションプラズマ処理により、カーボンナノファイバー」と、炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物を原料として生成されるカーボン粒子と、の凝集体が得られ、当該凝集体をろ過・洗浄、乾燥、粉砕及び熱処理することにより、本発明の複合材料からなるカーボン系触媒が得られる。   The solution plasma treatment described above generates carbon compounds containing carbon nanofibers, different elements other than carbon, carbon, hydrogen, and oxygen and having at least one of a ring structure and unsaturated bonds as a raw material An aggregate of carbon particles is obtained, and the aggregate is filtered, washed, dried, pulverized and heat-treated to obtain a carbon-based catalyst comprising the composite material of the present invention.

ついで、凝集体(凝集した炭素材料)を粉砕、微細化することによって比表面積を向上させるとともに、粉末状にすることで秤量などの取り扱いを容易にすることができる。また、粉砕後の熱処理には、炭素材料中での異種元素の再配列を促し、触媒活性を向上させる効果がある。   Then, the aggregate (aggregated carbon material) is crushed and refined to improve the specific surface area, and by making it into powder form, handling such as weighing can be facilitated. Further, the heat treatment after pulverization has the effect of promoting rearrangement of different elements in the carbon material and improving the catalytic activity.

以上、本発明の複合材料からなるカーボン系触媒の代表的な例について説明したが、本発明はこれらのみに限定されるわけではなく、本発明の技術的思想の範囲内で、種々の設計変更が可能であり、かかる設計変更も全て本発明に含まれるものである。以下、実施例を用いて本発明の複合材料をより具体的に説明するが、本発明がかかる実施例に限定されないものであることは言うまでもない。   Although the representative examples of the carbon-based catalyst comprising the composite material of the present invention have been described above, the present invention is not limited to these alone, and various design changes can be made within the technical concept of the present invention. And all such design changes are included in the present invention. Hereinafter, the composite material of the present invention will be more specifically described using examples, but it goes without saying that the present invention is not limited to such examples.

図1に示すソリューションプラズマ発生装置10を用い、まず、(株)Sigma-Aldrich製のカーボンナノファイバー100mgを、(株)Sigma-Aldrich製の2−シアノピリジン100mL(濃度:99.9重量% (混合溶液中の2−シアノピリジン濃度、ここで2−シアノピリジンは希釈せずに使用))又は関東化学(株)製のアクリロニトリル100mL(濃度:99.9重量% (混合溶液中のアクリロニトリル濃度、ここでアクリロニトリルは希釈せずに使用))に混合し、撹拌装置7で撹拌した。ついで、表1に示す条件でソリューションプラズマ処理を行った。   Using the solution plasma generator 10 shown in FIG. 1, first, 100 mg of carbon nanofibers manufactured by Sigma-Aldrich, and 100 mL of 2-cyanopyridine manufactured by Sigma-Aldrich (concentration: 99.9% by weight 2-cyanopyridine concentration in mixed solution, where 2-cyanopyridine is used without dilution) or 100 mL of acrylonitrile manufactured by Kanto Chemical Co., Ltd. (concentration: 99.9% by weight (acrylonitrile concentration in mixed solution, Here, acrylonitrile was used without dilution)) and stirred with a stirrer 7. Then, solution plasma processing was performed under the conditions shown in Table 1.

その後、保留粒子1μmのろ紙(桐山ろ紙No.5C)を用いて吸引ろ過を行い、ろ液が透明になるまでろ過物(残渣)の上から数mLのエタノールを数回加えることで、未反応の2−0シアノピリジン又はアクリロニトリルを洗い流した。得られたろ過物を、空気雰囲気下、60℃及び12時間の条件で乾燥した。乾燥後のろ過物は固まっていたため、目視で均一に粉砕されたことが確認できるまで、乳鉢と乳棒を用いて粉砕した。   After that, suction filtration is performed using filter paper with a retention particle size of 1 μm (Koyama filter paper No. 5C), and by adding several mL of ethanol several times over the filtrate (residue) until the filtrate becomes clear, unreacted The 2-0 cyanopyridine or acrylonitrile was washed away. The obtained filtrate was dried at 60 ° C. and 12 hours in an air atmosphere. Since the filtrate after drying was solidified, it was crushed using a mortar and a pestle until it was visually confirmed to be uniformly crushed.

そして、得られた粉砕物は、800〜900℃の高温で熱処理することによって、上記のように炭素材料中で窒素の再配列が起こり触媒活性を向上させることができるため、0.5L/minのアルゴンが循環する雰囲気で、室温から900℃まで5℃/minの昇温速度で加熱し、1時間かけて、熱処理を施した。このようにして、本発明の複合材料からなるカーボン系触媒(NCNP−CNF)を得た。   And, by heat treating the obtained pulverized material at a high temperature of 800 to 900 ° C., rearrangement of nitrogen can be caused in the carbon material as described above, and the catalytic activity can be improved, so that 0.5 L / min. In an atmosphere in which the argon is circulated, heating was performed from room temperature to 900 ° C. at a temperature rising rate of 5 ° C./min, and heat treatment was performed for 1 hour. Thus, a carbon-based catalyst (NCNP-CNF) comprising the composite material of the present invention was obtained.

[評価]
上記のようにして得た本発明の複合材料からなるカーボン系触媒(NCNP−CNF:実施例1)と、対照試料である「炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物を原料として生成されるカーボン粒子(NCNP:Nitrogen−doped Carbon Nanoparticle、比較例1)」及び「カーボンナノファイバー(CNF:Carbon Nanofiber、比較例2)」と、について、以下の評価を行った。なお、特別の断りがない限り、実施例1及び比較例1の原料化合物には2−シアノピリジンを用いた。
[Evaluation]
A carbon-based catalyst (NCNP-CNF: Example 1) comprising the composite material of the present invention obtained as described above, and a control sample containing “carbon and another element other than carbon, hydrogen and oxygen and having a ring structure And carbon particles produced from a carbon compound having at least one of unsaturated bonds (NCNP: Nitrogen-doped Carbon Nanoparticles, Comparative Example 1) "and" Carbon nanofibers (CNF: Carbon Nanofiber, Comparative Example 2) " The following evaluations were made on In addition, 2-cyanopyridine was used for the raw material compound of Example 1 and Comparative Example 1, unless otherwise noted.

(1)FE−SEM及びTEM観察
日立ハイテクノロジーズ(株)製のfield−emission SEM「S−4800」を用い、 加速電圧10kVで、SEM像を観察した。また、日本電子(株)製のTEM「JEM−2010」を用い、加速電圧120 kVで、TEM像を観察した。結果を図2に示した。図2から、実施例1においては、CNFの周りにNCNPが凝集し、複合材料を形成していることがわかる。また、比較例1では、結晶性が低く、アモルファス構造が形成されているのがわかる。粒子はほぼ球状で、大きさは約20〜40nmであった。比較例2では、高い結晶性が認められ、内径30−40nm、外径70−80nmのCNFが確認できた。
(1) FE-SEM and TEM Observation Using a field-emission SEM “S-4800” manufactured by Hitachi High-Technologies Corporation, an SEM image was observed at an acceleration voltage of 10 kV. Moreover, the TEM image was observed by 120 kV of acceleration voltages using TEM "JEM-2010" made from Nippon Denshi Co., Ltd. product. The results are shown in FIG. It can be seen from FIG. 2 that, in Example 1, NCNP is aggregated around CNF to form a composite material. Moreover, in Comparative Example 1, it can be seen that the crystallinity is low and an amorphous structure is formed. The particles were approximately spherical and about 20-40 nm in size. In Comparative Example 2, high crystallinity was observed, and CNF having an inner diameter of 30 to 40 nm and an outer diameter of 70 to 80 nm could be confirmed.

(2)組成
日本電子(株)製のX線光電子分光装置「JPS−9010MC」を用い、炭素原子(C)、酸素原子(O)及びチッ素原子(N)の含有量を測定した。結果を以下の表2に示す。表2から、実施例1においては、ソリューションプラズマ処理により、環式炭素化合物の構造中にチッ素原子を含有させることに成功したことがわかる(NCNPで1.33原子%、NCNP−CNFで1.35原子%)。即ち、ソリューションプラズマ処理によって2-シアノピリジンから炭素材料(複合材料)が合成される際、チッ素が構造中に取り込まれたことがわかる(ソリューションプラズマによってチッ素を含む活性種が生成)。
(2) Composition The content of carbon atom (C), oxygen atom (O) and nitrogen atom (N) was measured using an X-ray photoelectron spectrometer "JPS-9010 MC" manufactured by Nippon Denshi Co., Ltd. The results are shown in Table 2 below. From Table 2, in Example 1, it turns out that solution plasma processing succeeded in including a nitrogen atom in the structure of cyclic carbon compound (1.33 atomic% in NCNP, 1 in NCNP-CNF) .35 atomic%). That is, when a carbon material (composite material) is synthesized from 2-cyanopyridine by solution plasma treatment, it can be seen that nitrogen is incorporated into the structure (solution plasma generates active species containing nitrogen).

また、スケールを変更して、実施例1と比較例1について、X線光電子分光測定を行った結果を図3に示した。図3より、NCNPに含まれるチッ素原子の化学結合と、NCNP−CNFに含まれるチッ素原子の化学結合に、ほとんど違いはなく、触媒性能に寄与する結合である「Graphitic N」と「Pyridinic N」が多く形成されていることが示された。   Moreover, the scale was changed and the result of having performed X-ray photoelectron spectroscopy measurement about Example 1 and Comparative Example 1 was shown in FIG. From FIG. 3, there is almost no difference between the chemical bond of nitrogen atom contained in NCNP and the chemical bond of nitrogen atom contained in NCNP-CNF, and the bonds contributing to catalytic performance “Graphitic N” and “Pyridinic It was shown that a large amount of "N" was formed.

(3)触媒活性1(サイクリックボルタンメトリー)
CH Instruments社製の「ALS−CHI832A」を用い、以下の条件でサイクリックボルタンメトリーを評価した。結果を図4(a及びb)に示した。図4aは原料化合物に2-シアノピリジンを、図4bは原料化合物にアクリロニトリルを用いて得られた結果である。図4から、−0.28 V で酸素還元反応に由来するピークが観察された。図4aから、NCNP−CNFは他の2つに比べて大きく鋭いピークであった。図4bから、NCNP−CNFはNCNPに比べて大きく鋭いピークであった。これにより、酸素還元反応に対し、NCNP−CNFが最も優れた触媒活性を示したことがわかる。
(3) Catalyst activity 1 (cyclic voltammetry)
Cyclic voltammetry was evaluated under the following conditions using “ALS-CHI 832A” manufactured by CH Instruments. The results are shown in FIG. 4 (a and b). FIG. 4a shows the results obtained using 2-cyanopyridine as the starting compound and FIG. 4b using acrylonitrile as the starting compound. From FIG. 4, a peak derived from the oxygen reduction reaction was observed at −0.28 V. From FIG. 4a, NCNP-CNF was a large and sharp peak compared with the other two. From FIG. 4 b, NCNP-CNF was larger and sharper than NCNP. This shows that NCNP-CNF exhibited the most excellent catalytic activity for the oxygen reduction reaction.

・作用極 :NCNP−CNF、NCNP又はCNF
・参照極 :Ag/AgCl(飽和KCl)
・対極 :Pt
・支持電解質 :0.1M KOH
・走査速度 :50mV・s−1
・走査範囲 :0.2〜−1.0V
・ガス :N飽和(点線)、O飽和(実線)
・触媒担持量 :0.4mg・cm−2
· Working electrode: NCNP-CNF, NCNP or CNF
· Reference electrode: Ag / AgCl (saturated KCl)
· Counter electrode: Pt
・ Supporting electrolyte: 0.1 M KOH
· Scanning speed: 50mV · s -1
· Scanning range: 0.2 to -1.0 V
Gas: N 2 saturation (dotted line), O 2 saturation (solid line)
・ Supported catalyst amount: 0.4 mg · cm −2

(4)触媒活性2(リニアスイープボルタンメトリー)
CH Instruments社製の「ALS−CHI832A」を用い、以下の条件でリニアスイープボルタンメトリーを評価した。結果を図5(a及びb)に示した。図5aは原料化合物に2-シアノピリジンを、図5bは原料化合物にアクリロニトリルを用いて得られた結果である。図5aから、CNFでは、オンセット電位が2箇所(−0.21V及び−0.64V)で観測されたことから、酸素還元反応の活性が低く、2電子反応が生じたことがわかる。また、図5a及び図5bから、CNFやNCNPと比べ、NCNP−CNFは最も貴なオンセット電位であり、限界電流密度も大きな値であったため、4電子反応が支配的であることが推測された。更に、NCNPとNCNP−CNFは広い範囲で電流密度が一定になり、反応が一段階で進んだことがわかる。即ち、オンセット電池及び電流密度ともにNCNP−CNFが最も優れた触媒活性を有することが示された。
(4) Catalyst activity 2 (linear sweep voltammetry)
Linear sweep voltammetry was evaluated under the following conditions using "ALS-CHI 832A" manufactured by CH Instruments. The results are shown in FIG. 5 (a and b). FIG. 5a shows the results obtained using 2-cyanopyridine as the starting compound and FIG. 5b using acrylonitrile as the starting compound. From FIG. 5 a, it can be seen that, in CNF, the onset potential was observed at two points (−0.21 V and −0.64 V), so that the activity of the oxygen reduction reaction was low and a two-electron reaction occurred. Further, from FIGS. 5a and 5b, it is inferred that the 4-electron reaction is dominant since NCNP-CNF is the most noble onset potential and the limiting current density is a large value as compared with CNF and NCNP. The Furthermore, it can be seen that the current density of NCNP and NCNP-CNF became constant over a wide range, and the reaction proceeded in one step. That is, it was shown that NCNP-CNF has the best catalytic activity for both the on-set battery and the current density.

・作用極 :NCNP−CNF、NCNP、CNF又はPt/C
・参照極 :Ag/AgCl(飽和KCl)
・対極 :Pt
・支持電解質 :0.1M KOH
・走査速度 :10mV・s−1
・電極回転速度:1600rpm
・ガス :O飽和
・触媒担持量 :0.4mg・cm−2(NCNP−CNF、NCNP、CNF使用時)
40μg・cm−2(Pt/C使用時、Pt/Cに含まれるPtの量)
· Working electrode: NCNP-CNF, NCNP, CNF or Pt / C
· Reference electrode: Ag / AgCl (saturated KCl)
· Counter electrode: Pt
・ Supporting electrolyte: 0.1 M KOH
· Scanning speed: 10mV · s -1
・ Electrode rotation speed: 1600 rpm
· Gas: O 2 saturation · Catalyst loading amount: 0.4 mg · cm- 2 (when using NCNP-CNF, NCNP, CNF)
40 μg cm- 2 (when using Pt / C, the amount of Pt contained in Pt / C)

(5)劣化試験1
実施例1のNCNP−CNFについてのみ、CH Instruments社製の「ALS−CHI832A」を用い、以下の条件で触媒活性の劣化試験1を行った。結果を図6(a及びb)に示した。図6から、測定開始から40,000sで、Pt/Cの電流密度が64%まで低下したのに対し、NCNP−CNFでは85%までの低下に留まったことがわかる。測定中にメタノールを添加したところ、Pt/Cの場合は瞬時に電流密度が減少したのに対し、NCNP−CNFではほとんど変化がなかった。
(5) Degradation test 1
With respect to NCNP-CNF of Example 1, deterioration test 1 of catalyst activity was performed under the following conditions using "ALS-CHI 832A" manufactured by CH Instruments. The results are shown in FIG. 6 (a and b). It can be seen from FIG. 6 that the current density of Pt / C decreased to 64% at 40,000 s from the start of measurement, while it decreased to 85% for NCNP-CNF. When methanol was added during the measurement, in the case of Pt / C, the current density decreased instantaneously, while in NCNP-CNF, there was almost no change.

・作用極 :NCNP−CNF又はPt/C
・参照極 :Ag/AgCl(飽和KCl)
・対極 :Pt
・支持電解質 :0.1M KOH
・電位 :−0.35V
・電極回転速度:1600rpm
・ガス :O飽和
・触媒担持量 :0.4mg・cm−2(NCNP−CNF使用時)
40μg・cm−2(Pt/C使用時、Pt/Cに含まれるPtの量)
· Working electrode: NCNP-CNF or Pt / C
· Reference electrode: Ag / AgCl (saturated KCl)
· Counter electrode: Pt
・ Supporting electrolyte: 0.1 M KOH
· Potential: -0.35 V
・ Electrode rotation speed: 1600 rpm
・ Gas: O 2 saturation ・ Catalyst loading: 0.4 mg · cm −2 (when using NCNP-CNF)
40 μg cm- 2 (when using Pt / C, the amount of Pt contained in Pt / C)

(6)劣化試験2
実施例1のNCNP−CNFについてのみ、CH Instruments社製の「ALS−CHI832A」を用い、以下の条件で触媒活性の劣化試験2を行った。結果を図7(a及びb)に示した。図7から、NCNP−CNFではメタノールを添加しても、酸素還元反応を示すピークに変化は見られなかった。Pt/Cではメタノールを添加すると、−0.15〜−0.08Vでメタノールの酸化によるピークが現れ、酸素還元反応のピークは見られなくなった。このことから、NCNP−CNFはPt/Cに比べ、高い長期安定性と、メタノールに対する耐久性を示したことがわかる。
(6) Degradation test 2
With respect to NCNP-CNF of Example 1, deterioration test 2 of catalyst activity was conducted under the following conditions using "ALS-CHI 832A" manufactured by CH Instruments. The results are shown in FIG. 7 (a and b). From FIG. 7, in NCNP-CNF, no change was observed in the peak showing the oxygen reduction reaction even when methanol was added. When Pt / C was added with methanol, a peak due to methanol oxidation appeared at -0.15 to -0.08 V, and the peak for the oxygen reduction reaction disappeared. From this, it can be seen that NCNP-CNF exhibited high long-term stability and durability to methanol compared to Pt / C.

・作用極 :NCNP−CNF又はPt/C
・参照極 :Ag/AgCl(飽和KCl)
・対極 :Pt
・支持電解質 :0.1M KOH
・走査速度 :50mV・s−1
・走査範囲 :0.2〜−1.0V
・ガス :O飽和
・触媒担持量 :0.4mg・cm−2(NCNP−CNF使用時)
40μg・cm−2(Pt/C使用時、Pt/Cに含まれるPtの量)
· Working electrode: NCNP-CNF or Pt / C
· Reference electrode: Ag / AgCl (saturated KCl)
· Counter electrode: Pt
・ Supporting electrolyte: 0.1 M KOH
· Scanning speed: 50mV · s -1
· Scanning range: 0.2 to -1.0 V
・ Gas: O 2 saturation ・ Catalyst loading: 0.4 mg · cm −2 (when using NCNP-CNF)
40 μg cm- 2 (when using Pt / C, the amount of Pt contained in Pt / C)

(7)触媒活性3(サイクリックボルタンメトリー)
CH Instruments社製の「ALS−CHI832A」を用い、以下の条件でサイクリックボルタンメトリーを評価した。結果を図8〜10に示した。図8aは、原料化合物にピリジン、図9aは、原料化合物にアニリン、図10aは、原料化合物に100℃で加熱したピラジンを用いて得られた結果である。各図のaから、−0.25 V〜−0.30 Vの間で酸素還元反応に由来するピークが観察された。図8aから、NCNP−CNFはNCNPに比べて大きく鋭いピークであったことがわかる。図9aから、NCNP−CNFはNCNPに比べて大きく鋭いピークであったことがわかる。また、図10aから、NCNP−CNFはNCNPに比べて大きく鋭いピークであったことがわかる。これにより、酸素還元反応に対し、NCNP−CNFが最も優れた触媒活性を示したことがわかる。
(7) Catalyst activity 3 (cyclic voltammetry)
Cyclic voltammetry was evaluated under the following conditions using “ALS-CHI 832A” manufactured by CH Instruments. The results are shown in FIGS. Fig. 8a shows the result obtained using pyridine as the raw material compound, Fig. 9a using aniline as the raw material compound, and Fig. 10a using pyrazine heated at 100 ° C as the raw material compound. From a in each figure, a peak derived from the oxygen reduction reaction was observed between -0.25 V and -0.30 V. It can be seen from FIG. 8a that NCNP-CNF was a large and sharp peak as compared to NCNP. It can be seen from FIG. 9a that NCNP-CNF was a large and sharp peak as compared to NCNP. Further, it can be seen from FIG. 10 a that NCNP-CNF was a large and sharp peak as compared to NCNP. This shows that NCNP-CNF exhibited the most excellent catalytic activity for the oxygen reduction reaction.

・作用極 :NCNP−CNF、NCNP
・参照極 :Ag/AgCl(飽和KCl)
・対極 :Pt
・支持電解質 :0.1M KOH
・走査速度 :50mV・s−1
・走査範囲 :0.2〜−1.0V
・ガス :N飽和(点線)、O飽和(実線)
・触媒担持量 :0.4mg・cm−2
· Working pole: NCNP-CNF, NCNP
· Reference electrode: Ag / AgCl (saturated KCl)
· Counter electrode: Pt
・ Supporting electrolyte: 0.1 M KOH
· Scanning speed: 50mV · s -1
· Scanning range: 0.2 to -1.0 V
Gas: N 2 saturation (dotted line), O 2 saturation (solid line)
・ Supported catalyst amount: 0.4 mg · cm −2

(8)触媒活性4(リニアスイープボルタンメトリー)
CH Instruments社製の「ALS−CHI832A」を用い、以下の条件でリニアスイープボルタンメトリーを評価した。結果を図8〜10に示した。図8bは、原料化合物にピリジン、図9bは、原料化合物にアニリン、図10bは、原料化合物に100℃で加熱したピラジンを用いて得られた結果である。図8b、9b及び10bから、NCNPと比べ、NCNP−CNFは最も貴なオンセット電位であり、限界電流密度も最も大きな値を示したため、4電子反応が最も支配的であることが推測された。NCNPとNCNP−CNFは広い範囲で電流密度が一定になり、反応が一段階で進んだことがわかる。即ち、オンセット電位及び電流密度ともにNCNP−CNFが最も優れた触媒活性を有することが示された。
(8) Catalyst activity 4 (linear sweep voltammetry)
Linear sweep voltammetry was evaluated under the following conditions using "ALS-CHI 832A" manufactured by CH Instruments. The results are shown in FIGS. FIG. 8 b shows the result obtained using pyridine as a raw material compound, FIG. 9 b using aniline as a raw material compound, and FIG. 10 b using pyrazine heated at 100 ° C. as a raw material compound. From FIGS. 8b, 9b and 10b, it was inferred that the 4-electron reaction was the most dominant since NCNP-CNF was the most noble onset potential and the limiting current density was also the largest value compared to NCNP. . It can be seen that the current density of NCNP and NCNP-CNF became constant over a wide range, and the reaction proceeded in one step. That is, it was shown that NCNP-CNF has the most excellent catalytic activity for both the onset potential and the current density.

・作用極 :NCNP−CNF、NCNP
・参照極 :Ag/AgCl(飽和KCl)
・対極 :Pt
・支持電解質 :0.1M KOH
・走査速度 :10mV・s−1
・電極回転速度:1600rpm
・ガス :O飽和
・触媒担持量 :0.4mg・cm−2(NCNP−CNF、NCNP使用時)
· Working pole: NCNP-CNF, NCNP
· Reference electrode: Ag / AgCl (saturated KCl)
· Counter electrode: Pt
・ Supporting electrolyte: 0.1 M KOH
· Scanning speed: 10mV · s -1
・ Electrode rotation speed: 1600 rpm
· Gas: O 2 saturation · Catalyst loading amount: 0.4 mg · cm- 2 (when using NCNP-CNF, NCNP)

以上より、本発明の複合材料からなるカーボン系触媒(NCNP−CNF)は、市販の20%Pt/Cに比べ、高い長期安定性と、メタノールに対する耐久性を示した。また、アルカリ性溶液中でNCNP−CNFにより生じる酸素還元反応は4電子反応が支配的であったことから、NCNP−CNFが優れた触媒活性を有することがわかった。   As mentioned above, the carbon catalyst (NCNP-CNF) which consists of a composite material of this invention showed high long-term stability and the durability with respect to methanol compared with commercial 20% Pt / C. Moreover, since the 4-electron reaction was dominant in the oxygen reduction reaction generated by NCNP-CNF in an alkaline solution, it was found that NCNP-CNF has excellent catalytic activity.

2・・・原料化合物を含む液、
4・・・ソリューションプラズマ、
5・・・容器、
6・・・電極、
7・・・撹拌装置、
8・・・外部電源、
9・・・絶縁材料、
10・・・ソリューションプラズマ発生装置。

2 · · · Liquid containing the starting compound,
4 ··· Solution plasma,
5 ・ ・ ・ container,
6 ・ ・ ・ electrode,
7 ··· Stirring device,
8 ・ ・ ・ External power supply,
9 ・ ・ ・ Insulating material,
10 ··· Solution plasma generator.

Claims (7)

炭素と炭素、水素及び酸素以外の異種元素とを含みかつ環構造及び不飽和結合のうちの少なくとも一つを有する炭素化合物からなるカーボン粒子、及び、
カーボンナノファイバー、を含み、
前記カーボン粒子が前記カーボンナノファイバーに凝集していること、
を特徴とする複合材料からなるカーボン系触媒。
A carbon particle comprising a carbon compound containing carbon and carbon, hydrogen, and another element other than oxygen and having at least one of a ring structure and an unsaturated bond,
Carbon nanofibers, including
The carbon particles are aggregated in the carbon nanofibers,
A carbon-based catalyst comprising a composite material characterized by
前記異種元素がホウ素及び/又はチッ素であること、を特徴とする請求項1に記載の複合材料からなるカーボン系触媒。   The carbon-based catalyst comprising the composite material according to claim 1, wherein the different element is boron and / or nitrogen. 前記環構造が、5員環及び/又は6員環を含む環構造であること、を特徴とする請求項1又は2に記載の複合材料からなるカーボン系触媒。 The carbon-based catalyst comprising the composite material according to claim 1 or 2, wherein the ring structure is a ring structure containing a 5-membered ring and / or a 6-membered ring. 前記環式炭素化合物が、アニリン、ピリジン、ピラジン、トリアジン及びこれらの誘導体よりなる群から選択される少なくとも1種であること、を特徴とする請求項1〜3のうちのいずれかに記載の複合材料からなるカーボン系触媒。   The composite according to any one of claims 1 to 3, wherein the cyclic carbon compound is at least one selected from the group consisting of aniline, pyridine, pyrazine, triazine and derivatives thereof. Carbon-based catalyst made of materials. 前記環式炭素化合物が2−シアノピリジンであること、と特徴とする請求項1に記載の複合材料からなるカーボン系触媒。   The carbon-based catalyst comprising the composite material according to claim 1, wherein the cyclic carbon compound is 2-cyanopyridine. 前記不飽和結合を有する炭素化合物がエチレン性不飽和モノマーであること、を特徴とする請求項1又は2に記載の複合材料からなるカーボン系触媒。   The carbon-based catalyst comprising the composite material according to claim 1 or 2, wherein the carbon compound having an unsaturated bond is an ethylenically unsaturated monomer. 前記不飽和結合を有する炭素化合物がアクリロニトリルであること、を特徴とする請求項1に記載の複合材料からなるカーボン系触媒。
The carbon-based catalyst comprising the composite material according to claim 1, wherein the carbon compound having an unsaturated bond is acrylonitrile.
JP2017565633A 2016-02-04 2017-02-02 Carbon-based catalyst consisting of composite material Pending JPWO2017135386A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016019615 2016-02-04
JP2016019615 2016-02-04
PCT/JP2017/003857 WO2017135386A1 (en) 2016-02-04 2017-02-02 Carbon-based catalyst comprising composite material

Publications (1)

Publication Number Publication Date
JPWO2017135386A1 true JPWO2017135386A1 (en) 2019-04-18

Family

ID=59499621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017565633A Pending JPWO2017135386A1 (en) 2016-02-04 2017-02-02 Carbon-based catalyst consisting of composite material

Country Status (2)

Country Link
JP (1) JPWO2017135386A1 (en)
WO (1) WO2017135386A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7327373B2 (en) 2020-12-10 2023-08-16 トヨタ自動車株式会社 catalyst layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015970A (en) * 2008-06-06 2010-01-21 Toyobo Co Ltd Catalyst for fuel cell using metal complex composite, membrane electrode assembly, fuel cell, and oxidation-reduction catalyst
JP2012054157A (en) * 2010-09-02 2012-03-15 Kyushu Univ Carbon catalyst
JP2014100617A (en) * 2012-11-16 2014-06-05 Nagoya Univ Production method of carbon based catalyst
JP2014144900A (en) * 2013-01-30 2014-08-14 Nagoya Univ Method of producing surface-modified carbon material
JP2016209798A (en) * 2015-05-01 2016-12-15 公益財団法人科学技術交流財団 Organic compound catalyst body and production method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015970A (en) * 2008-06-06 2010-01-21 Toyobo Co Ltd Catalyst for fuel cell using metal complex composite, membrane electrode assembly, fuel cell, and oxidation-reduction catalyst
JP2012054157A (en) * 2010-09-02 2012-03-15 Kyushu Univ Carbon catalyst
JP2014100617A (en) * 2012-11-16 2014-06-05 Nagoya Univ Production method of carbon based catalyst
JP2014144900A (en) * 2013-01-30 2014-08-14 Nagoya Univ Method of producing surface-modified carbon material
JP2016209798A (en) * 2015-05-01 2016-12-15 公益財団法人科学技術交流財団 Organic compound catalyst body and production method of the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PANOMSUWAN, G. ET AL: "Electrocatalytic oxygen reduction on nitrogen-doped carbon nanoparticles derived from cyano-aromatic", CARBON, vol. 98, JPN6017012268, 7 November 2015 (2015-11-07), pages 411 - 420, XP029373270, ISSN: 0004468268, DOI: 10.1016/j.carbon.2015.11.013 *
PANOMSUWAN, G. ET AL: "Nitrogen-doped carbon nanoparticles derived from acrylonitrile plasma for electrochemical oxygen red", PHYS. CHEM. CHEM. PHYS., vol. 17, no. 9, JPN6017012271, 30 January 2015 (2015-01-30), pages 6227 - 6232, XP055404267, ISSN: 0004468267, DOI: 10.1039/C4CP05995F *
WEI, Q. ET AL: "Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions", CATALYSTS, vol. 5, JPN6017012274, 14 September 2015 (2015-09-14), pages 1574 - 1602, XP055404270, ISSN: 0004468269, DOI: 10.3390/catal5031574 *

Also Published As

Publication number Publication date
WO2017135386A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
Qin et al. Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium
Yu et al. Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction
Wu et al. Enhanced methanol electro-oxidation activity of PtRu catalysts supported on heteroatom-doped carbon
Guo et al. Free-standing nitrogen-doped carbon nanotubes at electrospun carbon nanofibers composite as an efficient electrocatalyst for oxygen reduction
KR101314578B1 (en) Carbon nanofiber catalysts using nanofiber including low cost trasition metal for fuel cells and its Manufacturing Method Thereof
JP6289630B2 (en) Method for producing nitrogen-doped carbon nanohorn for oxygen reduction electrocatalyst
WO2009098812A1 (en) Carbon catalyst, slurry containing the carbon catalyst, process for producing carbon catalyst, and fuel cell, storage device, and environmental catalyst each employing carbon catalyst
Qin et al. Enhanced electrocatalytic activity and stability of Pd nanoparticles supported on TiO2-modified nitrogen-doped carbon for ethanol oxidation in alkaline media
JP2006156029A (en) Carbon electrode material for vanadium redox flow battery
KR20070055119A (en) Catalyst for fuel cell electrode and method of preparing the same
JPWO2006054636A1 (en) CARBON FIBER AND POROUS SUPPORT-CARBON FIBER COMPOSITE AND METHOD FOR PRODUCING THE SAME, CATALYST STRUCTURE, ELECTROLYTE FOR SOLID POLYMER FUEL CELL, AND SOLID POLYMER FUEL CELL
JP5893305B2 (en) Electrocatalyst for polymer electrolyte fuel cell and method for producing the same
Thomas et al. Carbon nanotubes as catalyst supports for ethanol oxidation
Liu et al. Heating treated carbon nanotubes as highly active electrocatalysts for oxygen reduction reaction
Qiao-Hui et al. Electrospun palladium nanoparticle-loaded carbon nanofiber for methanol electro-oxidation
JP2019189495A (en) Carbon material
González et al. O2 reduction on electrodes modified with nitrogen doped carbon nanotubes synthesized with different metal catalysts
JP6572416B1 (en) Conductive nanofiber member, fuel cell member, fuel cell, and method of manufacturing conductive nanofiber member
JP6598105B2 (en) Organic compound catalyst body and process for producing the same
Nakagawa et al. PAN based carbon nanofibers as an active ORR catalyst for DMFC
JP2019169289A (en) Air electrode catalyst for fuel cell, manufacturing method of the same, and fuel cell using fuel cell air electrode catalyst
Shi et al. Synthesis of palladium nanoparticles supported on reduced graphene oxide-tungsten carbide composite and the investigation of its performance for electrooxidation of formic acid
KR101628491B1 (en) Carbon-platinum-iridium oxide complex, manufacturing method thereof and catalyst for fuel cell anode using the same
JPWO2017135386A1 (en) Carbon-based catalyst consisting of composite material
Jindal et al. Improvement in electrocatalytic activity of oxygen reduction reaction of electrospun carbon nitride/polyacrylonitrile nanofibers by addition of carbon black and Nafion® fillers

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211026