JPWO2016117587A1 - Ultra-thin copper foil with carrier and method for producing the same - Google Patents

Ultra-thin copper foil with carrier and method for producing the same Download PDF

Info

Publication number
JPWO2016117587A1
JPWO2016117587A1 JP2016570671A JP2016570671A JPWO2016117587A1 JP WO2016117587 A1 JPWO2016117587 A1 JP WO2016117587A1 JP 2016570671 A JP2016570671 A JP 2016570671A JP 2016570671 A JP2016570671 A JP 2016570671A JP WO2016117587 A1 JPWO2016117587 A1 JP WO2016117587A1
Authority
JP
Japan
Prior art keywords
copper foil
carrier
foil
ultrathin copper
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016570671A
Other languages
Japanese (ja)
Other versions
JP6352449B2 (en
Inventor
花田 徹
徹 花田
哲聡 ▲高▼梨
哲聡 ▲高▼梨
哲広 松永
哲広 松永
歩 立岡
歩 立岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2016117587A1 publication Critical patent/JPWO2016117587A1/en
Application granted granted Critical
Publication of JP6352449B2 publication Critical patent/JP6352449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Abstract

銅張積層板の加工ないしプリント配線板の製造において、微細回路形成性とレーザー加工性とを両立可能な、キャリア付極薄銅箔を提供する。本発明のキャリア付極薄銅箔は、キャリア箔、剥離層及び極薄銅箔をこの順に備えてなる。極薄銅箔の剥離層側の面は、表面ピーク間の平均距離(Peak spacing)が20μm以下であり、かつ、極薄銅箔の剥離層と反対側の面は、うねりの最大高低差(Wmax)が1.0μm以下である。Provided is an ultra-thin copper foil with a carrier capable of achieving both fine circuit formability and laser processability in processing a copper-clad laminate or manufacturing a printed wiring board. The ultrathin copper foil with a carrier of the present invention comprises a carrier foil, a release layer, and an ultrathin copper foil in this order. The surface on the release layer side of the ultrathin copper foil has an average distance between peak peaks (Peak spacing) of 20 μm or less, and the surface on the opposite side to the release layer of the ultrathin copper foil has a maximum height difference of waviness ( Wmax) is 1.0 μm or less.

Description

本発明は、キャリア付極薄銅箔及びその製造方法に関する。   The present invention relates to an ultrathin copper foil with a carrier and a method for producing the same.

近年、回路の微細化に適したプリント配線板の製造工法として、MSAP(モディファイド・セミ・アディティブ・プロセス)法が広く採用されている。MSAP法は、極めて微細な回路を形成するのに適した手法であり、その特徴を活かすため、キャリア箔付極薄銅箔を用いて行われている。例えば、図1及び2に示されるように、極薄銅箔10を、下地基材11a上にプリプレグ11bを備えた絶縁樹脂基板11(必要に応じて下層回路11cを内在しうる)にプライマー層12を用いてプレスして密着させ(工程(a))、キャリア箔(図示せず)を引き剥がした後、必要に応じてレーザー穿孔によりビアホール13を形成する(工程(b))。次いで、化学銅めっき14を施した(工程(c))後に、ドライフィルム15を用いた露光及び現像により所定のパターンでマスキングし(工程(d))、電気銅めっき16を施す(工程(e))。ドライフィルム15を除去して配線部分16aを形成した(工程(f))後、隣り合う配線部分16a,16a間の不要な極薄銅箔等をそれらの厚み全体にわたってエッチングにより除去して(工程(g))、所定のパターンで形成された配線17を得る。   In recent years, the MSAP (Modified Semi-Additive Process) method has been widely adopted as a method for manufacturing a printed wiring board suitable for circuit miniaturization. The MSAP method is a method suitable for forming an extremely fine circuit, and is performed using an ultrathin copper foil with a carrier foil in order to take advantage of the feature. For example, as shown in FIGS. 1 and 2, an ultrathin copper foil 10 is applied to a primer layer on an insulating resin substrate 11 having a prepreg 11b on a base substrate 11a (lower layer circuit 11c may be included if necessary). 12 is pressed and adhered (step (a)), the carrier foil (not shown) is peeled off, and then via holes 13 are formed by laser drilling as necessary (step (b)). Next, after applying chemical copper plating 14 (step (c)), masking with a predetermined pattern by exposure and development using a dry film 15 (step (d)), and applying electrolytic copper plating 16 (step (e) )). After the dry film 15 is removed to form the wiring portion 16a (step (f)), unnecessary ultrathin copper foil or the like between the adjacent wiring portions 16a and 16a is removed by etching over the entire thickness (step). (G)) A wiring 17 formed in a predetermined pattern is obtained.

特に、近年、電子回路の小型軽量化に伴い、回路形成性により優れた(例えばライン/スペース=15μm以下/15μm以下の微細回路を形成可能な)MSAP法用銅箔が求められている。例えば、特許文献1(国際公開第2012/046804号)には、JIS−B−06012−1994で規定する表面素地山の凹凸の平均間隔Smが25μm以上のキャリア箔上に、剥離層、銅箔をこの順序に積層し、銅箔をキャリア箔から剥離してなる銅箔が開示されており、この銅箔を用いることで、ライン/スペースが15μm以下の極細幅まで配線ラインの直線性を損なわずにエッチングが可能であるとされている。   In particular, with the recent reduction in size and weight of electronic circuits, there is a need for MSAP copper foils that are more excellent in circuit formability (for example, can form fine circuits of line / space = 15 μm or less / 15 μm or less). For example, in Patent Document 1 (International Publication No. 2012/046804), a release layer, a copper foil is formed on a carrier foil having an average interval Sm of irregularities of a surface base mountain as defined in JIS-B-06012-1994 of 25 μm or more. In this order, a copper foil is disclosed in which the copper foil is peeled off from the carrier foil. By using this copper foil, the linearity of the wiring line is impaired to an extremely narrow line / space of 15 μm or less. It is said that the etching can be performed without any problem.

また、近年の銅張積層板のビアホール加工には、レーザーを極薄銅箔に直接照射してビアホールを形成するダイレクトレーザー穴開け加工が多用されている(例えば、特許文献2(特開平11−346060号公報)参照)。この手法では、一般的に、極薄銅箔の表面に黒化処理を施した後、この黒化処理された表面に炭酸ガスレーザーを照射して極薄銅箔及びその直下の絶縁層の穴開けが行われる。   Further, in recent via hole processing of a copper-clad laminate, direct laser drilling is often used in which a laser is directly irradiated onto an ultrathin copper foil to form a via hole (see, for example, Patent Document 2 (Japanese Patent Laid-Open No. H11-11)). 346060))). In this method, generally, after the surface of the ultra-thin copper foil is blackened, a carbon dioxide laser is irradiated on the blackened surface to form holes in the ultra-thin copper foil and the insulating layer immediately below it. Opening is performed.

国際公開第2012/046804号International Publication No. 2012/046804 特開平11−346060号公報JP-A-11-346060

ところで、黒化処理は時間とコストを要する上、歩留まりも低下しうるため、黒化処理を行わずに極薄銅箔表面にダイレクトレーザー穴開け加工を望ましく施すことができれば好都合である。しかしながら、特許文献1に記載のキャリア付極薄銅箔の表面にダイレクトレーザー穴開け加工を行うと、通常の照射条件では所望の穴を開けることが難しく、微細回路形成性とレーザー加工性とを両立できないことが判明した。   By the way, since the blackening process requires time and cost, and the yield can be lowered, it is advantageous if direct laser drilling can be desirably performed on the surface of the ultrathin copper foil without performing the blackening process. However, when direct laser drilling is performed on the surface of the ultrathin copper foil with a carrier described in Patent Document 1, it is difficult to drill a desired hole under normal irradiation conditions, and the fine circuit formability and laser processability are reduced. It turned out that it was not compatible.

本発明者らは、今般、キャリア付極薄銅箔において、極薄銅箔の剥離層側の面の表面ピーク間の平均距離(Peak spacing)が20μm以下であり、かつ、極薄銅箔の剥離層と反対側の面のうねりの最大高低差(Wmax)が1.0μm以下である表面プロファイルを付与することにより、銅張積層板の加工ないしプリント配線板の製造において、微細回路形成性とレーザー加工性とを両立できるとの知見を得た。   In the ultrathin copper foil with a carrier, the present inventors now have an average distance (Peak spacing) between surface peaks of the surface on the peeling layer side of the ultrathin copper foil of 20 μm or less, and By providing a surface profile with a maximum height difference (Wmax) of undulation on the surface opposite to the release layer of 1.0 μm or less, in processing of copper-clad laminates or manufacturing of printed wiring boards, The knowledge that it was compatible with laser workability was acquired.

したがって、本発明の目的は、銅張積層板の加工ないしプリント配線板の製造において、微細回路形成性とレーザー加工性とを両立可能な、キャリア付極薄銅箔を提供することにある。   Accordingly, an object of the present invention is to provide an ultrathin copper foil with a carrier that can achieve both fine circuit formability and laser workability in processing of a copper-clad laminate or manufacturing of a printed wiring board.

本発明の一態様によれば、キャリア箔、剥離層及び極薄銅箔をこの順に備えたキャリア付極薄銅箔であって、
前記極薄銅箔の剥離層側の面は、表面ピーク間の平均距離(Peak spacing)が20μm以下であり、かつ、前記極薄銅箔の剥離層と反対側の面は、うねりの最大高低差(Wmax)が1.0μm以下である、キャリア付極薄銅箔が提供される。
According to one aspect of the present invention, an ultrathin copper foil with a carrier comprising a carrier foil, a release layer and an ultrathin copper foil in this order,
The surface on the peeling layer side of the ultra-thin copper foil has an average distance between peak peaks (Peak spacing) of 20 μm or less, and the surface on the opposite side to the peeling layer of the ultra-thin copper foil has a maximum undulation. An ultrathin copper foil with a carrier having a difference (Wmax) of 1.0 μm or less is provided.

本発明の他の一態様によれば、上記態様によるキャリア付極薄銅箔の製造方法であって、
谷間の平均距離(Valley spacing)が15μm以下であり、かつ、うねりの最大高低差(Wmax)が0.8μm以下である表面を有するキャリア箔を用意する工程と、
前記キャリア箔の前記表面に剥離層を形成する工程と、
前記剥離層上に極薄銅箔を形成する工程と、
を含んでなる、方法が提供される。
According to another aspect of the present invention, there is provided a method for producing an ultrathin copper foil with a carrier according to the above aspect,
Providing a carrier foil having a surface with an average valley spacing (Valley spacing) of 15 μm or less and a maximum waviness difference (Wmax) of 0.8 μm or less;
Forming a release layer on the surface of the carrier foil;
Forming an ultrathin copper foil on the release layer;
A method is provided comprising.

本発明の更に別の一態様によれば、上記態様によるキャリア付極薄銅箔を用いて得られた銅張積層板が提供される。   According to another one aspect | mode of this invention, the copper clad laminated board obtained using the ultra-thin copper foil with a carrier by the said aspect is provided.

本発明の更に別の一態様によれば、上記態様によるキャリア付極薄銅箔を用いて得られたプリント配線板が提供される。   According to still another aspect of the present invention, there is provided a printed wiring board obtained using the ultrathin copper foil with a carrier according to the above aspect.

MSAP法を説明するための工程流れ図であり、前半の工程(工程(a)〜(d))を示す図である。It is a process flow chart for explaining a MSAP method, and is a figure showing the first half process (process (a)-(d)). MSAP法を説明するための工程流れ図であり、後半の工程(工程(e)〜(g))を示す図である。It is a process flow chart for explaining a MSAP method, and is a figure showing the latter half process (process (e)-(g)). 粗化粒子の断面輪郭曲線と、基底面から所定の高さの切断面における粗化粒子の切り口数のカウントの仕方を概念的に説明する図である。It is a figure which illustrates notionally the cross-sectional outline curve of roughening particle | grains, and the method of counting the number of cut edges of roughening particle | grains in the cut surface of predetermined height from a base face. 例7において得られた、基底面からの高さに応じた切断面における粗化粒子の切り口数の分布曲線の一例を示す図である。It is a figure which shows an example of the distribution curve of the number of cut edges of the roughening particle | grains in the cut surface according to the height from the base face obtained in Example 7. FIG.

定義
本発明を特定するために用いられるパラメータの定義を以下に示す。
Definitions The following are definitions of parameters used to specify the present invention.

本明細書において「表面ピーク間の平均距離(Peak spacing)」とは、三次元表面構造解析顕微鏡を用いて得られる試料表面の凹凸に関する情報から、高周波のうねり成分を除去したのち、ピークに係る波形データをフィルタリングして抽出したデータにおける、ピーク間の平均距離をいう。   In this specification, the “average peak-to-surface peak (Peak spacing)” refers to the peak after removing the high-frequency swell component from the information on the unevenness of the sample surface obtained using a three-dimensional surface structure analysis microscope. The average distance between peaks in data extracted by filtering waveform data.

本明細書において「谷間の平均距離(Valley spacing)」は、三次元表面構造解析顕微鏡を用いて得られる試料表面の凹凸に関する情報から、高周波のうねり成分を除去したのち、谷に係る波形データをフィルタリングして抽出したデータにおける、谷間の平均距離をいう。   In this specification, “valley spacing” means the waveform data relating to the valley after removing the high-frequency wave component from the information on the unevenness of the sample surface obtained using a three-dimensional surface structure analysis microscope. The average distance between valleys in the data extracted by filtering.

本明細書において「うねりの最大高低差(Wmax)」とは、三次元表面構造解析顕微鏡を用いて得られる試料表面の凹凸に係る情報から、うねりに係る波形データをフィルタを用いて抽出したときの波形データの高低差の最大値(波形の最大ピーク高さと最大バレー深さの和)をいう。   In this specification, “maximum waviness difference (Wmax)” means that waveform data relating to waviness is extracted from information relating to unevenness of the sample surface obtained using a three-dimensional surface structure analysis microscope using a filter. The maximum value of the height difference of the waveform data (the sum of the maximum peak height of the waveform and the maximum valley depth).

表面ピーク間の平均距離(Peak spacing)、谷間の平均距離(Valley spacing)、及びうねりの最大高低差(Wmax)は、いずれも、市販の三次元表面構造解析顕微鏡(例えば、zygo New View 5032(Zygo社製))と市販の解析ソフト(例えばMetro Pro Ver.8.0.2)を用い、低周波フィルタを11μmの条件に設定して測定することができる。このとき、箔の被測定面を試料台に密着させて固定し、試料片の1cm角の範囲内の中で108μm×144μmの視野を6点選択して測定し、6箇所の測定点から得られた測定値の平均値を代表値として採用するのが好ましい。   The average distance between surface peaks (Peak spacing), the average distance between valleys (Valley spacing), and the maximum difference in waviness (Wmax) are all measured using a commercially available three-dimensional surface structure analysis microscope (for example, zygo New View 5032 ( Zygo)) and commercially available analysis software (for example, Metro Pro Ver. 8.0.2) can be used to set the low-frequency filter to a condition of 11 μm for measurement. At this time, the surface to be measured of the foil is fixed in close contact with the sample stage, and 6 fields of 108 μm × 144 μm are selected and measured within the 1 cm square range of the sample piece, and obtained from the 6 measurement points. The average value of the measured values obtained is preferably adopted as the representative value.

本明細書において、キャリア箔の「電極面」とはキャリア箔作製時に回転陰極と接していた側の面を指す。   In this specification, the “electrode surface” of the carrier foil refers to the surface on the side that was in contact with the rotating cathode when the carrier foil was produced.

本明細書において、キャリア箔の「析出面」とはキャリア箔作製時に電解銅が析出されていく側の面、すなわち回転陰極と接していない側の面を指す。   In the present specification, the “deposition surface” of the carrier foil refers to a surface on which electrolytic copper is deposited when the carrier foil is produced, that is, a surface not in contact with the rotating cathode.

キャリア付極薄銅箔及びその製造方法
本発明のキャリア付極薄銅箔は、キャリア箔、剥離層及び極薄銅箔をこの順に備えてなる。そして、極薄銅箔の剥離層側の面は、表面ピーク間の平均距離(Peak spacing)が20μm以下であり、かつ、極薄銅箔の剥離層と反対側の面は、うねりの最大高低差(Wmax)が1.0μm以下である。これにより、銅張積層板の加工ないしプリント配線板の製造において、微細回路形成性とレーザー加工性とを両立することが可能となる。しかも、レーザー加工性を確保するためにこれまで一般的に採用されてきた黒化処理を本発明においては不要にすることができる。
Ultrathin copper foil with carrier and method for producing the same The ultrathin copper foil with carrier of the present invention comprises a carrier foil, a release layer and an ultrathin copper foil in this order. The surface on the peeling layer side of the ultrathin copper foil has an average distance (Peak spacing) between surface peaks of 20 μm or less, and the surface on the side opposite to the peeling layer of the ultrathin copper foil has a maximum undulation. The difference (Wmax) is 1.0 μm or less. Thereby, in processing of a copper clad laminated board, or manufacture of a printed wiring board, it becomes possible to make microcircuit formation property and laser workability compatible. In addition, the blackening treatment that has been generally employed so far in order to ensure laser processability can be eliminated in the present invention.

微細回路形成性とレーザー加工性とは本来的には両立し難いものであるが、本発明によれば予想外にもそれらが両立可能となる。というのも、優れた微細回路形成性を得るためには本来的には剥離層と反対側の表面が平滑な極薄銅箔が求められる。そして、そのような極薄銅箔を得るためには、剥離層側の面が平滑な極薄銅箔が求められるところ、表面が平滑になるほどレーザーが反射されやすくなり、それ故、レーザーが極薄銅箔に吸収されにくくなってレーザー加工性が低下するからである。実際、前述のとおり、特許文献1に記載のキャリア付極薄銅箔の表面にダイレクトレーザー穴開け加工を行うと、通常の照射条件では所望の穴を開けることが難しく、微細回路形成性とレーザー加工性とを両立できないことが判明した。この問題を本発明者らが調査した結果、微細回路形成性を低下させる主たる要因は、極薄銅箔の剥離層と反対側の面のうねりであることを突き止めた。そして、うねりの最大高低差(Wmax)を1.0μm以下に制御することが微細回路形成性の改善を図る上で有効であることを知見した。また、ダイレクトレーザー穴開け加工性を低下させる要因は、極薄銅箔の剥離層側の面の表面ピーク間の平均距離(Peak spacing)が20μmを超える場合であることも突き止めた。このように、本発明のキャリア付極薄銅箔によれば、極薄銅箔(特にMSAP用極薄銅箔)においてWmax及びPeak spacingを制御することにより、ライン/スペース=15μ/15μm以下の回路を形成することが出来る程の優れた微細回路形成性を実現しながら、ダイレクトレーザー穴開け加工も望ましく行うことを可能となる。   Although microcircuit formability and laser processability are inherently difficult to achieve, according to the present invention, they can both be unexpectedly compatible. This is because, in order to obtain excellent fine circuit formability, an ultrathin copper foil having a smooth surface opposite to the peeling layer is essentially required. In order to obtain such an ultrathin copper foil, an ultrathin copper foil having a smooth surface on the peeling layer side is required. However, the smoother the surface, the more easily the laser is reflected. This is because it becomes difficult to be absorbed by the thin copper foil and the laser processability is lowered. In fact, as described above, when direct laser drilling is performed on the surface of the ultrathin copper foil with a carrier described in Patent Document 1, it is difficult to form a desired hole under normal irradiation conditions, and the fine circuit formability and laser It became clear that it was not compatible with workability. As a result of the investigation by the present inventors, it has been found that the main factor for reducing the fine circuit formability is the swell of the surface opposite to the peeling layer of the ultrathin copper foil. Then, it was found that controlling the maximum height difference (Wmax) of the swell to 1.0 μm or less is effective in improving the fine circuit formability. It has also been found that the cause of reducing the direct laser drilling workability is the case where the average distance (Peak spacing) between the surface peaks of the surface on the peeling layer side of the ultrathin copper foil exceeds 20 μm. Thus, according to the ultra-thin copper foil with a carrier of the present invention, by controlling Wmax and Peak spacing in an ultra-thin copper foil (particularly MSAP ultra-thin copper foil), line / space = 15 μ / 15 μm or less. Direct laser drilling can be desirably performed while realizing fine circuit formation excellent enough to form a circuit.

このように、極薄銅箔は、表面ピーク間の平均距離(Peak spacing)が20μm以下である表面を剥離層側の面に有し、かつ、うねりの最大高低差(Wmax)が1.0μm以下である表面を剥離層と反対側の面に有する。2つのパラメータが上記範囲内となるようにすることで、銅張積層板の加工ないしプリント配線板の製造において、微細回路形成性とレーザー加工性とを両立することが可能となる。極薄銅箔の剥離層側の面における表面ピーク間の平均距離(Peak spacing)は20μm以下であり、好ましくは1〜15μm、より好ましくは5〜15μm、さらに好ましくは10〜15μmである。また、極薄銅箔の剥離層と反対側の面におけるうねりの最大高低差(Wmax)は1.0μm以下であり、好ましくは0.9μm以下、より好ましくは0.8μm以下である。特に、ライン/スペース=15/15μmの微細回路形成を行うためには、極薄銅箔表面のWmaxが0.8μm以下であるのが好ましい。Wmaxは低ければ低い方が良いため、その下限値は特に限定されないが、Wmaxは典型的には0.1μm以上であり、より典型的には0.2μm以上である。   As described above, the ultrathin copper foil has a surface having a mean distance between peak peaks (Peak spacing) of 20 μm or less on the surface on the peeling layer side, and a maximum waviness difference (Wmax) of 1.0 μm. It has the following surface on the surface opposite to the release layer. By setting the two parameters within the above range, it is possible to achieve both fine circuit formability and laser workability in the processing of a copper clad laminate or the production of a printed wiring board. The average distance (Peak spacing) between surface peaks on the surface on the peeling layer side of the ultrathin copper foil is 20 μm or less, preferably 1 to 15 μm, more preferably 5 to 15 μm, and still more preferably 10 to 15 μm. Moreover, the maximum height difference (Wmax) of the waviness on the surface opposite to the peeling layer of the ultrathin copper foil is 1.0 μm or less, preferably 0.9 μm or less, more preferably 0.8 μm or less. In particular, in order to form a fine circuit of line / space = 15/15 μm, it is preferable that Wmax on the surface of the ultrathin copper foil is 0.8 μm or less. Since Wmax is preferably as low as possible, the lower limit is not particularly limited, but Wmax is typically 0.1 μm or more, and more typically 0.2 μm or more.

極薄銅箔の剥離層側の面も、うねりの最大高低差(Wmax)が1.0μm以下であるのが好ましく、より好ましくは0.8μm、さらに好ましくは0.6μm以下である。このように低いWmaxであると、極薄銅箔の剥離層と反対側の面のWmaxを低く抑えることができ、微細回路形成性に優れる。特に、ライン/スペース=15/15μmの微細回路形成を行うためには、Wmaxが0.6μm以下であるのが好ましい。Wmaxは低ければ低い方が良いため、その下限値は特に限定されない。特に、極薄銅箔の厚さを薄くする場合(例えば厚さ2.0μm以下とする場合)にはWmaxは小さい方が好ましい。もっとも、Wmaxは典型的には0.1μm以上であり、より典型的には0.2μm以上である。   The surface on the peeling layer side of the ultrathin copper foil also preferably has a maximum waviness difference (Wmax) of 1.0 μm or less, more preferably 0.8 μm, and even more preferably 0.6 μm or less. When the Wmax is thus low, the Wmax on the surface opposite to the peeling layer of the ultrathin copper foil can be kept low, and the fine circuit formability is excellent. In particular, in order to form a fine circuit with line / space = 15/15 μm, Wmax is preferably 0.6 μm or less. Since Wmax is better if it is lower, the lower limit is not particularly limited. In particular, when the thickness of the ultrathin copper foil is reduced (for example, when the thickness is 2.0 μm or less), it is preferable that Wmax is small. However, Wmax is typically 0.1 μm or more, and more typically 0.2 μm or more.

極薄銅箔の剥離層と反対側の面は粗化面であるのが好ましい。すなわち、極薄銅箔の一方の面には粗化処理がされていることが好ましい。こうすることで銅張積層板やプリント配線板製造時における樹脂層との密着性を向上することができる。この粗化処理は、極薄銅箔の上に銅又は銅合金で粗化粒子を形成することにより行うことができる。例えば、極薄銅箔の上に微細銅粒を析出付着させる焼けめっき工程と、この微細銅粒の脱落を防止するための被せめっき工程とを含む少なくとも2種類のめっき工程を経る公知のめっき手法に従って行われるのが好ましい。   The surface of the ultrathin copper foil opposite to the release layer is preferably a roughened surface. That is, it is preferable that one surface of the ultrathin copper foil is roughened. By carrying out like this, adhesiveness with the resin layer at the time of copper clad laminated board and printed wiring board manufacture can be improved. This roughening treatment can be performed by forming roughened particles with copper or a copper alloy on an ultrathin copper foil. For example, a well-known plating technique that undergoes at least two types of plating processes including a baking plating process for depositing and adhering fine copper particles on an ultrathin copper foil and a covering plating process for preventing the fine copper grains from falling off. Is preferably carried out according to

典型的には、粗化面は複数の粗化粒子を備えてなる。好ましくは、これら複数の粗化粒子は、基底面からの平均粗化粒子高さが1.0〜1.4μmであり、かつ、基底面からの高さに応じた切断面における粗化粒子の切り口数の分布曲線の1/10値幅が1.3μm以下である。これらのパラメータは、三次元粗さ解析装置を用いて、粗化面の表面プロファイルを粗化粒子のサイズに応じた所望の倍率(例えば600〜30000倍)で測定することを経て得ることができる。ここで、「基底面」とは、図3に例示されるように、複数の粗化粒子間の谷底のうち最も低い位置に相当する、極薄銅箔と平行な面である。「基底面からの高さに応じた切断面における粗化粒子の切り口数」とは、図3に例示されるように、粗化粒子の断面輪郭曲線と、基底面から所定の高さにおける平行な切断面によって切断されるべき面領域の数である。すなわち、基底面から最大粗化粒子高さに至るまで、高さ方向に一定間隔(例えば0.02μm)ごとに区切りながら切断面を順次設定していき、各切断面における粗化粒子の切り口数をカウントする。「粗化粒子高さ」とは基底面からの粗化粒子の高さを意味し、「平均粗化粒子高さ」とは、図4に例示されるように、基底面からの高さに応じた切断面における粗化粒子の切り口数の分布曲線において、粗化粒子の切り口数が最大となる、基底面からの高さ(粗化粒子高さ)を意味する。また、「1/10値幅」とは、図4に例示されるように、基底面からの高さに応じた切断面における粗化粒子の切り口数の分布曲線において、粗化粒子の切り口数の最大値の10分の1の値における分布幅(粗化粒子高さ分布幅)を意味する。平均粗化粒子高さ及び1/10値幅が上記範囲内であると、粗化粒子高さが低減するため、垂直方向でのフラッシュエッチング性が向上するとともに、粗化粒子のバラつきが低減するため、面方向でのエッチングバラつきが減少し、回路形成時の望ましくない 裾引きを効果的に防止することが出来る。その結果、回路形成性が向上する。さらに、上記範囲内であると、粗化粒子のバラつきが低減するため、プリプレグ等の樹脂層に粗化面を貼り付けた場合に、樹脂層との剥離強度の位置によるバラつきが低減される。平均粗化粒子高さは1.0〜1.4μmであり、好ましくは1.0〜1.3μmである。1/10値幅は1.3μm以下であり、好ましくは1.0μm以下である。1/10値幅は小さければ小さいほど良いが、典型的には0.1μm以上である。   Typically, the roughened surface comprises a plurality of roughened particles. Preferably, the plurality of roughened particles have an average roughened particle height from the basal plane of 1.0 to 1.4 μm, and the roughened particles on the cut surface according to the height from the basal plane. The 1/10 value width of the distribution curve of the number of cuts is 1.3 μm or less. These parameters can be obtained by measuring the surface profile of the roughened surface using a three-dimensional roughness analyzer at a desired magnification (for example, 600 to 30000 times) according to the size of the roughened particles. . Here, as illustrated in FIG. 3, the “basal plane” is a plane parallel to the ultrathin copper foil corresponding to the lowest position among the valley bottoms between the plurality of roughened particles. As shown in FIG. 3, the “number of cut edges of the roughened particles on the cut surface according to the height from the basal plane” is parallel to the cross-sectional contour curve of the roughened particles and the predetermined height from the basal plane. This is the number of surface areas to be cut by the various cut surfaces. That is, the cut surfaces are sequentially set from the basal plane to the maximum roughened particle height while being divided at regular intervals (for example, 0.02 μm) in the height direction, and the number of roughened particle cuts on each cut surface Count. “Roughened particle height” means the height of the roughened particles from the basal plane, and “average roughened particle height” means the height from the basal plane as illustrated in FIG. In the distribution curve of the number of cuts of the roughened particles on the corresponding cut surface, it means the height from the base surface (roughened particle height) at which the number of cuts of the roughened particles is maximized. In addition, as illustrated in FIG. 4, the “1/10 value width” means the number of cut edges of the roughened particles in the distribution curve of the number of cut edges of the roughened particles on the cut surface according to the height from the basal plane. It means the distribution width (roughened particle height distribution width) at a value of 1/10 of the maximum value. When the average coarse particle height and the 1/10 value width are within the above ranges, the coarse particle height is reduced, so that the flash etching property in the vertical direction is improved and the variation of the coarse particles is reduced. Etching variation in the surface direction is reduced, and undesirable tailing during circuit formation can be effectively prevented. As a result, circuit formability is improved. Furthermore, if the roughness is within the above range, the variation of the roughened particles is reduced, so that when the roughened surface is attached to a resin layer such as a prepreg, the variation due to the position of the peel strength from the resin layer is reduced. The average roughened particle height is 1.0 to 1.4 μm, preferably 1.0 to 1.3 μm. The 1/10 value width is 1.3 μm or less, preferably 1.0 μm or less. The 1/10 value width is preferably as small as possible, but is typically 0.1 μm or more.

極薄銅箔は、上記特有の表面プロファイルを有すること以外はキャリア付極薄銅箔に採用される公知の構成であってよく特に限定されない。例えば、極薄銅箔は、無電解銅めっき法及び電解銅めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってよい。極薄銅箔の好ましい厚さは0.1〜5.0μmであり、より好ましくは0.5〜3.0μm、さらに好ましくは1.0〜2.0μmである。例えば、ライン/スペース=15/15μmの微細回路形成を行うためには、極薄銅箔の厚さは2.0μm以下が特に好ましい。   The ultra-thin copper foil may be a known configuration employed for the ultra-thin copper foil with a carrier except that it has the above-mentioned specific surface profile, and is not particularly limited. For example, the ultrathin copper foil may be formed by a wet film formation method such as an electroless copper plating method and an electrolytic copper plating method, a dry film formation method such as sputtering and chemical vapor deposition, or a combination thereof. The preferable thickness of the ultrathin copper foil is 0.1 to 5.0 μm, more preferably 0.5 to 3.0 μm, and still more preferably 1.0 to 2.0 μm. For example, in order to form a fine circuit of line / space = 15/15 μm, the thickness of the ultrathin copper foil is particularly preferably 2.0 μm or less.

剥離層は、キャリア箔の引き剥がし強度を弱くし、該強度の安定性を担保し、さらには高温でのプレス成形時にキャリア箔と銅箔の間で起こりうる相互拡散を抑制する機能を有する層である。剥離層は、キャリア箔の一方の面に形成されるのが一般的であるが、両面に形成されてもよい。剥離層は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定し易い点で好ましい。トリアゾール化合物の例としては、1,2,3−ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’−ビス(ベンゾトリアゾリルメチル)ユリア、1H−1,2,4−トリアゾール及び3−アミノ−1H−1,2,4−トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2−ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜等が挙げられる。なお、剥離層の形成はキャリア箔の少なくとも一方の表面に剥離層成分含有溶液を接触させ、剥離層成分をキャリア箔の表面に固定されること等により行えばよい。キャリア箔を剥離層成分含有溶液に接触させる場合、この接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、剥離層成分含有溶液の流下等により行えばよい。その他、蒸着やスパッタリング等による気相法で剥離層成分を被膜形成する方法も採用可能である。また、剥離層成分のキャリア箔表面への固定は、剥離層成分含有溶液の吸着や乾燥、剥離層成分含有溶液中の剥離層成分の電着等により行えばよい。剥離層の厚さは、典型的には1nm〜1μmであり、好ましくは5nm〜500nmである。   The release layer is a layer having a function of weakening the peeling strength of the carrier foil, ensuring the stability of the strength, and further suppressing interdiffusion that may occur between the carrier foil and the copper foil during press molding at a high temperature. It is. The release layer is generally formed on one side of the carrier foil, but may be formed on both sides. The release layer may be either an organic release layer or an inorganic release layer. Examples of organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids and the like. Examples of nitrogen-containing organic compounds include triazole compounds, imidazole compounds, and the like. Among these, triazole compounds are preferred in terms of easy release stability. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino- 1H-1,2,4-triazole and the like can be mentioned. Examples of the sulfur-containing organic compound include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol and the like. Examples of the carboxylic acid include monocarboxylic acid and dicarboxylic acid. On the other hand, examples of inorganic components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and a chromate-treated film. The release layer may be formed by bringing a release layer component-containing solution into contact with at least one surface of the carrier foil and fixing the release layer component to the surface of the carrier foil. When the carrier foil is brought into contact with the release layer component-containing solution, this contact may be performed by immersion in the release layer component-containing solution, spraying of the release layer component-containing solution, flowing down of the release layer component-containing solution, or the like. In addition, it is also possible to employ a method of forming a release layer component by a vapor phase method such as vapor deposition or sputtering. The release layer component may be fixed to the surface of the carrier foil by adsorption or drying of the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like. The thickness of the release layer is typically 1 nm to 1 μm, preferably 5 nm to 500 nm.

キャリア箔は、極薄銅箔を支持してそのハンドリング性を向上させるための箔である。キャリア箔の例としては、アルミニウム箔、銅箔、ステンレス(SUS)箔、表面をメタルコーティングした樹脂フィルム等が挙げられ、好ましくは銅箔である。銅箔は圧延銅箔及び電解銅箔のいずれであってもよい。キャリア箔の厚さは典型的には250μm以下であり、好ましくは12μm〜200μmである。   The carrier foil is a foil for supporting an ultrathin copper foil and improving its handleability. Examples of the carrier foil include an aluminum foil, a copper foil, a stainless steel (SUS) foil, a resin film whose surface is metal-coated, and preferably a copper foil. The copper foil may be a rolled copper foil or an electrolytic copper foil. The thickness of the carrier foil is typically 250 μm or less, preferably 12 μm to 200 μm.

キャリア箔の剥離層側の面は、谷間の平均距離(Valley spacing)が15μm以下であり、かつ、うねりの最大高低差(Wmax)が0.8μm以下であるのが好ましい。キャリア付極薄銅箔の製造プロセスにおいて、キャリア箔の剥離層側の面には極薄銅箔が形成されることになるため、キャリア箔の表面に上記のように低いValley spacingとWmaxを付与しておくことで、極薄銅箔の剥離層側の面と剥離層と反対側の面に前述した望ましい表面プロファイルを付与することができる。すなわち、本発明のキャリア付極薄銅箔は、谷間の平均距離(Valley spacing)が15μm以下であり、かつ、うねりの最大高低差(Wmax)が0.8μm以下である表面を有するキャリア箔を用意し、このキャリア箔の表面に剥離層を形成し、この剥離層上に極薄銅箔を形成することにより製造することができる。キャリア箔の剥離層側の面における谷間の平均距離(Valley spacing)は15μm以下であるのが好ましく、より好ましくは1〜10μm以下、さらに好ましくは3〜8μm以下である。また、キャリア箔の剥離層側の面におけるうねりの最大高低差(Wmax)は0.8μm以下であるのが好ましく、より好ましくは0.7μm以下、さらに好ましくは0.6μm以下である。Wmaxは低ければ低い方が良いため、その下限値は特に限定されないが、Wmaxは典型的には0.1μm以上であり、より典型的には0.2μm以上である。キャリア箔の表面における上記範囲内の低いValley spacingとWmaxの実現は、キャリア箔を電解製箔する際に用いる回転陰極の表面を所定の番手のバフで研磨して表面粗さを調整することにより行うことができる。すなわち、こうして調整された回転陰極の表面プロファイルがキャリア箔の電極面に転写され、こうして望ましい表面プロファイルが付与されたキャリア箔の電極面上に剥離層を介して極薄銅箔を形成することで、極薄銅箔の剥離層側の面に上述した表面プロファイルを付与することができる。好ましいバフの番手は#1000より大きく#3000未満であり、より好ましくは#1500〜#2500である。   The surface on the peeling layer side of the carrier foil preferably has an average distance between valleys of 15 μm or less and a maximum waviness difference (Wmax) of 0.8 μm or less. In the manufacturing process of ultra-thin copper foil with carrier, since the ultra-thin copper foil is formed on the surface of the carrier foil on the peeling layer side, low Valley spacing and Wmax are applied to the surface of the carrier foil as described above. By preliminarily, the desired surface profile described above can be imparted to the surface on the peeling layer side of the ultrathin copper foil and the surface opposite to the peeling layer. That is, the ultrathin copper foil with a carrier according to the present invention is a carrier foil having a surface with an average valley spacing of 15 μm or less and a maximum waviness difference (Wmax) of 0.8 μm or less. It can be manufactured by preparing, forming a release layer on the surface of the carrier foil, and forming an ultrathin copper foil on the release layer. The average distance (Valley spacing) between the valleys on the surface of the carrier foil on the release layer side is preferably 15 μm or less, more preferably 1 to 10 μm or less, and further preferably 3 to 8 μm or less. Moreover, it is preferable that the maximum height difference (Wmax) of the waviness on the surface of the carrier foil on the release layer side is 0.8 μm or less, more preferably 0.7 μm or less, and still more preferably 0.6 μm or less. Since Wmax is preferably as low as possible, the lower limit is not particularly limited, but Wmax is typically 0.1 μm or more, and more typically 0.2 μm or more. Realization of low Valley spacing and Wmax within the above range on the surface of the carrier foil is achieved by adjusting the surface roughness by polishing the surface of the rotating cathode used when electrolytically forming the carrier foil with a predetermined count buff. It can be carried out. That is, the surface profile of the rotating cathode thus adjusted is transferred to the electrode surface of the carrier foil, and an ultrathin copper foil is formed through the release layer on the electrode surface of the carrier foil thus provided with the desired surface profile. The surface profile described above can be imparted to the surface on the peeling layer side of the ultrathin copper foil. The preferred buff count is greater than # 1000 and less than # 3000, more preferably # 1500 to # 2500.

所望により、剥離層とキャリア箔及び/又は極薄銅箔の間に他の機能層を設けてもよい。そのような他の機能層の例としては補助金属層が挙げられる。補助金属層はニッケル及び/又はコバルトからなるのが好ましい。このような補助金属層をキャリア箔の表面側及び/又は極薄銅箔の表面側に形成することで、高温又は長時間の熱間プレス成形時にキャリア箔と極薄銅箔の間で起こりうる相互拡散を抑制し、キャリア箔の引き剥がし強度の安定性を担保することができる。補助金属層の厚さは、0.001〜3μmとするのが好ましい。   If desired, another functional layer may be provided between the release layer and the carrier foil and / or ultrathin copper foil. An example of such another functional layer is an auxiliary metal layer. The auxiliary metal layer is preferably made of nickel and / or cobalt. By forming such an auxiliary metal layer on the surface side of the carrier foil and / or on the surface side of the ultrathin copper foil, it may occur between the carrier foil and the ultrathin copper foil during hot press molding at a high temperature or for a long time. Interdiffusion can be suppressed and the stability of the peeling strength of the carrier foil can be ensured. The thickness of the auxiliary metal layer is preferably 0.001 to 3 μm.

所望により、極薄銅箔に防錆処理を施してもよい。防錆処理は、亜鉛を用いためっき処理を含むのが好ましい。亜鉛を用いためっき処理は、亜鉛めっき処理及び亜鉛合金めっき処理のいずれであってもよく、亜鉛合金めっき処理は亜鉛−ニッケル合金処理が特に好ましい。亜鉛−ニッケル合金処理は少なくともNi及びZnを含むめっき処理であればよく、Sn、Cr、Co等の他の元素をさらに含んでいてもよい。亜鉛−ニッケル合金めっきにおけるNi/Zn付着比率は、質量比で、1.2〜10が好ましく、より好ましくは2〜7、さらに好ましくは2.7〜4である。また、防錆処理はクロメート処理をさらに含むのが好ましく、このクロメート処理は亜鉛を用いためっき処理の後に、亜鉛を含むめっきの表面に行われるのがより好ましい。こうすることで防錆性をさらに向上させることができる。特に好ましい防錆処理は、亜鉛−ニッケル合金めっき処理とその後のクロメート処理との組合せである。   If desired, an anti-rust treatment may be applied to the ultrathin copper foil. The rust prevention treatment preferably includes a plating treatment using zinc. The plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment. The zinc-nickel alloy treatment may be a plating treatment containing at least Ni and Zn, and may further contain other elements such as Sn, Cr, and Co. The Ni / Zn adhesion ratio in the zinc-nickel alloy plating is preferably 1.2 to 10, more preferably 2 to 7, still more preferably 2.7 to 4, in terms of mass ratio. The rust prevention treatment preferably further includes a chromate treatment, and this chromate treatment is more preferably performed on the surface of the plating containing zinc after the plating treatment using zinc. By carrying out like this, rust prevention property can further be improved. A particularly preferable antirust treatment is a combination of a zinc-nickel alloy plating treatment and a subsequent chromate treatment.

所望により、極薄銅箔の表面にシランカップリング剤処理を施し、シランカップリング剤層を形成してもよい。これにより耐湿性、耐薬品性及び接着剤等との密着性等を向上することができる。シランカップリング剤層は、シランカップリング剤を適宜希釈して塗布し、乾燥させることにより形成することができる。シランカップリング剤の例としては、4−グリシジルブチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン等のエポキシ官能性シランカップリング剤、又はγ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−3−(4−(3−アミノプロポキシ)ブトキシ)プロピル−3−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又はγ−メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のオレフィン官能性シランカップリング剤、又はγ−メタクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。   If desired, the surface of the ultrathin copper foil may be treated with a silane coupling agent to form a silane coupling agent layer. Thereby, moisture resistance, chemical resistance, adhesiveness with an adhesive agent, etc. can be improved. The silane coupling agent layer can be formed by appropriately diluting and applying a silane coupling agent and drying. Examples of silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane and γ-glycidoxypropyltrimethoxysilane, or γ-aminopropyltrimethoxysilane, N-β (amino Amino functions such as ethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) butoxy) propyl-3-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane Silane coupling agent, or mercapto functional silane coupling agent such as γ-mercaptopropyltrimethoxysilane, or olefin functional silane coupling agent such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, or γ-methacryloxypropyl Trimetoki Acrylic-functional silane coupling agent such as a silane, or imidazole functional silane coupling agent such as imidazole silane, or triazine functional silane coupling agents such as triazine silane.

銅張積層板
本発明のキャリア付極薄銅箔はプリント配線板用銅張積層板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、キャリア付極薄銅箔を用いて得られた銅張積層板が提供される。本発明のキャリア付極薄銅箔を用いることで、銅張積層板の加工において、微細回路形成性とレーザー加工性とを両立することができる。この銅張積層板は、本発明のキャリア付極薄銅箔と、該表面処理層に密着して設けられる樹脂層とを備えてなる。キャリア付極薄銅箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂等が挙げられる。また、樹脂シートを構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂等の絶縁樹脂が挙げられる。また、樹脂層には絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、1〜1000μmが好ましく、より好ましくは2〜400μmであり、さらに好ましくは3〜200μmである。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め銅箔表面に塗布されるプライマー樹脂層を介してキャリア付極薄銅箔に設けられていてもよい。
Copper- clad laminate The ultrathin copper foil with a carrier of the present invention is preferably used for the production of a copper-clad laminate for printed wiring boards. That is, according to the preferable aspect of this invention, the copper clad laminated board obtained using the ultra-thin copper foil with a carrier is provided. By using the ultrathin copper foil with a carrier of the present invention, it is possible to achieve both fine circuit formability and laser workability in the processing of a copper clad laminate. This copper clad laminate comprises the ultrathin copper foil with a carrier of the present invention and a resin layer provided in close contact with the surface treatment layer. The ultra-thin copper foil with a carrier may be provided on one side of the resin layer or may be provided on both sides. The resin layer comprises a resin, preferably an insulating resin. The resin layer is preferably a prepreg and / or a resin sheet. The prepreg is a general term for composite materials in which a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper is impregnated with a synthetic resin. Preferable examples of the insulating resin include an epoxy resin, a cyanate resin, a bismaleimide triazine resin (BT resin), a polyphenylene ether resin, and a phenol resin. Examples of the insulating resin that constitutes the resin sheet include insulating resins such as epoxy resins, polyimide resins, and polyester resins. Moreover, the filler particle etc. which consist of various inorganic particles, such as a silica and an alumina, may contain in the resin layer from a viewpoint of improving insulation. Although the thickness of a resin layer is not specifically limited, 1-1000 micrometers is preferable, More preferably, it is 2-400 micrometers, More preferably, it is 3-200 micrometers. The resin layer may be composed of a plurality of layers. A resin layer such as a prepreg and / or a resin sheet may be provided on the ultrathin copper foil with a carrier via a primer resin layer previously applied to the surface of the copper foil.

プリント配線板
本発明のキャリア付極薄銅箔はプリント配線板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、キャリア付極薄銅箔を用いて得られたプリント配線板が提供される。本発明のキャリア付極薄銅箔を用いることで、プリント配線板の製造において、微細回路形成性とレーザー加工性とを両立することができる。本態様によるプリント配線板は、樹脂層と、銅層とがこの順に積層された層構成を含んでなる。銅層は本発明のキャリア付極薄銅箔の極薄銅箔に由来する層である。また、樹脂層については銅張積層板に関して上述したとおりである。いずれにしても、プリント配線板は、本発明のキャリア付極薄銅箔を用いること以外は、公知の層構成が採用可能である。プリント配線板に関する具体例としては、プリプレグの片面又は両面に本発明の極薄銅箔を接着させ硬化した積層体とした上で回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。また、他の具体例としては、樹脂フィルム上に本発明の極薄銅箔を形成して回路を形成するフレキシブルプリント配線板、COF、TABテープ等も挙げられる。さらに他の具体例としては、本発明の極薄銅箔に上述の樹脂層を塗布した樹脂付銅箔(RCC)を形成し、樹脂層を絶縁接着材層として上述のプリント基板に積層した後、極薄銅箔を配線層の全部又は一部としてモディファイド・セミアディティブ(MSAP)法、サブトラクティブ法等の手法で回路を形成したビルドアップ配線板や、極薄銅箔を除去してセミアディティブ法で回路を形成したビルドアップ配線板、半導体集積回路上へ樹脂付銅箔の積層と回路形成を交互に繰りかえすダイレクト・ビルドアップ・オン・ウェハー等が挙げられる。より発展的な具体例として、上記樹脂付銅箔を基材に積層し回路形成したアンテナ素子、接着剤層を介してガラスや樹脂フィルムに積層しパターンを形成したパネル・ディスプレイ用電子材料や窓ガラス用電子材料、本発明の極薄銅箔に導電性接着剤を塗布した電磁波シールド・フィルム等も挙げられる。特に、本発明のキャリア付極薄銅箔はMSAP法に適している。例えば、MSAP法により回路形成した場合には図1及び2に示されるような構成が採用可能である。
Printed Wiring Board The ultrathin copper foil with a carrier of the present invention is preferably used for production of a printed wiring board. That is, according to the preferable aspect of this invention, the printed wiring board obtained using the ultra-thin copper foil with a carrier is provided. By using the ultra-thin copper foil with a carrier of the present invention, it is possible to achieve both fine circuit formability and laser workability in the production of a printed wiring board. The printed wiring board according to this aspect includes a layer configuration in which a resin layer and a copper layer are laminated in this order. A copper layer is a layer originating in the ultra-thin copper foil of the ultra-thin copper foil with a carrier of this invention. The resin layer is as described above for the copper-clad laminate. In any case, the printed wiring board can employ a known layer configuration except that the ultrathin copper foil with a carrier of the present invention is used. Specific examples of the printed wiring board include a single-sided or double-sided printed wiring board formed with a circuit on the laminated body obtained by bonding the ultrathin copper foil of the present invention to one side or both sides of the prepreg, and a multilayer in which these are multilayered. A printed wiring board etc. are mentioned. Other specific examples include a flexible printed wiring board, a COF, a TAB tape, and the like that form a circuit by forming the ultrathin copper foil of the present invention on a resin film. As another specific example, after forming the resin-coated copper foil (RCC) obtained by applying the above resin layer to the ultrathin copper foil of the present invention, and laminating the resin layer as an insulating adhesive layer on the above printed board , Build-up wiring board with ultra-thin copper foil as a whole or part of the wiring layer, modified semi-additive (MSAP) method, subtractive method, etc. Examples include a build-up wiring board in which a circuit is formed by a method, and a direct build-up-on-wafer that alternately repeats the lamination of a resin-coated copper foil and circuit formation on a semiconductor integrated circuit. As a more specific example, antenna elements formed by laminating the above resin-coated copper foil on a substrate to form a circuit, panels and electronic materials for panels and displays formed on a glass or resin film via an adhesive layer, and windows Examples thereof include an electronic material for glass, and an electromagnetic wave shielding film obtained by applying a conductive adhesive to the ultrathin copper foil of the present invention. In particular, the ultrathin copper foil with a carrier of the present invention is suitable for the MSAP method. For example, when a circuit is formed by the MSAP method, a configuration as shown in FIGS. 1 and 2 can be adopted.

本発明を以下の例によってさらに具体的に説明する。   The present invention is more specifically described by the following examples.

例1〜5
キャリア箔の電極面側に剥離層及び極薄銅箔層を順に形成した後、防錆処理及びシランカップリング剤処理を行うことで、キャリア付極薄銅箔を作製した。そして、得られたキャリア付極薄銅箔について各種評価を行った。具体的な手順は以下のとおりである。
Examples 1-5
After forming a peeling layer and an ultrathin copper foil layer in order on the electrode surface side of the carrier foil, an ultrathin copper foil with a carrier was produced by performing a rust prevention treatment and a silane coupling agent treatment. And various evaluation was performed about the obtained ultra-thin copper foil with a carrier. The specific procedure is as follows.

(1)キャリア箔の準備
以下に示される組成の銅電解液と、回転陰極と、陽極としてのDSA(寸法安定性陽極)とを用いて、溶液温度50℃、電流密度70A/dmで電解し、厚さ18μmの電解銅箔をキャリア箔として作製した。このとき、回転陰極として、表面を#2500(例1)、#2000(例2)、#1500(例3)、#1000(例4)又は#3000(例5)のバフで研磨して表面粗さを整えた電極を用いた。
<銅電解液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:300g/L
‐ 塩素濃度:30mg/L
‐ 膠濃度:5mg/L
(1) Preparation of carrier foil Electrolysis at a solution temperature of 50 ° C. and a current density of 70 A / dm 2 using a copper electrolyte solution having the composition shown below, a rotating cathode, and a DSA (dimensionally stable anode) as an anode. Then, an electrolytic copper foil having a thickness of 18 μm was produced as a carrier foil. At this time, as a rotating cathode, the surface was polished with a buff of # 2500 (Example 1), # 2000 (Example 2), # 1500 (Example 3), # 1000 (Example 4) or # 3000 (Example 5). A rough electrode was used.
<Composition of copper electrolyte>
-Copper concentration: 80 g / L
-Sulfuric acid concentration: 300 g / L
-Chlorine concentration: 30 mg / L
-Glue concentration: 5mg / L

(2)剥離層の形成
酸洗処理されたキャリア箔の電極面を、CBTA(カルボキシベンゾトリアゾール)濃度1g/L、硫酸濃度150g/L及び銅濃度10g/LのCBTA水溶液に、液温30℃で30秒間浸漬し、CBTA成分をキャリア箔の電極面に吸着させた。こうして、キャリア箔の電極面にCBTA層を有機剥離層として形成した。
(2) Formation of release layer The electrode surface of the pickled carrier foil was placed in a CBTA aqueous solution having a CBTA (carboxybenzotriazole) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L, and a copper concentration of 10 g / L, and a liquid temperature of 30 ° C. So as to adsorb the CBTA component on the electrode surface of the carrier foil. Thus, a CBTA layer was formed as an organic release layer on the electrode surface of the carrier foil.

(3)補助金属層の形成
有機剥離層が形成されたキャリア箔を、硫酸ニッケルを用いて作製されたニッケル濃度20g/Lを含む溶液に浸漬して、液温45℃、pH3、電流密度5A/dmの条件で、厚さ0.001μm相当の付着量のニッケルを有機剥離層上に付着させた。こうして有機剥離層上にニッケル層を補助金属層として形成した。
(3) Formation of auxiliary metal layer The carrier foil on which the organic peeling layer is formed is immersed in a solution containing nickel concentration of 20 g / L prepared using nickel sulfate, and the liquid temperature is 45 ° C., the pH is 3, and the current density is 5 A. Under the condition of / dm 2 , nickel having a thickness equivalent to 0.001 μm was deposited on the organic release layer. Thus, a nickel layer was formed as an auxiliary metal layer on the organic release layer.

(4)極薄銅箔の形成
補助金属層が形成されたキャリア箔を、以下に示される組成の銅溶液に浸漬して、溶液温度50℃、電流密度5〜30A/dmで電解し、厚さ2μmの極薄銅箔を補助金属層上に形成した。
<溶液の組成>
‐ 銅濃度:60g/L
‐ 硫酸濃度:200g/L
(4) Formation of ultrathin copper foil The carrier foil on which the auxiliary metal layer is formed is immersed in a copper solution having the composition shown below, and electrolysis is performed at a solution temperature of 50 ° C. and a current density of 5 to 30 A / dm 2 . An ultrathin copper foil having a thickness of 2 μm was formed on the auxiliary metal layer.
<Composition of solution>
-Copper concentration: 60 g / L
-Sulfuric acid concentration: 200 g / L

(5)粗化処理
こうして形成された極薄銅箔の表面に粗化処理を行った。この粗化処理は、極薄銅箔の上に微細銅粒を析出付着させる焼けめっき工程と、この微細銅粒の脱落を防止するための被せめっき工程とから構成される。焼けめっき工程では、銅濃度10g/L及び硫酸濃度120g/Lを含む酸性硫酸銅溶液を用いて、液温25℃、電流密度15A/dmで粗化処理を行った。その後の被せめっき工程では、銅濃度70g/L及び硫酸濃度120g/Lを含む酸性硫酸銅溶液を用いて、液温40℃及び電流密度15A/dmの平滑めっき条件で電着を行った。
(5) Roughening treatment The surface of the ultrathin copper foil thus formed was subjected to a roughening treatment. This roughening treatment includes a baking plating process in which fine copper grains are deposited on an ultrathin copper foil, and a covering plating process for preventing the fine copper grains from falling off. In the baking plating step, a roughening treatment was performed at an acid density of 25 A / dm 2 using an acidic copper sulfate solution containing a copper concentration of 10 g / L and a sulfuric acid concentration of 120 g / L. In the subsequent plating process, electrodeposition was performed using an acidic copper sulfate solution containing a copper concentration of 70 g / L and a sulfuric acid concentration of 120 g / L under smooth plating conditions of a liquid temperature of 40 ° C. and a current density of 15 A / dm 2 .

(6)防錆処理
得られたキャリア付極薄銅箔の粗化処理層の表面に、亜鉛−ニッケル合金めっき処理及びクロメート処理からなる防錆処理を行った。まず、亜鉛濃度0.2g/L、ニッケル濃度2g/L及びピロリン酸カリウム濃度300g/Lの電解液を用い、液温40℃、電流密度0.5A/dmの条件で、粗化処理層及びキャリア箔の表面に亜鉛−ニッケル合金めっき処理を行った。次いで、クロム酸3g/L水溶液を用い、pH10、電流密度5A/dmの条件で、亜鉛−ニッケル合金めっき処理を行った表面にクロメート処理を行った。
(6) Rust prevention treatment The surface of the roughening treatment layer of the obtained ultrathin copper foil with a carrier was subjected to a rust prevention treatment comprising zinc-nickel alloy plating treatment and chromate treatment. First, a roughening treatment layer using an electrolytic solution having a zinc concentration of 0.2 g / L, a nickel concentration of 2 g / L, and a potassium pyrophosphate concentration of 300 g / L under the conditions of a liquid temperature of 40 ° C. and a current density of 0.5 A / dm 2. And the surface of the carrier foil was subjected to a zinc-nickel alloy plating treatment. Next, a chromate treatment was performed on the surface on which the zinc-nickel alloy plating treatment was performed using a 3 g / L aqueous solution of chromic acid under the conditions of pH 10 and a current density of 5 A / dm 2 .

(7)シランカップリング剤処理
γ−グリシドキシプロピルトリメトキシシラン2g/L含む水溶液をキャリア付極薄銅箔の極薄銅箔側の表面に吸着させ、電熱器により水分を蒸発させることにより、シランカップリング剤処理を行った。このとき、シランカップリング剤処理はキャリア箔側には行わなかった。
(7) Silane coupling agent treatment By adsorbing an aqueous solution containing 2 g / L of γ-glycidoxypropyltrimethoxysilane to the surface of the ultrathin copper foil with carrier on the side of the ultrathin copper foil and evaporating the moisture with an electric heater. The silane coupling agent treatment was performed. At this time, the silane coupling agent treatment was not performed on the carrier foil side.

(8)評価
こうして得られたキャリア付極薄銅箔について、各種特性の評価を以下のとおり行った。
(8) Evaluation Various characteristics of the ultrathin copper foil with carrier thus obtained were evaluated as follows.

<表面性状パラメータ>
測定機器としてzygo New View 5032(Zygo社製)を用い、解析ソフトとしてMetro Pro Ver.8.0.2を用いて、低周波フィルタを11μmの条件を採用して、キャリア箔と極薄銅箔について、うねりの最大高低差(Wmax)、表面ピーク間の平均距離(Peak spacing)及び谷間の平均距離(Valley spacing)の測定を行った。このとき、極薄銅箔又はキャリア箔を試料台に密着させて固定し、試料片の1cm角の範囲内の中で108μm×144μmの視野を6点選択して測定し、6箇所の測定点から得られた測定値の平均値を代表値として採用した。なお、極薄銅箔の剥離層側の面については、後述するレーザー加工性評価用の銅張積層板を作製した後に測定を行った。
<Surface property parameters>
Zygo New View 5032 (manufactured by Zygo) was used as the measuring instrument, and Metro Pro Ver. 8. With 0.2.2, using a low frequency filter under the condition of 11 μm, for carrier foil and ultrathin copper foil, maximum waviness difference (Wmax), average distance between surface peaks (Peak spacing) and The average distance between the valleys (Valley spacing) was measured. At this time, an ultra-thin copper foil or carrier foil is fixed in close contact with the sample stage, and 6 fields of 108 μm × 144 μm are selected and measured within a 1 cm square range of the sample piece, and 6 measurement points are measured. The average value of the measured values obtained from was adopted as the representative value. In addition, about the surface by the side of the peeling layer of ultra-thin copper foil, it measured after producing the copper clad laminated board for laser workability evaluation mentioned later.

例2については、極薄銅箔の表面(粗化面側)における10800μmの領域(120μm×90μm)の表面プロファイルを、3次元粗さ解析装置(ERA−8900、株式会社エリオニクス製)を用いて、測定倍率:1000倍、加速電圧:10kV、Z軸間隔:0.02μmの条件で解析することにより、平均粗化粒子高さと1/10値幅を決定した。この表面解析は、粗化粒子間の谷底のうち最も低い位置(基底面に相当)から最大粗化粒子高さに至るまで、高さ方向に一定間隔(0.02μm)で区切りながら切断面を順次設定していき、各切断面における粗化粒子の切り口数をカウントすることにより行った。切り口の数が多いほど粗化粒子数が多いことを意味し、その逆もまた然りであることはいうまでもない。そして、縦軸を切断面における切り口数とし、横軸を基底面からの高さとしてグラフ化した。この分布曲線及び前述した定義に基づいて平均粗化粒子高さと1/10値幅を決定した。For Example 2, a surface profile of a 10800 μm 2 region (120 μm × 90 μm) on the surface (roughened surface side) of an ultrathin copper foil was used using a three-dimensional roughness analyzer (ERA-8900, manufactured by Elionix Corporation). The average roughened particle height and the 1/10 value width were determined by analyzing under the conditions of measurement magnification: 1000 times, acceleration voltage: 10 kV, and Z-axis interval: 0.02 μm. This surface analysis is performed by dividing the cut surface while dividing it at a constant interval (0.02 μm) in the height direction from the lowest position (corresponding to the basal plane) of the valley bottom between the roughened particles to the maximum roughened particle height. Setting was performed sequentially, and the number of roughened particles on each cut surface was counted. Needless to say, the greater the number of cuts, the greater the number of roughening particles, and vice versa. The graph was plotted with the vertical axis as the number of cuts in the cut surface and the horizontal axis as the height from the basal plane. Based on this distribution curve and the above-mentioned definition, the average coarse particle height and 1/10 value width were determined.

<レーザー加工性>
キャリア付極薄銅箔を用いて銅張積層板を作製し、レーザー加工性を評価した。まず、内層基板の表面に、プリプレグ(三菱瓦斯化学株式会社製、830NX−A、厚さ0.1mm)を介してキャリア付極薄銅箔の極薄銅箔を積層し、圧力0.4MPa、温度220℃で90分間熱圧着した後、キャリア箔を剥離し、銅張積層板を作製した。その後、炭酸ガスレーザーを用い、パルス幅14μsec.、パルスエネルギー6.4mJ、レーザー光径108μmの条件で銅張積層板にレーザー加工を行った。その際、加工後の穴径が60μm以上となったものをAと判定し、60μm未満をBと判定した。
<Laser workability>
A copper-clad laminate was prepared using an ultrathin copper foil with a carrier, and laser processability was evaluated. First, an ultrathin copper foil of an ultrathin copper foil with a carrier is laminated on the surface of the inner layer substrate via a prepreg (manufactured by Mitsubishi Gas Chemical Co., Inc., 830NX-A, thickness 0.1 mm), pressure 0.4 MPa, After thermocompression bonding at a temperature of 220 ° C. for 90 minutes, the carrier foil was peeled off to produce a copper clad laminate. Thereafter, using a carbon dioxide laser, a pulse width of 14 μsec. The copper-clad laminate was laser processed under the conditions of pulse energy of 6.4 mJ and laser beam diameter of 108 μm. At that time, when the hole diameter after processing was 60 μm or more, it was determined as A, and less than 60 μm was determined as B.

<回路形成性>
回路形成性の評価は次のようにして行った。まず、上述の銅張積層板の表面にドライフィルムを貼り付け、露光及び現像を行い、めっきレジストを形成した。そして、銅張積層板のめっきレジストが形成されていない表面に電解銅めっきを18μmの厚さで形成した。次に、めっきレジストを剥離し、過酸化水素及び硫酸を用いたエッチング液(三菱瓦斯化学株式会社製、CPE800)で処理することにより、回路間に残存している極薄銅箔を溶解除去し、ライン/スペース=15μm/15μmの配線パターンを形成した。このとき、配線パターン幅が±2μm以下であったものをS、±2μm超5μm以下であったものをAと判定し、それ以外をBと判定した。
<Circuit formability>
Evaluation of circuit formability was performed as follows. First, a dry film was affixed to the surface of the copper-clad laminate, and exposure and development were performed to form a plating resist. And the electrolytic copper plating was formed by the thickness of 18 micrometers on the surface in which the plating resist of the copper clad laminated board is not formed. Next, the plating resist is peeled off and treated with an etchant (Mitsubishi Gas Chemical Co., Ltd., CPE800) using hydrogen peroxide and sulfuric acid to dissolve and remove the ultrathin copper foil remaining between the circuits. A wiring pattern of line / space = 15 μm / 15 μm was formed. At this time, the case where the wiring pattern width was ± 2 μm or less was determined as S, the case where the wiring pattern width was more than ± 2 μm and 5 μm or less was determined as A, and the other was determined as B.

例6(比較)
キャリア箔の析出面側に剥離層及び極薄銅箔層を順に形成した後、防錆処理及びシランカップリング剤処理を行うことで、キャリア付極薄銅箔を作製した。そして、得られたキャリア付極薄銅箔について各種評価を行った。具体的な手順は以下のとおりである。
Example 6 (Comparison)
After the release layer and the ultrathin copper foil layer were formed in this order on the deposition surface side of the carrier foil, an ultrathin copper foil with a carrier was prepared by performing a rust prevention treatment and a silane coupling agent treatment. And various evaluation was performed about the obtained ultra-thin copper foil with a carrier. The specific procedure is as follows.

(1)キャリア箔の準備
以下に示される組成の銅電解液と、回転陰極と、陽極としてのDSA(寸法安定性陽極)と用いて、溶液温度50℃、電流密度60A/dmで電解し、厚さ18μmの電解銅箔をキャリア箔として作製した。このとき、回転陰極として、表面を#1000のバフで研磨し表面粗さを整えた電極を用いた。
<銅電解液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:280g/L
‐ ジアリルジメチルアンモニウムクロライド重合体濃度:30mg/L
‐ ビス(3−スルホプロピル)ジスルフィド濃度:5mg/L
(1) Preparation of carrier foil Electrolysis was performed at a solution temperature of 50 ° C. and a current density of 60 A / dm 2 using a copper electrolyte solution having the composition shown below, a rotating cathode, and a DSA (dimensional stability anode) as an anode. Then, an electrolytic copper foil having a thickness of 18 μm was prepared as a carrier foil. At this time, as the rotating cathode, an electrode whose surface was polished with a # 1000 buff to adjust the surface roughness was used.
<Composition of copper electrolyte>
-Copper concentration: 80 g / L
-Sulfuric acid concentration: 280 g / L
-Diallyldimethylammonium chloride polymer concentration: 30 mg / L
-Bis (3-sulfopropyl) disulfide concentration: 5 mg / L

(2)剥離層の形成
酸洗処理されたキャリア箔を、CBTA(カルボキシベンゾトリアゾール)1g/L、硫酸濃度150g/L及び銅濃度10g/LのCBTA水溶液に、液温30℃で30秒間浸漬し、CBTA成分をキャリア箔の析出面に吸着させた。こうして、キャリア箔の析出面にCBTA層を有機剥離層として形成した。
(2) Formation of Release Layer The pickled carrier foil is immersed in a CBTA aqueous solution with CBTA (carboxybenzotriazole) 1 g / L, sulfuric acid concentration 150 g / L and copper concentration 10 g / L at a liquid temperature of 30 ° C. for 30 seconds. Then, the CBTA component was adsorbed on the deposition surface of the carrier foil. Thus, a CBTA layer was formed as an organic release layer on the deposition surface of the carrier foil.

(3)後続工程及び評価
例1〜5の(3)〜(8)に記載されるのと同様の手順に従い、キャリア箔の析出面側に形成された有機剥離層上に、補助金属層の形成、極薄銅箔の形成、粗化処理、防錆処理、シランカップリング処理、及び各種評価を行った。
(3) Subsequent process and evaluation According to the same procedure as described in (3) to (8) of Examples 1 to 5, on the organic release layer formed on the deposition surface side of the carrier foil, the auxiliary metal layer Formation, formation of ultrathin copper foil, roughening treatment, rust prevention treatment, silane coupling treatment, and various evaluations were performed.

例7
粗化処理における焼けめっき工程を、銅濃度10g/L、硫酸濃度120g/L及びカルボキシベンゾトリアゾール2mg/Lを含む酸性硫酸銅溶液を用いて、液温25℃、電流密度15A/dmで粗化処理を行ったこと以外は例2と同様にして、キャリア付極薄銅箔の作製及び評価を行った。基底面からの高さに応じた切断面における粗化粒子の切り口数の分布曲線は図4に示されるとおりであった。
Example 7
The baking plating process in the roughening treatment is performed using an acidic copper sulfate solution containing a copper concentration of 10 g / L, a sulfuric acid concentration of 120 g / L and carboxybenzotriazole of 2 mg / L at a liquid temperature of 25 ° C. and a current density of 15 A / dm 2 . Preparation and evaluation of an ultrathin copper foil with a carrier were carried out in the same manner as in Example 2 except that the treatment was performed. The distribution curve of the number of cut edges of the roughened particles on the cut surface according to the height from the basal plane was as shown in FIG.

結果
例1〜7において得られた評価結果は表1に示されるとおりであった。
Results The evaluation results obtained in Examples 1 to 7 were as shown in Table 1.

Figure 2016117587
Figure 2016117587

Claims (13)

キャリア箔、剥離層及び極薄銅箔をこの順に備えたキャリア付極薄銅箔であって、
前記極薄銅箔の剥離層側の面は、表面ピーク間の平均距離(Peak spacing)が20μm以下であり、かつ、前記極薄銅箔の剥離層と反対側の面は、うねりの最大高低差(Wmax)が1.0μm以下である、キャリア付極薄銅箔。
An ultrathin copper foil with a carrier provided with a carrier foil, a release layer and an ultrathin copper foil in this order,
The surface on the peeling layer side of the ultra-thin copper foil has an average distance between peak peaks (Peak spacing) of 20 μm or less, and the surface on the opposite side to the peeling layer of the ultra-thin copper foil has a maximum undulation. An ultrathin copper foil with a carrier having a difference (Wmax) of 1.0 μm or less.
前記極薄銅箔の剥離層側の面は、前記表面ピーク間の平均距離(Peak spacing)が1〜15μmである、請求項1に記載のキャリア付極薄銅箔。   2. The ultrathin copper foil with a carrier according to claim 1, wherein the surface on the peeling layer side of the ultrathin copper foil has an average distance (Peak spacing) between the surface peaks of 1 to 15 μm. 前記極薄銅箔の剥離層と反対側の面は、うねりの最大高低差(Wmax)が0.8μm以下である、請求項1又は2に記載のキャリア付極薄銅箔。   The ultrathin copper foil with a carrier according to claim 1 or 2, wherein the surface of the ultrathin copper foil opposite to the release layer has a maximum waviness difference (Wmax) of 0.8 µm or less. 前記極薄銅箔の剥離層と反対側の面が粗化面である、請求項1〜3のいずれか一項に記載のキャリア付極薄銅箔。   The ultrathin copper foil with a carrier as described in any one of Claims 1-3 whose surface on the opposite side to the peeling layer of the said ultrathin copper foil is a roughening surface. 前記粗化面が複数の粗化粒子を有し、該複数の粗化粒子は、基底面からの平均粗化粒子高さが1.0〜1.4μmであり、かつ、前記基底面からの高さに応じた切断面における粗化粒子の切り口数の分布曲線の1/10値幅が1.3μm以下であり、前記基底面が前記複数の粗化粒子間の谷底のうち最も低い位置に相当する、前記極薄銅箔と平行な面である、請求項4に記載のキャリア付極薄銅箔。   The roughened surface has a plurality of roughened particles, the plurality of roughened particles have an average roughened particle height from the basal plane of 1.0 to 1.4 μm, and from the basal plane. The 1/10 value width of the distribution curve of the number of cut edges of the roughened particles on the cut surface according to height is 1.3 μm or less, and the basal plane corresponds to the lowest position among the valley bottoms between the plurality of roughened particles. The ultrathin copper foil with a carrier according to claim 4, which is a plane parallel to the ultrathin copper foil. 前記極薄銅箔の剥離層側の面は、うねりの最大高低差(Wmax)が1.0μm以下である、請求項1〜5のいずれか一項に記載のキャリア付極薄銅箔。   The ultrathin copper foil with a carrier according to any one of claims 1 to 5, wherein the surface on the peeling layer side of the ultrathin copper foil has a maximum waviness difference (Wmax) of 1.0 µm or less. 前記極薄銅箔が0.1〜5.0μmの厚さを有する、請求項1〜6のいずれか一項に記載のキャリア付極薄銅箔。   The ultra-thin copper foil with a carrier according to any one of claims 1 to 6, wherein the ultra-thin copper foil has a thickness of 0.1 to 5.0 µm. 前記キャリア箔の剥離層側の面は、谷間の平均距離(Valley spacing)が15μm以下であり、かつ、うねりの最大高低差(Wmax)が0.8μm以下である、請求項1〜7のいずれか一項に記載のキャリア付極薄銅箔。   The surface on the release layer side of the carrier foil has an average valley spacing of 15 μm or less and a maximum waviness difference (Wmax) of 0.8 μm or less. An ultra-thin copper foil with a carrier according to claim 1. 請求項1〜8のいずれか一項に記載のキャリア付極薄銅箔の製造方法であって、
谷間の平均距離(Valley spacing)が15μm以下であり、かつ、うねりの最大高低差(Wmax)が0.8μm以下である表面を有するキャリア箔を用意する工程と、
前記キャリア箔の前記表面に剥離層を形成する工程と、
前記剥離層上に極薄銅箔を形成する工程と、
を含んでなる、方法。
It is a manufacturing method of the ultra-thin copper foil with a carrier according to any one of claims 1 to 8,
Providing a carrier foil having a surface with an average valley spacing (Valley spacing) of 15 μm or less and a maximum waviness difference (Wmax) of 0.8 μm or less;
Forming a release layer on the surface of the carrier foil;
Forming an ultrathin copper foil on the release layer;
Comprising a method.
前記キャリア箔の表面は、谷間の平均距離(Valley spacing)が1〜10μmである、請求項9に記載の方法。   The method of claim 9, wherein the surface of the carrier foil has an average valley spacing of 1 to 10 μm. 前記キャリア箔の表面は、うねりの最大高低差(Wmax)が0.1〜0.7μmである、請求項9又は10に記載の方法。   The method according to claim 9 or 10, wherein the surface of the carrier foil has a maximum waviness difference (Wmax) of 0.1 to 0.7 µm. 請求項1〜8のいずれか一項に記載のキャリア付極薄銅箔を用いて得られた銅張積層板。   The copper clad laminated board obtained using the ultra-thin copper foil with a carrier as described in any one of Claims 1-8. 請求項1〜8のいずれか一項に記載のキャリア付極薄銅箔を用いて得られたプリント配線板。   The printed wiring board obtained using the ultra-thin copper foil with a carrier as described in any one of Claims 1-8.
JP2016570671A 2015-01-22 2016-01-20 Ultra-thin copper foil with carrier and method for producing the same Active JP6352449B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015010431 2015-01-22
JP2015010431 2015-01-22
PCT/JP2016/051526 WO2016117587A1 (en) 2015-01-22 2016-01-20 Ultrathin copper foil with carrier and method for manufacturing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018103931A Division JP6529640B2 (en) 2015-01-22 2018-05-30 Ultra-thin copper foil with carrier and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPWO2016117587A1 true JPWO2016117587A1 (en) 2017-07-06
JP6352449B2 JP6352449B2 (en) 2018-07-04

Family

ID=56417128

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016570671A Active JP6352449B2 (en) 2015-01-22 2016-01-20 Ultra-thin copper foil with carrier and method for producing the same
JP2018103931A Active JP6529640B2 (en) 2015-01-22 2018-05-30 Ultra-thin copper foil with carrier and method for manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018103931A Active JP6529640B2 (en) 2015-01-22 2018-05-30 Ultra-thin copper foil with carrier and method for manufacturing the same

Country Status (6)

Country Link
JP (2) JP6352449B2 (en)
KR (2) KR102031065B1 (en)
CN (2) CN110072334B (en)
MY (1) MY174931A (en)
TW (1) TWI572747B (en)
WO (1) WO2016117587A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181726A1 (en) * 2017-03-30 2018-10-04 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board using same
CN107454762A (en) * 2017-09-14 2017-12-08 桐城市闲产网络服务有限公司 A kind of preparation method of computer circuit board
CN108323025B (en) * 2018-02-01 2020-01-14 北京启创驿讯科技有限公司 Preparation method of printed circuit board and copper foil for processing
WO2020031721A1 (en) * 2018-08-10 2020-02-13 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
CN109518131A (en) * 2018-12-25 2019-03-26 胡旭日 A kind of ultrathin copper foil with carrier, ultrathin copper foil production method and device
JP7259093B2 (en) * 2020-02-04 2023-04-17 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
KR20220106199A (en) 2020-02-04 2022-07-28 미쓰이금속광업주식회사 Roughening process copper foil, copper foil provided with a carrier, copper clad laminated board, and printed wiring board
CN112795964B (en) * 2020-12-07 2021-11-19 安徽铜冠铜箔集团股份有限公司 Ultrathin strippable composite copper foil and preparation method thereof
KR20230161954A (en) * 2021-03-29 2023-11-28 미쓰이금속광업주식회사 Roughened copper foil, copper clad laminate and printed wiring board
JPWO2022209989A1 (en) * 2021-03-29 2022-10-06
JPWO2022244826A1 (en) 2021-05-20 2022-11-24
JPWO2022244828A1 (en) 2021-05-20 2022-11-24
KR20240009404A (en) 2021-05-20 2024-01-22 미쓰이금속광업주식회사 Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
CN115233262B (en) * 2022-08-01 2023-12-12 九江德福科技股份有限公司 Preparation method of extra-thin copper foil with carrier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161840A (en) * 2003-11-11 2005-06-23 Furukawa Circuit Foil Kk Ultra-thin copper foil with carrier and printed circuit
JP2009176768A (en) * 2008-01-21 2009-08-06 Ube Ind Ltd Method for manufacturing copper wiring insulation film using semi-additive method, and copper wiring insulation film manufactured from the same
WO2012046804A1 (en) * 2010-10-06 2012-04-12 古河電気工業株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
JP2013019056A (en) * 2006-03-10 2013-01-31 Mitsui Mining & Smelting Co Ltd Surface treated electrolytic copper foil and copper clad laminate obtained by using the same
WO2014133164A1 (en) * 2013-02-28 2014-09-04 三井金属鉱業株式会社 Blackened surface-treated copper foil, method for manufacturing blackened surface-treated copper foil, copper-clad laminate and flexible printed circuit board
JP2014208910A (en) * 2013-03-29 2014-11-06 Jx日鉱日石金属株式会社 Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY138743A (en) * 1996-05-13 2009-07-31 Mitsui Mining & Smelting Co High tensile strength electrodeposited copper foil and the production process of the same
JP3142270B2 (en) 1998-04-01 2001-03-07 三井金属鉱業株式会社 Manufacturing method of printed wiring board
JP4298943B2 (en) * 2001-10-18 2009-07-22 日鉱金属株式会社 Copper foil surface treatment agent
JP2005048277A (en) * 2003-07-15 2005-02-24 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, and manufacturing method therefor
US20050158574A1 (en) * 2003-11-11 2005-07-21 Furukawa Circuit Foil Co., Ltd. Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161840A (en) * 2003-11-11 2005-06-23 Furukawa Circuit Foil Kk Ultra-thin copper foil with carrier and printed circuit
JP2013019056A (en) * 2006-03-10 2013-01-31 Mitsui Mining & Smelting Co Ltd Surface treated electrolytic copper foil and copper clad laminate obtained by using the same
JP2009176768A (en) * 2008-01-21 2009-08-06 Ube Ind Ltd Method for manufacturing copper wiring insulation film using semi-additive method, and copper wiring insulation film manufactured from the same
WO2012046804A1 (en) * 2010-10-06 2012-04-12 古河電気工業株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
WO2014133164A1 (en) * 2013-02-28 2014-09-04 三井金属鉱業株式会社 Blackened surface-treated copper foil, method for manufacturing blackened surface-treated copper foil, copper-clad laminate and flexible printed circuit board
JP2014208910A (en) * 2013-03-29 2014-11-06 Jx日鉱日石金属株式会社 Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board

Also Published As

Publication number Publication date
KR102031065B1 (en) 2019-10-11
JP6529640B2 (en) 2019-06-12
JP2018138702A (en) 2018-09-06
TW201636457A (en) 2016-10-16
CN110072334A (en) 2019-07-30
JP6352449B2 (en) 2018-07-04
KR20180135105A (en) 2018-12-19
CN107002265B (en) 2019-04-26
CN110072334B (en) 2022-04-01
CN107002265A (en) 2017-08-01
MY174931A (en) 2020-05-24
KR101929844B1 (en) 2018-12-17
TWI572747B (en) 2017-03-01
KR20170057327A (en) 2017-05-24
WO2016117587A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
JP6352449B2 (en) Ultra-thin copper foil with carrier and method for producing the same
JP6945523B2 (en) Surface-treated copper foil, copper foil with carrier, and methods for manufacturing copper-clad laminates and printed wiring boards using them.
JP6193534B2 (en) Roughening copper foil, copper clad laminate and printed wiring board
JP6905157B2 (en) Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
JP6293365B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP6430092B1 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP7166335B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
TWI756039B (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
WO2016152390A1 (en) Ultra-thin copper foil with carrier, manufacturing method therefor, copper-clad laminate, and printed wiring board
WO2022202539A1 (en) Copper foil with carrier, copper-clad laminate, and printed wiring board
WO2022244827A1 (en) Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board
WO2022244826A1 (en) Roughened copper foil, copper foil with carrier, copper-cladded laminate board, and printed wiring board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180606

R150 Certificate of patent or registration of utility model

Ref document number: 6352449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250