JPWO2016060105A1 - リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 - Google Patents

リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 Download PDF

Info

Publication number
JPWO2016060105A1
JPWO2016060105A1 JP2016554078A JP2016554078A JPWO2016060105A1 JP WO2016060105 A1 JPWO2016060105 A1 JP WO2016060105A1 JP 2016554078 A JP2016554078 A JP 2016554078A JP 2016554078 A JP2016554078 A JP 2016554078A JP WO2016060105 A1 JPWO2016060105 A1 JP WO2016060105A1
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
positive electrode
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016554078A
Other languages
English (en)
Other versions
JP6726102B2 (ja
Inventor
健二 高森
健二 高森
寛之 栗田
寛之 栗田
裕一郎 今成
裕一郎 今成
山下 大輔
大輔 山下
公保 中尾
公保 中尾
京介 堂前
京介 堂前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
Sumitomo Chemical Co Ltd
Original Assignee
Tanaka Chemical Corp
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp, Sumitomo Chemical Co Ltd filed Critical Tanaka Chemical Corp
Publication of JPWO2016060105A1 publication Critical patent/JPWO2016060105A1/ja
Application granted granted Critical
Publication of JP6726102B2 publication Critical patent/JP6726102B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内のピークにおける結晶子サイズαと、2θ=44.6±1°の範囲内のピークにおける結晶子サイズβとの比α/βが1以上1.75以下であり、以下組成式(I)で表されるリチウム二次電池用正極活物質。Li[Lix(NiaCobMncMd)1−x]O2・・・(I)(ここで、0≦x≦0.2、0.3<a<0.7、0<b<0.4、0<c<0.4、0≦d<0.1、a+b+c+d=1、Mは、Fe、Cr、Ti、Mg、AlおよびZrからなる群より選ばれる少なくとも1種の金属である。)

Description

本発明は、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池に関するものである。
本願は、2014年10月15日に日本に出願された特願2014−210577号に基づき優先権を主張し、その内容をここに援用する。
リチウム含有複合金属酸化物は、リチウム二次電池用正極活物質として用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中・大型電源においても、実用化が進んでいる。
従来のリチウム二次電池用正極活物質として、特許文献1にはL i1.00Ni0.33Co0.34Mn0.33で表されるリチウム遷移金属複合酸化物であって、BET比表面積が0.7m/gであり、X 線回折法により得られたX 線回折パターンを基にして求めた104面の垂線方向の結晶子サイズが800Åである非水電解液二次電池用正極活物質が開示されている。
また、特許文献2にはLi1.15(Ni0.34Co0.33Mn0.330.9682Mg0.001Ca0.03Na0.0008で表されるリチウム遷移金属複合酸化物であって、X 線回折法により得られたX 線回折パターンを基にして求めた003面の垂線方向の結晶子サイズが1580Åである非水電解液二次電池用正極活物質が開示されている。
特開2004−335278公報 特開2012−252964公報
しかしながら、上記のような従来のリチウム含有複合金属酸化物を正極活物質として用いて得られるリチウム二次電池は、高い初回クーロン効率を有するリチウム二次電池を得る上で、十分なものではなかった。
初回クーロン効率は、二次電池としての性能を評価する指標の1つである。「初回クーロン効率」とは(初回放電容量)/(初回充電容量)×100(%)で求められる値である。初回クーロン効率が高い二次電池は、初回の充放電に伴うリチウムイオンの損失が少なく、体積および重量あたりの容量が大きくなりやすいため、できるだけ高い初回クーロン効率を示す二次電池が求められている。
本発明はこのような事情に鑑みてなされたものであって、高い初回クーロン効率を示すリチウム二次電池に有用な正極活物質を提供することを目的とする。また、このようなリチウム二次電池用正極活物質を用いた正極、リチウム二次電池を提供することを併せて目的とする。
上記の課題を解決するため、本発明は、CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内のピークにおける結晶子サイズαと、2θ=44.6±1°の範囲内のピークにおける結晶子サイズβとの比α/βが1以上1.75以下であり、以下組成式(I)で表されるリチウム二次電池用正極活物質を提供する。
Li[Li(NiCoMn1−x]O ・・・(I)
(ここで、0≦x≦0.2、0.3<a<0.7、0<b<0.4、0<c<0.4、0≦d<0.1、a+b+c+d=1、Mは、Fe、Cr、Ti、Mg、AlおよびZrからなる群より選ばれる少なくとも1種の金属である。)
本発明の一態様においては、前記組成式(I)において、a≧b+cの関係式を満たすことが好ましい。
本発明の一態様においては、前記結晶子サイズαと結晶子サイズβとの比α/βが1以上1.5以下であることが好ましい。
本発明の一態様においては、BET比表面積が0.5m/g以上4m/g以下であることが好ましい。
本発明の一態様において、結晶子サイズβが150Å以上650Å以下であることが好ましい。
本発明の一態様においては、平均一次粒子径が0.05μm以上1μm以下であり、50%累積体積粒度D50が1μm以上10μm以下であることが好ましい。
本発明の一態様においては、90%累積体積粒度D90と10%累積体積粒度D10との比率D90/D10が2.0以上3.5以下であることが好ましい。
本発明の一態様においては、タップかさ密度が1.2以上2.0以下であることが好ましい。
また、本発明の一態様は、上述のリチウム二次電池用正極活物質を有する二次電池用正極を提供する。
また、本発明の一態様は、負極、および上述の正極を有するリチウム二次電池を提供する。
本発明によれば、高い初回クーロン効率を示すリチウム二次電池用正極活物質を提供することができる。また、このようなリチウム二次電池用正極活物質を用いた正極、およびリチウム二次電池を提供することができる。本発明のリチウム二次電池用正極活物質は、特に車載用用途に好適なリチウム二次電池に有用である。
リチウムイオン二次電池に用いる電極群の一例を示す概略構成図である。 図1Aに示す電極群を含んでなるリチウムイオン二次電池の一例を示す概略構成図である。 本発明において、結晶子サイズを説明するための模式図であるであって、結晶子における003面及び104面の模式図を示す。 本発明において、結晶子サイズを説明するための模式図であって、後述するピークAから算出できる結晶子サイズαと、後述するピークBから算出できる結晶子サイズβとの関係を示す模式図である。
[リチウム二次電池用正極活物質]
本実施形態のリチウム二次電池用正極活物質は、CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内のピークにおける結晶子サイズαと、2θ=44.6±1°の範囲内のピークにおける結晶子サイズβとの比α/βが1以上1.75以下であり、以下組成式(I)で表されるリチウム二次電池用正極活物質である。
Li[Li(NiCoMn1−x]O ・・・(I)
(ここで、0≦x≦0.2、0.3<a<0.7、0<b<0.4、0<c<0.4、0≦d<0.1、a+b+c+d=1、Mは、Fe、Cr、Ti、Mg、AlおよびZrからなる群より選ばれる少なくとも1種の金属である。)
以下、順に説明する。
本実施形態のリチウム二次電池用正極活物質は、以下組成式(I)で表される。
Li[Li(NiCoMn1−x]O ・・・(I)
(ここで、0≦x≦0.2、0.3<a<0.7、0<b<0.4、0<c<0.4、0≦d<0.1、a+b+c+d=1、Mは、Fe、Cr、Ti、Mg、AlおよびZrからなる群より選ばれる少なくとも1種の金属である。)
本実施形態のリチウム二次電池用正極活物質において、サイクル特性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるxは0.01以上であることが好ましく、0.02以上であることがより好ましく、0.03以上であることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、xは0.18以下であることが好ましく、0.15以下であることがより好ましく、0.10以下であることがさらに好ましい。
xの上限値と下限値は任意に組み合わせることができる。
本明細書において、「サイクル特性が高い」とは、放電容量維持率が高いことを意味する。
本実施形態のリチウム二次電池用正極活物質において、容量が高いリチウム二次電池を得る観点から、前記組成式(I)におけるaは0.4以上であることが好ましく、0.5以上であることがより好ましく、0.55以上であることがさらに好ましい。また、高い電流レートにおける放電容量が高いリチウム二次電池を得る観点から、aは0.65以下であることが好ましく、0.62以下であることがより好ましく、0.59以下であることがさらに好ましい。
aの上限値と下限値は任意に組み合わせることができる。
また、サイクル特性が高いリチウム二次電池を得る観点から、組成式(I)におけるbは0.07以上であることが好ましく、0.10以上であることがより好ましく、0.13以上であることがさらに好ましい。また、熱的安定性が高いリチウム二次電池を得る観点から、bは0.35以下であることが好ましく、0.25以下であることがより好ましく、0.18以下であることがさらに好ましい。
bの上限値と下限値は任意に組み合わせることができる。
また、サイクル特性が高いリチウム二次電池を得る観点から、組成式(I)におけるcは0.10以上であることが好ましく、0.15以上であることがより好ましく、0.22以上であることがさらに好ましい。また、高温(例えば60℃環境下)での保存特性が高いリチウム二次電池を得る観点から、cは0.35以下であることが好ましく、0.30以下であることがより好ましく、0.28以下であることがさらに好ましい。
cの上限値と下限値は任意に組み合わせることができる。
組成式(I)におけるMは、Fe、Cr、Ti、Mg、Al、Zrのうちいずれか1種以上の金属である。
リチウム二次電池用正極活物質の取扱い性(ハンドリング性)を高める観点から、組成式(I)におけるdは0を超えることが好ましく、0.001以上であることがより好ましく、0.005以上であることがさらに好ましい。また、高い電流レートでの放電容量が高いリチウム二次電池を得る目的で、0.08以下であることが好ましく、0.04以下であることがより好ましく、0.02以下であることがさらに好ましい。
dの上限値と下限値は任意に組み合わせることができる。
また、サイクル特性が高いリチウム二次電池を得る観点からは、組成式(I)におけるMは、Al又はZrであることが好ましく、熱的安定性が高いリチウム二次電池を得る観点からは、Mg又はAlであることが好ましい。即ち、サイクル特性および熱的安定性の両方を向上させるためには、MとしてAlを使用することが最も好ましい。
低温(例えば0℃環境下)において高い電流レートでの放電容量が高いリチウム二次電池を得る意味で、本実施形態のリチウム二次電池用正極活物質は、組成式(I)において、a≧b+cの関係式を満たすことが好ましく、a>b+cを満たすことがより好ましい。
熱的安定性が高いリチウム二次電池を得る意味で、本実施形態のリチウム二次電池用正極活物質は、組成式(I)において、b<cの関係式を満たすことが好ましい。
(層状構造)
まず、本実施形態のリチウム二次電池用正極活物質の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
六方晶型の結晶構造は、P3、P3、P3、R3、P−3、R−3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P−31m、P−31c、P−3m1、P−3c1、R−3m、R−3c、P6、P6、P6、P6、P6、P6、P−6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P−6m2、P−6c2、P−62m、P−62c、P6/mmm、P6/mcc、P6/mcm、P6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。
また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、C2/cからなる群から選ばれるいずれか一つの空間群に帰属される。
これらのうち、放電容量が高いリチウム二次電池を得る観点から、結晶構造は、空間群R−3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。
本実施形態のリチウム二次電池用正極活物質の空間群は、次のようにして確認することができる。
まず、リチウム二次電池用正極活物質について、CuKαを線源とし、かつ回折角2θの測定範囲を10°以上90°以下とする粉末X線回折測定を行い、次いでその結果をもとにリートベルト解析を行い、リチウム含有複合金属酸化物が有する結晶構造およびこの結晶構造における空間群を決定する。リートベルト解析は、材料の粉末X線回折測定における回折ピークのデータ(回折ピーク強度、回折角2θ)を用いて、材料の結晶構造を解析する手法であり、従来から使用されている手法である(例えば「粉末X線解析の実際−リートベルト法入門−」2002年2月10日発行、日本分析化学会X線分析研究懇談会編、参照)。
(結晶子サイズ)
本実施形態のリチウム二次電池用正極活物質は、CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内のピーク(以下、ピークAと呼ぶこともある)における結晶子サイズαと2θ=44.6±1°の範囲内のピーク(以下、ピークBと呼ぶこともある)における結晶子サイズβとの比α/βが1以上1.75以下である。
本実施形態のリチウム二次電池用正極活物質のピークAにおける結晶子サイズαおよびピークBにおける結晶子サイズβは、以下のようにして確認することが出来る。
まず、本実施形態のリチウム二次電池用正極活物質について、CuKαを線源とし、かつ回折角2θの測定範囲を10°以上90°以下とする粉末X線回折測定を行い、ピークAおよびピークBに対応するピークを決定する。さらに、決定したそれぞれのピークの半値幅を算出し、Scherrer式 D=Kλ/Bcosθ (D:結晶子サイズ、K:Scherrer定数、B:ピーク半値幅)を用いることで結晶子サイズを算出することが出来る。該式により、結晶子サイズを算出することは従来から使用されている手法である(例えば「X線構造解析−原子の配列を決める−」2002年4月30日第3版発行、早稲田嘉夫、松原栄一郎著、参照)。以下にリチウム二次電池用正極活物質が空間群R−3mに帰属される六方晶型の結晶構造である場合を例に、図面を用いてより具体的に説明する。
図2Aに、結晶子における003面及び104面の模式図を示す。図2A中、003面の垂線方向の結晶子サイズは結晶子サイズαに、104面の垂線方向の結晶子サイズは結晶子サイズβに相当する。
図2Bは、ピークAから算出できる結晶子サイズαと、ピークBから算出できる結晶子サイズβとの関係を示す模式図である。
結晶子サイズα/βの値が1よりも大きいほど、図2A中のz軸に対して平行に結晶子が異方成長したものであることを示し、α/βの値が1に近づくほど、結晶子が等方成長したものであることを示す。
本実施形態においては、充電容量が高いリチウム二次電池を得る観点から、α/βは1を超えることが好ましく、1.05以上であることがより好ましく、1.1以上であることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、α/βは1.5以下であることが好ましく、1.4以下であることがより好ましく、1.3以下であることがさらに好ましい。
α/βの上限値と下限値は任意に組み合わせることができる。
本実施形態のリチウム二次電池用正極活物質におけるα/βは、後述する金属複合化合物の組成や粒子形態、BET比表面積及び後述するリチウム含有複合金属酸化物を製造する際の焼成条件を調整することにより制御することができる。とくに金属複合化合物のBET比表面積を30m/g以上100m/g以下の範囲内とし焼成条件を調整すると、得られるリチウム二次電池用正極活物質のα/βを1以上1.75以下に制御しやすい。
サイクル特性が高いリチウム二次電池を得る観点から、結晶子サイズαは1000Å以下であることが好ましく、750Å以下であることがより好ましく、600Å以下であることがさらに好ましい。また、充電容量が高いリチウム二次電池を得る観点から、結晶子サイズαは、200Å以上であることが好ましく、250Å以上であることがより好ましく、300Å以上であることがさらに好ましい。
前記αの上限値と下限値は任意に組み合わせることができる。
サイクル特性が高いリチウム二次電池を得る観点から、結晶子サイズβは650Å以下であることが好ましく、600Å以下であることがより好ましく、550Å以下であることがさらに好ましく、500Å以下であることがとくに好ましい。また、充電容量が高いリチウム二次電池を得る観点から、結晶子サイズβは、150Å以上であることが好ましく、200Å以上であることがより好ましく、250Å以上であることがさらに好ましい。
前記βの上限値と下限値は任意に組み合わせることができる。
(粒子径)
本実施形態のリチウム二次電池用正極活物質の粒子形態は、一次粒子が凝集して形成された二次粒子、あるいは一次粒子が凝集して形成された二次粒子と一次粒子との混合物である。本実施形態において、リチウム二次電池用正極活物質の平均一次粒子径は、充電容量が高いリチウム二次電池を得る観点から、0.05μm以上であることが好ましく、0.08μm以上であることがより好ましく、0.1μm以上であることがさらに好ましい。また、より初回クーロン効率が高いリチウム二次電池を得る観点から平均一次粒子径は1μm以下であることが好ましく、0.7μm以下であることがより好ましく、0.5μm以下であることがさらに好ましい。
前記平均一次粒子径の上限値と下限値は任意に組み合わせることができる。
平均一次粒子は、SEMで観察することにより測定することができる。
本実施形態におけるリチウム二次電池用正極活物質の各結晶子サイズおよび一次粒子径は、後述する金属複合化合物の一次粒子径や、後述するリチウム含有複合金属酸化物を製造する際の焼成条件を調整することで制御することができる。
本実施形態においてリチウム二次電池用正極活物質の50%累積体積粒度D50は、低温(たとえば0℃)環境下における放電容量を高めるリチウム二次電池を得る観点から、10μm以下であることが好ましく、8μm以下であることがより好ましく、7μm以下であることがさらに好ましい。また、電極密度を高める観点からは、50%累積体積粒度D50は1μm以上であることが好ましく、2μm以上であることがより好ましく、3μm以上であることがさらに好ましい。
50%累積体積粒度D50は、以下の方法(レーザー回折散乱法)によって測定される。
まず、リチウム二次電池用正極活物質の粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、該粉末を分散させた分散液を得る。
次に、得られた分散液についてマルバーン社製マスターサイザー2000(レーザー回折散乱粒度分布測定装置)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得る。
そして、得られた累積粒度分布曲線において、50%累積時の微小粒子側から見た粒子径の値が、50%累積体積粒度D50であり、リチウム二次電池用正極活物質の二次粒子径であるとした。また、10%累積時の微小粒子側から見た粒子径の値が10%累積体積粒度D10、90%累積時の微小粒子側から見た粒子径の値が90%累積体積粒度D90である。
本実施形態において、リチウム二次電池用正極活物質の90%累積体積粒度D90と10%累積体積粒度D10との比率D90/D10は、電極密度を高める観点から、2以上であることが好ましく、2.2以上であることが好ましく、2.4以上であることがより好ましい。また、高い電流レートにおける放電容量が高いリチウム二次電池を得る観点から、D90/D10は3.5以下であることが好ましく、3.0以下であることがより好ましい。
本実施形態において、D90/D10が低い値であると、粒度分布の幅が狭いことを示し、D90/D10が高い値であると、粒度分布の幅が広いことを示す。
本実施形態におけるリチウム二次電池用正極活物質の10%累積体積粒度D10、50%累積体積粒度D50、90%累積体積粒度D90およびD90/D10は、後述する金属複合化合物の二次粒子径及び粒子径分布を調整することで制御することができる。
(BET比表面積)
本実施形態において、リチウム二次電池用正極活物質のBET比表面積は、高い電流レートにおける放電容量が高いリチウム二次電池を得る観点から、0.5m/g以上であることが好ましく、0.8m/g以上がより好ましく、1m/g以上がさらに好ましい。また、ハンドリング性を高める観点から、4m/g以下であることが好ましく、3.8m/g以下がより好ましく、3.5m/g以下がさらに好ましい。
上記のBET比表面積の上限値と下限値は任意に組み合わせることができる。
本実施形態のリチウム二次電池用正極活物質のBET比表面積は、後述する金属複合化合物のBET比表面積及び後述するリチウム含有複合金属酸化物を製造する際の焼成条件を調整することにより制御することができる。
(タップかさ密度)
本実施形態において、リチウム二次電池用正極活物質のタップかさ密度は、高い電流レートにおける放電容量が高いリチウム二次電池を得る観点から、1.2g/cc以上であることが好ましく、1.3g/cc以上であることがより好ましく、1.4g/cc以上であることがより好ましい。また、電解液の含浸性が高い電極を得る観点から、2.0g/cc以下であることが好ましく、1.95g/cc以下であることがより好ましく、1.9g/cc以下であることがより好ましい。
タップかさ密度はJIS R 1628−1997に基づいて測定することができる。
本実施形態におけるリチウム二次電池用正極活物質のタップかさ密度は、後述する金属複合化合物の粒子形状や、後述するリチウム含有複合金属酸化物を製造する際の焼成条件を調整することで制御することができる。
本発明のリチウム二次電池用正極活物質は、高い初回クーロン効率を有する。その理由は、以下のように推察される。
本発明において、リチウム二次電池用正極活物質は、結晶子サイズαと結晶子サイズβの比α/βが所定の範囲内となっている。結晶子サイズαと結晶子サイズβは、それぞれ異なる方向の結晶子サイズであり、これらの比α/βは結晶子の形態を示すものとなる。本発明においては、結晶子サイズαと結晶子サイズβの比α/βが所定の範囲内である、即ち結晶子の形態を等方性の高いものとすることで、充放電時にリチウム脱挿入を行う結晶面がリチウム二次電池用正極活物質の全体に均一に存在することとなり、高い初回クーロン効率を達成できると考えられる。
また、結晶子サイズを小さくすることにより、充放電時の体積変化を小さくすることが可能となるため、高いサイクル特性を達成できると考えられる。
[リチウム含有複合金属酸化物の製造方法]
本発明のリチウム含有複合金属酸化物を製造するにあたって、まず、リチウム以外の金属、すなわち、Ni、Co及びMnの必須金属、並びに、Fe、Cr、Ti、Mg、Al、Zrのうちいずれか1種以上の任意金属を含む金属複合化合物を調製し、当該金属複合化合物を適当なリチウム塩と焼成することが好ましい。金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。以下に、正極活物質の製造方法の一例を、金属複合化合物の製造工程と、リチウム含有複合金属酸化物の製造工程とに分けて説明する。
(金属複合化合物の製造工程)
金属複合化合物は、通常公知のバッチ法又は共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
まず共沈殿法、特に特開2002−201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、NiCoMn(OH)(式中、s+t+u=1)で表される複合金属水酸化物を製造する。
上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れかを使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、及び塩化コバルトのうちの何れかを使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、及び塩化マンガンのうちの何れかを使用することができる。以上の金属塩は、上記NiCoMn(OH)の組成比に対応する割合で用いられる。また、溶媒として水が使用される。
錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。
沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム、水酸化カリウム)を添加する。
上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、NiCoMn(OH)が製造される。反応に際しては、反応槽の温度が例えば10℃以上60℃以下、好ましくは20℃以上60℃以下の範囲内で制御され、反応槽内のpH値は例えばpH9以上pH13以下、好ましくはpH10以上pH13以下の範囲内で制御され、反応槽内の物質が適宜撹拌される。反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプのものを使用することができる。
以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケルコバルトマンガン複合化合物としてのニッケルコバルトマンガン水酸化物を単離する。また、必要に応じて弱酸水で洗浄してもよい。なお、上記の例では、ニッケルコバルトマンガン複合水酸化物を製造しているが、ニッケルコバルトマンガン複合酸化物を調製してもよい。
上記方法により得られる金属複合化合物の一次粒子径、二次粒子径、BET比表面積を制御することで、下記工程で最終的に得られるリチウム含有複合金属酸化物の一次粒子径、二次粒子径、BET比表面積等の各種物性を制御することができる。上記金属複合化合物の各物性は反応槽に供給する金属塩の濃度、攪拌速度、反応温度、及び反応pHを制御することにより、目的とする物性を得ることができる。例えば反応温度が同じ場合、反応pHを大きくすることでBET比表面積を大きくすることができる。その他にも、例えば反応pHが同じ場合、反応温度を高くすることでBET比表面積を大きくすることができる。また、所望の粒子形態を実現するためには、上記の条件の制御に加えて、各種気体、例えば、窒素、アルゴン、二酸化炭素等の不活性ガス、空気、酸素等によるバブリングを併用してもよい。更に、上記金属複合化合物の各物性の制御に加え、後述する焼成温度を制御することにより、リチウム含有複合金属酸化物の各結晶子サイズを本願が目的とする範囲に制御することができることから、金属複合化合物の各物性制御と同様に焼成温度の制御も重要である。
(リチウム含有複合金属酸化物の製造工程)
上記金属複合酸化物又は水酸化物を乾燥した後、リチウム塩と混合する。乾燥条件は、特に制限されないが、例えば、金属複合酸化物又は水酸化物が酸化・還元されない条件(具体的には、酸化物同士、又は水酸化物同士で乾燥する条件)、金属複合水酸化物が酸化される条件(具体的には、水酸化物から酸化物へ酸化する乾燥条件)、金属複合酸化物が還元される条件(具体的には、酸化物から水酸化物へ還元する乾燥条件)のいずれの条件でもよい。
酸化・還元がされない条件とするためには、窒素、ヘリウム及びアルゴン等の希ガス等の不活性ガスを使用すればよく、水酸化物が酸化される条件とするためには、酸素又は空気の雰囲気下として行えばよい。また、金属複合酸化物が還元される条件としては、不活性ガス雰囲気下、ヒドラジン、亜硫酸ナトリウム等の還元剤を使用すればよい。リチウム塩としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。
金属複合酸化物又は水酸化物の乾燥後に、適宜分級を行ってもよい。以上のリチウム塩と金属複合酸化物又は水酸化物とは、最終目的物の組成比を勘案して用いられる。例えば、ニッケルコバルトマンガン複合水酸化物を用いる場合、リチウム塩と当該複合金属水酸化物は、Li[Li(NiCoMn1−r]O(式中、s+t+u=1)の組成比に対応する割合で用いられる。ニッケルコバルトマンガン複合金属水酸化物及びリチウム塩の混合物を焼成することによって、リチウム−ニッケルコバルトマンガン複合酸化物が得られる。均一なリチウム−ニッケルコバルトマンガン複合酸化物が得られる意味で、rは0を超えることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。また、純度の高いリチウム−ニッケルコバルトマンガン複合酸化物が得られる意味で、rは0.2以下であることが好ましく、0.15以下であることがより好ましく、0.1以下であることがさらに好ましい。
上記のrの上限値と下限値は任意に組み合わせることができる。
なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。
上記金属複合酸化物又は水酸化物と、水酸化リチウム、炭酸リチウム等のリチウム化合物との焼成温度としては、好ましくは600℃以上900℃以下、より好ましくは650℃以上850℃以下、とりわけ好ましくは680℃以上800℃以下である。焼成温度が600℃を下回ると、充電容量が低下するという問題を生じやすい。これ以下の領域ではLiの移動を妨げる構造的要因が存在している可能性がある。
一方、焼成温度が900℃を上回ると、Liの揮発によって目標とする組成の複合酸化物が得られにくいなどの作製上の問題や、初回クーロン効率が低下するなどといった問題が生じやすい。これは、900℃を上回ると、一次粒子成長速度が増加し、図2A中のz軸に対して平行に結晶子の異方成長が促進されることで、粒子の均一性が低下するためと考えられるが、それに加えて、局所的にLi欠損量が増大して、構造的に不安定となっていることも原因ではないかと考えられる。
さらに、高温になるほど、図2A中のz軸に対して平行に結晶子の異方成長が促進され、結晶子サイズ自体も増大する。結晶子サイズが大きくなることで、Liの脱挿入を伴う充放電を行ったときに生じる結晶構造の体積変化が、二次粒子に及ぼす影響が大きくなり、二次粒子の割れなどといったサイクル特性を低下させる現象が起こりやすくなると考えられる。焼成温度を680℃以上800℃以下の範囲とすることによって、特に高いクーロン効率を示し、サイクル特性に優れた電池を作製できる。焼成時間は、0.5時間〜20時間が好ましい。焼成時間が20時間を超えると、Liの揮発によって実質的に電池性能に劣る傾向となる。焼成時間が0.5時間より短いと、結晶の発達が悪く、電池性能が悪くなる傾向となる。なお、上記の焼成の前に、仮焼成を行うことも有効である。この様な仮焼成の温度は、300〜800℃の範囲で、0.5〜10時間行うことが好ましい。仮焼成を行うことにより、焼成時間を短縮することができることもある。
焼成によって得たリチウム含有複合金属酸化物は、粉砕後に適宜分級され、リチウム二次電池に適用可能なリチウム二次電池用正極活物質とされる。
[リチウム二次電池]
次いで、リチウム二次電池の構成を説明しながら、本実施形態のリチウム含有複合金属酸化物をリチウム二次電池の正極活物質として用いた正極、およびこの正極を有するリチウム二次電池について説明する。
本実施形態のリチウム二次電池の一例は、正極および負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解質を有する。
図1Aは、本実施形態のリチウム二次電池に用いる電極群の一例を示す模式図であり、図1Bは、図1Aに示す電極群を含んでなるリチウムイオン二次電池の一例を示す概略構成図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。
まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、および一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
次いで、図1Bに示すように、電池缶5に電極群4および不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7および封口体8で封止することで、リチウム二次電池10を製造することができる。
電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。
また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。
さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(又はシート型)電池を例示することができる。
以下、各構成について順に説明する。
(正極)
本実施形態の正極は、まず正極活物質、導電材およびバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
(導電材)
本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率および出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、および正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
(バインダー)
本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂およびポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力および正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N−メチル−2−ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法および静電スプレー法が挙げられる。
以上に挙げられた方法により、正極を製造することができる。
(負極)
本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、および負極活物質単独からなる電極を挙げることができる。
(負極活物質)
負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維および有機高分子化合物焼成体を挙げることができる。
負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタン又はバナジウムとを含有する複合金属酸化物;を挙げることができる。
負極活物質として使用可能な硫化物としては、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。
負極活物質として使用可能な窒化物としては、LiN、Li3−xN(ここで、AはNiおよびCoのいずれか一方又は両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。
これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質又は非晶質のいずれでもよい。
また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属およびスズ金属などを挙げることができる。
負極活物質として使用可能な合金としては、Li−Al、Li−Ni、Li−Si、Li−Sn、Li−Sn−Niなどのリチウム合金;Si−Znなどのシリコン合金;Sn−Mn、Sn−Co、Sn−Ni、Sn−Cu、Sn−Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。
これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。
前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレンおよびポリプロピレンを挙げることができる。
(負極集電体)
負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。
また、セパレータの空孔率は、好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。
(電解液)
本実施形態のリチウム二次電池が有する電解液は、電解質および有機溶媒を含有する。
電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、LiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCFおよびLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒として使用される化合物の各々の分子が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。
有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒および環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの有利な特長を有する。
また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩およびフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。
上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS−SiS、LiS−GeS、LiS−P、LiS−B、LiS−SiS−LiPO、LiS−SiS−LiSO、LiS−GeS−Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。
また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。
以上のような構成の正極活物質は、上述した本実施形態のリチウム含有複合金属酸化物を用いているため、正極活物質を用いたリチウム二次電池を、従来よりも高い初回クーロン効率を有するものとすることができる。
また、以上のような構成の正極は、上述した本実施形態のリチウム二次電池用正極活物質を有するため、リチウム二次電池を、高い初回クーロン効率を有するものとすることができる。
さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、従来よりも高い初回クーロン効率を有するリチウム二次電池となる。
次に、本発明を実施例によりさらに詳細に説明する。
本実施例においては、リチウム二次電池用正極活物質の評価、正極およびリチウム二次電池の作製評価を、次のようにして行った。
(1)リチウム二次電池用正極活物質の評価
1.リチウム二次電池用正極活物質の組成分析
後述の方法で製造されるリチウム含有複合金属酸化物の組成分析は、得られたリチウム含有複合金属酸化物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
2.リチウム二次電池用正極活物質の平均一次粒子径の測定
測定するリチウム含有複合金属酸化物の粒子を、サンプルステージの上に貼った導電性シート上に載せ、日本電子株式会社製JSM−5510を用いて、加速電圧が20kVの電子線を照射してSEM観察を行った。SEM観察により得られた画像(SEM写真)から任意に50個の一次粒子を抽出し、それぞれの一次粒子について、一次粒子の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を一次粒子の粒子径として測定した。得られた粒子径の算術平均値を、リチウム含有複合金属酸化物の平均一次粒子径とした。なお、上記の「一定方向」は、測定対象とする全ての粒子について、当該SEM写真における同一の方向(例えば、写真中の水平方向)を意味する。
3.リチウム二次電池用正極活物質の累積粒度の測定
測定するリチウム含有複合金属酸化物の粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、該粉末を分散させた分散液を得た。得られた分散液についてマルバーン社製マスターサイザー2000(レーザー回折散乱粒度分布測定装置)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得た。得られた累積粒度分布曲線において、微小粒子側から見て10%累積時、50%累積時、90%累積時の体積粒度をそれぞれ、D10、D50、D90とした。
4.リチウム二次電池用正極活物質の結晶子サイズ測定
リチウム含有複合金属酸化物の粉末X線回折測定は、X線回折装置(X‘Prt PRO、PANalytical社)を用いて行った。得られたリチウム含有複合金属酸化物を専用の基板に充填し、CuKα線源を用いて、回折角2θ=10°〜90°の範囲にて測定を行うことで、粉末X線回折図形を得た。粉末X線回折パターン総合解析ソフトウェアJADE5を用い、該粉末X線回折図形からピークAに対応するピークの半値幅およびピークBに対応するピークの半値幅を得て、Scherrer式により、結晶子サイズαおよびβを算出した。
5.リチウム二次電池用正極活物質のBET比表面積測定
測定するリチウム含有複合金属酸化物の粉末1gを窒素雰囲気中、150℃で15分間乾燥させた後、マイクロメリティックス製フローソーブII2300を用いて測定した。
(2)正極の作製
後述する製造方法で得られるリチウム含有複合金属酸化物(正極活物質)と導電材(アセチレンブラック)とバインダー(PVdF)とを、正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N−メチル−2−ピロリドンを有機溶媒として用いた。
得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、正極を得た。この正極の電極面積は1.65cmとした。
(3)リチウム二次電池(コイン型ハーフセル)の作製
「(2)リチウム二次電池用正極の作製」で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置いた。ここに電解液を300μl注入した。電解液は、エチレンカーボネート(以下、ECということがある。)とジメチルカーボネート(以下、DMCということがある。)とエチルメチルカーボネート(以下、EMCということがある。)の30:35:35(体積比)混合液にLiPF6を1モル/リットルとなるように溶解したもの(以下、LiPF6/EC+DMC+EMCと表すことがある。)を用いた。
次に、負極としてリチウム金属を用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型電池R2032。以下、「コイン型ハーフセル」と称することがある。)を作製した。
(4)初回充放電試験
「(3)リチウム二次電池(コイン型ハーフセル)の作製」で作製したコイン型ハーフセルを用いて、以下に示す条件で初回充放電試験を実施した。
<放電レート試験>
試験温度:25℃
充電最大電圧4.3V、充電時間8時間、充電電流0.2CA定電流定電圧充電
放電最小電圧2.5V、定電流放電
(5)リチウム二次電池(コイン型フルセル)の作製
以下の操作を、アルゴン雰囲気のグローブボックス内で行った。
「(2)正極の作製」で作成した正極を、コイン型電池R2032用のコインセル(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置いた。ここに電解液を300μL注入した。用いた電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの16:10:74(体積比)混合液に、ビニレンカーボネートを1vol%、LiPFを1.3mol/Lとなるように溶解して調製した。
次に、負極として人造黒鉛(日立化成社製MAGD)を用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型電池R2032。以下、「コイン型フルセル」と称することがある。)を作製した。
(6)サイクル試験
「(3)リチウム二次電池(コイン型フルセル)の作製」で作製したコイン型フルセルを用いて、以下に示す条件で負極を活性化した。活性化処理における、充電容量および放電容量をそれぞれ以下のようにして求めた。
<負極の活性化>
処理温度:25℃
充電時条件:充電最大電圧4.2V、充電時間5時間、充電電流0.2CA
放電時条件:放電最小電圧2.7V、放電時間5時間、放電電流0.2CA
<サイクル試験>
上記で充放電試験を実施したコイン型セルを用いて、以下に示す条件にて、300回のサイクル試験にて寿命評価を実施し、300回後の放電容量維持率を以下の式にて算出した。なお、300回後の放電容量維持率が高いほど、寿命特性がよいことを示している。

300回後の放電容量維持率(%)=300回目の放電容量/1回目の放電容量×100
<サイクル試験条件>
試験温度:60℃
充電時条件:充電時最大電圧4.1V、充電時間0.5時間、充電電流2.0CA
充電後休止時間:10分
放電時条件:放電時最小電圧3.0V、放電時間0.5時間、放電電流2.0CA
放電後休止時間:10分
本試験において、充電、充電休止、放電、放電休止を順に実施した工程を1回(1サイクル)としている。
(実施例1)
1.リチウム二次電池用正極活物質1の製造
攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.60:0.20:0.20となるように混合して、混合原料液を調整した。
次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、反応槽内の溶液のpHが12.4になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、濾過後水洗し、100℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物1を得た。このニッケルコバルトマンガン複合水酸化物1のBET比表面積は、39.9m/gであった。
以上のようにして得られたニッケルコバルトマンガン複合水酸化物1と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.12となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、目的のリチウム二次電池用正極活物質1を得た。
2.リチウム二次電池用正極活物質1の評価
得られたリチウム二次電池用正極活物質1の組成分析を行い、組成式(I)に対応させたところ、x=0.06、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質1のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ407Å、390Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.04であった。
リチウム二次電池用正極活物質1の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.15μm、4.8μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ2.6μm、7.4μmであり、D90/D10は、2.8であった。
リチウム二次電池用正極活物質1のBET比表面積は、3.2m/gであった。また、タップかさ密度は1.52g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質1を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ183mAh/g、176mAh/g、96.2%であった。
(実施例2)
1.リチウム二次電池用正極活物質2の製造
反応槽内の液温を45℃とし、反応槽内の溶液のpHが12.8になるよう水酸化ナトリウム水溶液を適時滴下しした以外は実施例1と同様の操作を行い、ニッケルコバルトマンガン複合水酸化物2を得た。このニッケルコバルトマンガン複合水酸化物2のBET比表面積は、73.4m/gであった。
以上のようにして得られたニッケルコバルトマンガン複合水酸化物2と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.12となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、リチウム二次電池用正極活物質2を得た。
2.リチウム二次電池用正極活物質2の評価
得られたリチウム二次電池用正極活物質2の組成分析を行い、組成式(I)に対応させたところ、x=0.05、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質2のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ493Å、406Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.21であった。
リチウム二次電池用正極活物質2の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.14μm、5.0μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ3.0μm、7.8μmであり、D90/D10は、2.6であった。
リチウム二次電池用正極活物質2のBET比表面積は、3.3m/gであった。また、タップかさ密度は1.48g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質2を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ184mAh/g、176mAh/g、95.7%であった。
(実施例3)
1.リチウム二次電池用正極活物質3の製造
ニッケルコバルトマンガン複合水酸化物1を大気雰囲気下250℃で5時間加熱し、ニッケルコバルトマンガン複合水酸化物1の加熱処理品と炭酸リチウムとをLi/(Ni+Co+Mn)=1.12となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、リチウム二次電池用正極活物質3を得た。
2.リチウム二次電池用正極活物質3の評価
得られたリチウム二次電池用正極活物質3の組成分析を行い、組成式(I)に対応させたところ、x=0.04、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質3のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ398Å、361Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.10であった。
リチウム二次電池用正極活物質3の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.14μm、4.0μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ2.4μm、6.5μmであり、D90/D10は、2.7であった。
リチウム二次電池用正極活物質3のBET比表面積は、1.1m/gであった。また、タップかさ密度は1.89g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質3を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ194mAh/g、186mAh/g、95.9%であった。
リチウム二次電池用正極活物質3を用いてコイン型フルセルを作製し、サイクル試験を実施した。1回目の放電容量、300回目の放電容量、放電容量維持率は、それぞれ149mAh/g、125mAh/g、83.9%であった。
(実施例4)
1.リチウム二次電池用正極活物質4の製造
ニッケルコバルトマンガン複合水酸化物1の加熱処理品と炭酸リチウムとをLi/(Ni+Co+Mn)=1.09となるように秤量して混合した以外は、実施例3と同様の操作を行い、リチウム二次電池用正極活物質4を得た。
2.リチウム二次電池用正極活物質4の評価
得られたリチウム二次電池用正極活物質4の組成分析を行い、組成式(I)に対応させたところ、x=0.05、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質4のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ452Å、398Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.14であった。
リチウム二次電池用正極活物質4の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.17μm、4.8μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ3.0μm、7.4μmであり、D90/D10は、2.5であった。
リチウム二次電池用正極活物質4のBET比表面積は、1.1m/gであった。また、タップかさ密度は1.85g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質4を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ197mAh/g、185mAh/g、93.9%であった。
(実施例5)
1.リチウム二次電池用正極活物質5の製造
ニッケルコバルトマンガン複合水酸化物1の加熱処理品と炭酸リチウムとをLi/(Ni+Co+Mn)=1.07となるように秤量して混合した以外は、実施例3と同様の操作を行い、リチウム二次電池用正極活物質5を得た。
2.リチウム二次電池用正極活物質5の評価
得られたリチウム二次電池用正極活物質5の組成分析を行い、組成式(I)に対応させたところ、x=0.04、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質5のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ443Å、378Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.17であった。
リチウム二次電池用正極活物質5の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.16μm、4.5μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ2.8μm、7.0μmであり、D90/D10は、2.5であった。
リチウム二次電池用正極活物質5のBET比表面積は、1.0m/gであった。また、タップかさ密度は1.82g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質5を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ198mAh/g、189mAh/g、95.5%であった。
(実施例6)
1.リチウム二次電池用正極活物質6の製造
ニッケルコバルトマンガン複合水酸化物2を大気雰囲気下250℃で5時間加熱し、ニッケルコバルトマンガン複合水酸化物2の加熱処理品と炭酸リチウムとをLi/(Ni+Co+Mn)=1.12となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、リチウム二次電池用正極活物質6を得た。
2.リチウム二次電池用正極活物質6の評価
得られたリチウム二次電池用正極活物質6の組成分析を行い、組成式(I)に対応させたところ、x=0.07、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質6のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ538Å、446Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.21であった。
リチウム二次電池用正極活物質6の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.17μm、5.4μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ3.3μm、8.7μmであり、D90/D10は、2.6であった。
リチウム二次電池用正極活物質6のBET比表面積は、1.7m/gであった。また、タップかさ密度は1.78g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質6を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ192mAh/g、182mAh/g、94.8%であった。
(実施例7)
1.リチウム二次電池用正極活物質7の製造
ニッケルコバルトマンガン複合水酸化物2の加熱処理品と炭酸リチウムとをLi/(Ni+Co+Mn)=1.09となるように秤量した以外は実施例6と同様の操作を行い、リチウム二次電池用正極活物質7を得た。
2.リチウム二次電池用正極活物質7の評価
得られたリチウム二次電池用正極活物質7の組成分析を行い、組成式(I)に対応させたところ、x=0.06、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質7のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ512Å、424Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.21であった。
リチウム二次電池用正極活物質7の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.18μm、5.0μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ3.1μm、7.9μmであり、D90/D10は、2.5であった。
リチウム二次電池用正極活物質7のBET比表面積は、1.8m/gであった。また、タップかさ密度は1.73g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質7を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ193mAh/g、183mAh/g、94.8%であった。
(実施例8)
1.リチウム二次電池用正極活物質8の製造
ニッケルコバルトマンガン複合水酸化物2の加熱処理品と炭酸リチウムとをLi/(Ni+Co+Mn)=1.07となるように秤量した以外は実施例6と同様の操作を行い、リチウム二次電池用正極活物質8を得た。
2.リチウム二次電池用正極活物質8の評価
得られたリチウム二次電池用正極活物質8の組成分析を行い、組成式(I)に対応させたところ、x=0.05、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質8のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ502Å、419Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.20であった。
リチウム二次電池用正極活物質8の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.16μm、5.2μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ3.2μm、8.2μmであり、D90/D10は、2.6であった。
リチウム二次電池用正極活物質8のBET比表面積は、1.5m/gであった。また、タップかさ密度は1.74g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質8を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ193mAh/g、183mAh/g、94.8%であった。
(実施例9)
1.リチウム二次電池用正極活物質9の製造
ニッケルコバルトマンガン複合水酸化物2の加熱処理品と炭酸リチウムとをLi/(Ni+Co+Mn)=1.05となるように秤量した以外は実施例6と同様の操作を行い、リチウム二次電池用正極活物質9を得た。
2.リチウム二次電池用正極活物質9の評価
得られたリチウム二次電池用正極活物質9の組成分析を行い、組成式(I)に対応させたところ、x=0.04、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質9のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ515Å、418Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.23であった。
リチウム二次電池用正極活物質9の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.14μm、5.2μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ3.2μm、8.2μmであり、D90/D10は、2.6であった。
リチウム二次電池用正極活物質9のBET比表面積は、1.6m/gであった。また、タップかさ密度は1.70g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質9を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ194mAh/g、184mAh/g、94.8%であった。
(実施例10)
1.リチウム二次電池用正極活物質10の製造
ニッケルコバルトマンガン複合水酸化物2の加熱処理品と炭酸リチウムとをLi/(Ni+Co+Mn)=1.03となるように秤量した以外は実施例6と同様の操作を行い、リチウム二次電池用正極活物質10を得た。
2.リチウム二次電池用正極活物質10の評価
得られたリチウム二次電池用正極活物質10の組成分析を行い、組成式(I)に対応させたところ、x=0.02、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質10のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ487Å、400Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.22であった。
リチウム二次電池用正極活物質10の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.14μm、5.2μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ3.1μm、8.4μmであり、D90/D10は、2.7であった。
リチウム二次電池用正極活物質10のBET比表面積は、1.3m/gであった。また、タップかさ密度は1.72g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質10を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ192mAh/g、183mAh/g、95.3%であった。
(実施例11)
1.リチウム二次電池用正極活物質11の製造
焼成温度が730℃となるようにした以外は実施例6と同様の操作を行い、リチウム二次電池用正極活物質11を得た。
2.リチウム二次電池用正極活物質11の評価
得られたリチウム二次電池用正極活物質11の組成分析を行い、組成式(I)に対応させたところ、x=0.06、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質11のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ450Å、374Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.21であった。
リチウム二次電池用正極活物質11の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.13μm、5.2μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ3.2μm、8.3μmであり、D90/D10は、2.6であった。
リチウム二次電池用正極活物質11のBET比表面積は、2.4m/gであった。また、タップかさ密度は1.66g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質11を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ190mAh/g、181mAh/g、95.3%であった。
(実施例12)
1.リチウム二次電池用正極活物質12の製造
焼成温度が700℃となるようにした以外は実施例6と同様の操作を行い、リチウム二次電池用正極活物質12を得た。
2.リチウム二次電池用正極活物質12の評価
得られたリチウム二次電池用正極活物質12の組成分析を行い、組成式(I)に対応させたところ、x=0.07、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質12のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ360Å、312Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.15であった。
リチウム二次電池用正極活物質12の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.13μm、4.5μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ2.8μm、7.1μmであり、D90/D10は、2.5であった。
リチウム二次電池用正極活物質12のBET比表面積は、3.5m/gであった。また、タップかさ密度は1.54g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質12を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ187mAh/g、180mAh/g、96.3%であった。
(実施例13)
1.リチウム二次電池用正極活物質13の製造
焼成時間が3時間となるようにした以外は実施例6と同様の操作を行い、リチウム二次電池用正極活物質13を得た。
2.リチウム二次電池用正極活物質13の評価
得られたリチウム二次電池用正極活物質13の組成分析を行い、組成式(I)に対応させたところ、x=0.06、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質13のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ418Å、373Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.12であった。
リチウム二次電池用正極活物質13の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.13μm、4.9μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ3.0μm、7.8μmであり、D90/D10は、2.6であった。
リチウム二次電池用正極活物質13のBET比表面積は、2.0m/gであった。また、タップかさ密度は1.75g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質13を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ192mAh/g、182mAh/g、94.8%であった。
(実施例14)
1.リチウム二次電池用正極活物質14の製造
焼成時間が7時間となるようにした以外は実施例6と同様の操作を行い、リチウム二次電池用正極活物質14を得た。
2.リチウム二次電池用正極活物質14の評価
得られたリチウム二次電池用正極活物質14の組成分析を行い、組成式(I)に対応させたところ、x=0.05、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質14のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ482Å、403Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.20であった。
リチウム二次電池用正極活物質14の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.17μm、4.7μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ2.9μm、7.3μmであり、D90/D10は、2.5であった。
リチウム二次電池用正極活物質14のBET比表面積は、1.1m/gであった。また、タップかさ密度は1.84g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質14を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ195mAh/g、184mAh/g、94.4%であった。
(実施例15)
1.リチウム二次電池用正極活物質15の製造
攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.58:0.17:0.25となるように混合して、混合原料液を調整した。
次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、反応槽内の溶液のpHが12.4になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、濾過後水洗し、100℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物3を得た。このニッケルコバルトマンガン複合水酸化物3のBET比表面積は、38.7m/gであった。
以上のようにして得られたニッケルコバルトマンガン複合水酸化物3と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.12となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、目的のリチウム二次電池用正極活物質15を得た。
2.リチウム二次電池用正極活物質15の評価
得られたリチウム二次電池用正極活物質15の組成分析を行い、組成式(I)に対応させたところ、x=0.05、a=0.58、b=0.17、c=0.25、d=0.00であった。
リチウム二次電池用正極活物質15のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ326Å、286Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.14であった。
リチウム二次電池用正極活物質15の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.12μm、4.8μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ3.1μm、7.1μmであり、D90/D10は、2.3であった。
リチウム二次電池用正極活物質15のBET比表面積は、2.8m/gであった。また、タップかさ密度は1.59g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質15を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ188mAh/g、180mAh/g、95.7%であった。
(比較例1)
反応槽内の溶液のpHが12.2になるようにした以外は、実施例1と同様の操作を行い、ニッケルコバルトマンガン複合水酸化物4を得た。このニッケルコバルトマンガン複合水酸化物4のBET比表面積は、10.3m/gであった。
以上のようにして得られたニッケルコバルトマンガン複合水酸化物4と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.12となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、さらに、大気雰囲気下850℃で10時間焼成しリチウム二次電池用正極活物質16を得た。
1.リチウム二次電池用正極活物質16の評価
得られたリチウム二次電池用正極活物質16の組成分析を行い、組成式(I)に対応させたところ、x=0.02、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質16のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ1220Å、631Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.93であった。
リチウム二次電池用正極活物質16の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.42μm、6.0μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ3.0μm、11.1μmであり、D90/D10は、3.7であった。
リチウム二次電池用正極活物質16のBET比表面積は、0.7m/gであった。また、タップかさ密度は1.65g/ccであった。
2.リチウム二次電池の電池評価
リチウム二次電池用正極活物質16を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ201mAh/g、174mAh/g、86.6%であった。
(比較例2)
ニッケルコバルトマンガン複合水酸化物4と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.12となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、さらに、酸素雰囲気下850℃で10時間焼成しリチウム二次電池用正極活物質17を得た。
1.リチウム二次電池用正極活物質17の評価
得られたリチウム二次電池用正極活物質17の組成分析を行い、組成式(I)に対応させたところ、x=0.01、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質17のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ920Å、507Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.81であった。
リチウム二次電池用正極活物質17の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.28μm、6.8μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ3.2μm、12.4μmであり、D90/D10は、3.9であった。
リチウム二次電池用正極活物質17のBET比表面積は、0.7m/gであった。また、タップかさ密度は1.61g/ccであった。
2.リチウム二次電池の電池評価
リチウム二次電池用正極活物質17を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ200mAh/g、174mAh/g、87.0%であった。
(比較例3)
ニッケルコバルトマンガン複合水酸化物1と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.12となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、さらに、大気雰囲気下850℃で10時間焼成しリチウム二次電池用正極活物質18を得た。
1.リチウム二次電池用正極活物質18の評価
得られたリチウム二次電池用正極活物質18の組成分析を行い、組成式(I)に対応させたところ、x=0.02、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質18のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ1202Å、668Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.80であった。
リチウム二次電池用正極活物質18の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.42μm、5.5μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ2.4μm、13.2μmであり、D90/D10は、5.5であった。
リチウム二次電池用正極活物質18のBET比表面積は、1.0m/gであった。また、タップかさ密度は1.58g/ccであった。
2.リチウム二次電池の電池評価
リチウム二次電池用正極活物質18を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ197mAh/g、179mAh/g、90.9%であった。
リチウム二次電池用正極活物質18を用いてコイン型フルセルを作製し、サイクル試験を実施した。1回目の放電容量、300回目の放電容量、放電容量維持率は、それぞれ150mAh/g、121mAh/g、80.6%であった。
(比較例4)
ニッケルコバルトマンガン複合水酸化物1と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.12となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、さらに、酸素雰囲気下850℃で10時間焼成しリチウム二次電池用正極活物質19を得た。
1.リチウム二次電池用正極活物質19の評価
得られたリチウム二次電池用正極活物質19の組成分析を行い、組成式(I)に対応させたところ、x=0.02、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質19のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ1074Å、569Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.89であった。
リチウム二次電池用正極活物質19の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.32μm、5.2μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ2.4μm、8.4μmであり、D90/D10は、3.5であった。
リチウム二次電池用正極活物質19のBET比表面積は、0.8m/gであった。また、タップかさ密度は1.59g/ccであった。
2.リチウム二次電池の電池評価
リチウム二次電池用正極活物質19を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ196mAh/g、178mAh/g、90.8%であった。
(比較例5)
ニッケルコバルトマンガン複合水酸化物4と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.12となるように秤量して混合した後、大気雰囲気下850℃で10時間焼成しリチウム二次電池用正極活物質20を得た。
1.リチウム二次電池用正極活物質20の評価
得られたリチウム二次電池用正極活物質20の組成分析を行い、組成式(I)に対応させたところ、x=0.04、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質20のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ1365Å、693Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.97であった。
リチウム二次電池用正極活物質20の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.35μm、11.9μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ4.7μm、31.4μmであり、D90/D10は、6.7であった。
リチウム二次電池用正極活物質20のBET比表面積は、0.6m/gであった。また、タップかさ密度は1.49g/ccであった。
2.リチウム二次電池の電池評価
リチウム二次電池用正極活物質20を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ196mAh/g、175mAh/g、89.3%であった。
(比較例6)
焼成温度を900℃とした以外は、比較例5と同様の操作を行い、リチウム二次電池用正極活物質21を得た。
1.リチウム二次電池用正極活物質21の評価
得られたリチウム二次電池用正極活物質21の組成分析を行い、組成式(I)に対応させたところ、x=0.02、a=0.60、b=0.20、c=0.20、d=0.00であった。
リチウム二次電池用正極活物質21のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ1872Å、987Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.90であった。
リチウム二次電池用正極活物質21の平均一次粒子径、50%累積体積粒度D50は、それぞれ1.51μm、11.4μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ3.0μm、33.3μmであり、D90/D10は、11.1であった。
リチウム二次電池用正極活物質21のBET比表面積は、0.4m/gであった。また、タップかさ密度は1.33g/ccであった。
2.リチウム二次電池の電池評価
リチウム二次電池用正極活物質21を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ198mAh/g、173mAh/g、89.3%であった。
(実施例16)
1.リチウム二次電池用正極活物質22の製造
攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.58:0.17:0.25となるように混合して、混合原料液を調整した。
次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、反応槽内の溶液のpHが12.8になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、濾過後水洗し、100℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物5を得た。このニッケルコバルトマンガン複合水酸化物5のBET比表面積は、91.7m/gであった。
以上のようにして得られたニッケルコバルトマンガン複合水酸化物5と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.12となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、さらに、大気雰囲気下850℃で10時間焼成し、目的のリチウム二次電池用正極活物質22を得た。
2.リチウム二次電池用正極活物質22の評価
得られたリチウム二次電池用正極活物質22の組成分析を行い、組成式(I)に対応させたところ、x=0.05、a=0.58、b=0.17、c=0.25、d=0.00であった。
リチウム二次電池用正極活物質22のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ830Å、514Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.61であった。
リチウム二次電池用正極活物質22の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.22μm、5.6μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ3.6μm、8.7μmであり、D90/D10は、2.4であった。
リチウム二次電池用正極活物質22のBET比表面積は、1.1m/gであった。また、タップかさ密度は1.42g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質22を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ195mAh/g、182mAh/g、93.3%であった。
(実施例17)
1.リチウム二次電池用正極活物質23の製造
攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.55:0.21:0.24となるように混合して、混合原料液を調整した。
次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、反応槽内の溶液のpHが12.7になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、濾過後水洗し、100℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物6を得た。このニッケルコバルトマンガン複合水酸化物6のBET比表面積は、76.2m/gであった。
以上のようにして得られたニッケルコバルトマンガン複合水酸化物6と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.09となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、さらに、大気雰囲気下850℃で2時間焼成し、目的のリチウム二次電池用正極活物質23を得た。
2.リチウム二次電池用正極活物質23の評価
得られたリチウム二次電池用正極活物質23の組成分析を行い、組成式(I)に対応させたところ、x=0.04、a=0.55、b=0.21、c=0.24、d=0.00であった。
リチウム二次電池用正極活物質23のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ719Å、467Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.54であった。
リチウム二次電池用正極活物質23の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.24μm、3.6μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ1.9μm、5.3μmであり、D90/D10は、2.8であった。
リチウム二次電池用正極活物質23のBET比表面積は、2.3m/gであった。また、タップかさ密度は1.44g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質23を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ191mAh/g、184mAh/g、96.3%であった。
リチウム二次電池用正極活物質23を用いてコイン型フルセルを作製し、サイクル試験を実施した。1回目の放電容量、300回目の放電容量、放電容量維持率は、それぞれ150mAh/g、129mAh/g、86.0%であった。
(実施例18)
1.リチウム二次電池用正極活物質24の製造
攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.55:0.21:0.24となるように混合して、混合原料液を調整した。
次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、反応槽内の溶液のpHが12.5になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、濾過後水洗し、100℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物7を得た。このニッケルコバルトマンガン複合水酸化物7のBET比表面積は、53.9m/gであった。
以上のようにして得られたニッケルコバルトマンガン複合水酸化物7と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.07となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、さらに、大気雰囲気下850℃で10時間焼成し、目的のリチウム二次電池用正極活物質24を得た。
2.リチウム二次電池用正極活物質24の評価
得られたリチウム二次電池用正極活物質24の組成分析を行い、組成式(I)に対応させたところ、x=0.03、a=0.55、b=0.21、c=0.24、d=0.00であった。
リチウム二次電池用正極活物質24のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ774Å、491Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.58であった。
リチウム二次電池用正極活物質24の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.20μm、4.1μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ2.6μm、6.2μmであり、D90/D10は、2.4であった。
リチウム二次電池用正極活物質24のBET比表面積は、1.8m/gであった。また、タップかさ密度は1.54g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質24を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ192mAh/g、179mAh/g、93.2%であった。
リチウム二次電池用正極活物質24を用いてコイン型フルセルを作製し、サイクル試験を実施した。1回目の放電容量、300回目の放電容量、放電容量維持率は、それぞれ148mAh/g、127mAh/g、85.8%であった。
(実施例19)
1.リチウム二次電池用正極活物質25の製造
攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.55:0.21:0.24となるように混合して、混合原料液を調整した。
次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、反応槽内の溶液のpHが12.7になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、濾過後水洗し、100℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物8を得た。このニッケルコバルトマンガン複合水酸化物8のBET比表面積は、82.5m/gであった。
以上のようにして得られたニッケルコバルトマンガン複合水酸化物8と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.03となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、さらに、大気雰囲気下850℃で10時間焼成し、目的のリチウム二次電池用正極活物質25を得た。
2.リチウム二次電池用正極活物質25の評価
得られたリチウム二次電池用正極活物質25の組成分析を行い、組成式(I)に対応させたところ、x=0.01、a=0.55、b=0.21、c=0.24、d=0.00であった。
リチウム二次電池用正極活物質25のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ719Å、479Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.50であった。
リチウム二次電池用正極活物質25の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.18μm、3.7μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ2.2μm、5.8μmであり、D90/D10は、2.6であった。
リチウム二次電池用正極活物質25のBET比表面積は、3.5m/gであった。また、タップかさ密度は1.22g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質25を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ192mAh/g、182mAh/g、94.8%であった。
(実施例20)
ニッケルコバルトマンガン複合水酸化物8と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.12となるように秤量して混合した後以外は、実施例19と同様の操作を行い、リチウム二次電池用正極活物質26を得た。
2.リチウム二次電池用正極活物質26の評価
得られたリチウム二次電池用正極活物質26の組成分析を行い、組成式(I)に対応させたところ、x=0.05、a=0.55、b=0.21、c=0.24、d=0.00であった。
リチウム二次電池用正極活物質26のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ830Å、496Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.67であった。
リチウム二次電池用正極活物質26の平均一次粒子径、50%累積体積粒度D50は、それぞれ0.21μm、4.2μmであった。また、10%累積体積粒度D10、90%累積体積粒度D90は、それぞれ2.6μm、6.6μmであり、D90/D10は、2.5であった。
リチウム二次電池用正極活物質26のBET比表面積は、1.8m/gであった。また、タップかさ密度は1.34g/ccであった。
3.リチウム二次電池の電池評価
リチウム二次電池用正極活物質26を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回クーロン効率はそれぞれ190mAh/g、179mAh/g、94.2%であった。
リチウム二次電池用正極活物質26を用いてコイン型フルセルを作製し、サイクル試験を実施した。1回目の放電容量、300回目の放電容量、放電容量維持率は、それぞれ147mAh/g、126mAh/g、85.7%であった。
以下、表1〜5に実施例および比較例の結果等をまとめて記載する。
Figure 2016060105
Figure 2016060105
Figure 2016060105
Figure 2016060105
Figure 2016060105
評価の結果、実施例1〜20のリチウム二次電池用正極活物質を用いたリチウム二次電池では、いずれも、比較例1〜6のリチウム二次電池用正極活物質を用いたリチウム二次電池よりも高い初期クーロン効率を示す。
また、実施例3、17、18および20のリチウム二次電池用正極活物質を用いたリチウム二次電池では、比較例3のリチウム二次電池用正極活物質を用いたリチウム二次電池よりも高いサイクル特性を有することを示す。
1…セパレータ
2…正極
3…負極
4…電極群
5…電池缶
6…電解液
7…トップインシュレーター
8…封口体
10…リチウム二次電池
21…正極リード
31…負極リード

Claims (10)

  1. CuKα線を使用した粉末X線回折測定において、
    2θ=18.7±1°の範囲内のピークにおける結晶子サイズαと、
    2θ=44.6±1°の範囲内のピークにおける結晶子サイズβとの比α/βが1以上1.75以下であり、以下組成式(I)で表されるリチウム二次電池用正極活物質。
    Li[Li(NiCoMn1−x]O ・・・(I)
    (ここで、0≦x≦0.2、0.3<a<0.7、0<b<0.4、0<c<0.4、0≦d<0.1、a+b+c+d=1、Mは、Fe、Cr、Ti、Mg、AlおよびZrからなる群より選ばれる少なくとも1種の金属である。)
  2. 前記組成式(I)において、a≧b+cの関係式を満たす請求項1に記載のリチウム二次電池用正極活物質。
  3. 前記結晶子サイズαと結晶子サイズβとの比α/βが1以上1.5以下である請求項1又は2記載のリチウム二次電池用正極活物質。
  4. BET比表面積が0.5m/g以上4m/g以下である請求項1〜3いずれか1項に記載のリチウム二次電池用正極活物質。
  5. 結晶子サイズβが150Å以上650Å以下である請求項1〜4いずれか1項に記載のリチウム二次電池用正極活物質。
  6. 平均一次粒子径が0.05μm以上1μm以下であり、50%累積体積粒度D50が1μm以上10μm以下である請求項1〜5いずれか1項に記載のリチウム二次電池用正極活物質。
  7. 90%累積体積粒度D90と10%累積体積粒度D10との比率D90/D10が2.0以上3.5以下である請求項1〜6いずれか1項に記載のリチウム二次電池用正極活物質。
  8. タップかさ密度が1.2以上2.0以下である請求項1〜7いずれか1項に記載のリチウム二次電池用正極活物質。
  9. 請求項1〜8のいずれか1項に記載のリチウム二次電池用正極活物質を有するリチウム二次電池用正極。
  10. 請求項9に記載のリチウム二次電池用正極を有するリチウム二次電池。
JP2016554078A 2014-10-15 2015-10-13 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 Active JP6726102B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014210577 2014-10-15
JP2014210577 2014-10-15
PCT/JP2015/078879 WO2016060105A1 (ja) 2014-10-15 2015-10-13 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Publications (2)

Publication Number Publication Date
JPWO2016060105A1 true JPWO2016060105A1 (ja) 2017-08-31
JP6726102B2 JP6726102B2 (ja) 2020-07-22

Family

ID=55746651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016554078A Active JP6726102B2 (ja) 2014-10-15 2015-10-13 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Country Status (6)

Country Link
US (1) US10535875B2 (ja)
EP (1) EP3208872B1 (ja)
JP (1) JP6726102B2 (ja)
KR (2) KR101958124B1 (ja)
CN (1) CN107078293A (ja)
WO (1) WO2016060105A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013111356B4 (de) 2013-10-15 2019-04-18 Lemken Gmbh & Co. Kg Säherz für Einzelkornsämaschine
KR102377093B1 (ko) * 2016-07-28 2022-03-21 스미또모 가가꾸 가부시끼가이샤 리튬니켈 복합 산화물의 제조 방법
JP6848249B2 (ja) * 2016-07-29 2021-03-24 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池
US11165051B2 (en) * 2016-11-08 2021-11-02 Honda Motor Co., Ltd. Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
JP6343753B2 (ja) 2016-12-07 2018-06-20 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6256956B1 (ja) * 2016-12-14 2018-01-10 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
KR102176633B1 (ko) 2017-02-28 2020-11-09 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018160023A1 (ko) 2017-02-28 2018-09-07 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
JP6937152B2 (ja) * 2017-03-31 2021-09-22 住友化学株式会社 リチウム複合金属酸化物の製造方法
JP6470380B1 (ja) * 2017-10-30 2019-02-13 住友化学株式会社 リチウム複合金属化合物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US20190157722A1 (en) * 2017-11-17 2019-05-23 Maxwell Technologies, Inc. Non-aqueous solvent electrolyte formulations for energy storage devices
JP6843732B2 (ja) * 2017-11-28 2021-03-17 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7158852B2 (ja) 2017-12-27 2022-10-24 住友金属鉱山株式会社 ニッケル含有水酸化物の製造方法
WO2019185318A1 (en) * 2018-03-28 2019-10-03 Umicore Lithium transition metal composite oxide as a positive electrode active material for rechargeable lithium secondary batteries
JP6633796B1 (ja) * 2018-12-20 2020-01-22 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6640976B1 (ja) * 2018-12-20 2020-02-05 住友化学株式会社 リチウム遷移金属複合酸化物粉末、ニッケル含有遷移金属複合水酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6650064B1 (ja) * 2019-03-29 2020-02-19 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極および全固体リチウムイオン電池
JPWO2021039120A1 (ja) 2019-08-26 2021-03-04
JP2021034356A (ja) * 2019-08-29 2021-03-01 住友金属鉱山株式会社 正極活物質の製造方法
JP2021034357A (ja) * 2019-08-29 2021-03-01 住友金属鉱山株式会社 正極活物質の製造方法
EP3811932A1 (en) 2019-10-22 2021-04-28 Zentiva K.S. Dosage form of apalutamide
KR102581269B1 (ko) * 2019-10-23 2023-09-22 주식회사 엘지화학 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
JP7235650B2 (ja) * 2019-12-25 2023-03-08 住友化学株式会社 リチウム遷移金属複合酸化物粉末、ニッケル含有遷移金属複合水酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7194703B2 (ja) * 2020-01-17 2022-12-22 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極および全固体リチウムイオン電池
JP6810287B1 (ja) * 2020-01-17 2021-01-06 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
CN114400315A (zh) * 2022-01-24 2022-04-26 广东工业大学 一种锂离子电池层状四元正极材料的制备方法
CN116799165A (zh) 2022-04-29 2023-09-22 北京当升材料科技股份有限公司 用于锂离子电池的正极材料及其制备方法
WO2024004709A1 (ja) * 2022-06-30 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195514A (ja) * 1998-12-24 2000-07-14 Toshiba Corp 非水溶媒二次電池の製造方法
JP2008293988A (ja) * 2001-04-20 2008-12-04 Gs Yuasa Corporation:Kk 正極活物質およびその製造方法、非水電解質二次電池用正極、並びに、非水電解質二次電池
JP2012146639A (ja) * 2010-12-22 2012-08-02 Tanaka Chemical Corp 非水電解質二次電池用の正極活物質、その製造方法、及びそれを用いた非水電解質二次電池
JP2012169299A (ja) * 2012-06-04 2012-09-06 Hitachi Maxell Energy Ltd リチウムイオン二次電池の製造方法
JP2013206616A (ja) * 2012-03-27 2013-10-07 Tanaka Chemical Corp リチウムイオン二次電池用正極活物質およびその製造方法
JP2014169299A (ja) * 2003-04-02 2014-09-18 Aduro Gvax Inc サイトカイン発現細胞ワクチンの組み合わせ
JP2015018678A (ja) * 2013-07-10 2015-01-29 株式会社田中化学研究所 リチウム二次電池用正極活物質、正極および二次電池
WO2015182665A1 (ja) * 2014-05-29 2015-12-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020053663A1 (en) 2000-11-06 2002-05-09 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP3885764B2 (ja) 2003-05-08 2007-02-28 日亜化学工業株式会社 非水電解液二次電池用正極活物質
JP2008147068A (ja) 2006-12-12 2008-06-26 Ise Chemicals Corp 非水電解液二次電池用リチウム複合酸化物
JP5114998B2 (ja) * 2007-03-29 2013-01-09 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
WO2009063838A1 (ja) 2007-11-12 2009-05-22 Gs Yuasa Corporation リチウム二次電池用活物質、リチウム二次電池及びその製造方法
JP5730676B2 (ja) 2011-06-06 2015-06-10 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、ならびに、ニッケルコバルトマンガン複合水酸化物とその製造方法
JP5773054B2 (ja) * 2012-02-16 2015-09-02 株式会社Gsユアサ 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP5601337B2 (ja) * 2012-03-27 2014-10-08 Tdk株式会社 活物質及びリチウムイオン二次電池
JP6094797B2 (ja) * 2012-08-03 2017-03-15 株式会社Gsユアサ リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池
KR102007411B1 (ko) 2013-01-07 2019-10-01 삼성에스디아이 주식회사 양극 활물질, 이를 포함하는 양극과 리튬 전지, 및 상기 양극 활물질의 제조방법
JP6244713B2 (ja) 2013-07-24 2017-12-13 住友金属鉱山株式会社 非水電解質二次電池用正極活物質の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195514A (ja) * 1998-12-24 2000-07-14 Toshiba Corp 非水溶媒二次電池の製造方法
JP2008293988A (ja) * 2001-04-20 2008-12-04 Gs Yuasa Corporation:Kk 正極活物質およびその製造方法、非水電解質二次電池用正極、並びに、非水電解質二次電池
JP2014169299A (ja) * 2003-04-02 2014-09-18 Aduro Gvax Inc サイトカイン発現細胞ワクチンの組み合わせ
JP2012146639A (ja) * 2010-12-22 2012-08-02 Tanaka Chemical Corp 非水電解質二次電池用の正極活物質、その製造方法、及びそれを用いた非水電解質二次電池
JP2013206616A (ja) * 2012-03-27 2013-10-07 Tanaka Chemical Corp リチウムイオン二次電池用正極活物質およびその製造方法
JP2012169299A (ja) * 2012-06-04 2012-09-06 Hitachi Maxell Energy Ltd リチウムイオン二次電池の製造方法
JP2015018678A (ja) * 2013-07-10 2015-01-29 株式会社田中化学研究所 リチウム二次電池用正極活物質、正極および二次電池
WO2015182665A1 (ja) * 2014-05-29 2015-12-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Also Published As

Publication number Publication date
WO2016060105A1 (ja) 2016-04-21
EP3208872B1 (en) 2020-04-22
EP3208872A1 (en) 2017-08-23
CN107078293A (zh) 2017-08-18
KR20170057450A (ko) 2017-05-24
JP6726102B2 (ja) 2020-07-22
EP3208872A4 (en) 2018-05-09
US20170237069A1 (en) 2017-08-17
US10535875B2 (en) 2020-01-14
KR20190026061A (ko) 2019-03-12
KR101958124B1 (ko) 2019-03-13

Similar Documents

Publication Publication Date Title
JP6412094B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6726102B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6108141B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
JP6549565B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6026679B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
JP6256956B1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6343753B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6337360B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018073686A (ja) リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質の製造方法
JP2019003955A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6368022B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6500001B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2017078136A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池
WO2018181530A1 (ja) リチウム金属複合酸化物の製造方法
CN110462897B (zh) 锂二次电池用正极活性物质、锂二次电池用正极以及锂二次电池
JP2019160572A (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池
JP6843732B2 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018174161A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018081937A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6360374B2 (ja) リチウム含有複合金属酸化物の製造方法
JP2018098217A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200626

R150 Certificate of patent or registration of utility model

Ref document number: 6726102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250