JPWO2015129129A1 - Optical member having broadband anti-reflection coating - Google Patents

Optical member having broadband anti-reflection coating Download PDF

Info

Publication number
JPWO2015129129A1
JPWO2015129129A1 JP2016505005A JP2016505005A JPWO2015129129A1 JP WO2015129129 A1 JPWO2015129129 A1 JP WO2015129129A1 JP 2016505005 A JP2016505005 A JP 2016505005A JP 2016505005 A JP2016505005 A JP 2016505005A JP WO2015129129 A1 JPWO2015129129 A1 JP WO2015129129A1
Authority
JP
Japan
Prior art keywords
refractive index
film
antireflection film
optical member
index layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016505005A
Other languages
Japanese (ja)
Inventor
正章 能勢
正章 能勢
宗矩 川路
宗矩 川路
孔二 中村
孔二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2015129129A1 publication Critical patent/JPWO2015129129A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

光学部材は、樹脂基板と、前記樹脂基板上に形成され、TiO2からなる高屈折率層と、SiO2及びAl2O3からなる低屈折率層と、の交互層を含む反射防止膜と、を有する。前記反射防止膜の総膜厚に占める前記低屈折率層の膜厚比率が60%以上72.5%以下であり、前記反射防止膜は、波長420nm〜900nmで入射角5°における平均反射率が1.5%以下の特性を有する。The optical member includes a resin substrate, and an antireflection film formed on the resin substrate and including an alternating layer of a high refractive index layer made of TiO 2 and a low refractive index layer made of SiO 2 and Al 2 O 3. The film thickness ratio of the low refractive index layer in the total film thickness of the antireflection film is 60% or more and 72.5% or less, and the antireflection film has an average reflectance at a wavelength of 420 nm to 900 nm and an incident angle of 5 °. Has a characteristic of 1.5% or less.

Description

本発明は、広帯域反射防止膜を有する光学部材に関するものであり、更に詳しくは、可視域〜赤外域(波長420nm〜900nm)に対応した反射防止膜を有する光学部材(例えば、プラスチックレンズ,光学フィルター等)に関するものである。   The present invention relates to an optical member having a broadband antireflection film, and more specifically, an optical member (for example, a plastic lens or an optical filter) having an antireflection film corresponding to a visible region to an infrared region (wavelength 420 nm to 900 nm). Etc.).

デジタルカメラの軽量・小型化には、プラスチックレンズの使用が有効である。しかし、プラスチックレンズにはガラスレンズと比べてコーティングが難しいという問題がある。例えば、ガラス基板に対する成膜では高温加熱が可能であるが、樹脂基板に対する成膜では基板自体の耐熱性が低いため高温加熱は不可能である。このため、成膜性や耐久性が低く、剥離やクラックが発生しやすいという問題がある。また、可視域〜赤外域に対応した反射防止膜を樹脂基板に形成する場合、その反射防止膜には多層膜化と高膜厚化が必要になる。このため、反射防止膜の耐熱温度(100℃以上)及び高温高湿(85℃85%)の保障が問題となる。この耐熱性(100℃)・耐高温高湿性(85℃85%)の保障は、スマートフォン(高機能携帯電話)用撮像レンズや車載レンズではその使用環境から必須のものとなっている。   The use of plastic lenses is effective in reducing the weight and size of digital cameras. However, plastic lenses have a problem that they are difficult to coat compared to glass lenses. For example, high-temperature heating is possible in film formation on a glass substrate, but high-temperature heating is impossible in film formation on a resin substrate because the substrate itself has low heat resistance. For this reason, there exists a problem that film-forming property and durability are low and peeling and a crack are easy to generate | occur | produce. In addition, when an antireflection film corresponding to the visible region to the infrared region is formed on a resin substrate, the antireflection film needs to have a multilayer film and a thick film. For this reason, the guarantee of the heat-resistant temperature (100 degreeC or more) and high temperature, high humidity (85 degreeC85%) of an antireflection film becomes a problem. This guarantee of heat resistance (100 ° C.) and high temperature resistance and high humidity (85 ° C. and 85%) is indispensable for an imaging lens for a smartphone (high function mobile phone) and an in-vehicle lens because of its usage environment.

上記のような問題を解決するため、従来より様々なタイプの反射防止膜を有する光学部材が提案されている。例えば特許文献1には、可視域反射防止膜の硬度及び耐傷性を向上させるために、SiO2とAl23とからなる低屈折率材料にIAD(イオンアシストデポジション)処理を用いて成膜したプラスチック製の光学部材が提案されている。In order to solve the above problems, optical members having various types of antireflection films have been proposed. For example, Patent Document 1 discloses that a low refractive index material made of SiO 2 and Al 2 O 3 is subjected to an IAD (ion-assisted deposition) process in order to improve the hardness and scratch resistance of a visible antireflection film. A filmed plastic optical member has been proposed.

特開2009−199022号公報JP 2009-199022 A

しかし、特許文献1に記載の光学部材には、耐熱性及び耐高温高湿性が十分でないという問題がある。   However, the optical member described in Patent Document 1 has a problem that heat resistance and high temperature and high humidity resistance are not sufficient.

本発明はこのような状況に鑑みてなされたものであって、その目的は、耐熱性及び耐高温高湿性の高い反射防止膜を有する光学部材を提供することにある。   The present invention has been made in view of such a situation, and an object thereof is to provide an optical member having an antireflection film having high heat resistance and high temperature and humidity resistance.

上記目的を達成するために、本発明の光学部材は、樹脂基板と、
前記樹脂基板上に形成され、TiO2からなる高屈折率層と、SiO2及びAl23からなる低屈折率層と、の交互層を含む反射防止膜と、を有し、
前記反射防止膜の総膜厚に占める前記低屈折率層の膜厚比率が60%以上72.5%以下であり、
前記反射防止膜は、波長420nm〜900nmで入射角5°における平均反射率が1.5%以下の特性を有する。
In order to achieve the above object, the optical member of the present invention comprises a resin substrate,
An antireflection film formed on the resin substrate and including an alternating layer of a high refractive index layer made of TiO 2 and a low refractive index layer made of SiO 2 and Al 2 O 3 ;
The film thickness ratio of the low refractive index layer in the total film thickness of the antireflection film is 60% or more and 72.5% or less,
The antireflection film has a characteristic in which an average reflectance at a wavelength of 420 nm to 900 nm and an incident angle of 5 ° is 1.5% or less.

本発明によれば、樹脂基板上の広帯域反射防止膜において低屈折率層をSiO2及びAl23で構成し、かつ、総膜厚に占める低屈折率層の膜厚比率を適正に規定する構成になっているため、耐熱性及び耐高温高湿性の高い反射防止膜を有する光学部材を実現することができる。According to the present invention, in the broadband antireflection film on the resin substrate, the low refractive index layer is composed of SiO 2 and Al 2 O 3 and the film thickness ratio of the low refractive index layer in the total film thickness is appropriately specified. Therefore, an optical member having an antireflection film with high heat resistance and high temperature and humidity resistance can be realized.

広帯域反射防止膜を有する光学部材の実施の形態を示す多層膜構成図。The multilayer film block diagram which shows embodiment of the optical member which has a broadband antireflection film. ポリカーボネイト樹脂製基板からなる光学部材の実施例1〜11及び比較例1〜7の設計分光特性を示すグラフ。The graph which shows the design spectral characteristics of Examples 1-11 and Comparative Examples 1-7 of the optical member which consists of a substrate made from polycarbonate resin. シクロオレフィン樹脂製基板からなる光学部材の実施例12〜22及び比較例8,9の設計分光特性を示すグラフ。The graph which shows the design spectral characteristic of Examples 12-22 and Comparative Examples 8 and 9 of the optical member which consists of a board | substrate made from cycloolefin resin.

以下、本発明を実施した光学部材等を、図面を参照しつつ説明する。図1に、広帯域反射防止膜を有する光学部材の一実施の形態について、その反射防止膜ARの積層構造を光学断面で模式的に示す。なお、成膜材料の表記に関しては、必要に応じて(図1等)、TiO2をTiO2とし、SiO2をSiO2とし、Al23をAL2O3とし、SiO2とAl23との混合物をSiO2+Al23又はSiO2+AL2O3とする。Hereinafter, an optical member and the like embodying the present invention will be described with reference to the drawings. FIG. 1 schematically shows a laminated structure of an antireflection film AR in an optical section of an embodiment of an optical member having a broadband antireflection film. Regarding the notation of the film forming material (FIG. 1 etc.), TiO 2 is TiO 2 , SiO 2 is SiO 2 , Al 2 O 3 is AL 2 O 3, and a mixture of SiO 2 and Al 2 O 3 as necessary. Is SiO 2 + Al 2 O 3 or SiO 2 + AL 2 O 3 .

図1に示す光学部材KBは、波長420nm〜900nmで入射角5°における平均反射率が1.5%以下の反射防止膜ARを、樹脂基板S上に有している。その反射防止膜ARは、例えば真空蒸着法での成膜により、TiO2(酸化チタン)からなる高屈折率層Hと、SiO2(酸化ケイ素)及びAl23(酸化アルミニウム)からなる低屈折率層Lと、の交互層で構成されている。樹脂基板Sとしては、プラスチックレンズ,プラスチック平板等の合成樹脂製光学部材が挙げられ、樹脂基板Sを構成する材料としては、ポリカーボネイト樹脂,シクロオレフィン樹脂等が挙げられる。低屈折率層Lを構成する成膜材料としては、Al23とSiO2との混合物が挙げられ、また、高屈折率層Hを構成する成膜材料としてはTiO2ベースの材料(蒸着材料としてTi23,Ti35等)が挙げられる。The optical member KB shown in FIG. 1 has an antireflection film AR having a wavelength of 420 nm to 900 nm and an average reflectance of 1.5% or less at an incident angle of 5 ° on the resin substrate S. The antireflection film AR is formed by, for example, a vacuum deposition method, and a high refractive index layer H made of TiO 2 (titanium oxide), and a low refractive index film made of SiO 2 (silicon oxide) and Al 2 O 3 (aluminum oxide). It is composed of alternating layers of refractive index layers L. Examples of the resin substrate S include synthetic resin optical members such as plastic lenses and plastic flat plates. Examples of the material constituting the resin substrate S include polycarbonate resin and cycloolefin resin. The film forming material constituting the low refractive index layer L includes a mixture of Al 2 O 3 and SiO 2, and the film forming material constituting the high refractive index layer H is a TiO 2 based material (evaporation). Examples of the material include Ti 2 O 3 and Ti 3 O 5 .

高屈折率層H(成膜材料:Ti酸化物,例えばTiO2)と、低屈折率層L(成膜材料:SiO2+Al23)と、の積層構造を有する薄膜の設計においては、H/Lの膜厚比率を変更しても、同じ分光特性を得ることが可能である。そこで、420nm〜900nmの波長領域において入射角5°での平均反射率が1.5%以下となるように、H/Lの膜厚比率を変更する反射防止膜ARの設計を行った結果、耐熱性と耐高温高湿性との両立が可能な高い信頼性と、H/Lの膜厚比率と、の関係を見出し本発明に至った。In designing a thin film having a laminated structure of a high refractive index layer H (film forming material: Ti oxide, for example, TiO 2 ) and a low refractive index layer L (film forming material: SiO 2 + Al 2 O 3 ), Even if the film thickness ratio of H / L is changed, the same spectral characteristics can be obtained. Therefore, as a result of designing the antireflection film AR that changes the film thickness ratio of H / L so that the average reflectance at an incident angle of 5 ° in the wavelength region of 420 nm to 900 nm is 1.5% or less, The present inventors have found a relationship between high reliability capable of achieving both heat resistance and high temperature and high humidity resistance, and a film thickness ratio of H / L.

つまり、本発明に係る光学部材KBは、反射防止膜ARの総膜厚に占める低屈折率層Lの膜厚比率が60%以上72.5%以下であることを特徴としている。この構成によって、耐熱性及び耐高温高湿性の高い反射防止膜を有する光学部材KBを実現することが可能となる。膜厚比率が60%を下回ると、耐熱性が低下し(後述する比較例1〜5)、膜厚比率が72.5%を上回ると、耐高温高湿性が低下する(後述する比較例6〜9)。したがって、膜厚比率は60%〜72.5%であれば、耐熱性と耐高温高湿性との両立が可能となる。また、複数の光学面を有する光学系において反射防止膜が複数存在すると、面間反射が生じて透過率が低下してしまうので、前記平均反射率を1.5%以下に抑えることによって、透過率の維持も可能となる。   That is, the optical member KB according to the present invention is characterized in that the film thickness ratio of the low refractive index layer L to the total film thickness of the antireflection film AR is 60% or more and 72.5% or less. With this configuration, it is possible to realize an optical member KB having an antireflection film with high heat resistance and high temperature and humidity resistance. When the film thickness ratio falls below 60%, the heat resistance decreases (Comparative Examples 1 to 5 described later), and when the film thickness ratio exceeds 72.5%, the high temperature and high humidity resistance decreases (Comparative Example 6 described later). ~ 9). Therefore, if the film thickness ratio is 60% to 72.5%, both heat resistance and high temperature and high humidity resistance can be achieved. In addition, when there are a plurality of antireflection films in an optical system having a plurality of optical surfaces, inter-surface reflection occurs and the transmittance is lowered. Therefore, by suppressing the average reflectance to 1.5% or less, transmission is achieved. The rate can also be maintained.

図1に示す反射防止膜ARは15層の積層構造を有しているが、層数はこれに限らない。透過率は層数に応じて変化させることができるので、例えば、反射防止膜ARの層数が10層以上20層以下ならば、反射防止膜ARの総膜厚は320nm以上800nm以下であることが好ましい。総膜厚が320nmを下回ると、波長域420nm〜900nmの平均反射率1.5%以下の反射防止膜ARの設計が困難になり、総膜厚が800nmを上回ると、総膜厚が大きすぎて信頼性,生産性等が低下し、コストアップを招くおそれがある。   The antireflection film AR shown in FIG. 1 has a laminated structure of 15 layers, but the number of layers is not limited to this. Since the transmittance can be changed according to the number of layers, for example, if the number of layers of the antireflection film AR is 10 or more and 20 or less, the total thickness of the antireflection film AR is 320 nm or more and 800 nm or less. Is preferred. If the total film thickness is less than 320 nm, it becomes difficult to design the antireflection film AR having an average reflectance of 1.5% or less in the wavelength range of 420 nm to 900 nm. If the total film thickness exceeds 800 nm, the total film thickness is too large. As a result, reliability, productivity, etc. may be reduced, leading to an increase in cost.

低屈折率層Lが、SiO2:90〜99重量%と、Al23:1〜10重量%と、を含むことが好ましい。Al23の混合割合の増大に伴って、耐熱性や耐傷性が向上する。このため、SiO2とAl23との混合割合として、Al23が1重量%を下回るとAl23による耐熱性や耐傷性の効果が得られなくなり、Al23が10重量%を上回ると成膜速度が安定せず、かつ、成膜外観(スプラッシュ)に著しく不利になる。したがって、Al23の混合割合は1〜10重量%が好ましい。The low refractive index layer L preferably contains SiO 2 : 90 to 99% by weight and Al 2 O 3 : 1 to 10% by weight. As the mixing ratio of Al 2 O 3 increases, heat resistance and scratch resistance are improved. For this reason, if Al 2 O 3 is less than 1% by weight as a mixing ratio of SiO 2 and Al 2 O 3 , the heat resistance and scratch resistance effects due to Al 2 O 3 cannot be obtained, and Al 2 O 3 is 10%. If it exceeds wt%, the film forming speed is not stable, and the film forming appearance (splash) is extremely disadvantageous. Therefore, the mixing ratio of Al 2 O 3 is preferably 1 to 10% by weight.

樹脂基板Sがシクロオレフィン樹脂又はポリカーボネイト樹脂からなることが好ましい。撮像レンズを構成する場合、高屈折率材料と低屈折率材料との組み合わせが必要となるので、低屈折率材料としてシクロオレフィン樹脂、高屈折率材料としてポリカーボネイト樹脂を、それぞれ樹脂基板Sとして用いることが好ましい。そのような樹脂基板Sとしてのプラスチックレンズ上に、前述した構成を有する反射防止膜ARを設ければ、反射防止膜ARに高い信頼性を有するプラスチックレンズを得ることができる。そして、そのようなプラスチックレンズを撮像レンズに用いれば、それを搭載するデジタルカメラの軽量・小型化が可能になるとともに、高い反射防止効果を安定かつ高い信頼性で得ることが可能となる。   The resin substrate S is preferably made of a cycloolefin resin or a polycarbonate resin. When an imaging lens is configured, a combination of a high refractive index material and a low refractive index material is required. Therefore, a cycloolefin resin is used as the low refractive index material, and a polycarbonate resin is used as the resin substrate S as the high refractive index material. Is preferred. If the antireflection film AR having the above-described configuration is provided on the plastic lens as the resin substrate S, a plastic lens having high reliability can be obtained for the antireflection film AR. If such a plastic lens is used as an imaging lens, a digital camera equipped with the plastic lens can be reduced in weight and size, and a high antireflection effect can be obtained stably and with high reliability.

以下、本発明に係る光学部材の構成等を、実施例1〜22及び比較例1〜9を挙げて更に具体的に説明する。   Hereinafter, the structure of the optical member according to the present invention will be described more specifically with reference to Examples 1 to 22 and Comparative Examples 1 to 9.

各数値例(実施例1〜22,比較例1〜9)に対応する反射防止膜について、そのコンストラクションデータを表1〜表6に示し、設計分光特性を図2,図3のグラフに示す。なお、表1〜表6において膜厚ゼロと表記されている場合は、その層が存在しないことを意味する。したがって、比較例5,実施例11,実施例22は層数10層、実施例9,10,20,21は層数14層、その他は層数15層である。   For the antireflection films corresponding to the numerical examples (Examples 1 to 22 and Comparative Examples 1 to 9), construction data are shown in Tables 1 to 6, and design spectral characteristics are shown in the graphs of FIGS. In Tables 1 to 6, when the film thickness is expressed as zero, it means that the layer does not exist. Therefore, Comparative Example 5, Example 11, and Example 22 have 10 layers, Examples 9, 10, 20, and 21 have 14 layers, and others have 15 layers.

また、各数値例を構成する樹脂基板と成膜材料について、d線(波長587.6nm)に対する屈折率Ndを以下に示す。
樹脂基板:
ポリカーボネイト樹脂基板(EP5000) …Nd=1.635
シクロオレフィン樹脂基板(APEL) …Nd=1.545
成膜材料:
TiO2 …Nd=2.228
SiO2+Al23 …Nd=1.475
Moreover, the refractive index Nd with respect to d line | wire (wavelength 587.6nm) is shown below about the resin substrate and film-forming material which comprise each numerical example.
Resin substrate:
Polycarbonate resin substrate (EP5000) ... Nd = 1.635
Cycloolefin resin substrate (APEL) ... Nd = 1.545
Film forming material:
TiO 2 ... Nd = 2.228
SiO 2 + Al 2 O 3 ... Nd = 1.475

各数値例(実施例1〜22,比較例1〜9)のサンプルを作製し、その性能評価を行った。成膜を行うに際し、まず樹脂基板(EP-5000/APL 5514ML)を真空蒸着装置に配置し、1.3×10-3Paまで排気した。そして、各数値例の層番号(表1〜表6)の材料で所定の膜厚の層を形成した。実験内容(成膜材料,成膜条件,樹脂基板)を以下に示し、評価結果を表7,表8に示す。また表9に、反射防止膜ARの総膜厚の良好範囲と、低屈折率層L(SiO2+Al23)の膜厚比率の良好範囲を示す。Samples of numerical examples (Examples 1 to 22 and Comparative Examples 1 to 9) were prepared and performance evaluation was performed. When film formation was performed, first, a resin substrate (EP-5000 / APL 5514ML) was placed in a vacuum deposition apparatus and evacuated to 1.3 × 10 −3 Pa. And the layer of the predetermined | prescribed film thickness was formed with the material of the layer number (Table 1-Table 6) of each numerical example. The contents of the experiment (film formation material, film formation conditions, resin substrate) are shown below, and the evaluation results are shown in Tables 7 and 8. Table 9 shows a good range of the total film thickness of the antireflection film AR and a good range of the film thickness ratio of the low refractive index layer L (SiO 2 + Al 2 O 3 ).

各数値例の設計反射率は、図2,図3に示すように、420nm〜900nmで1.5%以下であった。耐熱温度が100℃以上で、かつ、85℃85%1000hの外観が良好(○)である領域は、実施例1〜22に示す範囲(表9)であった。総膜厚に占める低屈折率層Lの膜厚比率は60%以上72.5%以下であった。   The design reflectivity of each numerical example was 1.5% or less from 420 nm to 900 nm as shown in FIGS. The region where the heat resistant temperature was 100 ° C. or higher and the appearance at 85 ° C. and 85% 1000 h was good (◯) was the range shown in Examples 1 to 22 (Table 9). The film thickness ratio of the low refractive index layer L in the total film thickness was 60% or more and 72.5% or less.

[成膜材料]
高屈折率材料としてTi35を用い、低屈折率材料としてSiO2+Al23を用いた。Ti35は、富士チタン工業社製のTOP(商品名)であり、SiO2+Al23は、Merck社製のSubstance L5(商品名)である。
[Film material]
Ti 3 O 5 was used as the high refractive index material, and SiO 2 + Al 2 O 3 was used as the low refractive index material. Ti 3 O 5 is TOP (trade name) manufactured by Fuji Titanium Industry Co., and SiO 2 + Al 2 O 3 is Substance L5 (trade name) manufactured by Merck.

[成膜条件]
真空蒸着装置としてBMC-1100(シンクロン社製)を用い、到達真空度を1.3×10-3Paとした。イオン銃としてRIS-120(シンクロン社製)を用いてIADを行った。成膜材としてTOP(商品名)を用いた際には、真空度を2×10-2Paとし、蒸着速度を3.5Å/Secとし、IAD条件として、酸素ガスを導入し、加速電圧500V、加速電流を250mAとした。また、成膜材としてSubstance L5(商品名)を用いた際には、真空度を8×10-3Paとし、蒸着速度を5.0Å/Secとし、IADを行わなかった。なお、低屈折率材料(SiO2+Al23)として用いたSubstance L5の組成は、SiO2:97重量%、Al23:3重量%である。
[Film formation conditions]
BMC-1100 (manufactured by SYNCHRON Co., Ltd.) was used as a vacuum vapor deposition apparatus, and the ultimate vacuum was 1.3 × 10 −3 Pa. IAD was performed using RIS-120 (manufactured by SYNCHRON) as an ion gun. When TOP (trade name) is used as the film forming material, the degree of vacuum is 2 × 10 −2 Pa, the vapor deposition rate is 3.5 Å / Sec, oxygen gas is introduced as the IAD conditions, and the acceleration voltage is 500 V. The acceleration current was 250 mA. When Substance L5 (trade name) was used as the film forming material, the degree of vacuum was 8 × 10 −3 Pa, the deposition rate was 5.0 Å / Sec, and IAD was not performed. The composition of Substance L5 used as the low refractive index material (SiO 2 + Al 2 O 3 ) is SiO 2 : 97 wt% and Al 2 O 3 : 3 wt%.

[樹脂基板]
樹脂基板として、ポリカーボネイト樹脂とシクロオレフィン樹脂を用いた。ポリカーボネイト樹脂は、三菱ガス化学(株)製のユピゼーダ EP-5000(商品名)であり、シクロオレフィン樹脂は、三井化学(株)製のAPL 5514ML(商品名)である。
[Resin substrate]
A polycarbonate resin and a cycloolefin resin were used as the resin substrate. The polycarbonate resin is Iupiseda EP-5000 (trade name) manufactured by Mitsubishi Gas Chemical Co., Ltd., and the cycloolefin resin is APL 5514ML (trade name) manufactured by Mitsui Chemicals.

性能評価は、成膜後半年常温常湿で放置した後、下記試験(耐熱温度試験,高温高湿試験)をそれぞれ実施することにより行った。   The performance evaluation was performed by leaving the sample at room temperature and humidity in the latter half of the film formation, and then performing the following tests (heat-resistant temperature test and high-temperature and high-humidity test).

[耐熱温度試験]
熱風乾燥炉を80℃に設定して30分放置し、取り出し10分後に顕微鏡で薄膜のクラックを観察し、クラックが発生した温度を記録した。その際、同じサンプルを5℃毎に温度を上げてクラックが発生するまで試験、観察を繰り返した。薄膜の耐熱温度は経時変化の影響を埋めるため、成膜後180日経過したサンプルにて評価した。表7及び表8に、クラックが発生した直前の試験温度を示す。
[Heat-resistant temperature test]
The hot-air drying oven was set at 80 ° C. and left for 30 minutes, and after 10 minutes of removal, the thin film was observed for cracks with a microscope, and the temperature at which the crack occurred was recorded. At that time, the test and observation were repeated until the same sample was heated at every 5 ° C. and cracks occurred. The heat-resistant temperature of the thin film was evaluated using a sample that had passed 180 days after film formation in order to compensate for the influence of changes over time. Tables 7 and 8 show the test temperatures immediately before the occurrence of cracks.

[高温高湿試験(85℃85%)]
高温高湿槽を85℃85%に設定して1000時間放置した後取り出し、24時間常温常湿に放置し顕微鏡にてクラック,膜浮き等の欠陥を観察した(観察倍率=200倍)。耐高温高湿性の評価は、クラック,膜浮き等の欠陥が観察されなかった場合を○:良好とし、クラック,膜浮き等の欠陥が観察された場合を×:不良とした。
[High temperature and high humidity test (85 ℃ 85%)]
The high-temperature and high-humidity tank was set at 85 ° C. and 85% and allowed to stand for 1000 hours and then taken out, and left for 24 hours at room temperature and normal humidity. In the evaluation of the high temperature and high humidity resistance, a case where no defect such as a crack or a film floating was observed was evaluated as “Good”, and a case where a defect such as a crack or a film floating was observed was evaluated as “X”.

Figure 2015129129
Figure 2015129129

Figure 2015129129
Figure 2015129129

Figure 2015129129
Figure 2015129129

Figure 2015129129
Figure 2015129129

Figure 2015129129
Figure 2015129129

Figure 2015129129
Figure 2015129129

Figure 2015129129
Figure 2015129129

Figure 2015129129
Figure 2015129129

Figure 2015129129
Figure 2015129129

KB 光学部材
AR 反射防止膜
H 高屈折率層
L 低屈折率層
S 樹脂基板
KB Optical member AR Antireflection film H High refractive index layer L Low refractive index layer S Resin substrate

Claims (4)

樹脂基板と、
前記樹脂基板上に形成され、TiO2からなる高屈折率層と、SiO2及びAl23からなる低屈折率層と、の交互層を含む反射防止膜と、を有し、
前記反射防止膜の総膜厚に占める前記低屈折率層の膜厚比率が60%以上72.5%以下であり、
前記反射防止膜は、波長420nm〜900nmで入射角5°における平均反射率が1.5%以下の特性を有する、光学部材。
A resin substrate;
An antireflection film formed on the resin substrate and including an alternating layer of a high refractive index layer made of TiO 2 and a low refractive index layer made of SiO 2 and Al 2 O 3 ;
The film thickness ratio of the low refractive index layer in the total film thickness of the antireflection film is 60% or more and 72.5% or less,
The antireflection film is an optical member having a wavelength of 420 nm to 900 nm and an average reflectance at an incident angle of 5 ° of 1.5% or less.
前記反射防止膜の総膜厚が320nm以上800nm以下、層数が10層以上20層以下である請求項1記載の光学部材。   The optical member according to claim 1, wherein the total thickness of the antireflection film is from 320 nm to 800 nm, and the number of layers is from 10 layers to 20 layers. 前記低屈折率層が、SiO2:90〜99重量%と、Al23:1〜10重量%と、を含む請求項1又は2記載の光学部材。The low refractive index layer, SiO 2: 90 to 99 and percent by weight, Al 2 O 3: 1 to 10 wt% and, according to claim 1 or 2, wherein the optical element includes a. 前記樹脂基板がシクロオレフィン樹脂又はポリカーボネイト樹脂からなる請求項1〜3のいずれか1項に記載の光学部材。   The optical member according to claim 1, wherein the resin substrate is made of a cycloolefin resin or a polycarbonate resin.
JP2016505005A 2014-02-26 2014-12-15 Optical member having broadband anti-reflection coating Pending JPWO2015129129A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014034827 2014-02-26
JP2014034827 2014-02-26
PCT/JP2014/083093 WO2015129129A1 (en) 2014-02-26 2014-12-15 Optical member provided with wide-band anti-reflection film

Publications (1)

Publication Number Publication Date
JPWO2015129129A1 true JPWO2015129129A1 (en) 2017-03-30

Family

ID=54008469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016505005A Pending JPWO2015129129A1 (en) 2014-02-26 2014-12-15 Optical member having broadband anti-reflection coating

Country Status (2)

Country Link
JP (1) JPWO2015129129A1 (en)
WO (1) WO2015129129A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133342A (en) * 2017-09-06 2020-05-08 日本电产株式会社 Lens and lens assembly
CN112305656A (en) * 2020-11-12 2021-02-02 东莞市长益光电有限公司 Coating layer of resin lens and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232565A (en) * 2004-02-23 2005-09-02 Seiko Epson Corp Method of producing thin film
JP2005292462A (en) * 2004-03-31 2005-10-20 Konica Minolta Opto Inc Optical element having dielectric multilayer film
JP2014024741A (en) * 2012-07-30 2014-02-06 Asahi Glass Co Ltd Production method of optical element
JP2014056215A (en) * 2012-09-14 2014-03-27 Ricoh Imaging Co Ltd Antireflection film, optical member using the same, and optical equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111702A (en) * 1998-10-02 2000-04-21 Olympus Optical Co Ltd Antireflection film
JP2006058779A (en) * 2004-08-23 2006-03-02 Canon Inc Antireflection film, optical element, aligner, and method for manufacturing device
JP4803808B2 (en) * 2006-07-25 2011-10-26 Hoya株式会社 Antireflection film and optical member having antireflection film
JP2009054902A (en) * 2007-08-29 2009-03-12 Canon Inc Display device
FR2943798B1 (en) * 2009-03-27 2011-05-27 Essilor Int OPTICAL ARTICLE COATED WITH AN ANTIREFLECTIVE OR REFLECTIVE COATING COMPRISING AN ELECTRICALLY CONDUCTIVE LAYER BASED ON TIN OXIDE AND METHOD OF MANUFACTURE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232565A (en) * 2004-02-23 2005-09-02 Seiko Epson Corp Method of producing thin film
JP2005292462A (en) * 2004-03-31 2005-10-20 Konica Minolta Opto Inc Optical element having dielectric multilayer film
JP2014024741A (en) * 2012-07-30 2014-02-06 Asahi Glass Co Ltd Production method of optical element
JP2014056215A (en) * 2012-09-14 2014-03-27 Ricoh Imaging Co Ltd Antireflection film, optical member using the same, and optical equipment

Also Published As

Publication number Publication date
WO2015129129A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
JP6682188B2 (en) Hard antireflective film and its manufacture and use
JP7304129B2 (en) Antireflection film, manufacturing method thereof, and polarizing plate with antireflection layer
JP6112490B2 (en) Optical product and manufacturing method thereof
Moghal et al. Development of single layer nanoparticle anti-reflection coating for polymer substrates
JP2009109850A (en) Reflection preventive film, manufacturing method therefor, polarizing plate using reflection preventive film, and manufacturing method therefor
JP2009047876A (en) Antireflection film and polarizing plate using the same
JP2014224979A5 (en)
TW201433830A (en) Dielectric mirror
CN108017290B (en) Preparation method of antireflection glass
JP2010269957A (en) Optical element and optical system having the same
WO2024093106A1 (en) Clear-base-color, blue-light-blocking and anti-infrared resin lens and preparation method therefor
JP2008268328A (en) Reflection preventing film and polarizing plate using the same
JP5790167B2 (en) Transparent gas barrier laminate
JPWO2015129129A1 (en) Optical member having broadband anti-reflection coating
CN107703568A (en) Optical reflection film and back light for liquid crystal display device unit
JP2015152735A (en) Optical product and spectacle lens, and spectacle
JP7216471B2 (en) Plastic lens for in-vehicle lens and manufacturing method thereof
JP2017032852A (en) Anti-reflection film and optical component
JP2005173326A (en) Plastic optical component
JP6627828B2 (en) Thin film manufacturing method, thin film forming material, optical thin film, and optical member
JPWO2005029142A1 (en) Silver mirror and manufacturing method thereof
JP2014002270A (en) Camera nd filter and method of manufacturing the same
JP2005232565A (en) Method of producing thin film
JP7098129B2 (en) Antireflection film and optical element having it
JP2012141474A (en) Antireflection film of plastic optical element and plastic optical element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190528