JPWO2015037381A1 - New compounds, electrolytes and secondary batteries - Google Patents

New compounds, electrolytes and secondary batteries Download PDF

Info

Publication number
JPWO2015037381A1
JPWO2015037381A1 JP2015536496A JP2015536496A JPWO2015037381A1 JP WO2015037381 A1 JPWO2015037381 A1 JP WO2015037381A1 JP 2015536496 A JP2015536496 A JP 2015536496A JP 2015536496 A JP2015536496 A JP 2015536496A JP WO2015037381 A1 JPWO2015037381 A1 JP WO2015037381A1
Authority
JP
Japan
Prior art keywords
group
carbon atoms
alkyl group
optionally branched
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015536496A
Other languages
Japanese (ja)
Other versions
JP6451638B2 (en
Inventor
石川 仁志
石川  仁志
登 吉田
登 吉田
伊紀子 島貫
伊紀子 島貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2015037381A1 publication Critical patent/JPWO2015037381A1/en
Application granted granted Critical
Publication of JP6451638B2 publication Critical patent/JP6451638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/02Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
    • C07D327/06Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/10Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms two oxygen atoms and one sulfur atom, e.g. cyclic sulfates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本願発明は、二次電池の性能を向上可能な新規化合物を提供することを目的とする。本実施形態の化合物は、所定式(1)で表される化合物である。本実施形態の化合物を電解液に含有させることにより、二次電池の容量維持率を向上させることができ、また、体積増加率を抑制することができる。[式(1)中、A11〜A13、R11、R12は請求項1に記載の意味を表す。]An object of this invention is to provide the novel compound which can improve the performance of a secondary battery. The compound of this embodiment is a compound represented by the predetermined formula (1). By containing the compound of this embodiment in the electrolytic solution, the capacity retention rate of the secondary battery can be improved and the volume increase rate can be suppressed. [In Formula (1), A11-A13, R11, R12 represents the meaning of Claim 1. ]

Description

本実施形態は、新規化合物に関する。また、本実施形態は、好ましくは、前記新規化合物を含む電解液に関する。また、本実施形態は、好ましくは、前記電解液を含む二次電池に関する。   The present embodiment relates to a novel compound. In addition, this embodiment preferably relates to an electrolytic solution containing the novel compound. In addition, the present embodiment preferably relates to a secondary battery including the electrolytic solution.

ノート型パソコン、携帯電話、電気自動車などの急速な市場拡大に伴い、優れた性能を有する二次電池が求められており、二次電池の性能を向上するため、種々の添加剤を含む電解液が開発されている。   With the rapid market expansion of notebook computers, mobile phones, electric vehicles, etc., secondary batteries with excellent performance are required, and electrolytes containing various additives to improve the performance of secondary batteries Has been developed.

例えば、特許文献1には、非プロトン性溶媒と、スルホニル基を少なくとも2個有する環式スルホン酸エステルと、を含む二次電池用電解液が開示されている。   For example, Patent Document 1 discloses an electrolyte solution for a secondary battery including an aprotic solvent and a cyclic sulfonic acid ester having at least two sulfonyl groups.

また、特許文献2には、支持塩と、非水溶媒と、リン酸エステル酸と、スルホン構造を有す化合物と、を含む非水電解質組成物が開示されている。   Patent Document 2 discloses a non-aqueous electrolyte composition containing a supporting salt, a non-aqueous solvent, a phosphoric ester acid, and a compound having a sulfone structure.

また、特許文献3には、溶媒と、支持塩と、所定式で表されるスルホン化合物のうちの少なくとも1種と、を含む電解液が開示されている。   Patent Document 3 discloses an electrolytic solution containing a solvent, a supporting salt, and at least one of sulfone compounds represented by a predetermined formula.

また、特許文献4には、溶媒及び支持塩を含み、前記溶媒は、所定式で表されるエステル化合物、モノフルオロリン酸リチウム(LiPFO)およびジフルオロリン酸リチウム(LiPF)のうちの少なくとも1種と、所定式で表される無水化合物のうちの少なくとも1種と、を含む、電解質が開示されている。Patent Document 4 includes a solvent and a supporting salt, and the solvent includes an ester compound represented by a predetermined formula, lithium monofluorophosphate (Li 2 PFO 3 ), and lithium difluorophosphate (LiPF 2 O 2 ). An electrolyte containing at least one of the above and at least one of the anhydrous compounds represented by the predetermined formula is disclosed.

また、特許文献5には、所定式で表わされるスルホン酸とカルボン酸の無水物を含む非水溶媒と、支持塩と、を含む電解液が開示されている。   Patent Document 5 discloses an electrolytic solution containing a non-aqueous solvent containing a sulfonic acid and carboxylic acid anhydride represented by a predetermined formula, and a supporting salt.

特開2004−281368号公報JP 2004-281368 A 特開2008−041635号公報JP 2008-041635 A 特開2010−034087号公報JP 2010-034087 A 特開2010−165542号公報JP 2010-165542 A 特開2002−008718号公報JP 2002-008718 A

特許文献1〜6に開示されるように、二次電池の性能の向上を目的として、種々の添加剤を含有する電解液が開示されている。   As disclosed in Patent Documents 1 to 6, electrolytic solutions containing various additives are disclosed for the purpose of improving the performance of the secondary battery.

本願発明は、二次電池の性能を向上可能な新規化合物を提供することを目的とする。   An object of this invention is to provide the novel compound which can improve the performance of a secondary battery.

本発明の実施形態は、5以上の環員数を有し、かつ下記式(1)で表される化合物である。   An embodiment of the present invention is a compound having a ring member number of 5 or more and represented by the following formula (1).

Figure 2015037381
Figure 2015037381

(式(1)において、A11〜A13は、それぞれ独立に、単結合、酸素原子、カルボニル基、又は、分岐していてもよい置換若しくは無置換の炭素数1,2若しくは3のアルキレン基を示す。R11及びR12は、それぞれ独立に、水素原子、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子を示す。)。(In the formula (1), A 11 to A 13 are each independently a single bond, an oxygen atom, a carbonyl group, or a substituted or unsubstituted alkylene group having 1, 2 or 3 carbon atoms. R 11 and R 12 each independently represent a hydrogen atom, an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, an optionally branched carbon number 1, 2, 3 or 4 represents a fluorine-substituted alkyl group or a fluorine atom).

また、本発明の実施形態は、前記化合物を含む電解液である。   Moreover, embodiment of this invention is an electrolyte solution containing the said compound.

また、本発明の実施形態は、前記電解液を含む二次電池である。   Moreover, embodiment of this invention is a secondary battery containing the said electrolyte solution.

本願発明によれば、二次電池の性能を向上可能な新規化合物を提供することができる。   According to this invention, the novel compound which can improve the performance of a secondary battery can be provided.

積層ラミネート型の二次電池が有する電極積層体の構造を示す模式的断面図である。It is typical sectional drawing which shows the structure of the electrode laminated body which a laminated laminate type secondary battery has.

以下、本発明の実施形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の実施形態は、5以上の環員数を有し、かつ下記式(1)で表される化合物である。   An embodiment of the present invention is a compound having a ring member number of 5 or more and represented by the following formula (1).

Figure 2015037381
Figure 2015037381

(式(1)において、A11〜A13は、それぞれ独立に、単結合、酸素原子、カルボニル基、又は、分岐していてもよい置換若しくは無置換の炭素数1,2若しくは3のアルキレン基を示す。R11及びR12は、それぞれ独立に、水素原子、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子を示す。)。(In the formula (1), A 11 to A 13 are each independently a single bond, an oxygen atom, a carbonyl group, or a substituted or unsubstituted alkylene group having 1, 2 or 3 carbon atoms. R 11 and R 12 each independently represent a hydrogen atom, an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, an optionally branched carbon number 1, 2, 3 or 4 represents a fluorine-substituted alkyl group or a fluorine atom).

式(1)において、A11〜A13の置換基は、それぞれ、例えば、分岐していてもよいアルキル基、分岐していてもよいハロゲン置換アルキル基、分岐していてもよいアルケニル基、分岐していてもよいアルキニル基、分岐していてもよいアルコキシ基、アミノ基、ヒドロキシ基、又はハロゲン原子である。A11〜A13の置換基はそれぞれ独立している。A11、A12、又はA13の置換基が複数ある場合は、それぞれ独立していてもよい。In the formula (1), the substituents of A 11 to A 13 are each, for example, an optionally branched alkyl group, an optionally branched halogen-substituted alkyl group, an optionally branched alkenyl group, and a branched group. An alkynyl group which may be substituted, an alkoxy group which may be branched, an amino group, a hydroxy group, or a halogen atom. The substituents of A 11 to A 13 are independent from each other. When there are a plurality of substituents of A 11 , A 12 , or A 13 , they may be independent from each other.

11〜A13の置換基は、それぞれ、分岐していてもよい炭素数1,2,3若しくは4のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基)、分岐していてもよい炭素数1,2,3若しくは4のハロゲン置換アルキル基(例えば、パーフルオロメチル基、パーフルオロエチル基)、分岐していてもよい炭素数2,3若しくは4のアルケニル基(例えば、ビニル基、1−プロペニル基、2−プロペニル基、2−ブテニル基)、分岐していてもよい炭素数2,3若しくは4のアルキニル基(例えば、アセチレニル基、1−プロピニル基、2−プロピニル基、2−ブチニル基)、分岐していてもよい炭素数1,2,3若しくは4のアルコキシ基(例えば、メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、tert−ブトキシ基)、アミノ基、ヒドロキシ基、又はハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)であることが好ましい。The substituents of A 11 to A 13 are each an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group), a branched group. An optionally substituted halogen-substituted alkyl group having 1, 2, 3 or 4 carbon atoms (for example, perfluoromethyl group or perfluoroethyl group), an optionally branched alkenyl group having 2, 3 or 4 carbon atoms ( For example, a vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group), an optionally branched alkynyl group having 2, 3 or 4 carbon atoms (for example, acetylenyl group, 1-propynyl group, 2- Propynyl group, 2-butynyl group), optionally branched alkoxy group having 1, 2, 3 or 4 carbon atoms (for example, methoxy group, ethoxy group, n-propoxy group, iso Propoxy, n- butoxy group, tert- butoxy group), an amino group, hydroxy group, or a halogen atom (e.g., fluorine atom, chlorine atom, is preferably a bromine atom).

11〜A13の置換基は、それぞれ、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子であることがより好ましい。The substituents of A 11 to A 13 are each an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, and optionally substituted fluorine substituted alkyl having 1, 2, 3 or 4 carbon atoms. More preferably, it is a group or a fluorine atom.

ハロゲン置換アルキル基とは、無置換アルキル基のうちの少なくとも一つの水素原子がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)で置換された構造を有する置換アルキル基を表す。ハロゲン置換アルキル基としては、フッ素置換アルキル基であることが好ましい。なお、フッ素置換アルキル基とは、無置換アルキル基のうちの少なくとも一つの水素原子がフッ素原子で置換された構造を有する置換アルキル基を表す。   The halogen-substituted alkyl group represents a substituted alkyl group having a structure in which at least one hydrogen atom in the unsubstituted alkyl group is substituted with a halogen atom (for example, a fluorine atom, a chlorine atom, or a bromine atom). The halogen-substituted alkyl group is preferably a fluorine-substituted alkyl group. The fluorine-substituted alkyl group represents a substituted alkyl group having a structure in which at least one hydrogen atom in the unsubstituted alkyl group is substituted with a fluorine atom.

式(1)で表される化合物の環員数は、5〜12であることが好ましく、5〜10であることがより好ましく、5〜8であることがさらに好ましく、5又は6であることが特に好ましい。   The number of ring members of the compound represented by the formula (1) is preferably 5 to 12, more preferably 5 to 10, still more preferably 5 to 8, and 5 or 6. Particularly preferred.

本実施形態の化合物は、下記式(2)又は(3)で表されることが好ましい。   It is preferable that the compound of this embodiment is represented by following formula (2) or (3).

Figure 2015037381
Figure 2015037381

(式(2)において、A21は、分岐していてもよい置換若しくは無置換の炭素数1,2若しくは3のアルキレン基を示す。R21及びR22は、それぞれ独立に、水素原子、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子を示す。)。(In the formula (2), A 21 represents a substituted or unsubstituted alkylene group having 1, 2 or 3 carbon atoms which may be branched. R 21 and R 22 each independently represents a hydrogen atom or a branched group. An optionally substituted alkyl group having 1, 2, 3 or 4 carbon atoms, an optionally branched fluorine-substituted alkyl group having 1, 2, 3 or 4 carbon atoms, or a fluorine atom.

21の置換基は、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子であることが好ましい。The substituent of A 21 is an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, an optionally substituted fluorine substituted alkyl group having 1, 2, 3 or 4 carbon atoms, or a fluorine atom. It is preferable that

Figure 2015037381
Figure 2015037381

(式(3)において、A31は、単結合、又は、分岐していてもよい置換若しくは無置換の炭素数1,2若しくは3のアルキレン基を示す。R31及びR32は、それぞれ独立に、水素原子、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子を示す。)。(In the formula (3), A 31 represents a single bond or a substituted or unsubstituted alkylene group having 1, 2 or 3 carbon atoms which may be branched. R 31 and R 32 are each independently , A hydrogen atom, an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, an optionally branched fluorine substituted alkyl group having 1, 2, 3 or 4 carbon atoms, or a fluorine atom. ).

31の置換基は、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子であることが好ましい。
なお、A31が単結合である場合は、式(3)のA31に隣接する硫黄原子と酸素原子が結合している場合を示す。
The substituent for A 31 is an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, an optionally substituted fluorine substituted alkyl group having 1, 2, 3 or 4 carbon atoms, or a fluorine atom. It is preferable that
In the case A 31 is a single bond, shows the case where sulfur atom and an oxygen atom adjacent to A 31 of the formula (3) is attached.

化合物(2)は、硫黄原子に二つのカルボン酸が結合した、2,2−チオグリコール酸誘導体の硫黄原子を酸化反応によりスルホン化し、次いで分子内脱水縮合反応により環化させることにより合成することができる。
化合物(3)は、分子鎖の両端にスルホン酸部位とカルボン酸部位を有する化合物を、酸触媒存在下での求核置換反応により分子内環化させて合成することができる。
Compound (2) is synthesized by sulfonating a sulfur atom of a 2,2-thioglycolic acid derivative in which two carboxylic acids are bonded to a sulfur atom by an oxidation reaction and then cyclizing by an intramolecular dehydration condensation reaction. Can do.
Compound (3) can be synthesized by intramolecular cyclization of a compound having a sulfonic acid moiety and a carboxylic acid moiety at both ends of the molecular chain by a nucleophilic substitution reaction in the presence of an acid catalyst.

本実施形態の化合物は、下記式(4)又は(5)で表されることが好ましい。   It is preferable that the compound of this embodiment is represented by following formula (4) or (5).

Figure 2015037381
Figure 2015037381

(式(4)において、R41〜R44は、それぞれ独立に、水素原子、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子を示す。)。(In the formula (4), R 41 to R 44 are each independently a hydrogen atom, an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, an optionally branched carbon number 1, 2, 3 or 4 fluorine-substituted alkyl groups, or fluorine atoms.)

Figure 2015037381
Figure 2015037381

(式(5)において、R51及びR52は、それぞれ独立に、水素原子、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子を示す。)。(In Formula (5), R 51 and R 52 are each independently a hydrogen atom, an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, an optionally branched carbon number 1, 2, 3 or 4 fluorine-substituted alkyl groups, or fluorine atoms.)

本実施形態の化合物の具体例を以下に挙げる。   Specific examples of the compound of this embodiment are listed below.

Figure 2015037381
Figure 2015037381

Figure 2015037381
Figure 2015037381

Figure 2015037381
Figure 2015037381

Figure 2015037381
Figure 2015037381

Figure 2015037381
Figure 2015037381

本実施形態の化合物は、二次電池の電解液に含有させる添加剤として用いることができる。本実施形態の化合物を電解液に添加することにより、二次電池の容量維持率を向上させ、ガス発生を抑制することができる。   The compound of this embodiment can be used as an additive contained in the electrolyte solution of the secondary battery. By adding the compound of the present embodiment to the electrolytic solution, the capacity retention rate of the secondary battery can be improved and gas generation can be suppressed.

以下、本実施形態の電解液及び二次電池について説明する。   Hereinafter, the electrolytic solution and the secondary battery of this embodiment will be described.

[1]電解液
本実施形態における電解液は、式(1)で表される本実施形態の化合物を含む。
[1] Electrolytic Solution The electrolytic solution in the present embodiment includes the compound of the present embodiment represented by the formula (1).

本実施形態の化合物は、電極表面にSEI(Solid Electrolyte Interface)皮膜を形成し、その結果、電解液中の溶媒の分解を抑制することができる。すなわち、本実施形態の化合物は負極で還元分解し負極上に皮膜を形成する。この皮膜はカルボニル基とスルホニル基を有し、イオン導電性に優れるため、電解液中の溶媒の分解を抑制することができ、結果として、容量維持率の低下及びガス発生を抑制することができるものと考えられる。なお、以上のメカニズム・理論は推測であり、本発明を限定するものではない。   The compound of this embodiment forms a SEI (Solid Electrolyte Interface) film on the electrode surface, and as a result, can suppress decomposition of the solvent in the electrolytic solution. That is, the compound of this embodiment undergoes reductive decomposition at the negative electrode to form a film on the negative electrode. Since this film has a carbonyl group and a sulfonyl group and is excellent in ionic conductivity, it can suppress decomposition of the solvent in the electrolytic solution, and as a result, it can suppress a decrease in capacity maintenance rate and gas generation. It is considered a thing. The above mechanism and theory are speculations and do not limit the present invention.

本実施形態の化合物の電解液中の含有量は、特に制限されるものではないが、0.1〜10質量%であることが好ましく、0.3〜8.0質量%であることがより好ましく、1.0〜5.0質量%であることがさらに好ましい。本実施形態の化合物の含有量が0.1質量%以上である場合、電極に皮膜を効果的に形成することができ、結果として、非水溶媒の分解を効果的に抑制することができる。また、本実施形態の化合物の含有量が10質量%以下である場合、SEI皮膜の過剰な成長による電池の内部抵抗の上昇を効果的に抑えることができる。   Although content in the electrolyte solution of the compound of this embodiment is not specifically limited, It is preferable that it is 0.1-10 mass%, and it is more preferable that it is 0.3-8.0 mass%. Preferably, it is 1.0-5.0 mass%. When content of the compound of this embodiment is 0.1 mass% or more, a film | membrane can be effectively formed in an electrode and the decomposition | disassembly of a nonaqueous solvent can be suppressed effectively as a result. Moreover, when content of the compound of this embodiment is 10 mass% or less, the raise of the internal resistance of a battery by the excessive growth of a SEI film | membrane can be suppressed effectively.

電解液は、本実施形態の化合物の他に、例えば、支持塩及び非水溶媒を含む。   The electrolytic solution includes, for example, a supporting salt and a nonaqueous solvent in addition to the compound of the present embodiment.

支持塩としては、特に本願発明が制限されるものではないが、例えば、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、Li(CFSO、LiN(CFSO等のリチウム塩が挙げられる。支持塩は、一種を単独で、または二種以上を組み合わせて使用することができる。As the supporting salt, and it is not particularly present invention is limited, for example, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, Li Examples thereof include lithium salts such as (CF 3 SO 2 ) 2 and LiN (CF 3 SO 2 ) 2 . The supporting salt can be used alone or in combination of two or more.

支持塩の電解液中の濃度は、0.5〜1.5mol/lであることが好ましい。支持塩の濃度をこの範囲とすることにより、密度や粘度、電気伝導率等を適切な範囲に調整し易くなる。   The concentration of the supporting salt in the electrolytic solution is preferably 0.5 to 1.5 mol / l. By setting the concentration of the supporting salt within this range, it becomes easy to adjust the density, viscosity, electrical conductivity, and the like to an appropriate range.

非水溶媒としては、特に本願発明が制限されるものではないが、例えば、環状カーボネート類及び鎖状カーボネート類等のカーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エーテル類、並びにそれらのフッ素誘導体等が挙げられる。これらは、一種を単独で、または二種以上を組み合わせて使用することができる。   As the non-aqueous solvent, the present invention is not particularly limited. For example, carbonates such as cyclic carbonates and chain carbonates, aliphatic carboxylic acid esters, γ-lactones, cyclic ethers, chains And ethers thereof, fluorine derivatives thereof and the like. These can be used individually by 1 type or in combination of 2 or more types.

環状カーボネート類としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等が挙げられる。   Examples of the cyclic carbonates include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), and the like.

鎖状カーボネート類としては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等が挙げられる。   Examples of chain carbonates include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC).

脂肪族カルボン酸エステル類としては、例えば、ギ酸メチル、酢酸メチル、プロピオン酸エチル等が挙げられる。   Examples of the aliphatic carboxylic acid esters include methyl formate, methyl acetate, and ethyl propionate.

γ−ラクトン類としては、例えば、γ−ブチロラクトン等が挙げられる。   Examples of γ-lactones include γ-butyrolactone.

環状エーテル類としては、例えば、テトラヒドロフラン、2−メチルテトラヒドロフラン等が挙げられる。   Examples of cyclic ethers include tetrahydrofuran and 2-methyltetrahydrofuran.

鎖状エーテル類としては、例えば、1,2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等が挙げられる。   Examples of chain ethers include 1,2-diethoxyethane (DEE) and ethoxymethoxyethane (EME).

非水溶媒としては、その他にも、例えば、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、N−メチルピロリドン、フッ素化カルボン酸エステル、メチル−2,2,2−トリフルオロエチルカーボネート、メチル−2,2,3,3,3−ペンタフルオロプロピルカーボネート、トリフルオロメチルエチレンカーボネート、モノフルオロメチルエチレンカーボネート、ジフルオロメチルエチレンカーボネート、4,5−ジフルオロ−1,3−ジオキソラン−2−オン、モノフルオロエチレンカーボネート等が挙げられる。これらは、一種を単独で、または二種以上を組み合わせて使用することができる。   Other nonaqueous solvents include, for example, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives. , Sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, N-methylpyrrolidone, fluorinated carboxylic acid ester, methyl-2 , 2,2-trifluoroethyl carbonate, methyl-2,2,3,3,3-pentafluoropropyl carbonate, trifluoromethyl ethylene carbonate, monofluoromethyl ethyl Carbonate, difluoromethyl ethylene carbonate, 4,5-difluoro-1,3-dioxolan-2-one, mono-fluoroethylene carbonate, and the like. These can be used individually by 1 type or in combination of 2 or more types.

非水溶媒は、カーボネート類を含むことが好ましい。カーボネート類は、環状カーボネート類又は鎖状カーボネート類を含む。カーボネート類は、比誘電率が大きいため電解液のイオン解離性が向上し、さらに、電解液の粘度が下がるのでイオン移動度が向上するという利点を有する。しかし、カーボネート構造を有するカーボネート類を電解液の非水溶媒として用いると、カーボネート類が分解してCOを含むガスが発生する傾向がある。とくに積層ラミネート型の二次電池の場合、電池内部でガスが生じると膨れの問題が顕著に現れ、性能低下に繋がりやすい。そこで、本実施形態では、カーボネート類を含む非水溶媒に本実施形態の化合物を添加しておくことにより、本実施形態の化合物により形成されるSEI皮膜がカーボネート類の分解を抑制し、ガスの発生を抑制することができる。したがって、本実施形態において、電解液は本実施形態の化合物に加え、カーボネート類を非水溶媒として含むことが好ましい。このような構成とすることにより、カーボネート類を非水溶媒として用いてもガス発生を低減でき、高い性能を有する二次電池を提供することができる。カーボネート類の電解液中の含有量は、例えば、30質量%以上であり、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。The non-aqueous solvent preferably contains carbonates. The carbonates include cyclic carbonates or chain carbonates. Since carbonates have a large relative dielectric constant, the ion dissociation property of the electrolytic solution is improved, and further, the viscosity of the electrolytic solution is lowered, so that the ion mobility is improved. However, when carbonates having a carbonate structure are used as the non-aqueous solvent for the electrolytic solution, the carbonates tend to decompose and generate gas containing CO 2 . In particular, in the case of a laminated laminate type secondary battery, when gas is generated inside the battery, the problem of blistering appears prominently and tends to lead to performance degradation. Therefore, in this embodiment, by adding the compound of this embodiment to a non-aqueous solvent containing carbonates, the SEI film formed by the compound of this embodiment suppresses the decomposition of carbonates, Occurrence can be suppressed. Therefore, in this embodiment, it is preferable that electrolyte solution contains carbonates as a nonaqueous solvent in addition to the compound of this embodiment. With such a configuration, even when carbonates are used as a non-aqueous solvent, gas generation can be reduced, and a secondary battery having high performance can be provided. The content of carbonates in the electrolytic solution is, for example, 30% by mass or more, preferably 50% by mass or more, and more preferably 70% by mass or more.

本実施形態の化合物のLUMO値は、電解液に用いられる溶媒のLUMO値よりも小さいことが好ましい。一般的な溶媒としてはEC(1.18eV)やDEC(1.26eV)、PC(1.24eV)等が挙げられる。本実施形態の化合物のLUMO値は、0以下であることが好ましく、−0.5以下であることがより好ましい。これにより、電解液中の溶媒より先に本実施形態の化合物が還元分解されて負極に皮膜を形成することができ、溶媒の分解を抑制することができる。LUMO値は、例えばMOPAC(Molecular Orbital PACage)による分子軌道計算により計算することができる。   It is preferable that the LUMO value of the compound of this embodiment is smaller than the LUMO value of the solvent used for electrolyte solution. Common solvents include EC (1.18 eV), DEC (1.26 eV), PC (1.24 eV), and the like. The LUMO value of the compound of this embodiment is preferably 0 or less, and more preferably −0.5 or less. Thereby, the compound of this embodiment can be reduced and decomposed before the solvent in the electrolytic solution to form a film on the negative electrode, and the decomposition of the solvent can be suppressed. The LUMO value can be calculated by molecular orbital calculation using, for example, MOPAC (Molecular Orbital PACage).

[2]負極
本実施形態の二次電池は、負極活物質を有する負極を備える。負極活物質は負極結着剤によって負極集電体上に結着されることができる。
[2] Negative Electrode The secondary battery of the present embodiment includes a negative electrode having a negative electrode active material. The negative electrode active material can be bound on the negative electrode current collector by a negative electrode binder.

負極活物質としては、特に本願発明が制限されるものではないが、例えば、リチウム金属、リチウムと合金可能な金属(a)、リチウムイオンを吸蔵、放出し得る金属酸化物(b)、又はリチウムイオンを吸蔵、放出し得る炭素材料(c)等が挙げられる。負極活物質は、一種を単独で、または二種以上を組み合わせて使用することができる。   As the negative electrode active material, the present invention is not particularly limited. For example, lithium metal, metal (a) capable of being alloyed with lithium, metal oxide (b) capable of inserting and extracting lithium ions, or lithium Examples thereof include a carbon material (c) that can occlude and release ions. A negative electrode active material can be used individually by 1 type or in combination of 2 or more types.

金属(a)としては、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上の合金等が挙げられる。また、これらの金属又は合金は2種以上混合して用いてもよい。また、これらの金属又は合金は1種以上の非金属元素を含んでもよい。これらの中でも、負極活物質としてシリコン、スズ、又はこれらの合金を用いることが好ましい。シリコン又はスズを負極活物質として用いることにより、重量エネルギー密度や体積エネルギー密度に優れたリチウム二次電池を提供することができる。   Examples of the metal (a) include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or alloys of two or more thereof. It is done. Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may contain one or more non-metallic elements. Among these, it is preferable to use silicon, tin, or an alloy thereof as the negative electrode active material. By using silicon or tin as the negative electrode active material, a lithium secondary battery excellent in weight energy density and volume energy density can be provided.

金属酸化物(b)としては、例えば、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物等が挙げられる。これらの中でも、負極活物質として酸化シリコンを用いることが好ましい。また、金属酸化物(b)は、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1〜5質量%含有することができる。   Examples of the metal oxide (b) include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof. Among these, it is preferable to use silicon oxide as the negative electrode active material. Moreover, the metal oxide (b) can contain, for example, 0.1 to 5% by mass of one or more elements selected from nitrogen, boron and sulfur.

炭素材料(c)としては、例えば、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物等が挙げられる。   Examples of the carbon material (c) include graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof.

負極結着剤としては、特に本願発明が制限されるものではないが、例えば、ポリフッ化ビニリデン、ビニリデンフルオライド−ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド−テトラフルオロエチレン共重合体、スチレン−ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、ポリアクリル酸等が挙げられる。これらの中でも、結着性が強いことから、ポリイミドまたはポリアミドイミドが好ましい。負極結着剤の量は、負極活物質100質量部に対して、5〜25質量部であることが好ましい。   As the negative electrode binder, the present invention is not particularly limited, and examples thereof include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and styrene-butadiene. Examples include copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, and polyacrylic acid. Among these, polyimide or polyamideimide is preferable because of its high binding properties. The amount of the negative electrode binder is preferably 5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material.

負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、ステンレス、クロム、銅、銀、およびそれらの合金が好ましい。その形状としては、例えば、箔、平板状、メッシュ状等が挙げられる。   As the negative electrode current collector, aluminum, nickel, stainless steel, chromium, copper, silver, and alloys thereof are preferable from the viewpoint of electrochemical stability. Examples of the shape include a foil, a flat plate, and a mesh.

負極は、負極集電体上に、負極活物質と負極結着剤を含む負極活物質層を形成することにより作製することができる。負極活物質層の形成方法としては、例えば、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法等が挙げられる。予め負極活物質層を形成した後に、該負極活物質層の上に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成し、負極を作製してもよい。   The negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector. Examples of the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method. After forming a negative electrode active material layer in advance, a thin film of aluminum, nickel, or an alloy thereof may be formed on the negative electrode active material layer by a method such as vapor deposition or sputtering to produce a negative electrode.

[3]正極
本実施形態の二次電池は、正極活物質を有する正極を備える。正極活物質は正極結着剤によって正極集電体上に結着されることができる。
[3] Positive Electrode The secondary battery of this embodiment includes a positive electrode having a positive electrode active material. The positive electrode active material can be bound on the positive electrode current collector by a positive electrode binder.

正極活物質としては、特に制限されるものではないが、例えば、リチウム複合酸化物やリン酸鉄リチウムが挙げられる。また、これらのリチウム複合酸化物の遷移金属の少なくとも一部を他元素で置き換えたものでもよい。また、金属リチウム対極電位で4.2V以上にプラトーを有するリチウム複合酸化物を用いることもできる。リチウム複合酸化物としては、スピネル型リチウムマンガン複合酸化物、オリビン型リチウム含有複合酸化物、逆スピネル型リチウム含有複合酸化物等が挙げられる。   Although it does not restrict | limit especially as a positive electrode active material, For example, lithium complex oxide and lithium iron phosphate are mentioned. Further, at least part of the transition metal of these lithium composite oxides may be replaced with another element. Alternatively, a lithium composite oxide having a plateau at 4.2 V or more at the metal lithium counter electrode potential can be used. Examples of the lithium composite oxide include spinel type lithium manganese composite oxide, olivine type lithium containing composite oxide, and reverse spinel type lithium containing composite oxide.

リチウム複合酸化物としては、例えば、LiMnO、LiMn(0<x<2)等の層状構造を持つマンガン酸リチウムまたはスピネル構造を有するマンガン酸リチウム、またはこれらのマンガン酸リチウムのMnの一部をLi、Mg、Al、Co、B,Ti,Znからなる群より選ばれる少なくとも1つの元素で置き換えたもの;LiCoO等のコバルト酸リチウム、またはコバルト酸リチウムのCoの一部をNi,Al、Mn、Mg、Zr,Ti,Znからなる群より選ばれる少なくとも1つの元素で置き換えたもの;LiNiO等のニッケル酸リチウム、またはニッケル酸リチウムのNiの一部をCo、Al、Mn、Mg、Zr,Ti,Znからなる群より選ばれる少なくとも1つの元素で置き換えたもの;LiNi1/3Co1/3Mn1/3などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物、または該リチウム遷移金属酸化物の遷移金属の一部をCo、Al、Mn、Mg、Zrからなる群より選ばれる少なくとも1つの元素で置き換えたもの;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの等が挙げられる。特に、リチウム複合酸化物としては、LiαNiβCoγAlδ(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、またはLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.4、γ≦0.4)、またはこれらの複合酸化物の遷移金属の一部をAl,Mg,Zrからなる群より選ばれる少なくとも1つの元素で置き換えたものが好ましい。これらのリチウム複合酸化物は一種を単独で使用してもよいし、二種以上を組み合わせて用いてもよい。Examples of the lithium composite oxide include lithium manganate having a layered structure such as LiMnO 2 and Li x Mn 2 O 4 (0 <x <2), lithium manganate having a spinel structure, or lithium manganate A part of Mn is replaced with at least one element selected from the group consisting of Li, Mg, Al, Co, B, Ti and Zn; lithium cobaltate such as LiCoO 2 or part of Co of lithium cobaltate Is replaced with at least one element selected from the group consisting of Ni, Al, Mn, Mg, Zr, Ti, and Zn; lithium nickelate such as LiNiO 2 or a part of Ni in lithium nickelate is Co, Al Replaced with at least one element selected from the group consisting of Mn, Mg, Zr, Ti, Zn; LiN i 1/3 Co 1/3 Mn 1/3 O 2 or other specific transition metals such as lithium transition metal oxides, or some of the transition metals of the lithium transition metal oxides may be Co, Al, Mn And those substituted with at least one element selected from the group consisting of Mg, Zr; and those lithium transition metal oxides in which Li is excessive in comparison with the stoichiometric composition. In particular, as the lithium composite oxide, Li α Ni β Co γ Al δ O 2 (1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0.2), or Li α Ni β Co γ Mn δ O 2 (1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.4, γ ≦ 0.4), or a part of transition metals of these composite oxides may be Al, Mg, Zr. Those substituted with at least one element selected from the group consisting of: These lithium composite oxides may be used alone or in combination of two or more.

また、正極活物質としては、高電圧が得られるという観点から、リチウムに対して4.5V以上の電位で動作する活物質(以下、5V級活物質とも称す)を用いることができる。5V級活物質を用いた場合、電解液の分解等によるガス発生が起こり易いが、本実施形態の化合物を含む電解液を用いることにより、ガス発生を抑制できる。   As the positive electrode active material, an active material that operates at a potential of 4.5 V or higher with respect to lithium (hereinafter also referred to as a 5 V class active material) can be used from the viewpoint that a high voltage can be obtained. When a 5V class active material is used, gas generation due to decomposition of the electrolytic solution or the like is likely to occur, but gas generation can be suppressed by using the electrolytic solution containing the compound of the present embodiment.

5V級活物質としては、例えば、下記式(A)で表されるリチウムマンガン複合酸化物を用いることができる。   As the 5V class active material, for example, a lithium manganese composite oxide represented by the following formula (A) can be used.

Li(MMn2−x−y)(O4−w) (A)Li a (M x Mn 2−xy Y y ) (O 4−w Z w ) (A)

(式(A)中、0.4≦x≦1.2、0≦y、x+y<2、0≦a≦1.2、0≦w≦1である。MはCo、Ni、Fe、Cr及びCuからなる群より選ばれる少なくとも一種である。Yは、Li、B、Na、Mg、Al、Ti、Si、K及びCaからなる群より選ばれる少なくとも一種である。Zは、F及びClからなる群より選ばれる少なくとも一種である。)。   (In formula (A), 0.4 ≦ x ≦ 1.2, 0 ≦ y, x + y <2, 0 ≦ a ≦ 1.2, and 0 ≦ w ≦ 1. M is Co, Ni, Fe, Cr. And Y is at least one selected from the group consisting of Li, B, Na, Mg, Al, Ti, Si, K and Ca, and Z is F and Cl. At least one selected from the group consisting of:

また、5V級活物質としては、十分な容量を得ることと高寿命化の観点から、このような金属複合酸化物の中でも、下記式(B)で表されるスピネル型化合物が好ましく用いられる。   Moreover, as a 5V class active material, the spinel type compound represented by a following formula (B) is used preferably among such metal complex oxide from a viewpoint of obtaining sufficient capacity | capacitance and lifetime improvement.

LiNiMn2−x−y (B)LiNi x Mn 2-xy A y O 4 (B)

(式(B)中、0.4<x<0.6、0≦y<0.3、Aは、Li、B、Na、Mg、Al、Ti及びSiからなる群より選ばれる少なくとも一種である。)。   (In the formula (B), 0.4 <x <0.6, 0 ≦ y <0.3, A is at least one selected from the group consisting of Li, B, Na, Mg, Al, Ti and Si. is there.).

式(B)中、0≦y<0.2であることがより好ましい。   In the formula (B), it is more preferable that 0 ≦ y <0.2.

また、リチウムに対して4.5V以上の電位で動作する活物質としては、オリビン型の正極活物質が挙げられる。オリビン型の5V活物質としては、例えば、LiCoPO、又はLiNiPOが挙げられる。As an active material that operates at a potential of 4.5 V or higher with respect to lithium, an olivine-type positive electrode active material can be given. Examples of the olivine-type 5V active material include LiCoPO 4 and LiNiPO 4 .

また、リチウムに対して4.5V以上の電位で動作する活物質としては、Si複合酸化物が挙げられる。このようなSi複合酸化物としては、例えば、下記式(C)で示される化合物が挙げられる。   An active material that operates at a potential of 4.5 V or higher with respect to lithium includes Si composite oxide. As such Si complex oxide, the compound shown by a following formula (C) is mentioned, for example.

LiMSiO(C)Li 2 MSiO 4 (C)

(式(C)中、Mは、Mn、Fe及びCoからなる群より選ばれる少なくとも一種である)。   (In the formula (C), M is at least one selected from the group consisting of Mn, Fe and Co).

また、リチウムに対して4.5V以上の電位で動作する活物質は、層状構造を有していてもよい。層状構造を含む5V級活物質としては、例えば、下記式(D)で示される化合物が挙げられる。   An active material that operates at a potential of 4.5 V or higher with respect to lithium may have a layered structure. As a 5V class active material containing a layered structure, the compound shown by following formula (D) is mentioned, for example.

Li(M1M2Mn2−x−y)O (D) Li (M1 x M2 y Mn 2 -x-y) O 2 (D)

(式(D)中、M1は、Ni、Co及びFeからなる群より選ばれる少なくとも一種である。M2は、Li、Mg及びAlからなる群より選ばれる少なくとも一種である。0.1<x<0.5、0.05<y<0.3)。   (In Formula (D), M1 is at least one selected from the group consisting of Ni, Co, and Fe. M2 is at least one selected from the group consisting of Li, Mg, and Al. 0.1 <x <0.5, 0.05 <y <0.3).

5V級活物質としては、下記(E)〜(G)で示されるリチウム金属複合酸化物を用いることができる。   As the 5V class active material, lithium metal composite oxides represented by the following (E) to (G) can be used.

LiMPO (E)LiMPO 4 (E)

(式(E)中、Mは、Co及びNiからなる群より選ばれる少なくとも一種である。)。   (In formula (E), M is at least one selected from the group consisting of Co and Ni).

Li(MMn)O (F)Li (M y Mn z ) O 2 (F)

(式(F)中、0.1≦y≦0.5、0.33≦z≦0.7であって、Mは、Li、Co及びNiからなる群より選ばれる少なくとも一種である。)。   (In formula (F), 0.1 ≦ y ≦ 0.5, 0.33 ≦ z ≦ 0.7, and M is at least one selected from the group consisting of Li, Co, and Ni.) .

Li(LiMn)O (G) Li (Li x M y Mn z ) O 2 (G)

(式(G)中、0.1≦x<0.3、0.1≦y≦0.4、0.33≦z≦0.7であって、Mは、Li、Co及びNiからなる群より選ばれる少なくとも一種である。)。   (In Formula (G), 0.1 ≦ x <0.3, 0.1 ≦ y ≦ 0.4, 0.33 ≦ z ≦ 0.7, and M is composed of Li, Co, and Ni. At least one selected from the group).

正極結着剤としては、負極結着剤で挙げた材料と同様のものを用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。正極結着剤の量は、正極活物質100質量部に対して、2〜10質量部であることが好ましい。   As the positive electrode binder, the same materials as those mentioned for the negative electrode binder can be used. Among these, polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost. The amount of the positive electrode binder is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material.

正極集電体としては、負極集電体で挙げた材料と同様のものを用いることができる。   As the positive electrode current collector, the same materials as those mentioned for the negative electrode current collector can be used.

正極活物質を含む正極活物質層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、例えば、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子等が挙げられる。   A conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance. Examples of the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.

[4]セパレータ
セパレータとしては、特に制限されるものではないが、例えば、ポリプロピレン、ポリエチレン等の多孔質フィルムや不織布を用いることができる。また、セパレータとしては、セパレータとして用いられるポリマー基材にセラミックを含むコーティングを形成したセラミックコートセパレータを用いることもできる。また、セパレータとしては、それらを積層したものを用いることもできる。
[4] Separator The separator is not particularly limited. For example, a porous film such as polypropylene or polyethylene or a nonwoven fabric can be used. Moreover, as a separator, the ceramic coat separator which formed the coating containing a ceramic in the polymer base material used as a separator can also be used. Moreover, what laminated | stacked them can also be used as a separator.

[5]外装体
外装体は、特に制限されるものではないが、例えば、ラミネートフィルムを用いることができる。例えば積層ラミネート型の二次電池の場合、アルミニウム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムを用いることができる。
[5] Exterior Body The exterior body is not particularly limited, and for example, a laminate film can be used. For example, in the case of a laminated laminate type secondary battery, a laminated film such as polypropylene or polyethylene coated with aluminum or silica can be used.

外装体としてラミネートフィルムを用いた二次電池の場合、外装体として金属缶を用いた二次電池に比べて、ガスが発生すると電極積層体の歪みが非常に大きくなる。これは、ラミネートフィルムが金属缶に比べて二次電池の内圧により変形しやすいためである。さらに、外装体としてラミネートフィルムを用いた二次電池を封止する際には、通常、電池内圧を大気圧より低くするため、内部に余分な空間がなく、ガスが発生した場合にそれが直ちに電池の体積変化や電極積層体の変形につながりやすい。しかし、本実施形態に係る二次電池は、本実施形態の化合物を含む電解液を用いることにより、このような問題を克服することができる。   In the case of a secondary battery using a laminate film as an exterior body, the distortion of the electrode laminate becomes very large when gas is generated, compared to a secondary battery using a metal can as the exterior body. This is because the laminate film is more easily deformed by the internal pressure of the secondary battery than the metal can. Furthermore, when sealing a secondary battery using a laminate film as an exterior body, the internal pressure of the battery is usually lower than the atmospheric pressure, so there is no extra space inside, and if gas is generated, it is immediately It tends to lead to battery volume change and electrode stack deformation. However, the secondary battery according to the present embodiment can overcome such problems by using the electrolytic solution containing the compound of the present embodiment.

[6]二次電池
本実施形態に係る二次電池の構成としては、特に本願発明が制限されるものではないが、例えば、正極および負極が対向配置された電極積層体と、電解液とが外装体に内包されている構成を挙げることができる。二次電池の形状は、特に制限されるものではないが、例えば、円筒型、扁平捲回角型、積層角型、コイン型、扁平捲回ラミネート型、又は積層ラミネート型が挙げられる。
[6] Secondary Battery The structure of the secondary battery according to the present embodiment is not particularly limited by the present invention. For example, an electrode laminate in which a positive electrode and a negative electrode are arranged to face each other and an electrolytic solution are provided. The structure included in the exterior body can be given. The shape of the secondary battery is not particularly limited, and examples thereof include a cylindrical shape, a flat wound rectangular shape, a laminated rectangular shape, a coin shape, a flat wound laminated shape, and a laminated laminated shape.

以下、例として積層ラミネート型の二次電池について説明する。図1は、積層ラミネート型の二次電池が有する電極積層体の構造を示す模式的断面図である。この電極積層体は、正極cの複数および負極aの複数が、セパレータbを挟みつつ交互に積み重ねられて形成されている。各正極cが有する正極集電体eは、正極活物質に覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に正極端子fが溶接されている。各負極aが有する負極集電体dは、負極活物質に覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に負極端子gが溶接されている。   Hereinafter, a laminated laminate type secondary battery will be described as an example. FIG. 1 is a schematic cross-sectional view showing a structure of an electrode laminate included in a laminate-type secondary battery. The electrode laminate is formed by alternately stacking a plurality of positive electrodes c and a plurality of negative electrodes a with a separator b interposed therebetween. The positive electrode current collector e of each positive electrode c is welded to and electrically connected to each other at an end portion not covered with the positive electrode active material, and a positive electrode terminal f is welded to the welded portion. The negative electrode current collector d of each negative electrode a is welded and electrically connected to each other at an end portion not covered with the negative electrode active material, and a negative electrode terminal g is welded to the welded portion.

このような平面的な積層構造を有する電極積層体は、Rの小さい部分(捲回構造の巻き芯に近い領域)がないため、捲回構造を持つ電極積層体に比べて、充放電に伴う電極の体積変化に対する影響を受けにくいという利点がある。しかし、平面的な積層構造を持つ電極積層体には、電極間にガスが発生した際に、その発生したガスが電極間に滞留する傾向がある。これは、捲回構造を持つ電極積層体の場合には電極に張力が働いているため電極間の間隔が広がりにくいのに対して、積層構造を持つ電極積層体の場合には電極間の間隔が広がりやすいためである。特に、外装体がアルミラミネートフィルムであった場合、この問題は顕著に現われる。本実施形態の二次電池では、本実施形態の化合物を含む電解液を用いることにより、このような問題を解決することができ、高エネルギー型の負極を用いた積層ラミネート型のリチウムイオン二次電池においても、長寿命駆動が可能となる。   Since the electrode laminate having such a planar laminate structure does not have a small R portion (region close to the winding core of the wound structure), the electrode laminate is associated with charge / discharge as compared with the electrode laminate having the wound structure. There is an advantage that it is not easily influenced by the volume change of the electrode. However, in an electrode laminate having a planar laminated structure, when gas is generated between the electrodes, the generated gas tends to stay between the electrodes. This is because, in the case of an electrode laminate having a wound structure, the distance between the electrodes is difficult to spread because tension is applied to the electrodes, whereas in the case of an electrode laminate having a laminated structure, It is because it is easy to spread. In particular, when the exterior body is an aluminum laminate film, this problem appears remarkably. In the secondary battery of this embodiment, such a problem can be solved by using the electrolytic solution containing the compound of this embodiment, and a laminated laminate type lithium ion secondary battery using a high energy type negative electrode. Even a battery can be driven for a long life.

(実施例)
以下、本実施形態を実施例により具体的に説明する。
(Example)
Hereinafter, the present embodiment will be specifically described by way of examples.

(製造例1)
以下の方法により、化合物(101)を製造した。
出発物質として2,2’−チオジグリコール酸(下記式(A))に、硫酸存在下メタノールと反応させることにより2,2’−チオビス(酢酸メチル)を合成した。次いで、2,2’−チオビス(酢酸メチル)をジクロロメタン中でメタクロロ過安息香酸(MCPBA)と反応させて、硫黄原子部分をスルホン化し、スルホニルビス(酢酸メチル)を得た。次いで、スルホニルビス(酢酸メチル)をメタノール中で水酸化ナトリウム水溶液と反応させることにより加水分解させ、スルホニル二酢酸を合成した。次いで、分子内脱水縮合反応によりスルホニル二酢酸から目的化合物(101)を合成した。
(Production Example 1)
Compound (101) was produced by the following method.
As a starting material, 2,2′-thiobisglycolic acid (the following formula (A)) was reacted with methanol in the presence of sulfuric acid to synthesize 2,2′-thiobis (methyl acetate). Next, 2,2′-thiobis (methyl acetate) was reacted with metachloroperbenzoic acid (MCPBA) in dichloromethane to sulfonate the sulfur atom portion to obtain sulfonylbis (methyl acetate). Next, sulfonylbis (methyl acetate) was hydrolyzed by reacting with an aqueous sodium hydroxide solution in methanol to synthesize sulfonyldiacetic acid. Subsequently, the target compound (101) was synthesized from sulfonyldiacetic acid by an intramolecular dehydration condensation reaction.

Figure 2015037381
Figure 2015037381

(製造例2)
出発物質として2,2’−チオジグリコール酸の代わりに2,2’−ジメチル−2,2’−チオジグリコール酸(下記式(B))を用い、製造例1と同様の方法で化合物(102)を合成した。
(Production Example 2)
Compound in the same manner as in Production Example 1 using 2,2′-dimethyl-2,2′-thiodiglycolic acid (the following formula (B)) instead of 2,2′-thiodiglycolic acid as a starting material (102) was synthesized.

Figure 2015037381
Figure 2015037381

(製造例3)
出発物質として2,2’−チオジグリコール酸の代わりに2-メチル−2,2’−チオジグリコール酸(下記式(C))を用い、製造例1と同様の方法で化合物(103)を合成した。
(Production Example 3)
Compound (103) was prepared in the same manner as in Production Example 1 using 2-methyl-2,2′-thiodiglycolic acid (the following formula (C)) instead of 2,2′-thiodiglycolic acid as a starting material. Was synthesized.

Figure 2015037381
Figure 2015037381

(製造例4,5)
化合物(104)及び(105)は、有機合成化学 第47巻第12号(1989年発行)、1096頁記載の方法を参照して合成した。
(Production Examples 4 and 5)
Compounds (104) and (105) were synthesized by referring to the method described in Synthetic Organic Chemistry, Vol. 47, No. 12 (issued in 1989), page 1096.

(分析)
ガスクロマトグラフィーにより、製造例1〜5で得られた目的化合物が単一化合物であることを確認した。
また、重クロロホルムを溶媒とした1H−NMR及び13C−NMR測定により、製造例1〜5で得られた化合物が、化合物(101)〜(105)であることを確認した。
(analysis)
It was confirmed by gas chromatography that the target compound obtained in Production Examples 1 to 5 was a single compound.
Moreover, it was confirmed by 1H-NMR and 13C-NMR measurements using deuterated chloroform as a solvent that the compounds obtained in Production Examples 1 to 5 were compounds (101) to (105).

(実施例1)
<負極>
負極活物質として、黒鉛を用いた。この負極活物質と、負極結着剤としてのポリフッ化ビニリデンと、導電補助材としてのアセチレンブラックとを、75:20:5の質量比で計量した。そして、これらをN−メチルピロリドンと混合して、負極スラリーを調製した。負極スラリーを厚さ10μmの銅箔に塗布した後に乾燥し、さらに窒素雰囲気下で120℃の熱処理を行うことで、負極を作製した。
Example 1
<Negative electrode>
Graphite was used as the negative electrode active material. This negative electrode active material, polyvinylidene fluoride as a negative electrode binder, and acetylene black as a conductive auxiliary material were weighed in a mass ratio of 75: 20: 5. These were mixed with N-methylpyrrolidone to prepare a negative electrode slurry. The negative electrode slurry was applied to a copper foil having a thickness of 10 μm, dried, and further subjected to a heat treatment at 120 ° C. in a nitrogen atmosphere to produce a negative electrode.

<正極>
正極活物質として、LiMnを用いた。この正極活物質と、導電補助材としてのカーボンブラックと、正極結着剤としてのポリフッ化ビニリデンとを、90:5:5の質量比で計量した。そして、これらをN−メチルピロリドンと混合して、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミ箔に塗布した後に乾燥し、さらにプレスすることで、正極を作製した。
<Positive electrode>
LiMn 2 O 4 was used as the positive electrode active material. This positive electrode active material, carbon black as a conductive auxiliary material, and polyvinylidene fluoride as a positive electrode binder were weighed at a mass ratio of 90: 5: 5. These were mixed with N-methylpyrrolidone to prepare a positive electrode slurry. The positive electrode slurry was applied to an aluminum foil having a thickness of 20 μm, dried, and further pressed to produce a positive electrode.

<電極積層体>
得られた正極の3層と負極の4層を、セパレータとしてのポリプロピレン多孔質フィルムを挟みつつ交互に重ねた。正極活物質に覆われていない正極集電体および負極活物質に覆われていない負極集電体の端部をそれぞれ溶接した。さらに、その溶接箇所に、アルミニウム製の正極端子およびニッケル製の負極端子をそれぞれ溶接して、平面的な積層構造を有する電極積層体を得た。
<Electrode laminate>
The obtained positive electrode 3 layers and negative electrode 4 layers were alternately stacked while sandwiching a polypropylene porous film as a separator. The ends of the positive electrode current collector not covered with the positive electrode active material and the negative electrode current collector not covered with the negative electrode active material were welded. Furthermore, the positive electrode terminal made from aluminum and the negative electrode terminal made from nickel were each welded to the welding location, and the electrode laminated body which has a planar laminated structure was obtained.

<電解液>
非水溶媒としてECとDECの混合溶媒(体積比:EC/DEC=30/70)を用いた。添加剤としての化合物(101)の電解液中の含有量が5質量%となるように、支持塩としてのLiPFの電解液中の濃度が1Mとなるように、化合物(101)及びLiPFをそれぞれ混合溶媒に添加し、電解液を調製した。
<Electrolyte>
A mixed solvent of EC and DEC (volume ratio: EC / DEC = 30/70) was used as the non-aqueous solvent. The compound (101) and LiPF 6 are adjusted so that the concentration of LiPF 6 as the supporting salt in the electrolyte is 1 M so that the content of the compound (101) as the additive in the electrolyte is 5% by mass. Were respectively added to the mixed solvent to prepare an electrolytic solution.

<二次電池>
電極積層体を外装体としてのアルミニウムラミネートフィルム内に収容し、外装体内部に電解液を注入した。その後、0.1気圧まで減圧しつつ外装体を封止し、二次電池を作製した。
<Secondary battery>
The electrode laminate was accommodated in an aluminum laminate film as an exterior body, and an electrolyte solution was injected into the exterior body. Thereafter, the outer package was sealed while reducing the pressure to 0.1 atm to produce a secondary battery.

<評価>
(45℃における容量維持率、体積増加率)
作製した二次電池に対し、45℃に保った恒温槽中で、2.5Vから4.2Vの電圧範囲で充放電を繰り返す試験を行い、サイクル維持率(%)、体積増加率(%)について評価した。充電は、1Cで4.2Vまで充電した後、合計で2.5時間定電圧充電を行った。放電は、1Cで2.5Vまで定電流放電した。
<Evaluation>
(Capacity maintenance rate at 45 ° C., volume increase rate)
The manufactured secondary battery was subjected to a charge / discharge test in a voltage range of 2.5 V to 4.2 V in a thermostat kept at 45 ° C., and the cycle retention rate (%) and the volume increase rate (%) Was evaluated. Charging was performed at a constant voltage of 1 C up to 4.2 V, followed by a constant voltage charge for 2.5 hours in total. The discharge was a constant current discharge to 2.5V at 1C.

「容量維持率(%)」は、(200サイクル後の放電容量)/(1サイクル後の放電容量)×100(単位:%)で算出した。   “Capacity maintenance rate (%)” was calculated by (discharge capacity after 200 cycles) / (discharge capacity after one cycle) × 100 (unit:%).

「体積増加率(%)」は、{(200サイクル後の体積容量)/(サイクル開始前の体積容量)−1}×100(単位:%)で算出した。   “Volume increase rate (%)” was calculated by {(volume capacity after 200 cycles) / (volume capacity before cycle start) −1} × 100 (unit:%).

結果を表2に示す。   The results are shown in Table 2.

(実施例2〜5)
添加剤として化合物(101)の代わりに表2に記載の化合物((102)〜(105))を用いた以外は、実施例1と同様に二次電池を作製し、評価した。結果を表1に示す。
(Examples 2 to 5)
A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the compounds ((102) to (105)) shown in Table 2 were used instead of the compound (101) as an additive. The results are shown in Table 1.

(比較例1)
添加剤として化合物(101)の代わりに下記化合物(201)(1,3,2−ジオキサチオラン2,2−ジオキシド)を用いた以外は、実施例1と同様に二次電池を作製し、評価した。結果を表1に示す。
(Comparative Example 1)
A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the following compound (201) (1,3,2-dioxathiolane 2,2-dioxide) was used instead of the compound (101) as an additive. . The results are shown in Table 1.

Figure 2015037381
Figure 2015037381

(比較例2)
添加剤として化合物(101)の代わりに下記化合物(202)(1,3−プロパンスルトン)を用いた以外は、実施例1と同様に二次電池を作製し、評価した。結果を表1に示す。
(Comparative Example 2)
A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the following compound (202) (1,3-propane sultone) was used instead of the compound (101) as an additive. The results are shown in Table 1.

Figure 2015037381
Figure 2015037381

Figure 2015037381
Figure 2015037381

この出願は、2013年9月13日に出願された日本出願特願2013−190746を基礎とする優先権を主張し、その開示の全てをここに取り込む。   This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2013-190746 for which it applied on September 13, 2013, and takes in those the indications of all here.

以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。   Although the present invention has been described with reference to the exemplary embodiments and examples, the present invention is not limited to the above exemplary embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

本実施形態は、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的には、携帯電話、ノートパソコンなどのモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車などの電動車両を含む、電車や衛星や潜水艦などの移動・輸送用媒体の電源;UPSなどのバックアップ電源;太陽光発電、風力発電などで発電した電力を貯める蓄電設備;などに、利用することができる。   This embodiment can be used in all industrial fields that require a power source, and in industrial fields related to the transport, storage, and supply of electrical energy. Specifically, power supplies for mobile devices such as mobile phones and notebook computers; power supplies for transportation and transportation media such as trains, satellites, and submarines, including electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles A backup power source such as a UPS; a power storage facility for storing power generated by solar power generation, wind power generation, etc .;

a 負極
b セパレータ
c 正極
d 負極集電体
e 正極集電体
f 正極端子
g 負極端子
a negative electrode b separator c positive electrode d negative electrode current collector e positive electrode current collector f positive electrode terminal g negative electrode terminal

Claims (19)

5以上の環員数を有し、かつ下記式(1)で表される化合物;
Figure 2015037381
(式(1)において、A11〜A13は、それぞれ独立に、単結合、酸素原子、カルボニル基、又は、分岐していてもよい置換若しくは無置換の炭素数1,2若しくは3のアルキレン基を示す。R11及びR12は、それぞれ独立に、水素原子、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子を示す。)。
A compound having 5 or more ring members and represented by the following formula (1);
Figure 2015037381
(In the formula (1), A 11 to A 13 are each independently a single bond, an oxygen atom, a carbonyl group, or a substituted or unsubstituted alkylene group having 1, 2 or 3 carbon atoms. R 11 and R 12 each independently represent a hydrogen atom, an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, an optionally branched carbon number 1, 2, 3 or 4 represents a fluorine-substituted alkyl group or a fluorine atom).
式(1)において、A11〜A13の置換基は、それぞれ、分岐していてもよいアルキル基、分岐していてもよいハロゲン置換アルキル基、分岐していてもよいアルケニル基、分岐していてもよいアルキニル基、分岐していてもよいアルコキシ基、アミノ基、ヒドロキシ基、又はハロゲン原子である、請求項1に記載の化合物。In the formula (1), the substituents of A 11 to A 13 are each an optionally branched alkyl group, an optionally branched halogen-substituted alkyl group, an optionally branched alkenyl group, and a branched group. The compound according to claim 1, which is an alkynyl group which may be substituted, an alkoxy group which may be branched, an amino group, a hydroxy group, or a halogen atom. 式(1)において、A11〜A13の置換基は、それぞれ、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のハロゲン置換アルキル基、分岐していてもよい炭素数2,3若しくは4のアルケニル基、分岐していてもよい炭素数2,3若しくは4のアルキニル基、分岐していてもよい炭素数1,2,3若しくは4のアルコキシ基、アミノ基、ヒドロキシ基、又はハロゲン原子である、請求項1に記載の化合物。In formula (1), the substituents of A 11 to A 13 are each an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, and optionally branched carbon numbers 1, 2, 3 Or a halogen-substituted alkyl group of 4; an optionally branched alkenyl group having 2, 3 or 4 carbon atoms; an optionally branched alkynyl group having 2, 3 or 4 carbon atoms; an optionally branched carbon number The compound of Claim 1 which is a 1, 2, 3 or 4 alkoxy group, an amino group, a hydroxy group, or a halogen atom. 式(1)において、A11〜A13の置換基は、それぞれ、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子である、請求項1に記載の化合物。In formula (1), the substituents of A 11 to A 13 are each an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, and optionally branched carbon numbers 1, 2, 3 Or the compound of Claim 1 which is a fluorine-substituted alkyl group of 4 or a fluorine atom. 前記環員数が5〜12である、請求項1に記載の化合物。   The compound according to claim 1, wherein the number of ring members is 5 to 12. 下記式(2)で表される請求項1に記載の化合物;
Figure 2015037381
(式(2)において、A21は、分岐していてもよい置換若しくは無置換の炭素数1,2若しくは3のアルキレン基を示す。R21及びR22は、それぞれ独立に、水素原子、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子を示す。)。
The compound of Claim 1 represented by following formula (2);
Figure 2015037381
(In the formula (2), A 21 represents a substituted or unsubstituted alkylene group having 1, 2 or 3 carbon atoms which may be branched. R 21 and R 22 each independently represents a hydrogen atom or a branched group. An optionally substituted alkyl group having 1, 2, 3 or 4 carbon atoms, an optionally branched fluorine-substituted alkyl group having 1, 2, 3 or 4 carbon atoms, or a fluorine atom.
式(2)において、A21の置換基は、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子である、請求項6に記載の化合物。In the formula (2), the substituent of A 21 is an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, and optionally substituted fluorine atom having 1, 2, 3 or 4 carbon atoms. The compound according to claim 6, which is an alkyl group or a fluorine atom. 下記式(2)で表される請求項1に記載の化合物;
Figure 2015037381
(式(3)において、A31は、単結合、又は、分岐していてもよい置換若しくは無置換の炭素数1,2若しくは3のアルキレン基を示す。R31及びR32は、それぞれ独立に、水素原子、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子を示す。)。
The compound of Claim 1 represented by following formula (2);
Figure 2015037381
(In the formula (3), A 31 represents a single bond or a substituted or unsubstituted alkylene group having 1, 2 or 3 carbon atoms which may be branched. R 31 and R 32 are each independently , A hydrogen atom, an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, an optionally branched fluorine substituted alkyl group having 1, 2, 3 or 4 carbon atoms, or a fluorine atom. ).
式(4)において、A31の置換基は、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子である、請求項8に記載の化合物。In the formula (4), the substituent of A 31 is an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, and optionally substituted fluorine atom having 1, 2, 3 or 4 carbon atoms. The compound according to claim 8, which is an alkyl group or a fluorine atom. 下記式(4)で表される、請求項6に記載の化合物;
Figure 2015037381
(式(4)において、R41〜R44は、それぞれ独立に、水素原子、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子を示す。)。
The compound of Claim 6 represented by following formula (4);
Figure 2015037381
(In the formula (4), R 41 to R 44 are each independently a hydrogen atom, an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, an optionally branched carbon number 1, 2, 3 or 4 fluorine-substituted alkyl groups, or fluorine atoms.)
下記式(5)で表される、請求項8に記載の化合物;
Figure 2015037381
(式(5)において、R51及びR52は、それぞれ独立に、水素原子、分岐していてもよい炭素数1,2,3若しくは4のアルキル基、分岐していてもよい炭素数1,2,3若しくは4のフッ素置換アルキル基、又はフッ素原子を示す。)。
The compound of Claim 8 represented by following formula (5);
Figure 2015037381
(In Formula (5), R 51 and R 52 are each independently a hydrogen atom, an optionally branched alkyl group having 1, 2, 3 or 4 carbon atoms, an optionally branched carbon number 1, 2, 3 or 4 fluorine-substituted alkyl groups, or fluorine atoms.)
下記式(101)〜(105)のいずれかで表される請求項1に記載の化合物;
Figure 2015037381
Figure 2015037381
Figure 2015037381
Figure 2015037381
Figure 2015037381
The compound according to claim 1 represented by any one of the following formulas (101) to (105);
Figure 2015037381
Figure 2015037381
Figure 2015037381
Figure 2015037381
Figure 2015037381
請求項1乃至12のいずれかに記載の化合物と、支持塩と、非水溶媒と、を含む電解液。   An electrolytic solution comprising the compound according to any one of claims 1 to 12, a supporting salt, and a nonaqueous solvent. 前記非水溶媒がカーボネート類を含む請求項13に記載の電解液。   The electrolytic solution according to claim 13, wherein the non-aqueous solvent contains carbonates. 前記化合物の電解液中の含有量が0.1〜10質量%である請求項13又は14に記載の電解液。   The electrolytic solution according to claim 13 or 14, wherein the content of the compound in the electrolytic solution is 0.1 to 10% by mass. 請求項13乃至15のいずれかに記載の電解液を含む二次電池。   A secondary battery comprising the electrolytic solution according to claim 13. さらに、正極活物質を含む正極と、負極活物質を含む負極と、を備え、
前記正極活物質がリチウム複合酸化物であり、
前記負極活物質が、リチウム金属、リチウムと合金可能な金属(a)、リチウムイオンを吸蔵、放出し得る金属酸化物(b)、又はリチウムイオンを吸蔵、放出し得る炭素材料(c)である請求項16に記載の二次電池。
Furthermore, a positive electrode containing a positive electrode active material, and a negative electrode containing a negative electrode active material,
The positive electrode active material is a lithium composite oxide;
The negative electrode active material is lithium metal, metal (a) that can be alloyed with lithium, metal oxide (b) that can occlude and release lithium ions, or carbon material (c) that can occlude and release lithium ions. The secondary battery according to claim 16.
請求項16又は17に記載の二次電池を備える電気自動車。   An electric vehicle comprising the secondary battery according to claim 16 or 17. 請求項16又は17に記載の二次電池を備える電力システム。
An electric power system provided with the secondary battery of Claim 16 or 17.
JP2015536496A 2013-09-13 2014-08-12 NOVEL COMPOUND, ELECTROLYTE SOLUTION AND SECONDARY BATTERY, ELECTRIC VEHICLE AND POWER SYSTEM Active JP6451638B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013190746 2013-09-13
JP2013190746 2013-09-13
PCT/JP2014/071280 WO2015037381A1 (en) 2013-09-13 2014-08-12 Novel compound, electrolyte and secondary battery

Publications (2)

Publication Number Publication Date
JPWO2015037381A1 true JPWO2015037381A1 (en) 2017-03-02
JP6451638B2 JP6451638B2 (en) 2019-01-16

Family

ID=52665500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015536496A Active JP6451638B2 (en) 2013-09-13 2014-08-12 NOVEL COMPOUND, ELECTROLYTE SOLUTION AND SECONDARY BATTERY, ELECTRIC VEHICLE AND POWER SYSTEM

Country Status (2)

Country Link
JP (1) JP6451638B2 (en)
WO (1) WO2015037381A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602141B (en) * 2017-02-06 2019-01-08 宁德新能源科技有限公司 A kind of electrolyte and secondary cell
CN116283893B (en) * 2023-03-22 2024-04-26 阜阳欣奕华制药科技有限公司 Preparation method of thiohydroxy acetic anhydride

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531908A (en) * 2000-05-03 2003-10-28 アボット・ラボラトリーズ Pyrano, piperidino, thiopyrano compounds and methods of use
WO2004000779A1 (en) * 2002-06-20 2003-12-31 Sankio Chemical Co., Ltd. Process for producing phenyloxocarboxylic ester derivative
JP2008218298A (en) * 2007-03-07 2008-09-18 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
CN102074738A (en) * 2010-09-30 2011-05-25 张家港市国泰华荣化工新材料有限公司 Non-aqueous electrolyte solution and application thereof
WO2012147818A1 (en) * 2011-04-26 2012-11-01 宇部興産株式会社 Non-aqueous electrolytic solution, electrical storage device utilizing same, and cyclic sulfonic acid ester compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531908A (en) * 2000-05-03 2003-10-28 アボット・ラボラトリーズ Pyrano, piperidino, thiopyrano compounds and methods of use
WO2004000779A1 (en) * 2002-06-20 2003-12-31 Sankio Chemical Co., Ltd. Process for producing phenyloxocarboxylic ester derivative
JP2008218298A (en) * 2007-03-07 2008-09-18 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
CN102074738A (en) * 2010-09-30 2011-05-25 张家港市国泰华荣化工新材料有限公司 Non-aqueous electrolyte solution and application thereof
WO2012147818A1 (en) * 2011-04-26 2012-11-01 宇部興産株式会社 Non-aqueous electrolytic solution, electrical storage device utilizing same, and cyclic sulfonic acid ester compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE REGISTRY, JPN7014002949, 4 August 2011 (2011-08-04), pages 1314974 - 79, ISSN: 0003865406 *

Also Published As

Publication number Publication date
WO2015037381A1 (en) 2015-03-19
JP6451638B2 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
US9935337B2 (en) Lithium secondary battery
JP2019117814A (en) Electrolytic solution and secondary battery
JP5236875B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JPWO2013129346A1 (en) Secondary battery
JPWO2015037451A1 (en) Lithium ion secondary battery
WO2015080102A1 (en) Electrolyte for secondary battery and secondary battery using same
US20190181494A1 (en) Nonaqueous electrolytic solution and lithium ion secondary battery
WO2012093616A1 (en) Electricity storage device
JPWO2015087580A1 (en) Manufacturing method of secondary battery
JP4968614B2 (en) Secondary battery electrolyte and secondary battery using the same
JP6648694B2 (en) Electrolyte and secondary battery
WO2016021596A1 (en) Lithium secondary battery and production method for same
JP2015097179A (en) Secondary battery
JP2019175577A (en) Nonaqueous electrolyte solution for battery and lithium secondary battery
JP6341195B2 (en) Secondary battery electrolyte and secondary battery using the same
JPWO2013042503A1 (en) Non-aqueous secondary battery
JP6398984B2 (en) New compounds, electrolytes and secondary batteries
JP6451638B2 (en) NOVEL COMPOUND, ELECTROLYTE SOLUTION AND SECONDARY BATTERY, ELECTRIC VEHICLE AND POWER SYSTEM
JP7098276B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP6957179B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP2012033346A (en) Aprotic electrolyte secondary battery
JP6980502B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP6575519B2 (en) Electrolyte and secondary battery
CN111066191B (en) Additive for nonaqueous electrolyte, and power storage device
JP7447904B2 (en) Reduced graphene oxide-dihydroxynaphthalene composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R150 Certificate of patent or registration of utility model

Ref document number: 6451638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150