JPWO2014136447A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
JPWO2014136447A1
JPWO2014136447A1 JP2015504180A JP2015504180A JPWO2014136447A1 JP WO2014136447 A1 JPWO2014136447 A1 JP WO2014136447A1 JP 2015504180 A JP2015504180 A JP 2015504180A JP 2015504180 A JP2015504180 A JP 2015504180A JP WO2014136447 A1 JPWO2014136447 A1 JP WO2014136447A1
Authority
JP
Japan
Prior art keywords
coolant
temperature
heat
air conditioner
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015504180A
Other languages
English (en)
Other versions
JP6388213B2 (ja
Inventor
智裕 寺田
智裕 寺田
圭俊 野田
圭俊 野田
勝志 谷口
勝志 谷口
健太朗 黒田
健太朗 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2014136447A1 publication Critical patent/JPWO2014136447A1/ja
Application granted granted Critical
Publication of JP6388213B2 publication Critical patent/JP6388213B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3213Control means therefor for increasing the efficiency in a vehicle heat pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

外気温が低く、車両の発熱部品から多くの排熱を得られない場合でも、高い効率で車室内の暖房を行うことのできる車両用空調装置を提供すること。この車両用空調装置は、高温の冷却液が流されて車室内へ送られる空気に熱を与えるヒーターコアと、冷却液とヒートポンプにおける高温高圧の冷媒との間で熱を交換して冷媒を凝縮させる第1水冷媒熱交換器と、第1水冷媒熱交換器およびヒーターコアを流れる冷却液の流量を調整する流量調整手段と、空調制御を行う制御部と、を具備し、制御部は、流量調整手段を制御し、ヒートポンプの起動から所定期間、冷却液の流量を標準運転時の第一の流量より低い第二の流量に設定する構成を採る。

Description

本発明は、車両用空調装置に関する。
従来、ヒートポンプを利用して車室内の冷房および暖房を行う車両用空調装置が提案されている(例えば特許文献1を参照)。
また、以前より、エンジン冷却液の熱を利用して車室内の暖房を行う車両用空調装置がある。さらに、エンジン冷却液をヒートポンプの高温高圧冷媒によりさらに加熱して、この冷却液で車室内の暖房を行う車両用空調装置の提案もある(例えば特許文献1の図18)。
特開平8−197937号公報
しかしながら、エンジン冷却液の熱を利用して車室内の暖房を行う従来の車両用空調装置では、エンジン冷却液の温度が高くない場合に、車室内を暖房することができないという課題がある。
近年では、エンジンの高効率化に伴って、エンジン稼働中でもエンジン冷却液の温度が余り高くならない車両がある。さらに、アイドリングストップ車、HEV(Hybrid Electric Vehicle)、P−HEV(Plug-in Hybrid Electric Vehicle)などでは、エンジンの稼働が間欠的になることで、エンジン冷却液の温度が余り高くならない状況がしばしば生じる。
一方、エンジン冷却液をヒートポンプの高温高圧冷媒によりさらに加熱して、この冷却液で車室内の暖房を行う上記従来の車両用空調装置では、エンジン冷却液の温度が余り高くならない状況でも、車室内の暖房を行うことが可能となる。しかしながら、このような車両用空調装置では、外気温が低く、エンジン冷却液の温度が余り高くない場合に、暖房効率が低下するということが分かった(詳細は、図2および図3を用いて後述する)。
このような課題は、電気自動車において、走行用の電力を供給する二次電池、または、走行用の電気モータ等、エンジン以外の発熱部品から排熱を得て暖房に利用する場合にも、同様に生じる。
本発明の目的は、外気温が低く、車両の発熱部品から多くの排熱を得られない場合でも、高い効率で車室内の暖房を行うことのできる車両用空調装置を提供することである。
本発明の一態様に係る車両用空調装置は、高温の冷却液が流されて車室内へ送られる空気に熱を与えるヒーターコアと、冷却液と前記ヒートポンプにおける高温高圧の冷媒との間で熱を交換して冷媒を凝縮させる第1水冷媒熱交換器と、前記第1水冷媒熱交換器および前記ヒーターコアを流れる冷却液の流量を調整する流量調整手段と、空調制御を行う制御部と、を具備し、前記制御部は、前記流量調整手段を制御し、前記ヒートポンプの起動から所定期間、冷却液の流量を標準運転時の第一の流量より低い第二の流量に設定する構成を採る。
本発明によれば、外気温が低く、車両の発熱部品から多くの排熱を得られない場合でも、高い効率で車室内の暖房を行うことができる。
本発明の実施の形態の車両用空調装置の前提となる基本構成を示す図 図1の車両用空調装置(A)と従来例(B)との暖房効率を説明する図 図1の車両用空調装置(A)と比較例(B)との暖房効率を説明する図 本発明の実施の形態の車両用空調装置を示す構成図 実施の形態の車両用空調装置における空調制御処理の手順を示すフローチャート 図5のWP1回転数指示処理の詳細な手順を示すフローチャート 外気温とWP1停止水温との関係を示すデータテーブル 空調制御処理の一例を説明するグラフ 実施の形態の車両用空調装置の変形例を示す図
先ず、本発明に係る実施の形態の具体的な構成および動作を説明する前に、車両の発熱部品から排熱が余り得られない場合でも、高い効率で車室内の暖房を行える車両用空調装置の構成として、本発明者らが着目した基本構成について説明する。
(基本構成)
図1は、本発明の実施の形態の車両用空調装置の前提となる基本構成を示す図である。本願の各構成図において、水回路とは冷却液が流れる通路を示す。
図1の車両用空調装置100は、発熱部品(例えば、エンジン(内燃機関))を有する車両に搭載されて、車室内の暖房、除湿および冷房を行う装置である。
この車両用空調装置100は、コンプレッサ(圧縮機)38、エンジン冷却部40、三方弁42,43、ヒーターコア44、エバポレータ48、膨張弁37、室外コンデンサ39、サブエバポレータ(第2水冷媒熱交換器に相当)11、サブコンデンサ(第1水冷媒熱交換器に相当)12、開閉弁13、電磁弁付き膨張弁14、ウォータポンプ(流量調整手段に相当)16、および、これらの間を結ぶ冷却液の配管および冷媒配管等を具備する。ヒーターコア44と、エバポレータ48とは、HVAC(Heating, Ventilation, and Air Conditioning)70の吸気通路内に配置される。HVAC70には、吸気を流すブロアファンF1が設けられている。
コンプレッサ38は、電気により駆動して、吸入した冷媒を高温高圧に圧縮して吐出する。
エンジン冷却部40は、エンジンの周囲に冷却液を流すウォータジャケットと、ウォータジャケットに冷却液を流すウォータポンプ17とを具備し、ウォータジャケットに流れる冷却液へエンジンから熱を放出させる。ウォータポンプ17は、例えば、エンジンの動力により回転する。エンジン冷却部40には、エンジンの排熱の量が多くなった場合に、熱を外気に放出するラジエータが備わっていてもよい。
ヒーターコア44は、冷却液と空気との間で熱交換を行う機器であり、車室内へ空気を供給するHVAC70の吸気通路内に配置される。ヒーターコア44には、加熱された冷却液が供給され、暖房運転時に車室内へ送られる吸気に熱を放出する。
三方弁42,43は、エンジン冷却部40の冷却液の通路を、サブエバポレータ11側へ連通させるか、ヒーターコア44の側へ連通させるかを切り替える弁である。なお、この切り替えの手段は、三方弁に限られず、例えば複数の弁を組み合わせて構成することもできる。三方弁42,43は、例えば電気的な制御により、上記の切り替えを行うことができる。
エバポレータ48は、低温低圧の冷媒と、空気との間で熱交換を行う機器であり、HVAC70の吸気通路内に配置される。エバポレータ48には、冷房運転時または除湿運転時に低温低圧の冷媒が流され、車室内へ供給される吸気を冷却する。
膨張弁37は、高圧の冷媒を低温低圧に膨張して、エバポレータ48に吐出する。膨張弁37は、エバポレータ48に近接して配置されている。
室外コンデンサ39は、冷媒を流す通路と、空気を流す通路とを有し、例えばエンジンルーム内の車両の先頭付近に配置されて、冷媒と外気との間で熱交換を行う。室外コンデンサ39には、冷房モードおよび除湿モードのときに、高温高圧の冷媒が流されて、冷媒から外気へ熱を排出させる。室外コンデンサ39には、例えば、ファンにより外気が吹き付けられる。
サブエバポレータ11は、低温低圧の冷媒を流す通路と、冷却液を流す通路とを有し、冷媒と冷却液との間で熱交換を行う。サブエバポレータ11には、所定の運転モードのときに、低温低圧の冷媒が供給され、且つ、エンジン冷却部40との間で冷却液が循環的に流されて、冷却液から低温低圧冷媒へ熱を移動させる。
サブコンデンサ12は、高温高圧の冷媒を流す通路と、冷却液を流す通路とを有し、冷媒と冷却液との間で熱交換を行う。サブコンデンサ12には、所定の運転モードのときに、ヒーターコア44との間で冷却液が循環的に流されて、高温高圧冷媒から冷却液へ熱を放出させる。
サブコンデンサ12の出口側の冷媒配管は2つに分岐して、一方が開閉弁13を介して室外コンデンサ39に接続され、他方が電磁弁付き膨張弁14を介してサブエバポレータ11に接続されている。
ウォータポンプ16は、例えば電気的に駆動される電動モータにより、サブコンデンサ12とヒーターコア44との間で冷却液を循環させることが可能なポンプでもよい。
サブエバポレータ11の出口側の冷媒配管は、コンプレッサ38の冷媒吸入口に接続されている。コンプレッサ38の冷媒吸入口には、エバポレータ48の出口側の冷媒配管も合流接続されている。
開閉弁13は、例えば電気的な制御により、冷媒配管の開閉を切り替える弁である。
電磁弁付き膨張弁14は、例えば電気的な制御により、冷媒配管の開閉を切り替えられるとともに、開としたときに膨張弁として機能する弁である。なお、電磁弁付き膨張弁14は、開閉弁と膨張弁とからなる2つの部品に代替してもよい。
(基本構成の動作説明)
次に、図1の車両用空調装置100の動作について説明する。
[エンジン冷却液の中温時における暖房モード]
エンジン冷却液が中温時(例えば60℃未満)において暖房モードの運転が要求された場合には、開閉弁13が閉、電磁弁付き膨張弁14が開、ウォータポンプ16がオン作動、三方弁42,43の通路がサブエバポレータ11側に切り替えられる。
さらに、コンプレッサ38が作動することで、冷媒は、サブコンデンサ12、電磁弁付き膨張弁14、サブエバポレータ11、および、コンプレッサ38を、この順で循環的に流れる。
その際、コンプレッサ38により圧縮された高温高圧冷媒は、サブコンデンサ12にて冷却液へ熱を放出して凝縮する。また、電磁弁付き膨張弁14により膨張された低温低圧冷媒は、サブエバポレータ11にて冷却液から熱を吸収して気化する。
冷却液は、2つの水回路に分かれて各々独立的に流れる。第1水回路の冷却液は、エンジン冷却部40とサブエバポレータ11との間を循環的に流れる。第1水回路の冷却液は、エンジン冷却部40においてエンジンを冷却し、サブエバポレータ11において低温低圧の冷媒に熱を放出する。
第2水回路の冷却液は、ウォータポンプ16によりサブコンデンサ12とヒーターコア44との間を循環的に流れる。第2水回路の冷却液は、サブコンデンサ12において高温高圧の冷媒から熱を吸収し、ヒーターコア44において車室内へ送られる吸気へ熱を放出する。
これにより、車室内の暖房が行われる。
[エンジン冷却液の中温時における除湿モード]
エンジン冷却液が中温時(例えば60℃未満)において除湿モードの運転が要求された場合には、上述したエンジン冷却液が中温時の暖房モードの状態から、開閉弁13が開に切り替えられる。
この開閉弁13の切り替えにより、エンジン冷却液が中温時の暖房モードの冷媒の流れに加えて、コンプレッサ38、サブコンデンサ12、室外コンデンサ39、膨張弁37、および、エバポレータ48を、この順で循環する冷媒の流れが生じる。
そして、この冷媒の流れにより、エバポレータ48に低温低圧の冷媒が流れて、車室内へ送られる吸気の除湿を行うことができる。
[エンジン冷却液の高温時における暖房モード]
エンジン冷却液が高温時(例えば60℃以上)において暖房モードの運転が要求された場合には、開閉弁13が開、電磁弁付き膨張弁14が閉、ウォータポンプ16が作動オフ、三方弁42,43の通路がヒーターコア44側に切り替えられる。
この切り替えにより、高温のエンジン冷却液がヒーターコア44を流れて、車室内へ送られる吸気を温めることができる。
また、除湿等が必要な場合には、コンプレッサ38が作動することで、冷媒は、サブコンデンサ12、室外コンデンサ39、膨張弁37、エバポレータ48、および、コンプレッサ38を、この順で循環的に流れる。
その際、コンプレッサ38により圧縮された高温高圧冷媒は、冷却液の流れないサブコンデンサ12をほぼ熱交換なく通過し、室外コンデンサ39にて外気に熱を放出して凝縮する。次いで、膨張弁37により膨張された低温低圧冷媒は、エバポレータ48にて車室内へ送られる吸気から熱を吸収して気化する。これにより、吸気の除湿を行うことができる。
[冷房モード]
冷房モードの運転が要求された場合には、開閉弁13が開、電磁弁付き膨張弁14が閉、ウォータポンプ16が作動オフ、コンプレッサ38が作動にされる。また、三方弁42,43の通路はヒーターコア44側に切り替えられ、ヒーターコア44の扉が閉じられる。また、エンジン冷却部40では、冷却液がラジエータに送られて外気に放熱を行う。
この切り換えにより、コンプレッサ38、サブコンデンサ12、室外コンデンサ39、膨張弁37、および、エバポレータ48を、この順で循環する冷媒の流れが生じて、エバポレータ48に低温低圧の冷媒が供給される。
これにより、HVAC70を流れる空気は、エバポレータ48を通過して冷却され、且つ、ヒーターコア44を迂回して車室内へ送られて、車室内が冷房される。
[暖房効率の比較1]
図2は、エンジン冷却液の中温時における図1の車両用空調装置(A)と従来例(B)との暖房効率を説明する図である。図2においては、冷却液の流れを示す矢印の傍らに、各部に流れる冷却液の安定的な温度の一例を示す。
ここでは、アイドリングストップ或いは電気モータ走行との併用等によりエンジン40Aの温度が余り高くなく、且つ、外気温が低い状況を想定し、図1の車両用空調装置の暖房モード(A)と、従来例の暖房モード(B)との比較を行う。
図2(B)の従来例は、コンプレッサ91、コンデンサとして機能する水冷媒熱交換器(サブコンデンサ)92、膨張弁93、エバポレータとして機能する室外熱交換機94からなるヒートポンプシステムを有する構成である。エンジン冷却液は、水冷媒熱交換器92で加熱されてヒーターコア44に送られる。この構成は、特許文献1の図18の構成に対応している。
図2(A)に示すように、図1の車両用空調装置のエンジン冷却液の中温時における暖房モードでは、エバポレータとして機能するサブエバポレータ11に、中程度の温度の冷却液が供給される。このため、サブエバポレータ11において、低温低圧の冷媒と冷却液との安定的に且つ高効率の熱交換が行われ、低温低圧の冷媒を容易に気化させることができる。
これにより、ヒートポンプシステムが効率良く稼働して、サブエバポレータ11からサブコンデンサ12へ大きな熱量を移動することができる。よって、サブコンデンサ12は高温に維持され、ヒーターコア44に高温の冷却液を供給して車室内を十分に温めることができる。
一方、図2(B)の従来例では、エバポレータとして機能する室外熱交換機94には低温の外気が供給されるため、低温低圧の冷媒に安定的に熱を与えることができず、ヒートポンプシステムを高効率に稼働することが困難になる。
このため、コンデンサとして機能する水冷媒熱交換器92を高温に維持することが困難となる。さらに、エンジン40Aの温度が低いことで、水冷媒熱交換器92、ヒーターコア44、およびエンジン40Aを循環して流れる冷却液の温度はさほど高くならず、ヒーターコア44による車室内の暖房効率が低くなる。
これらの比較から、図1の車両用空調装置のエンジン冷却液の中温時における暖房モードは、従来例と比較して暖房効率が高くなることが分かる。
また、図2(B)の従来例では、ヒーターコア44を流れる冷却液の量が、エンジン40Aの冷却液ポンプの回転数に依存する。一方、図1の車両用空調装置では、ヒーターコア44の冷却液の流量を、エンジン40Aの冷却液の流量と独立して制御することができる。したがって、図1の車両用空調装置100では、アイドリングストップなどでエンジン40Aが停止したときでも、ヒーターコア44に冷却液を流して車室内の暖房能力を維持することができる。
[暖房効率の比較2]
図3は、エンジン冷却液の中温時における図1の車両用空調装置(A)と比較例(B)との暖房効率を説明する図である。図3においては、冷却液の流れを示す矢印の傍らに、各部に流れる冷却液の安定的な温度の一例を示す。また、図3(B)においては、冷却液の非安定的な温度を括弧書きで示している。
図3(B)の比較例は、図1の車両用空調装置100と同様のヒートポンプシステムを有する一方、冷却液をヒーターコア44、サブエバポレータ11、エンジン40Aの冷却通路、サブコンデンサ12に、この順で循環して流すようにした構成である。
図3(B)の比較例において、コンプレッサ38を図3(A)と同様に駆動し、且つ、ヒーターコア44に図3(A)と同様に高温(例えば非安定的な温度(1)70℃)の冷却液を供給した場合を想定する。
図3(B)の比較例では、ヒーターコア44を通過した冷却液は、サブエバポレータ11に送られる。よって、上記想定の場合、サブエバポレータ11に入力される冷却液の温度は、図3(A)の場合よりも高くなる(例えば非安定的な温度(1)50℃)。その結果、サブエバポレータ11を通過してエンジン40Aに送られる冷却液の温度も、図3(A)の場合よりも高くなる(例えば非安定的な温度(1)25℃)。
ここで、エンジン40Aの温度が低いと、サブエバポレータ11から送られてくる冷却液とエンジン40Aとの温度差が小さくなることから、エンジン40Aから冷却液への放熱量が小さくなる。さらに、図3(B)の比較例では、エンジン40Aの冷却液はサブコンデンサ12へ送られる。このため、上記想定の場合、サブコンデンサ12へ入力される冷却液の温度は、図3(A)の場合よりも低くなる(例えば非安定的な温度(1)40℃)。
この結果、サブコンデンサ12から出力される冷却液は、上記想定の高い温度が維持できずに温度が低くなる(例えば非安定的な温度(2)65℃)。
このような作用により、図3(B)の比較例では、各部の冷却液の安定的な温度は、図3(A)の構成との比較で、ヒーターコア44側で低くなり、エンジン40A側で高くなる。つまり、図3(B)の比較例は、図1の車両用空調装置100のエンジン冷却液の中温時における暖房モードに比べて、暖房効率が低くなることが分かる。
また、図3(B)の従来例では、ヒーターコア44の冷却液の流量が、エンジン40Aの冷却液ポンプの回転数に依存する。一方、図1の車両用空調装置100では、エンジン40Aの冷却液の流量と独立して、ヒーターコア44の冷却液の流量を制御することができる。したがって、図1の車両用空調装置100では、例えば、アイドリングストップなどでエンジン40Aが停止したときでも、ヒーターコア44に冷却液を流して車室内の暖房を継続して暖房能力を維持することができる。
(基本構成における更なる課題)
上述のように、図1の車両用空調装置100によれば、外気温が低く、エンジン冷却液の温度が余り高くない場合でも、高い効率で車室内の暖房を行うことができる。
しかしながら、この構成においても、車両および車両用空調装置100の起動時において、サブコンデンサ12の冷却液が非常に低温になっていると、ヒートポンプが安定的に稼働するまで時間がかかる。これにより、車室内を速やかに暖房することができないという課題が生じる。
本開示の実施の形態は、上記基本構成を有する車両用空調装置において、極寒時でも速やかに車室内を暖房する能力、すなわち、速暖性能を向上することを目的としている。
(実施の形態)
図4は、本発明の実施の形態の車両用空調装置を示す構成図である。
本発明の実施の形態の車両用空調装置1は、図1の基本構成に加えて、新たな制御処理が追加されている。基本構成と同様の構成要素については、同一符号を付して詳細な説明を省略する。また、本発明の実施の形態の車両用空調装置1は、温度センサ56,57と、制御部36とを有している。
なお、図4では、基本構成の三方弁42,43により分岐される冷却液の通路が省略されている。しかしながら、実施の形態の車両用空調装置1は、これらの構成要素を備えていてもよい。
制御部36は、例えば空調制御専用のECU(電気制御ユニット)であり、各種センサの出力と、ユーザまたは車両ECUからの操作指令等が入力される。各種センサには、温度センサ56,57が含まれる。また、制御部36は、車両用空調装置1の各駆動部へ駆動用の制御信号を出力する。駆動部には、コンプレッサ38、ブロアファンF1、ウォータポンプ16、開閉弁13、電磁弁付き膨張弁14が含まれる。
図5は、実施の形態の車両用空調装置における空調制御処理の手順を示すフローチャートである。
この空調制御処理は、例えば、車両の起動時(例えば、エンジン車であればイグニション・スイッチオン時、電気自動車であればキーオン時)に、制御部36により開始される。
空調制御処理が開始されると、制御部36は、先ず、自らを初期化するエアコンECU起動処理(ステップS1)、おらび、各種センサおよびアクチュエータ(電磁弁、HVAC70の開閉扉など)の初期化処理(ステップS2)を行って、続く繰返し処理へ移行する。
繰返し処理では、制御部36は、先ず、ステップS3,S4で、外部からの操作指令を確認し、暖房モードの指令であれば、暖房処理(ステップS5〜S9)を実行し、冷房モード等の他の指令であれば指令に応じたモード処理(ステップS10)を実行する。また、空調動作の終了指令であれば、この空調制御処理を終了する。
暖房処理では、制御部36は、先ず、温度センサ56,57を含む各種センサから情報を取得し(ステップS5)、次いで、車室内の暖気の吹き出し口の目標温度を算出する(ステップS6)。
次に、制御部36は、目標吹き出し温度および各種センサ情報に基づき、コンプレッサ38の回転数を計算し、コンプレッサ38の駆動回路にこの回転数で駆動するよう指示する(ステップS7)。
続いて、制御部36は、目標吹き出し温度および各種センサ情報に基づき、HVAC70の状態、例えば、ブロアファンF1の回転数、各種開閉扉の開閉量を決定し、各駆動部に指示する(ステップS8)。
続いて、制御部36は、目標吹き出し温度および各種センサ情報に基づき、ウォータポンプ(WP1)16の回転数を決定し、ウォータポンプ16の駆動回路にこの回転数で駆動するよう指示する(ステップS9)。
暖房モードの指令が継続している期間、制御部36は、ステップS5〜S9の暖房処理を繰返し実行し、この繰返し処理により、車両用空調装置1の暖房運転が実現される。
図6は、図5の「WP1回転数指示」の処理の詳細な手順を示すフローチャートである。図7は、外気温とWP1停止水温との関係を示すデータテーブルである。
図5のステップS9のWP1回転数指示の処理では、制御部36は、先ず、データテーブルから、外気温に応じたウォータポンプ(WP1)16の停止水温を読み出す(ステップS11)。
制御部36は、内部のメモリに例えば図7のデータテーブルを格納している。このデータテーブルには、外気温と停止水温との関係を表した情報が格納されている。ここで、水温とは、サブコンデンサ12に流れる冷却液の温度であり、停止水温とは、ウォータポンプ16を停止から標準回転へ切り換える閾値温度を表わす。なお、図7の例では、外気温が−20℃未満の範囲を示していないが、−20℃未満の範囲にも停止水温が適宜設定されていてもよい。
停止水温を読み出したら、次に、制御部36は、サブコンデンサ12の冷却液の温度(「コンデンサ水温」と呼ぶ)と、停止水温とを比較する(ステップS12)。そして、コンデンサ水温の方が高ければ、ウォータポンプ16の回転数を標準回転数に設定する(ステップS13)。このときの冷却液の流量が、第一の流量に相当する。一方、コンデンサ水温の方が低ければ、ウォータポンプ16の回転数を略停止(略流量ゼロ)に設定する(ステップS14)。このときの冷却液の流量が、第二の流量の一例に相当する。略流量ゼロには、ウォータポンプ16に駆動力が与えられていない状態で、対流または車両の加減速等により、冷却液が僅かに流れる場合を含むものとする。
続いて、制御部36は、設定された回転数でウォータポンプ16が駆動するように、ウォータポンプ16の駆動回路へ制御信号を出力する(ステップS15)。そして、このWP1回転数指示の処理が終了する。
図8は、空調制御処理の一例を説明するグラフである。
本実施の形態の車両用空調装置1では、上述した制御処理によって、図8のような空調動作が得られる。
例えば、外気温が低く、冷却液および冷媒が冷えている状態で車両用空調装置1が起動された場合、制御部36は、コンプレッサ回転数指示の処理(図5のステップS7)において、これらの状態を判断して、所定期間、コンプレッサ38を暖機運転する。図8の「3000rpm」、「5000rpm」の期間が、コンプレッサ38の暖機運転を示している。
また、制御部36は、WP1回転数指示の処理(図5のステップS9および図6)において、コンデンサ水温(サブコンデンサ12の冷却液温度)が停止水温を超えるまで、ウォータポンプ16を停止(第二の流量)に制御する。
このような制御によって、サブコンデンサ12から熱が送り出され難くなり、ヒートポンプの暖機運転により冷媒の温度が速やかに上昇し、その結果、冷媒サイクル中に搭載されているコンプレッサ38等のデバイスの温度も速やかに上昇する。そして、ヒートポンプの運転を速やかに安定状態にすることができる。
ヒートポンプが安定運転になると、サブエバポレータ11からサブコンデンサ12へ高効率に熱が移動するため、コンデンサ水温(サブコンデンサ12の冷却液温度)が速やかに上昇する。そして、コンデンサ水温がWP1停止水温を超えると、ウォータポンプ(WP1)16が標準回転数で駆動される。
ウォータポンプ16が標準回転数で駆動されている状態が、ウォータポンプ16の標準運転となる。標準回転数とは、車室内を暖房可能な熱量を、サブコンデンサ12からヒーターコア44へ輸送できる回転数である。
ヒートポンプが安定運転となり、ウォータポンプ16が標準運転となることで、ヒートポンプによりサブコンデンサ12で発生された熱が、サブコンデンサ12からヒーターコア44へ輸送されて、車室内へ送られる吸気が温められる。
以上のように、実施の形態の車両用空調装置1においては、上述の作用により、車室内を速やかに暖房することが可能となる。
また、実施の形態の車両用空調装置1によれば、コンデンサ水温に応じてウォータポンプ16を標準運転時の駆動量(標準回転数)とするか、標準運転時より低い駆動量(例えば停止)とするかを切換えている。このような制御により、例えば運転終了から少しの期間を開けて車両用空調装置1を再起動した場合など、起動時にコンデンサ水温が高くなっている場合に、ウォータポンプ16の不要な停止期間を設けなくて済む。
また、実施の形態の車両用空調装置1によれば、ウォータポンプ16の回転数を切り換えるコンデンサ水温の閾値温度(WP1停止水温)を、外気温に応じて変化させている。これにより、極寒時には低い温度でも暖気を早めに車室内へ供給するといった外気温に適した制御が可能となる。
図9は、実施の形態の車両用空調装置の変形例を示す図である。
なお、上記の実施の形態の車両用空調装置1は、図9の車両用空調装置1Aに変更してもよい。変形例の車両用空調装置1Aは、水回路のみが図4に示した実施の形態の構成と異なり、他の構成および制御内容は同様である。
図9の水回路は、エンジン冷却部40、サブコンデンサ12、ヒーターコア44、サブエバポレータ11へ、この順で、冷却液を循環させ、再びエンジン冷却部40へ戻る水回路である。この水回路の途中には、流量調整手段としてウォータポンプ16Aが配置されている。
このような水回路としても、図5および図6に示したものと同様の制御処理により、外気温が低く、車両の発熱部品から多くの排熱を得られない場合でも、高い効率で車室内の暖房を行うことができる。
以上、本発明の各実施の形態について説明した。
なお、上記実施の形態では、コンデンサ水温に応じてウォータポンプ16を標準運転時の駆動量(標準回転数)とするか、標準運転時より低い駆動量(例えば停止)とするかを切換える制御方法を例にとって説明した。しかしながら、例えば、外気温が低い場合には、起動時から外気温に応じた所定時間、ウォータポンプ16を標準運転時より低い駆動量に制御するようにしても良く、このような制御によっても同様の効果が奏される。或いは、コンプレッサの暖機運転中および暖機運転の完了から一定時間ウォータポンプ16を標準運転時より低い駆動量に制御するようにしても良く、このような制御でも同様の効果が奏される。ウォータポンプ16を標準運転時の駆動量に制御することとは、冷却液の流量を標準運転時の第一の流量に調整することを意味する。また、ウォータポンプ16を標準運転時より低い駆動量に制御することとは、冷却液の流量を第一の流量より低い第二の流量に調整することを意味する。
また、標準運転時より低いウォータポンプ16の駆動量として、停止(回転数ゼロ)を例示したが、例えば、標準回転数の25%以下など、サブコンデンサ12からヒーターコア44へ、車室内を暖房可能な熱量を輸送することのできない回転数としてもよい。言い換えれば、標準運転時より低く調整される冷却液の第二の流量として、略ゼロ流量を例示したが、第二の流量としては、標準運転時の流量の25%以下などの流量としてもよい。この構成でも、標準回転数で駆動するよりも速やかにヒートポンプを安定状態に遷移できるという同様の効果が奏される。
また、ウォータポンプ16の標準回転数は、一定でなく、2段階または多段階に設けられる場合がある。すなわち、標準回転数とは、車室内を暖房可能な熱量を、サブコンデンサ12からヒーターコア44へ輸送できる回転数と見なしてもよい。言い換えれば、標準運転時の冷却液の流量(第一の流量)は、一定でなく、2段階または多段階に切り換えられる場合がある。すなわち、標準運転時の冷却液の流量とは、車室内を暖房可能な熱量を、サブコンデンサ12からヒーターコア44へ輸送できる流量と見なすことができる。
また、上記実施の形態では、冷房モードの際、冷媒がサブコンデンサ12を通過する構成とした。しかし、冷房モードの際、冷媒は、サブコンデンサ12をバイパスして、コンプレッサ38、室外コンデンサ39、膨張弁37、および、エバポレータ48を、循環する冷媒回路に切り換えられてもよい。
また、上記実施の形態では、冷却液の流量を調整する流量調整手段として、ウォータポンプの駆動量を調整する構成を例にとって説明した。しかし、流量調整手段としては、流路に配置された弁又は開閉扉等を適用してもよい。
また、上記実施の形態では、車両の発熱部品としてエンジンを例にとって説明した。しかしながら、車両の発熱部品は、電気自動車における走行用の電気モータ、走行用の電力を供給する二次電池など、様々な発熱部品を採用してもよい。
なお、上記実施の形態では、コンプレッサ38は、電動コンプレッサなど電気により駆動され回転数が制御可能なコンプレッサとして記載したが、エンジンの動力により駆動されるコンプレッサであってもよい。エンジンにより駆動されるコンプレッサとしては、吐出容量が固定である固定容量コンプレッサと、吐出容量が可変である可変容量コンプレッサとのいずれも適用が可能である。
2013年3月6日出願の特願2013−044139の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
本発明は、エンジン車、電気自動車、或いは、HEV車など各種車両に搭載される車両用空調装置に利用できる。
1,1A 車両用空調装置
11 サブエバポレータ(第2水冷媒熱交換器)
12 サブコンデンサ(第1水冷媒熱交換器)
13 開閉弁
14 電磁弁付き膨張弁
16,16A ウォータポンプ(流量調整手段)
17 ウォータポンプ
36 制御部
37 膨張弁
38 コンプレッサ
39 室外コンデンサ
40 エンジン冷却部
44 ヒーターコア
48 エバポレータ
70 HVAC

Claims (9)

  1. 高温の冷却液が流されて車室内へ送られる空気に熱を与えるヒーターコアと、
    冷却液とヒートポンプにおける高温高圧の冷媒との間で熱を交換して冷媒を凝縮させる第1水冷媒熱交換器と、
    前記第1水冷媒熱交換器および前記ヒーターコアを流れる冷却液の流量を調整する流量調整手段と、
    空調制御を行う制御部と、
    を具備し、
    前記制御部は、前記流量調整手段を制御し、前記ヒートポンプの起動から所定期間、冷却液の流量を標準運転時の第一の流量より低い第二の流量に設定する車両用空調装置。
  2. 前記第1水冷媒熱交換器は、前記ヒーターコアとの間で冷却液を循環し、循環された冷却液と前記ヒートポンプにおける高温高圧の冷媒との間で熱を交換して冷媒を凝縮させる、
    請求項1記載の車両用空調装置。
  3. 車両の発熱部品と熱交換可能に冷却液を流す部品冷却通路と、
    前記部品冷却通路との間で冷却液を循環し、循環された冷却液と前記ヒートポンプにおける低温低圧の冷媒との間で熱を交換して冷媒を気化させる第2水冷媒熱交換器と、
    を更に具備する請求項2記載の車両用空調装置。
  4. 車両の発熱部品と熱交換可能に冷却液を流す部品冷却通路と、
    冷却液と前記ヒートポンプにおける低温低圧の冷媒との間で熱を交換して冷媒を気化させる第2水冷媒熱交換器と、
    を更に具備し、
    前記部品冷却通路、前記第1水冷媒熱交換器、前記ヒーターコア、および、前記第2水冷媒熱交換器に冷却液が循環して流れる、
    請求項1記載の車両用空調装置。
  5. 前記所定期間は、前記第1水冷媒熱交換器の冷却液が閾値温度に上昇するまでの期間である、
    請求項1から請求項4の何れか一項に記載の車両用空調装置。
  6. 前記閾値温度は外気温に応じて値が変更される、
    請求項5記載の車両用空調装置。
  7. 前記第二の流量とは略ゼロの流量である、
    請求項1から請求項6の何れか一項に記載の車両用空調装置。
  8. 前記第2水冷媒熱交換器は、前記ヒーターコアを介さずに、前記部品冷却通路との間で冷却液を循環可能に接続されている、
    請求項3記載の車両用空調装置。
  9. 前記流量調整手段は、ウォータポンプであり、
    前記第一の流量および前記第二の流量は、前記ウォータポンプの回転数により決定される、
    請求項1から請求項8の何れか一項に記載の車両用空調装置。
JP2015504180A 2013-03-06 2014-03-05 車両用空調装置 Expired - Fee Related JP6388213B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013044139 2013-03-06
JP2013044139 2013-03-06
PCT/JP2014/001200 WO2014136447A1 (ja) 2013-03-06 2014-03-05 車両用空調装置

Publications (2)

Publication Number Publication Date
JPWO2014136447A1 true JPWO2014136447A1 (ja) 2017-02-09
JP6388213B2 JP6388213B2 (ja) 2018-09-12

Family

ID=51490980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015504180A Expired - Fee Related JP6388213B2 (ja) 2013-03-06 2014-03-05 車両用空調装置

Country Status (5)

Country Link
US (1) US20160001636A1 (ja)
EP (1) EP2965931A4 (ja)
JP (1) JP6388213B2 (ja)
CN (1) CN105026193B (ja)
WO (1) WO2014136447A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2378956T5 (es) 2006-06-28 2019-10-09 Medtronic Ardian Luxembourg Sistemas para la neuromodulación renal térmicamente inducida
JP6317959B2 (ja) * 2014-03-10 2018-04-25 株式会社アマダホールディングス 冷却装置
EP3213945A4 (en) * 2014-10-31 2017-11-29 Panasonic Intellectual Property Management Co., Ltd. Air-conditioning control device and vehicle air-conditioning device, and method for determining fault in electromagnetic valve of air-conditioning control device
JPWO2016103578A1 (ja) * 2014-12-24 2017-10-12 パナソニックIpマネジメント株式会社 車両用空調装置
JP6394580B2 (ja) * 2015-12-11 2018-09-26 株式会社デンソー 車両の制御装置
DE102018114762B4 (de) 2017-07-10 2023-12-28 Hanon Systems Verfahren zum Betreiben einer Klimaanlage eines Kraftfahrzeuges
KR102382721B1 (ko) * 2017-09-27 2022-04-05 한온시스템 주식회사 자동차의 통합 열관리 시스템
JP2019098906A (ja) * 2017-12-01 2019-06-24 本田技研工業株式会社 車両用廃熱利用装置
JP7119698B2 (ja) * 2018-07-24 2022-08-17 株式会社デンソー 車両用空調装置
KR102589025B1 (ko) * 2018-07-25 2023-10-17 현대자동차주식회사 전기자동차용 공조장치 제어방법
JP7349246B2 (ja) * 2019-01-30 2023-09-22 サンデン株式会社 車両用空気調和装置
CN111520928B (zh) 2019-02-02 2023-10-24 开利公司 增强热驱动的喷射器循环
CN111520932B8 (zh) * 2019-02-02 2023-07-04 开利公司 热回收增强制冷***
JP7329373B2 (ja) * 2019-07-01 2023-08-18 三菱重工サーマルシステムズ株式会社 空気調和ユニット、熱交換器、および空気調和機
CN114290868B (zh) * 2021-04-28 2024-02-09 三电(中国)汽车空调有限公司 一种汽车和空调器
CN115214600A (zh) * 2021-06-07 2022-10-21 广州汽车集团股份有限公司 车辆控制方法、装置、车辆及计算机存储介质
CN115782532B (zh) * 2022-11-28 2024-06-04 重庆长安汽车股份有限公司 一种电动压缩机控制方法、***、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767813U (ja) * 1980-10-14 1982-04-23
JPH06143974A (ja) * 1992-11-12 1994-05-24 Zexel Corp 空気調和装置
JP2010260449A (ja) * 2009-05-07 2010-11-18 Nippon Soken Inc 車両用空調装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2699999A1 (fr) * 1992-12-31 1994-07-01 Sedepro Dispositif doseur et procédé de dosage.
JP3477868B2 (ja) 1993-12-27 2003-12-10 株式会社デンソー 車両用空気調和装置
JPH1018845A (ja) * 1996-07-01 1998-01-20 Sanyo Electric Co Ltd 内燃機関の冷却水流量制御装置
JP4169454B2 (ja) * 2000-04-12 2008-10-22 大阪瓦斯株式会社 貯湯式の給湯熱源装置
JP4144996B2 (ja) * 2000-04-12 2008-09-03 大阪瓦斯株式会社 貯湯式の給湯熱源装置
DE10234087A1 (de) * 2002-07-26 2004-02-05 Robert Bosch Gmbh Verfahren zum Betrieb eines Kühl- und Heizkreislaufs eines Kraftfahrzeugs sowie Kühl- und Heizkreislauf für ein Kraftfahrzeug
JP3801122B2 (ja) * 2002-09-05 2006-07-26 松下電器産業株式会社 ヒートポンプ給湯装置
US6862892B1 (en) * 2003-08-19 2005-03-08 Visteon Global Technologies, Inc. Heat pump and air conditioning system for a vehicle
JP2006132818A (ja) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd 冷凍サイクル装置の制御方法およびそれを用いた冷凍サイクル装置
DE102007055005B4 (de) * 2007-11-14 2009-08-27 Federal-Mogul Wiesbaden Gmbh Anlaufscheibe und Radial-Axial-Lager mit einer solchen
US9038400B2 (en) * 2009-05-18 2015-05-26 Gentherm Incorporated Temperature control system with thermoelectric device
JP2010159006A (ja) * 2009-01-09 2010-07-22 Calsonic Kansei Corp 車両用空調装置
EP2615384B1 (en) * 2010-09-10 2019-06-12 Panasonic Intellectual Property Management Co., Ltd. Heat medium circulation type heat pump heater
JP5861495B2 (ja) * 2011-04-18 2016-02-16 株式会社デンソー 車両用温度調整装置、および車載用熱システム
JP5708249B2 (ja) * 2011-05-27 2015-04-30 株式会社ノーリツ ヒートポンプ給湯装置
JP5533812B2 (ja) * 2011-07-28 2014-06-25 株式会社デンソー 車両用空調装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767813U (ja) * 1980-10-14 1982-04-23
JPH06143974A (ja) * 1992-11-12 1994-05-24 Zexel Corp 空気調和装置
JP2010260449A (ja) * 2009-05-07 2010-11-18 Nippon Soken Inc 車両用空調装置

Also Published As

Publication number Publication date
CN105026193A (zh) 2015-11-04
JP6388213B2 (ja) 2018-09-12
EP2965931A4 (en) 2016-02-24
WO2014136447A1 (ja) 2014-09-12
EP2965931A1 (en) 2016-01-13
CN105026193B (zh) 2017-04-05
US20160001636A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP6388213B2 (ja) 車両用空調装置
JP7172815B2 (ja) 車載温調装置
JP7185469B2 (ja) 車両の熱管理システム
CN111791671B (zh) 车载调温装置
JP6605928B2 (ja) 車両用空調装置
JP5860361B2 (ja) 電動車両用熱管理システム
JP6361029B2 (ja) 車両用空調装置
KR101715723B1 (ko) 차량용 히트 펌프 시스템
JP6304578B2 (ja) 車両用空調装置
JP6108322B2 (ja) 車両用空調装置
KR102024077B1 (ko) 차량용 배터리 히팅장치
CN110385965B (zh) 车辆的热管理***
JP7185468B2 (ja) 車両の熱管理システム
JP2018177219A (ja) 車両用熱管理装置
JP7115452B2 (ja) 冷却システム
US20210387506A1 (en) In-vehicle temperature control system
JP2017128223A (ja) 車両用冷却液加熱装置及び車両用冷却液加熱プログラム
JP6939575B2 (ja) 車両用冷却装置
JP2021014201A (ja) 車載温調装置
WO2014136446A1 (ja) 車両用空調装置
WO2015008463A1 (ja) 車両用空調装置およびその構成ユニット
JP2018111339A (ja) 電動車両用空調装置
JP2017171247A (ja) 車両用空調装置
JP6315222B2 (ja) 車両用空調装置の構成ユニット
KR20170087080A (ko) 차량용 히트 펌프 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180802

R151 Written notification of patent or utility model registration

Ref document number: 6388213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees