JPWO2013129588A1 - Lithium ion secondary battery, current collector constituting the negative electrode of the secondary battery, and electrolytic copper foil constituting the negative electrode current collector - Google Patents

Lithium ion secondary battery, current collector constituting the negative electrode of the secondary battery, and electrolytic copper foil constituting the negative electrode current collector Download PDF

Info

Publication number
JPWO2013129588A1
JPWO2013129588A1 JP2013528164A JP2013528164A JPWO2013129588A1 JP WO2013129588 A1 JPWO2013129588 A1 JP WO2013129588A1 JP 2013528164 A JP2013528164 A JP 2013528164A JP 2013528164 A JP2013528164 A JP 2013528164A JP WO2013129588 A1 JPWO2013129588 A1 JP WO2013129588A1
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic
current collector
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013528164A
Other languages
Japanese (ja)
Other versions
JP5598884B2 (en
Inventor
鈴木 昭利
昭利 鈴木
健作 篠崎
健作 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2013528164A priority Critical patent/JP5598884B2/en
Application granted granted Critical
Publication of JP5598884B2 publication Critical patent/JP5598884B2/en
Publication of JPWO2013129588A1 publication Critical patent/JPWO2013129588A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

活物質スラリーとの濡れ性が良好で、電池容量が高く、充放電サイクルを繰り返しても電池容量の劣化が少なく、負極集電体である銅箔から活物質塗膜層が剥離しにくい両面形状が同程度の電解銅箔、該電解銅箔を集電体としたリチウム二次電池を提供する。電解銅箔の両面が電解析出面であり、該析出面は柱状晶の結晶組織であるリチウムイオン二次電池負極集電体用電解銅箔。該電解銅箔を集電体とするリチウム二次電池用負極。該負極を組み込んだリチウム二次電池である。前記電解銅箔の第一表面はドラム面上に柱状晶の結晶組織の銅電析で形成した面であり、該第一表面と反対側の第二表面は、第一表面製箔後に、第一表面の裏側に柱状晶の結晶組織の銅電析で形成した面である。Double-sided shape with good wettability with the active material slurry, high battery capacity, little battery capacity deterioration even after repeated charge / discharge cycles, and the active material coating layer is difficult to peel off from the copper foil as the negative electrode current collector Provides an electrolytic copper foil of the same level, and a lithium secondary battery using the electrolytic copper foil as a current collector. An electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery, wherein both surfaces of the electrolytic copper foil are electrolytic deposition surfaces, and the deposition surfaces are columnar crystal structures. A negative electrode for a lithium secondary battery using the electrolytic copper foil as a current collector. A lithium secondary battery incorporating the negative electrode. The first surface of the electrolytic copper foil is a surface formed by copper electrodeposition of a columnar crystal structure on the drum surface, and the second surface opposite to the first surface is formed after the first surface foil formation, It is a surface formed by copper electrodeposition of a columnar crystal structure on the back side of one surface.

Description

本発明は、負極集電体の表面に負極活物質層が形成された負極と、正極と、非水電解液とを備えるリチウムイオン二次電池、該二次電池を構成する負極電極、該負極電極を構成する集電体に関するものである。   The present invention relates to a lithium ion secondary battery comprising a negative electrode having a negative electrode active material layer formed on the surface of a negative electrode current collector, a positive electrode, and a non-aqueous electrolyte, a negative electrode constituting the secondary battery, and the negative electrode The present invention relates to a current collector constituting an electrode.

正極と、両面が平滑な電解銅箔からなる負極集電体の表面に負極活物質層としてカーボン粒子を塗布、乾燥し、さらにプレスした負極と、非水電解液を備えるリチウムイオン二次電池は現在、携帯電話、ノートタイプパソコン等に使用されている。このリチウムイオン二次電池の負極集電体には、電解により製造された、いわゆる「未処理銅箔」に、防錆力の向上とともに、負極活物質との密着性を向上させるための表面処理を施した電解銅箔が使用されている。   A lithium ion secondary battery comprising a positive electrode and a negative electrode current collector made of an electrolytic copper foil with smooth both surfaces coated with carbon particles as a negative electrode active material layer, dried and further pressed, and a non-aqueous electrolyte Currently, it is used for mobile phones and notebook computers. In the negative electrode current collector of this lithium ion secondary battery, surface treatment for improving the adhesion to the negative electrode active material as well as improving the rust prevention power to the so-called “untreated copper foil” manufactured by electrolysis. The electrolytic copper foil which gave is used.

前記リチウムイオン二次電池用負極集電体としての銅箔は、特許文献1に開示されているように、マット面を平滑にしさらに光沢面とマット面と(銅箔の両面)の表面粗さの差を小さくした電解銅箔を用いることにより、電池の充放電効率の低下を抑えることが可能である。すなわち、電解法で電解銅箔を作製する場合、銅箔の一方の面が光沢面になり、他方の面は非光沢になることが一般的である。この他方の面を通常マット面と呼んでいる。前記リチウムイオン二次電池用負極集電体としての銅箔は、特許文献1に開示されているように、他方の面(マット面)を平滑にしさらに光沢面と他方の面(マット面)の両面の表面粗さの差を小さくした電解銅箔を用いることにより、電池の充放電効率の低下を抑えることが可能である。   As disclosed in Patent Document 1, the copper foil as the negative electrode current collector for a lithium ion secondary battery has a smooth matte surface and further has a glossy surface and a matte surface (both surfaces of the copper foil). By using an electrolytic copper foil with a small difference, it is possible to suppress a decrease in charge / discharge efficiency of the battery. That is, when producing an electrolytic copper foil by an electrolytic method, it is common that one surface of the copper foil becomes a glossy surface and the other surface becomes non-glossy. This other side is usually called a matte side. As disclosed in Patent Document 1, the copper foil as the negative electrode current collector for a lithium ion secondary battery has a smooth surface on the other side (matt surface) and a glossy surface and the other surface (matt surface). By using an electrolytic copper foil in which the difference in surface roughness between both surfaces is reduced, it is possible to suppress a decrease in charge / discharge efficiency of the battery.

上記のような他方の面(マット面)も平滑であり、光沢面との表面粗さの差を小さくした電解銅箔は、硫酸銅−硫酸電解液に各種水溶性高分子物質、各種界面活性剤、各種有機イオウ系化合物、塩化物イオンなどを適宜選定して添加した電解液を使用して、回転するチタンドラム陰極に銅を電解析出させ、所定の厚さになったところでこれを剥離し巻き取ることによって製造されている。
例えば、硫酸銅−硫酸電解液にメルカプト基を持つ化合物、塩化物イオン、並びに分子量10,000 以下の低分子量膠及び高分子多糖類を添加して電解銅箔を製造する技術が提案されている(特許文献1参照)。
この電解銅箔は引張強さが300〜350N/mmであり、前記カーボン粒子を活物質とした負極用集電体(銅箔)として使用する場合、適度な伸びと併せて好適な材料である。
The other surface (matte surface) as described above is smooth, and the electrolytic copper foil with a small difference in surface roughness from the glossy surface is composed of various water-soluble polymer substances and various surface activity in copper sulfate-sulfuric acid electrolyte. Using an electrolytic solution with appropriate selection of additives, various organic sulfur compounds, chloride ions, etc., copper is electrolytically deposited on a rotating titanium drum cathode and peeled when it reaches a predetermined thickness. Manufactured by coiling.
For example, a technique for producing an electrolytic copper foil by adding a compound having a mercapto group, a chloride ion, and a low molecular weight glue and a high molecular weight polysaccharide having a molecular weight of 10,000 or less to a copper sulfate-sulfuric acid electrolytic solution has been proposed. (See Patent Document 1).
This electrolytic copper foil has a tensile strength of 300 to 350 N / mm 2 and is a suitable material in combination with appropriate elongation when used as a negative electrode current collector (copper foil) using the carbon particles as an active material. is there.

さらに、特許文献1とは異なる有機添加剤を加えた硫酸銅−硫酸電解液用いて製箔した平滑面の他方の面(マット面)の粗さを平滑にした電解銅箔が提案されており、現在主流であるカーボン系活物質を使用するリチウムイオン二次電池用には、このタイプの両面が平滑で、両面の表面粗さの差が小さい電解銅箔が主に使用されている(特許文献2、特許文献3参照)。   Furthermore, there has been proposed an electrolytic copper foil in which the roughness of the other surface (matt surface) of the smooth surface made of copper sulfate-sulfuric acid electrolyte added with an organic additive different from Patent Document 1 is smooth. For lithium-ion secondary batteries that use currently active carbon-based active materials, electrolytic copper foils that are smooth on both sides and small in surface roughness on both sides are mainly used (patents) Reference 2 and Patent Reference 3).

ところで近年、リチウムイオン二次電池の高容量化を目的として、充電の際に電気化学的にリチウムと合金化する合金系活物質、例えばアルミニウム、シリコン、錫などを負極活物質として用いるリチウムイオン二次電池が提案されている(特許文献4参照)。   In recent years, for the purpose of increasing the capacity of lithium ion secondary batteries, lithium ion secondary batteries that use an alloy active material that is electrochemically alloyed with lithium during charging, such as aluminum, silicon, and tin, as the negative electrode active material. A secondary battery has been proposed (see Patent Document 4).

高容量化を目的としたリチウムイオン二次電池用負極は、CVD法やスパッタリング法により、銅箔などの集電体の上に、例えばシリコンを非晶質シリコン薄膜や微結晶シリコン薄膜として堆積し形成している。このような方法で作成した活物質の薄膜層は集電体に密着するため、良好な充放電サイクル特性を示すことが見出されている(特許文献5参照)。
また、最近では粉末シリコンあるいはシリコン化合物をイミド系のバインダーとともに有機溶媒によりスラリー状にして銅箔上に塗布し、乾燥、プレスする形成方法も開発されている。(特許文献6参照)
A negative electrode for a lithium ion secondary battery for the purpose of increasing the capacity is obtained by depositing, for example, silicon as an amorphous silicon thin film or a microcrystalline silicon thin film on a current collector such as a copper foil by a CVD method or a sputtering method. Forming. It has been found that the thin film layer of the active material produced by such a method is in close contact with the current collector, and thus exhibits good charge / discharge cycle characteristics (see Patent Document 5).
Recently, a forming method has also been developed in which powdered silicon or a silicon compound is slurried with an imide-based binder in an organic solvent, applied onto a copper foil, dried and pressed. (See Patent Document 6)

負極活物質の種類がカーボン系あるいは合金系いずれの場合であっても、電池容量が高く、充放電サイクルを繰り返しても電池容量の劣化が少なく、負極集電体である銅箔から活物質薄膜層が剥離しにくい銅箔が要求されている。   Regardless of whether the type of the negative electrode active material is carbon or alloy, the battery capacity is high, and even when the charge / discharge cycle is repeated, there is little deterioration of the battery capacity. There is a demand for a copper foil that is difficult to peel off.

特許第3742144号公報Japanese Patent No. 3742144 特開2004−263289号公報JP 2004-263289 A 特開2004−162144号公報JP 2004-162144 A 特開平10−255768号公報Japanese Patent Laid-Open No. 10-255768 特開2002−083594号公報Japanese Patent Laid-Open No. 2002-083594 特開2007−227328号公報JP 2007-227328 A 特公昭53−39376号公報Japanese Patent Publication No.53-39376

田村宣之,藤本洋行,大下竜司,藤本正久,神野丸男:“リチウム二次電池用高容量スズ負極材料の電気化学特性”三洋電機技報,Vol.34,No1,JUN.p87〜p93(2002)Nobuyuki Tamura, Hiroyuki Fujimoto, Ryuji Oshita, Masahisa Fujimoto, Maruo Kanno: “Electrochemical Properties of High Capacity Tin Anode Materials for Lithium Secondary Batteries”, Sanyo Electric Technical Report, Vol.34, No1, JUN.p87-p93 (2002 )

本発明は、活物質スラリーの濡れ性が良好で、電池容量が高く、充放電サイクルを繰り返しても電池容量の劣化が少なく、負極集電体である銅箔から活物質塗膜層が剥離しにくい両面形状が同程度の電解銅箔を提供し、該電解銅箔を集電体とし、該集電体に活物質を堆積した負極電極とし、該負極電極を組み込んだリチウムイオン二次電池を提供することを課題とする。   In the present invention, the wettability of the active material slurry is good, the battery capacity is high, the battery capacity is hardly deteriorated even after repeated charge and discharge cycles, and the active material coating layer is peeled off from the copper foil as the negative electrode current collector. The present invention provides an electrolytic copper foil having a similar degree of difficulty on both sides, a negative electrode in which the electrolytic copper foil is used as a current collector, an active material deposited on the current collector, and a lithium ion secondary battery incorporating the negative electrode. The issue is to provide.

本発明のリチウムイオン二次電池は、正極と、集電体の表面に電極構成活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池であって、該リチウムイオン二次電池の負極を構成する前記集電体は電解銅箔からなり、該電解銅箔の両面は電解析出で形成され、該電解析出面は柱状晶の結晶組織である。   A lithium ion secondary battery of the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode having an electrode-constituting active material layer formed on the surface of a current collector, and a non-aqueous electrolyte, The current collector constituting the negative electrode of the secondary battery is made of an electrolytic copper foil. Both surfaces of the electrolytic copper foil are formed by electrolytic deposition, and the electrolytic deposition surface has a crystal structure of columnar crystals.

本発明のリチウムイオン二次電池用集電体は、正極と、集電体の表面に電極構成活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池の前記負極を構成する集電体であって、該集電体は電解銅箔からなり、該電解銅箔の両面は電解析出で形成され、該電解析出面は柱状晶の結晶組織である。   The current collector for a lithium ion secondary battery according to the present invention includes a positive electrode, a negative electrode in which an electrode-constituting active material layer is formed on a surface of the current collector, and the negative electrode of a lithium ion secondary battery including a non-aqueous electrolyte. The current collector is made of an electrolytic copper foil, and both surfaces of the electrolytic copper foil are formed by electrolytic deposition, and the electrolytic deposited surface has a crystal structure of columnar crystals.

本発明のリチウムイオン二次電池負極集電体用電解銅箔は、正極と負極と非水電解液とを備えるリチウムイオン二次電池の前記負極集電体を構成する電解銅箔であって、該電解銅箔の両面は電解析出で形成され、該電解析出面は柱状晶の結晶組織である。   An electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery of the present invention is an electrolytic copper foil constituting the negative electrode current collector of a lithium ion secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, Both surfaces of the electrolytic copper foil are formed by electrolytic deposition, and the electrolytic deposition surface has a columnar crystal structure.

本発明のリチウムイオン二次電池は、正極及び集電体の表面に電極構成活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池であって、前記負極を構成する前記集電体は銅を電解析出して形成する電解銅箔であり、該電解銅箔の第一表面はドラム面上に柱状晶の結晶組織の銅電析で形成した面であり、該第一表面と反対側の第二表面は、第一表面製膜後に、第一表面の裏側に柱状晶の結晶組織の銅電析で形成した面である。   The lithium ion secondary battery of the present invention is a lithium ion secondary battery comprising a negative electrode having an electrode active material layer formed on the surface of a positive electrode and a current collector, and a non-aqueous electrolyte, and the negative electrode The current collector is an electrolytic copper foil formed by electrolytic deposition of copper, and the first surface of the electrolytic copper foil is a surface formed by copper electrodeposition of a columnar crystal structure on the drum surface, The second surface opposite to the first surface is a surface formed by copper electrodeposition of a columnar crystal structure on the back side of the first surface after the first surface film formation.

本発明のリチウムイオン二次電池用負極集電体は、正極と、集電体の表面に電極構成活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池の前記二次電池を構成する負極集電体であって、該負極集電体は銅を電解析出して形成する電解銅箔であり、該電解銅箔の第一表面はドラム面上に柱状晶の結晶組織の銅電析で形成した面であり、該第一表面と反対側の第二表面は、第一表面製膜後に、第一表面の裏側に柱状晶の結晶組織の銅電析で形成した面である。   The negative electrode current collector for a lithium ion secondary battery of the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode having an electrode-constituting active material layer formed on the surface of the current collector, and a non-aqueous electrolyte. A negative electrode current collector constituting a secondary battery, wherein the negative electrode current collector is an electrolytic copper foil formed by electrolytic deposition of copper, and the first surface of the electrolytic copper foil has columnar crystals on the drum surface. The surface formed by copper electrodeposition of the crystal structure, and the second surface opposite to the first surface is formed by copper electrodeposition of the columnar crystal structure on the back side of the first surface after the first surface film formation. This is the surface.

本発明のリチウムイオン二次電池負極集電体用電解銅箔は、正極と負極と非水電解液とを備えるリチウムイオン二次電池の前記二次電池を構成する負極集電体用電解銅箔であって、該電解銅箔は銅を電解析出して形成する電解銅箔であり、該電解銅箔の第一表面はドラム面上に柱状晶の結晶組織の銅電析で形成した面であり、該第一表面と反対側の第二表面は、第一表面製膜後に、第一表面の裏側に柱状晶の結晶組織の銅電析で形成した面である。   The electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery of the present invention is an electrolytic copper foil for a negative electrode current collector constituting the secondary battery of a lithium ion secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte. The electrolytic copper foil is an electrolytic copper foil formed by electrolytic deposition of copper, and the first surface of the electrolytic copper foil is a surface formed by copper electrodeposition of a columnar crystal structure on the drum surface. The second surface opposite to the first surface is a surface formed by copper electrodeposition of a columnar crystal structure on the back side of the first surface after the first surface is formed.

本発明の銅箔は、活物質スラリーの塗布性に優れ、活物質塗膜層が剥離しにくい電解銅箔を提供することができる。また、両面を同程度の柱状晶組織とするとなお良い。
また本発明は、前記電解銅箔を集電体とし、該集電体に活物質を堆積して負極電極とし、該負極電極を組み込んだリチウムイオン二次電池とすることで、負極集電体である銅箔から活物質堆積層が剥離しにくい集電体を提供でき、充放電サイクルを繰り返しても電池容量の劣化が少ない耐久性に優れるリチウムイオン電池を実現させる。また、このために電池容量が高いリチウムイオン二次電池を提供することもできる。
The copper foil of this invention is excellent in the applicability | paintability of an active material slurry, and can provide the electrolytic copper foil which an active material coating-film layer cannot peel easily. Moreover, it is more preferable that both sides have the same columnar crystal structure.
Further, the present invention provides a negative electrode current collector by using the electrolytic copper foil as a current collector, depositing an active material on the current collector as a negative electrode, and forming a lithium ion secondary battery incorporating the negative electrode. Thus, it is possible to provide a current collector in which the active material deposited layer is hardly peeled off from the copper foil, and to realize a lithium ion battery excellent in durability with little deterioration in battery capacity even after repeated charge / discharge cycles. For this reason, a lithium ion secondary battery having a high battery capacity can also be provided.

図1は両面の形状が同様な電解銅箔を製造する工程の一実施例を示す説明図である。FIG. 1 is an explanatory view showing an example of a process for producing an electrolytic copper foil having the same shape on both sides. 図2は従来の電解銅箔を製造する装置の説明図である。FIG. 2 is an explanatory view of a conventional apparatus for producing an electrolytic copper foil. 図3は本発明電解銅箔の第一の実施例を示し、A:は最初に形成される電解析出面(マット面)、B:は次に形成される電解析出面を示す走査電子顕微鏡写真(SEM)である。FIG. 3 shows a first embodiment of the electrolytic copper foil of the present invention, wherein A: is the first electrodeposited surface (matt surface), and B: the next electrodeposited surface is a scanning electron micrograph. (SEM). 図4は本発明電解銅箔の第二の実施例を示し、A:は最初に形成される電解析出面(マット面)、B:は次に形成される電解析出面を示す走査電子顕微鏡写真(SEM)である。FIG. 4 shows a second embodiment of the electrolytic copper foil of the present invention. A: A scanning electron micrograph showing an electrolytic deposition surface (mat surface) formed first, and B: an electrolytic deposition surface formed next. (SEM). 図5は本発明電解銅箔の第三の実施例を示し、A:は最初に形成される電解析出面(マット面)、B:は次に形成される電解析出面を示す走査電子顕微鏡写真(SEM)である。FIG. 5 shows a third embodiment of the electrolytic copper foil of the present invention. A: A scanning electron micrograph showing an electrolytic deposition surface (mat surface) formed first, and B: an electrolytic deposition surface formed next. (SEM). 図6は従来の電解銅箔(比較例1)の走査電子顕微鏡写真(SEM)であり、X:は電解析出面(マット面)、Y:は光沢面を示す。FIG. 6 is a scanning electron micrograph (SEM) of a conventional electrolytic copper foil (Comparative Example 1), where X: represents an electrolytic deposition surface (mat surface) and Y: represents a glossy surface. 図7は従来の電解銅箔(比較例2)の走査電子顕微鏡写真(SEM)であり、X:は電解析出面(マット面)、Y:は光沢面を示す。FIG. 7 is a scanning electron micrograph (SEM) of a conventional electrolytic copper foil (Comparative Example 2), where X: represents an electrolytic deposition surface (mat surface) and Y: represents a glossy surface. 図8は従来の光沢面の他方の面(マット面)が平滑な電解銅箔(比較例3)の走査電子顕微鏡写真(SEM)であり、X:は電解析出面(マット面)、Y:は光沢面を示す。FIG. 8 is a scanning electron micrograph (SEM) of an electrolytic copper foil (Comparative Example 3) having a smooth other surface (matt surface) of the conventional glossy surface, where X: is an electrolytic deposition surface (matt surface), and Y: Indicates a glossy surface. 図9は前記図8の電解銅箔(比較例3)表面に焼けめっき処理を施した表面の走査電子顕微鏡写真(SEM)であり、X:は電解析出面(マット面)上に焼けめっき処理を行った面、Y:は光沢面上に焼けめっき処理を行った面を示す。FIG. 9 is a scanning electron micrograph (SEM) of the surface of the electrolytic copper foil (Comparative Example 3) shown in FIG. 8 that has been subjected to baking plating, and X: baking plating on the electrolytic deposition surface (mat surface). , Y: indicates a surface on which a burnt plating treatment has been performed on a glossy surface. 図10は本発明電解銅箔の断面の結晶組織を示したものである。FIG. 10 shows the crystal structure of the cross section of the electrolytic copper foil of the present invention. 図11は電池に組み込んだ負極活物質の状態を説明する模式図である。FIG. 11 is a schematic diagram for explaining the state of the negative electrode active material incorporated in the battery.

本明細書では、電解銅箔の電解液に接していた面を「電解析出面」または「マット面」と表現する。すなわち、本発明電解銅箔は一方の面が電解析出面であり、他方の面も電解析出面と同様の柱状晶組織になっているものである。
両面とも電解析出面の電解銅箔とは例えば後述する図1に示す製箔装置により製箔することができるように、銅箔の両面共に電解液に接していた面で構成されている。
In this specification, the surface of the electrolytic copper foil that is in contact with the electrolytic solution is expressed as “electrolytic deposition surface” or “matt surface”. That is, in the electrolytic copper foil of the present invention, one surface is an electrolytic deposition surface, and the other surface has a columnar crystal structure similar to that of the electrolytic deposition surface.
Both sides of the electrolytic copper foil on the electrolytically deposited surface are constituted by a surface where both sides of the copper foil are in contact with the electrolytic solution so that the foil can be made by a foil making apparatus shown in FIG.

電解銅箔は一般に図2に示すように、回転するチタンドラム21とその下側に不溶性陽極22(以下DSAと記す。)を配置して、チタンドラム21とDSA22の間に硫酸銅−硫酸の電解液23を流し、チタンドラム21を陰極とし、DSA22を陽極としてチタンドラム−DSA間に電流を流すことにより銅箔24を製造する。
チタンドラム21とDSA22の間に電流を流すと、チタンドラム21上に銅が電解析出する。これを所定の厚さになったところで連続的に引き剥がし巻き取ることにより電解銅箔24を製造する。通常この状態の箔を「未処理銅箔」と称する。
As shown in FIG. 2, the electrolytic copper foil generally has a rotating titanium drum 21 and an insoluble anode 22 (hereinafter referred to as DSA) disposed below the rotating titanium drum 21, and copper sulfate-sulfuric acid is interposed between the titanium drum 21 and the DSA 22. A copper foil 24 is produced by flowing an electrolytic solution 23, passing a current between the titanium drum and the DSA with the titanium drum 21 as a cathode and the DSA 22 as an anode.
When a current is passed between the titanium drum 21 and the DSA 22, copper is electrolytically deposited on the titanium drum 21. The electrolytic copper foil 24 is manufactured by continuously peeling and winding it up at a predetermined thickness. Usually, the foil in this state is referred to as “untreated copper foil”.

図2に示す製法で製造される電解銅箔24は、通常電解液23に接していた面241を「マット面」と呼び、チタンドラム21に接していた面242を「光沢面」と称し、電解液23に接していた面241とチタンドラム21に接触していた面242とでは後述する図6、図7に示すようにその表面形状が異なっている。   In the electrolytic copper foil 24 manufactured by the manufacturing method shown in FIG. 2, the surface 241 that is normally in contact with the electrolytic solution 23 is called a “mat surface”, and the surface 242 that is in contact with the titanium drum 21 is called a “glossy surface”. The surface 241 that is in contact with the electrolyte solution 23 and the surface 242 that is in contact with the titanium drum 21 have different surface shapes as shown in FIGS.

チタンドラムに接していた「光沢面」は目視では光沢があり一見平滑な面に見えるが、SEMで観察すると図6(比較例1)Y:光沢面に示すように、箔のMD方向(縦方向)に筋状の凹凸がある。
これに対して図6(比較例1)X:電解析出面(マット面)は光沢面のような筋状の凹凸は見られず、電解銅箔の結晶組織が柱状晶の場合には、「光沢面」とは異なるピラミッド状の凹凸がある面になっている。
The “glossy surface” in contact with the titanium drum is visually glossy and looks smooth at first glance, but when observed with an SEM, as shown in FIG. 6 (Comparative Example 1) Y: Glossy surface, the MD direction (vertical) (Direction) has streaky irregularities.
On the other hand, FIG. 6 (Comparative Example 1) X: The electrodeposited surface (matt surface) does not have streaky irregularities like the glossy surface, and the electrolytic copper foil has a columnar crystal structure. The surface has pyramid-like irregularities different from the “glossy surface”.

「光沢面」が箔のMD方向(縦方向)に筋状の凹凸がある理由は、「光沢面」がチタンドラムに接していた面であることに原因がある。チタンドラムは表面を研磨した後、図2に示すような電解槽26にセットして銅箔製造(製箔)を行う。
この時50℃前後の比較的高い温度の硫酸銅−硫酸の電解液を使用するため、製造を続けるうちチタンドラム21の面は次第に荒れて銅箔24が剥がれにくくなる。これを避けるため、ある一定期間銅箔を製造した後、定期的にチタンドラム面を研磨して、再び製造を続ける。
The reason that the “glossy surface” has streaky irregularities in the MD direction (longitudinal direction) of the foil is that the “glossy surface” is a surface that is in contact with the titanium drum. After the surface of the titanium drum is polished, it is set in an electrolytic cell 26 as shown in FIG.
At this time, since an electrolytic solution of copper sulfate-sulfuric acid having a relatively high temperature of about 50 ° C. is used, the surface of the titanium drum 21 is gradually roughened and the copper foil 24 is hardly peeled off as the production continues. In order to avoid this, after manufacturing the copper foil for a certain period, the titanium drum surface is periodically polished and the manufacturing is continued again.

通常チタンドラム表面は、ナイロン不織布などに酸化アルミ、シリコンカーバイト等の研磨砥粒を均一に接着含浸させた円筒形研磨バフによって研磨される。
製箔される銅箔の「光沢面」は上記のようなバフ等により表面研磨を行ったチタンドラムの「研磨筋」のレプリカになっている。
従って、通常の製造方法では「光沢面」のMD方向(縦方向)に、図6(比較例1)Y:「光沢面」に示す様な筋状の凹凸が存在することは避けることができない。
Usually, the surface of the titanium drum is polished by a cylindrical polishing buff obtained by uniformly bonding and impregnating abrasive grains such as aluminum oxide and silicon carbide on a nylon nonwoven fabric.
The “glossy surface” of the copper foil to be formed is a replica of the “polishing streaks” of the titanium drum that has been surface-polished by the buff as described above.
Accordingly, in the normal manufacturing method, it is unavoidable that streaky irregularities as shown in FIG. 6 (Comparative Example 1) Y: “Glossy surface” exist in the MD direction (vertical direction) of the “Glossy surface”. .

図6及び図7に示す銅箔は、これまでプリント配線板用の銅箔として使用されてきた。プリント配線板用の銅箔としては、この銅箔の「電解析出面(マット面)」上に更に粗化処理と称する銅粒子を付着させた後、各種めっき処理、防錆処理等が施されたものが使用されてきた。   The copper foil shown in FIGS. 6 and 7 has been used as a copper foil for printed wiring boards. As copper foil for printed wiring boards, copper particles called roughening treatment are further deposited on the “electrolytic deposition surface (matte surface)” of this copper foil, and then various plating treatments and rust prevention treatments are applied. Have been used.

しかし、このような銅箔はリチウムイオン二次電池の負極集電体に、これまでは使用されていなかった。
その理由は、カーボン系活物質を使用するリチウムイオン二次電池では、「光沢面」と「電解析出面(マット面)」とで充放電効率が異なるためである。表面形状が凹凸である「電解析出面(マット面)」の充放電効率の方が、平滑な「光沢面」に比べて大きく劣ることが知られているためである(特許文献1参照)。
However, such a copper foil has not been used so far for a negative electrode current collector of a lithium ion secondary battery.
The reason is that, in a lithium ion secondary battery using a carbon-based active material, the “glossy surface” and the “electrolytic deposition surface (mat surface)” have different charge / discharge efficiencies. This is because it is known that the charge / discharge efficiency of the “electrolytically deposited surface (matte surface)” having an uneven surface shape is significantly inferior to the smooth “glossy surface” (see Patent Document 1).

これに対して、リチウムイオン二次電池の高容量化を目的として、充電の際に電気化学的にリチウムと合金化する合金系活物質、例えばアルミニウム、シリコン、錫などを負極活物質として用いるリチウムイオン二次電池の場合には、凹凸のある電解銅箔の方が、平滑な圧延銅箔に比べて、充放電効率の点で優れていることが確認されている(非特許文献1参照)。   In contrast, for the purpose of increasing the capacity of a lithium ion secondary battery, an alloy-based active material that is electrochemically alloyed with lithium during charging, such as aluminum, silicon, or tin, is used as a negative electrode active material. In the case of an ion secondary battery, it has been confirmed that an uneven electrolytic copper foil is superior in terms of charge / discharge efficiency compared to a smooth rolled copper foil (see Non-Patent Document 1). .

現在では、集電体の表面に凹凸をつけることにより、充放電サイクルに伴う活物質層の膨張収縮に対する集電体(銅箔)への影響を緩和し、集電体としての銅箔にしわ等の発生を防止し、破断を防止する効果があるという説が一般的になっている。   At present, the surface of the current collector is made uneven to reduce the influence of the current collector (copper foil) on the expansion and contraction of the active material layer during the charge / discharge cycle, and the copper foil as the current collector is wrinkled. The theory that it has the effect of preventing the occurrence of breakage and preventing breakage has become common.

すなわち、図11に示すように表面に凹凸を有する粗面化電解銅箔(集電体)の上に活物質層を形成させると、集電体表面に形成されている凹凸に活物質が入り込んで活物質の層が形成される〔図11(A)〕。この活物質層を形成した集電体を負極電極としたリチウムイオン二次電池に初充電を行うと活物質がリチウムイオンを吸蔵することにより、活物質の体積が膨張して活物質層が密になる〔図11(B)〕。次いで一回目の放電によってリチウムイオンが放出され活物質が収縮し、粗面化電解銅箔の「粗面の凹部に沿って」亀裂ができて、「凸部に沿って」島状に分離する〔図11(C)〕。
次の充電で再び活物質が膨張して亀裂が狭まる〔図11(D)〕。しかし、この後充放電が繰り返されても、亀裂の部分が膨張収縮のバッファとなり島状の部分は維持され、集電体全体のひずみが緩和され、集電体としての銅箔にしわ等の発生を防止し、破断を防止する効果がある、と云うのが一般的な説である。
That is, when an active material layer is formed on a roughened electrolytic copper foil (current collector) having irregularities on the surface as shown in FIG. 11, the active material enters the irregularities formed on the current collector surface. Thus, an active material layer is formed [FIG. 11A]. When a lithium ion secondary battery using the current collector with the active material layer as a negative electrode is charged for the first time, the active material absorbs lithium ions, so that the volume of the active material expands and the active material layer becomes dense. [FIG. 11B]. Next, lithium ions are released by the first discharge, the active material shrinks, cracks are formed along the rough surface of the roughened electrolytic copper foil, and are separated into islands along the convex portion. [FIG. 11 (C)].
In the next charge, the active material expands again and the crack is narrowed (FIG. 11D). However, even if charging and discharging are repeated after this, the cracked part becomes a buffer for expansion and contraction, and the island-like part is maintained, the strain of the current collector is alleviated, and the copper foil as the current collector is wrinkled. The general theory is that it has the effect of preventing occurrence and breaking.

従って、平滑である「光沢面」を凹凸のある「電解析出面(マット面)」と同様に凹凸を形成することが出来れば、両面ともに充放電効率が高い負極集電体を得ることができると考えられる。   Therefore, if a smooth “glossy surface” can be formed with irregularities in the same manner as an uneven “electrolytic deposition surface (matte surface)”, a negative electrode current collector with high charge / discharge efficiency can be obtained on both sides. it is conceivable that.

本発明者等は、「光沢面」と「電解析出面(マット面)」との表面形状を一致させるために、製造後の銅箔の「光沢面」に電解銅箔製造時と同じ電解液を用いて「光沢面」を凹凸とするような銅めっきを行い「光沢面」も「電解析出面(マット面)」と同様の形状とし、リチウムイオン二次電池用陰極集電体とすることを検討した。
また、もう一つの実施態様として、「光沢面」を凹凸にするために、「電解析出面(マット面)」と同様の形状が得られれば、電解銅箔製造と異なる組成の電解液を用いることも効果的であると考え鋭意検討した。
In order to make the surface shape of the “glossy surface” and the “electrolytic deposition surface (matte surface)” coincide with each other, the present inventors set the “brightness surface” of the manufactured copper foil to the same electrolytic solution as in the production of the electrolytic copper foil. Use copper to make the “glossy surface” uneven, and make the “glossy surface” the same shape as the “electrolytically deposited surface (matte surface)” to make a cathode current collector for lithium ion secondary batteries. It was investigated.
Further, as another embodiment, in order to make the “glossy surface” uneven, an electrolytic solution having a composition different from that of the electrolytic copper foil production is used if the same shape as the “electrolytic deposition surface (mat surface)” is obtained. Considering that this is also effective, we studied diligently.

リチウムイオン二次電池負極集電体用電解銅箔、特に膨張・収縮が激しい活物質を堆積する集電体としての表面は凹凸のある面が適している。こうしたリチウムイオン二次電池用集電体として凹凸がある表面とするためには、銅の結晶組織を柱状晶とすることが効果的である。
銅箔表面に凹凸がある電解析出面、即ち柱状晶とするためには、銅電解液に添加する添加剤を適正に選択することで可能となる(実施例参照)。
柱状晶になる銅電解液から電解析出した場合、電解析出表面は凹凸をもった表面となる。これに対して粒状晶になる銅電解液を選択して電解析出した場合、電解析出表面は平滑で光沢のある表面となり、凹凸のある表面とはならない。従って両面とも凹凸のある銅箔を得るためには、柱状晶が電解析出される銅電解液を使用する。
銅箔を集電体として採用する場合、集電体表面を柱状晶で形成(表面の凹凸を大きくする)することで、図11で示すように膨張・収縮の激しい活物質対応として優れた性能を発揮する。一方、膨張・収縮が大きくない活物質(例えばカーボン系)に対しては粒状晶の表面で対応することができる。
An uneven surface is suitable for the surface of the electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery, particularly as a current collector for depositing an active material that is rapidly expanded and contracted. In order to make such a surface having irregularities as a current collector for a lithium ion secondary battery, it is effective to make the crystal structure of copper columnar crystals.
In order to obtain an electrolytically deposited surface having irregularities on the surface of the copper foil, that is, a columnar crystal, it is possible to appropriately select an additive to be added to the copper electrolyte (see Examples).
When electrolytic deposition is performed from a copper electrolyte that forms columnar crystals, the electrolytic deposition surface is a surface having irregularities. On the other hand, when a copper electrolytic solution that forms granular crystals is selected and electrolytically deposited, the electrolytically deposited surface becomes a smooth and glossy surface and does not become an uneven surface. Therefore, in order to obtain a copper foil having irregularities on both sides, a copper electrolyte solution in which columnar crystals are electrolytically deposited is used.
When copper foil is used as a current collector, by forming the current collector surface with columnar crystals (increasing the surface irregularities), it has excellent performance as an active material with severe expansion and contraction as shown in FIG. Demonstrate. On the other hand, it is possible to cope with an active material (for example, a carbon-based material) that does not significantly expand and contract on the surface of the granular crystal.

本発明のリチウムイオン二次電池負極集電体用電解銅箔は「未処理銅箔」の状態でその両面が柱状晶組織をもつ凹凸面に仕上げられている。即ち、銅箔製箔工程を2段階とし、先ず第1段階で「電解析出面(マット面)(第一表面)」を柱状晶組織をもつ凹凸面に仕上げ、第1段階の「光沢面(第二表面)」側を第2段階で柱状晶組織をもつ凹凸面に仕上げる。第2段階では第1工程で形成された「光沢面」の平滑な形状を消す厚さの柱状晶銅の電析を行い、両面とも「電解析出面(マット面)」と同様な柱状晶からなる表面形状として、凹凸をもった銅箔に仕上げられる。   The electrolytic copper foil for the negative electrode current collector of the lithium ion secondary battery of the present invention is finished in a state of “untreated copper foil” to have an uneven surface with columnar crystal structures on both sides. That is, the copper foil manufacturing process is divided into two stages. First, in the first stage, the “electrolytic deposition surface (matte surface) (first surface)” is finished to an uneven surface having a columnar crystal structure, and the first stage “glossy surface ( The second surface) ”side is finished to an uneven surface having a columnar crystal structure in the second stage. In the second stage, electrodeposition of columnar crystal copper having a thickness that eliminates the smooth shape of the “glossy surface” formed in the first step is performed, and both sides are formed from columnar crystals similar to the “electrolytically deposited surface (mat surface)”. As the surface shape to be finished, it is finished into a copper foil having irregularities.

上記電解銅箔の具体的な製造方法の一例を図1に示す。
第一ドラム11で柱状晶の結晶組織の銅箔を製造した後、該銅箔1を引き剥がし、第二ドラム12で銅箔1の光沢面101側に柱状晶の結晶組織の銅電析を行い、光沢面101を電解析出面103とし、電解析出面(マット面)102と共に両表面ともに凹凸ある表面形状に仕上げる。
An example of a specific method for producing the electrolytic copper foil is shown in FIG.
After producing a copper foil having a columnar crystal structure on the first drum 11, the copper foil 1 is peeled off, and a copper electrodeposition of the columnar crystal structure is applied to the glossy surface 101 side of the copper foil 1 on the second drum 12. Then, the glossy surface 101 is used as the electrolytic deposition surface 103, and both the surfaces are finished together with the electrolytic deposition surface (mat surface) 102 so as to have an uneven surface shape.

この場合、第一電解槽16と第二電解槽17の電解液13、18は同じ電解液にした方が製造上は都合がよいが、第一電解槽16と第二電解槽17とで液組成が異なる電解液を使用しても両面の表面形状を同様にすることは可能である。
第一ドラム11で柱状晶の結晶組織の銅電析を行い、第一電解槽16とは組成の異なる銅電解液を用いても、第二ドラム12で柱状晶の銅電析を行うことにより、両面の形状を同様にすることは可能である。
In this case, it is more convenient in manufacturing that the electrolytic solutions 13 and 18 in the first electrolytic tank 16 and the second electrolytic tank 17 are the same electrolytic solution, but the first electrolytic tank 16 and the second electrolytic tank 17 are liquid solutions. Even when electrolytic solutions having different compositions are used, the surface shapes on both sides can be made the same.
By performing copper electrodeposition of the crystal structure of the columnar crystals on the first drum 11 and using a copper electrolyte having a composition different from that of the first electrolytic cell 16, the copper electrodeposition of the columnar crystals is performed on the second drum 12. It is possible to make the shape of both sides the same.

なお、両面同形状の箔を得るためには、第一ドラムで形成した銅箔の厚さと第二ドラムで形成する銅被覆の厚さを同じにするやり方が製造上は容易である。しかし、第一ドラムで形成した銅箔の厚さの方を厚くし、第二ドラムで形成する銅被覆の厚さを薄くすることも可能である。
前者の方法は35μm程度の厚い箔を製造する場合に適しているが、後者は6μm位の薄い箔を製造するのに適している。
例えば、第一ドラムで3μmの銅箔を製造し、それを第二ドラムで「ドラム面」上に銅被覆を3μm行うことは、第一ドラムで箔が薄く切れやすいため製造が難しい。
これに対して後者の方法で、例えば第一ドラムで5.0μmの銅箔を製造し、第二ドラムで「ドラム面」上に1.0μmの銅被覆を行うことは、第一ドラムで製造する銅箔の引張強さが充分高ければ可能である。
なお、上記の製造の方法から、箔厚さとしては6〜35μmが好適である。
In order to obtain a foil having the same shape on both sides, it is easy in manufacturing to make the thickness of the copper foil formed on the first drum the same as the thickness of the copper coating formed on the second drum. However, it is also possible to increase the thickness of the copper foil formed on the first drum and reduce the thickness of the copper coating formed on the second drum.
The former method is suitable for producing a foil having a thickness of about 35 μm, while the latter method is suitable for producing a thin foil having a thickness of about 6 μm.
For example, it is difficult to manufacture a copper foil having a thickness of 3 μm using the first drum and to apply a copper coating of 3 μm on the “drum surface” using the second drum because the foil is easily cut thinly on the first drum.
On the other hand, for example, it is possible to produce a 5.0 μm copper foil on the first drum and to coat a 1.0 μm copper on the “drum surface” with the second drum by the first drum. This is possible if the tensile strength of the copper foil is sufficiently high.
In addition, from said manufacturing method, 6-35 micrometers is suitable as foil thickness.

上述したように、本発明は集電体の表面に電極構成活物質層が形成されてなる正極及び負極を備えるリチウムイオン二次電池において、負極集電体は柱状晶組織をもつ銅を電解析出することにより「光沢面」及び「電解析出面(マット面)」をもつ電解銅箔を最初に形成する。
続いて、次の工程で「光沢面」に凹凸が形成されるような厚さに柱状晶の結晶組織の銅電析を行い、上記電解銅箔の「光沢面」上に「電解析出面」となる銅層を設ける。
図10は、第一ドラムで下記電解液組成と電解条件により12μm厚さの電解銅箔を製造し、次いで第二ドラムにより同じ条件で面光沢面側に12μm厚さの銅を析出させた電解銅箔の断面図である。
電解液組成と電解条件;
Cu=50〜150g/L
2SO4=20〜200g/L
塩化物イオン=1〜60ppm
ヒドロキシエチルセルロース=1〜30ppm
温度=30〜70℃
電流密度:30〜100A/dm2
図10に示すように銅箔両面は柱状晶の結晶組織になっている。
As described above, the present invention relates to a lithium ion secondary battery including a positive electrode and a negative electrode in which an electrode-constituting active material layer is formed on the surface of the current collector, and the negative electrode current collector performs an electrical analysis on copper having a columnar crystal structure. First, an electrolytic copper foil having a “glossy surface” and an “electrolytic deposition surface (matte surface)” is formed.
Subsequently, in the next step, copper electrodeposition of the columnar crystal structure is performed to such a thickness that irregularities are formed on the “glossy surface”, and the “electrolytic deposition surface” on the “glossy surface” of the electrolytic copper foil. A copper layer is provided.
FIG. 10 shows an electrolysis in which an electrolytic copper foil having a thickness of 12 μm was produced on the first drum according to the following electrolytic solution composition and electrolysis conditions, and then a copper having a thickness of 12 μm was deposited on the glossy surface side under the same conditions by the second drum. It is sectional drawing of copper foil.
Electrolyte composition and electrolysis conditions;
Cu = 50 to 150 g / L
H 2 SO 4 = 20 to 200 g / L
Chloride ion = 1-60ppm
Hydroxyethyl cellulose = 1-30ppm
Temperature = 30-70 ° C
Current density: 30 to 100 A / dm 2
As shown in FIG. 10, both sides of the copper foil have a columnar crystal structure.

このように両面同形状の箔を得ることで、活物質スラリーを塗布した場合、同様な濡れ性が得られ、活物質塗布工程の条件設定が容易となり、両面の塗膜構造は同一になり、同程度の充放電特性が得られ、電池として極めて安定した性能を発揮することとなる。
このようにして製造した電解銅箔を負極集電体とし、該負極集電体に活物質を堆積して負極電極とし、該負極電極を組み込んでリチウムイオン二次電池とする。
Thus, by obtaining a foil having the same shape on both sides, when applying the active material slurry, the same wettability is obtained, the condition setting of the active material application process becomes easy, and the coating film structure on both sides becomes the same, The same charge / discharge characteristics can be obtained, and the battery can exhibit extremely stable performance.
The electrolytic copper foil thus produced is used as a negative electrode current collector, an active material is deposited on the negative electrode current collector to form a negative electrode, and the negative electrode is incorporated into a lithium ion secondary battery.

上記の箔は製箔後全く何の表面処理も行っていないため「未処理箔」に分類されるものである。「未処理箔」は何の表面処理も施さない中間製品である。これを電池用箔として使用するには、必要により何らかの表面処理を施す。
表面処理は、未処理電解銅箔表面に凹凸をつけるための処理と防錆機能と、電極構成活物質層との密着性を高めることを目的にした処理である。
The above-mentioned foils are classified as “untreated foils” since no surface treatment is performed after the foil production. "Untreated foil" is an intermediate product that does not undergo any surface treatment. In order to use this as a battery foil, some surface treatment is applied if necessary.
The surface treatment is a treatment aimed at enhancing adhesion between the surface of the untreated electrolytic copper foil and the antirust function and the electrode constituent active material layer.

未処理電解銅箔表面の表面に凹凸を高めるために、必要により更に粗面化処理を施す。この粗面化処理としては、めっき法、気相成長法、エッチング法、及び研磨法等が好適に採用できる。
めっき法及び気相成長法は、未処理電解銅箔の表面に凹凸を有する薄膜層を形成することにより表面を粗面化する方法である。めっき法としては、電解めっき法及び無電解めっき法を採用することができる。また、気相成長法としては、スパッタリング法、CVD法、蒸着法などが適用できる。
In order to increase unevenness on the surface of the untreated electrolytic copper foil surface, a roughening treatment is further performed as necessary. As this roughening treatment, a plating method, a vapor phase growth method, an etching method, a polishing method, or the like can be suitably employed.
The plating method and the vapor phase growth method are methods of roughening the surface by forming a thin film layer having irregularities on the surface of the untreated electrolytic copper foil. As the plating method, an electrolytic plating method and an electroless plating method can be employed. Further, as the vapor phase growth method, a sputtering method, a CVD method, a vapor deposition method, or the like can be applied.

電気めっきにより粗面化する方法としては、例えば、特許文献7に開示された、プリント回路用銅箔に対し一般的に用いられているめっきによる粗面化方法が好ましく用いられる。すなわち、いわゆる「焼けめっき」により、粒粉状銅めっき層を形成した後、この粒粉状銅めっき層の上に、その凹凸形状を損なわないように「被せめっき」を行い、実質的に平滑なめっき層を堆積させて粒粉状銅をいわゆるコブ状銅とする粗面化方法である。   As a method for roughening by electroplating, for example, a roughening method by plating generally used for copper foil for printed circuit disclosed in Patent Document 7 is preferably used. In other words, after forming a granular copper plating layer by so-called "burn plating", "cover plating" is performed on the granular copper plating layer so as not to impair the uneven shape, thereby substantially smoothing. This is a roughening method in which a fine plated layer is deposited to make the granular copper into so-called bumpy copper.

気相成長法による粗面化の方法としては、銅や銅合金などからなる銅を主成分とする薄膜をスパッタリング法やCVD法で未処理電解銅箔表面に形成する方法が好ましい。   As a roughening method by the vapor phase growth method, a method of forming a thin film mainly composed of copper, copper alloy or the like on the surface of the untreated electrolytic copper foil by a sputtering method or a CVD method is preferable.

エッチング法による粗面化としては、物理的エッチングや化学的エッチングによる方法が適している。また、研磨法による粗面化としては、サンドペーパーによる研磨やブラスト法による研磨などが適用できる。   As the roughening by the etching method, a method by physical etching or chemical etching is suitable. As the surface roughening by the polishing method, sandpaper polishing, blasting or the like can be applied.

防錆処理は、無機系の防錆処理或いは有機系の防錆処理が行われる。無機系防錆処理としてはクロメート処理等が行われる。有機系防錆処理としてはベンゾトリアゾール処理、シランカップリング剤処理などがあり、これらを単一に又は組み合わせて行うこともできる。   In the rust prevention treatment, an inorganic rust prevention treatment or an organic rust prevention treatment is performed. Chromate treatment or the like is performed as the inorganic rust prevention treatment. Examples of the organic rust preventive treatment include benzotriazole treatment and silane coupling agent treatment, and these can be performed singly or in combination.

クロメート処理には重クロム酸イオンを含む水溶液を使用し、酸性でもアルカリ性でも良く、浸漬処理又は陰極電解処理を行う。なお、このクロメート処理では銅箔への付着形態は6価クロムから還元された3価クロムの酸化物又は水酸化物となっている。
通常の薬品としては三酸化クロム、重クロム酸カリウム、重クロム酸ナトリウム等を使用する。
The chromate treatment uses an aqueous solution containing dichromate ions, which may be acidic or alkaline, and is subjected to immersion treatment or cathodic electrolysis treatment. In this chromate treatment, the form of adhesion to the copper foil is an oxide or hydroxide of trivalent chromium reduced from hexavalent chromium.
Usual chemicals include chromium trioxide, potassium dichromate, sodium dichromate and the like.

有機系防錆処理としてのベンゾトリアゾール類にはベンゾトリアゾール、メチルベンゾトリアゾール、アミノベンゾトリアゾール、カルボキシベンゾトリアゾール等があり、水溶液として浸漬処理又はスプレー処理などにより施す。
シランカップリング剤にはエポキシ基、アミノ基、メルカプト基、ビニル基を持つもの等多種あるが、電極構成活物質層との密着性に優れたものを使用すれば良く、水溶液又は有機溶液にして浸漬処理又はスプレー処理などにより施す。
以上の処理によりリチウムイオン二次電池負極集電体用銅箔が完成する。
Benzotriazoles as organic rust preventive treatments include benzotriazole, methylbenzotriazole, aminobenzotriazole, carboxybenzotriazole and the like, and are applied as an aqueous solution by immersion treatment or spray treatment.
There are various types of silane coupling agents such as those having an epoxy group, amino group, mercapto group, vinyl group, etc., but those having excellent adhesion to the electrode constituent active material layer may be used. Apply by dipping or spraying.
The copper foil for lithium ion secondary battery negative electrode collectors is completed by the above process.

以下実施例により本発明を更に詳細に説明するが、これらは本発明を限定するものではない。   The present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention.

<実施例1>
図1に示す装置により電解銅箔を製箔した。即ち、回転するチタンドラム11を陰極として、その下側にDSA14を配置した第一電解槽16により、チタンドラム11とDSA14の間に下記組成の硫酸銅−硫酸の電解液13を流し、チタンドラム−DSA間に電流を流して6μm厚さの電解銅箔1を製箔した。
電解液組成と電解条件;
Cu=50〜150g/L
2SO4=20〜200g/L
塩化物イオン=1〜60ppm
にかわ=1〜30ppm
温度=30〜70℃
電流密度:30〜100A/dm2
この銅箔1の電解析出面(マット面)102の表面粗さはRz=2.1μm、Ra=0.3μmであった。
<Example 1>
An electrolytic copper foil was made using the apparatus shown in FIG. That is, a copper sulfate-sulfuric acid electrolyte solution 13 having the following composition is caused to flow between the titanium drum 11 and the DSA 14 by a first electrolytic cell 16 having a rotating titanium drum 11 as a cathode and a DSA 14 disposed below it. An electrolytic copper foil 1 having a thickness of 6 μm was produced by passing an electric current between DSA.
Electrolyte composition and electrolysis conditions;
Cu = 50 to 150 g / L
H 2 SO 4 = 20 to 200 g / L
Chloride ion = 1-60ppm
Nika = 1-30ppm
Temperature = 30-70 ° C
Current density: 30 to 100 A / dm 2
The surface roughness of the electrolytic deposition surface (mat surface) 102 of the copper foil 1 was Rz = 2.1 μm and Ra = 0.3 μm.

この銅箔1を第二ドラム12に導き、光沢面側を第一電解液と同じ組成の電解液18を用いて6μmの銅電析を行い、12μm箔2を得た。前記ドラム101面上に銅電析を行った面の粗さはRz=2.1μm、Ra=0.3μmとなり、両面とも「電解析出面」の形状をした銅箔2を得ることができた。この銅箔の引張強さ=352MPa、伸び=6.4%であった。   This copper foil 1 was guided to the second drum 12, and 6 μm of copper electrodeposition was performed on the glossy surface side using an electrolytic solution 18 having the same composition as the first electrolytic solution, whereby a 12 μm foil 2 was obtained. The roughness of the surface on which the copper electrodeposition was performed on the surface of the drum 101 was Rz = 2.1 μm and Ra = 0.3 μm, and the copper foil 2 having the shape of “electrolytically deposited surface” on both sides could be obtained. . The copper foil had a tensile strength of 352 MPa and an elongation of 6.4%.

なお、RzはJIS B 0601−1994に記載する十点平均粗さであり、RaはJIS B 0601−1994に記載する算術平均粗さである。   Rz is the ten-point average roughness described in JIS B 0601-1994, and Ra is the arithmetic average roughness described in JIS B 0601-1994.

次にこの銅箔を、三酸化クロム5g/L溶液中で両面とも0.3A/dm2 、10秒間陰極電解し、水洗して乾燥させ、電池用電解銅箔とした。
図3はこの電解銅箔の電子顕微鏡写真で、図3Aは第一ドラムによる電解析出面(マット面)を、図3Bは第一ドラムの光沢面上に第二ドラムによって銅を電解析出させた面の写真である。
銅箔の両面側ともに「電解析出面」の形状をしていることがわかる。
ここで用いた銅電解液中の有機添加剤は、にかわである。にかわは、代表的な柱状結晶の得られる有機添加剤である。従ってその電解析出面は、図3A及び図3Bに示すように凹凸のある表面になっている。
Next, this copper foil was subjected to cathodic electrolysis in a chromium trioxide 5 g / L solution on both sides at 0.3 A / dm 2 for 10 seconds, washed with water and dried to obtain an electrolytic copper foil for a battery.
FIG. 3 is an electron micrograph of this electrolytic copper foil. FIG. 3A shows the electrolytic deposition surface (matte surface) of the first drum. FIG. 3B shows the electrolytic deposition of copper on the glossy surface of the first drum by the second drum. It is a photograph of the surface.
It can be seen that both sides of the copper foil have an “electrolytic deposition surface” shape.
The organic additive in the copper electrolyte used here is glue. The glue is an organic additive from which typical columnar crystals can be obtained. Therefore, the electrolytic deposition surface is an uneven surface as shown in FIGS. 3A and 3B.

上記電池用電解銅箔を集電体とし、活物質に平均粒子径100nmのケイ素系粒子を使用し、電池を組み立てた。   A battery was assembled by using the electrolytic copper foil for a battery as a current collector and using silicon-based particles having an average particle diameter of 100 nm as an active material.

負極電極は、ケイ素系活物質64%に、アセチレンブラック粉(AB)16%、ポリアミック酸溶液20%を混合してスラリーを調製し、該スラリーを上記電解銅箔に塗布し、塗工膜をほぼ均一なシートとし、乾燥し、プレス機で圧縮して集電体上に活物質層を密着接合させ、更に減圧乾燥させて試験電極(負極)を作製した。この後20φに打ち抜き負極とした。   The negative electrode was prepared by mixing 64% of the silicon-based active material, 16% of acetylene black powder (AB) and 20% of the polyamic acid solution to prepare a slurry, and applying the slurry to the electrolytic copper foil, It was made into a substantially uniform sheet, dried, compressed by a press machine, the active material layer was tightly bonded onto the current collector, and further dried under reduced pressure to prepare a test electrode (negative electrode). Thereafter, a negative electrode was punched out to 20φ.

上記の電極を負極とし、金属リチウム箔を対極、及び参照極として、1.3モルのLiPF6/エチレンカーボネート(EC)+エチルメチルカーボネート(EMC)+ジメチルカーボネート(DMC)(EC:EMC:DMC=2:5:3(体積比))溶液を電解液として、三極セルを作製した。1.3 mol of LiPF 6 / ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + dimethyl carbonate (DMC) (EC: EMC: DMC) using the above electrode as a negative electrode, a metal lithium foil as a counter electrode, and a reference electrode = 2: 5: 3 (volume ratio)) A triode cell was produced using the solution as an electrolyte.

この試験セルにおける負極の評価を次の方法により温度25℃で行った。
充放電試験方法;
Cレート算出
試験極中の活物質量によりCレートを以下の通りに算出した。
Si:1C=4,000mAh/g
初回条件
充電:0.1C相当電流で定電流充電し、0.02V(対Li/Li+)到達後、定電位充電し、充電電流が0.05C相当に低下した時点で終了した。
放電:0.1C相当電流で定電流放電し、1.5Vになった時点で終了した。
充放電サイクル条件
初回充放電試験を実施した後、同じ0.1C相当電流で100サイクルまで充放電を繰り返した。
The negative electrode in this test cell was evaluated at a temperature of 25 ° C. by the following method.
Charge / discharge test method;
Calculation of C rate The C rate was calculated as follows according to the amount of active material in the test electrode.
Si: 1C = 4,000 mAh / g
Initial conditions Charging: Constant current charging at a current equivalent to 0.1 C. After reaching 0.02 V (vs. Li / Li +), charging was performed at a constant potential, and terminated when the charging current was reduced to 0.05 C.
Discharge: A constant current was discharged at a current equivalent to 0.1 C, and the discharge was terminated when the voltage reached 1.5V.
Charge / Discharge Cycle Conditions After conducting the initial charge / discharge test, charge / discharge was repeated up to 100 cycles with the same current equivalent to 0.1 C.

この電解銅箔を負極集電体材料として用いた電極について、充放電100サイクル後放電容量保持率を表1に示す。   Table 1 shows the discharge capacity retention after 100 cycles of charge and discharge for electrodes using this electrolytic copper foil as the negative electrode current collector material.

なお、 サイクル後放電容量保持率は次式で示す。
(サイクル後放電容量保持率%)=[(サイクル後の放電容量)/(最大放電容量)]×100
The post-cycle discharge capacity retention rate is given by the following equation.
(Discharge capacity retention rate after cycle%) = [(discharge capacity after cycle) / (maximum discharge capacity)] × 100

Figure 2013129588
Figure 2013129588

<実施例2>
実施例1と同じ条件で第一ドラムにより、8μm厚さの電解銅箔を製造した。この銅箔を第二ドラムに導き、光沢面側を第一ドラムと同じ電解液を用いて4μmの銅電析を行い、12μm箔を得た。
この銅箔の電解析出面(マット面)粗さはRz=2.1μm、Ra=0.3μm、光沢面上に銅電析を行った面の粗さはRz=1.8μm、Ra=0.2μmであった。この銅箔の引張強さ=346MPa、伸び=6.7%である。
図4はこの電解銅箔の電子顕微鏡写真で、図4Aは第一ドラムによる電解析出面(マット面)、図4Bは第一ドラムの光沢面上に第二ドラムによって銅を電解析出させた面の写真である。
<Example 2>
An electrolytic copper foil having a thickness of 8 μm was produced using the first drum under the same conditions as in Example 1. This copper foil was guided to the second drum, and the glossy surface side was subjected to 4 μm copper electrodeposition using the same electrolytic solution as that of the first drum to obtain a 12 μm foil.
The electrolytic deposition surface (matte surface) roughness of this copper foil was Rz = 2.1 μm, Ra = 0.3 μm, and the surface of the copper electrodeposited on the glossy surface was Rz = 1.8 μm, Ra = 0 .2 μm. The copper foil has a tensile strength of 346 MPa and an elongation of 6.7%.
FIG. 4 is an electron micrograph of this electrolytic copper foil, FIG. 4A is an electrolytic deposition surface (matt surface) by the first drum, and FIG. 4B is an electrolytic deposition of copper by the second drum on the glossy surface of the first drum. It is a picture of the surface.

次にこの銅箔を水洗後、実施例1と同様にして三酸化クロム溶液中で両面とも陰極電解を行い、水洗後乾燥させ、電池集電体用電解銅箔とした。   Next, this copper foil was washed with water and then subjected to cathodic electrolysis on both sides in a chromium trioxide solution in the same manner as in Example 1, washed with water and dried to obtain an electrolytic copper foil for a battery current collector.

この電解銅箔に実施例1と同じ活物質を塗布し、同じ方法で試験セルの作製と評価を行った。その結果を表1に併記する。   The same active material as Example 1 was apply | coated to this electrolytic copper foil, and preparation and evaluation of the test cell were performed by the same method. The results are also shown in Table 1.

<実施例3>
回転するチタンドラムを陰極として、その下側にDSAを配置した第一ドラムにより、チタンドラムとDSAの間に下記組成の硫酸銅−硫酸の電解液を流し、チタンドラム−DSA間に電流を流して8μm厚さの電解銅箔を製造した。
電解液組成と電解条件;
Cu=50〜150g/L
2SO4=20〜200g/L
塩化物イオン=1〜60ppm
ヒドロキシエチルセルロース=1〜30ppm
温度=30〜70℃
電流密度:30〜100A/dm2
この銅箔の電解析出面(マット面)粗さはRz=2.1μm、Ra=0.3μmであった。
この銅箔を第二ドラムに導き、光沢面側に第一ドラムとは異なる下記電解液を用いて4μmの銅電析を行い、12μm箔を得た。光沢面上に銅電析を行った面の粗さはRz=2.2μm、Ra=0.3の粗さの両面とも「電解析出面」の形状をした銅箔を得ることができた。この銅箔の引張強さ=330MPa、伸び=7.0%である。
電解液組成と電解条件;
Cu=50〜150g/L
2SO4=20〜200g/L
塩化物イオン=1〜60ppm
にかわ=1〜30ppm
温度=30〜70℃
電流密度:30〜100A/dm2
図5はこの電解銅箔の電子顕微鏡写真で、図5Aは第一ドラムによる電解析出面(マット面)を、図5Bは第一ドラムの光沢面上に第二ドラムによって銅を電解析出させた面の写真である。
なお、ここで用いた銅電解液中の有機添加剤は、第一ドラムはヒドロキシエチルセルロースであり、第二ドラムはにかわである。ヒドロキシエチルセルロース及びにかわは、両者とも柱状結晶の得られる有機添加剤である。従ってその電解析出面は、図5A及び図5Bに示すように凹凸のある表面になっている。
<Example 3>
A copper drum-sulfuric acid electrolytic solution having the following composition is passed between the titanium drum and the DSA, and a current is passed between the titanium drum and the DSA, with the rotating titanium drum serving as the cathode and the first drum having the DSA disposed below it. An electrolytic copper foil having a thickness of 8 μm was manufactured.
Electrolyte composition and electrolysis conditions;
Cu = 50 to 150 g / L
H 2 SO 4 = 20 to 200 g / L
Chloride ion = 1-60ppm
Hydroxyethyl cellulose = 1-30ppm
Temperature = 30-70 ° C
Current density: 30 to 100 A / dm 2
The electrolytic deposition surface (matte surface) roughness of this copper foil was Rz = 2.1 μm and Ra = 0.3 μm.
This copper foil was guided to the second drum, and 4 μm of copper electrodeposition was performed on the glossy surface side using the following electrolytic solution different from the first drum to obtain a 12 μm foil. The surface of the glossy surface subjected to copper electrodeposition had a roughness of Rz = 2.2 μm and Ra = 0.3, and a copper foil having the shape of an “electrolytically deposited surface” was obtained. The copper foil has a tensile strength of 330 MPa and an elongation of 7.0%.
Electrolyte composition and electrolysis conditions;
Cu = 50 to 150 g / L
H 2 SO 4 = 20 to 200 g / L
Chloride ion = 1-60ppm
Nika = 1-30ppm
Temperature = 30-70 ° C
Current density: 30 to 100 A / dm 2
FIG. 5 is an electron micrograph of the electrolytic copper foil, FIG. 5A is an electrolytic deposition surface (matt surface) by the first drum, and FIG. 5B is an electrolytic deposition of copper by the second drum on the glossy surface of the first drum. It is a photograph of the surface.
In addition, as for the organic additive in the copper electrolyte solution used here, the first drum is hydroxyethyl cellulose and the second drum is glue. Hydroxyethyl cellulose and glue are both organic additives that give columnar crystals. Therefore, the electrolytic deposition surface is an uneven surface as shown in FIGS. 5A and 5B.

次にこの銅箔を水洗後、実施例1と同様にして三酸化クロム溶液中で両面とも陰極電解を行い、水洗後乾燥させ、電池用電解銅箔とした。   Next, this copper foil was washed with water and then subjected to cathodic electrolysis on both sides in a chromium trioxide solution in the same manner as in Example 1, washed with water and dried to obtain an electrolytic copper foil for batteries.

この電解銅箔に実施例1と同じ活物質を塗布し、同じ方法で試験セルの作製と評価を行った。その結果を表1に併記する。   The same active material as Example 1 was apply | coated to this electrolytic copper foil, and preparation and evaluation of the test cell were performed by the same method. The results are also shown in Table 1.

<実施例4>
実施例1と同じ条件で第一ドラムにより、5μm厚さの電解銅箔を製造した。この銅箔を第二ドラムに導き、光沢面側を第一ドラムと同じ電解液を用いて5μmの銅電析を行い、10μm箔を得た。
次いでこの銅箔の表面に電気めっきにより銅のやけめっきを施し、粒粉状銅めっき層を形成した。さらに、該粒粉状銅めっき層の上にその凹凸形状を損なわないように、緻密な銅めっき(被せめっき)を行い、粒粉状銅と電解銅箔との密着性を向上させた粗面化電解銅箔を作成した。
当初、粒粉状銅めっき層及び被せめっきは重量厚さとして両面に各1μm行い、銅箔の厚さは最終的に12μm厚さになるようにめっきを施した。
なお銅箔表面粗面化のための粒粉状めっきの条件、緻密な銅めっき(被せめっき)の条件は以下のようである。
粒粉状めっき条件:
硫酸銅 80g/L
硫酸 110〜160g/L
添加剤 適量
液温 30〜60℃
電流密度 10〜50A/dm2
処理時間 2〜20秒
緻密な銅めっき(被せめっき)条件:
硫酸銅 200g/L
硫酸 90〜130g/L
液温 30〜60℃
電流密度 10〜30A/dm2
処理時間 2〜20秒
<Example 4>
An electrolytic copper foil having a thickness of 5 μm was produced using the first drum under the same conditions as in Example 1. This copper foil was led to the second drum, and the glossy surface side was subjected to 5 μm copper electrodeposition using the same electrolytic solution as that of the first drum to obtain a 10 μm foil.
Subsequently, the surface of this copper foil was subjected to copper burnt plating by electroplating to form a granular copper plating layer. Furthermore, the rough surface which improved the adhesiveness of granular copper and electrolytic copper foil by performing precise | minute copper plating (cover plating) so that the uneven | corrugated shape may not be spoiled on this granular powder copper plating layer Electrolytic copper foil was prepared.
Initially, the powdered copper plating layer and the covering plating were each 1 μm on both sides in terms of weight thickness, and the copper foil was finally plated so that the thickness was 12 μm.
The conditions for the granular powder plating for roughening the copper foil surface and the conditions for the dense copper plating (cover plating) are as follows.
Granular plating conditions:
Copper sulfate 80g / L
Sulfuric acid 110-160g / L
Additive Appropriate amount Liquid temperature 30-60 ° C
Current density 10-50A / dm 2
Processing time 2 to 20 seconds Dense copper plating (cover plating) conditions:
Copper sulfate 200g / L
Sulfuric acid 90 ~ 130g / L
Liquid temperature 30-60 ° C
Current density 10-30A / dm 2
Processing time 2 to 20 seconds

この銅箔の両面の粗さはRz=2.6μm、Ra=0.4μmであった。この銅箔の引張強さ=352MPa、伸び=5.3%である。   The roughness of both surfaces of this copper foil was Rz = 2.6 μm and Ra = 0.4 μm. The copper foil has a tensile strength of 352 MPa and an elongation of 5.3%.

次にこの銅箔を水洗後、実施例1と同様にして三酸化クロム溶液中で両面とも陰極電解を行い、水洗後乾燥させ、電池集電体用電解銅箔とした。   Next, this copper foil was washed with water and then subjected to cathodic electrolysis on both sides in a chromium trioxide solution in the same manner as in Example 1, washed with water and dried to obtain an electrolytic copper foil for a battery current collector.

この電解銅箔に実施例1と同じ活物質を塗布し、同じ方法で試験セルの作製と評価を行った。その結果を表1に併記する。   The same active material as Example 1 was apply | coated to this electrolytic copper foil, and preparation and evaluation of the test cell were performed by the same method. The results are also shown in Table 1.

<実施例5>
実施例1と同じ条件で第一ドラムにより、7μm厚さの電解銅箔を製造した。この銅箔を第二ドラムに導き、ドラム面側を第一ドラムと同じ電解液を用いて7μmの銅電析を行い、14μm箔を得た。
この銅箔の両面を片面1μmずつエッチング処理した。エッチング処理はメック株式会社製CZ8101を用いてスプレー式で行った。エッチング後の銅箔厚さは12μmであり、銅箔の両面の粗さはRz2.2μm、Ra=0.3μmであった。この銅箔の引張強さ=340MPa、伸び=5.1%である。
<Example 5>
An electrolytic copper foil having a thickness of 7 μm was produced using the first drum under the same conditions as in Example 1. This copper foil was guided to the second drum, and 7 μm of copper electrodeposition was performed on the drum surface side using the same electrolytic solution as that of the first drum to obtain a 14 μm foil.
Both sides of this copper foil were etched by 1 μm on each side. The etching process was performed by a spray method using CZ8101 manufactured by MEC. The thickness of the copper foil after etching was 12 μm, and the roughness of both sides of the copper foil was Rz 2.2 μm and Ra = 0.3 μm. The copper foil has a tensile strength of 340 MPa and an elongation of 5.1%.

次にこの銅箔を水洗後、実施例1と同様にして三酸化クロム溶液中で両面とも陰極電解を行い、水洗後乾燥させ、電池集電体用電解銅箔とした。   Next, this copper foil was washed with water and then subjected to cathodic electrolysis on both sides in a chromium trioxide solution in the same manner as in Example 1, washed with water and dried to obtain an electrolytic copper foil for a battery current collector.

この電解銅箔に実施例1と同じ活物質を塗布し、同じ方法で試験セルの作製と評価を行った。その結果を表1に併記する。   The same active material as Example 1 was apply | coated to this electrolytic copper foil, and preparation and evaluation of the test cell were performed by the same method. The results are also shown in Table 1.

<比較例1>
図2に示す電解銅箔製箔装置により、回転するチタンドラムを陰極として、その下側にDSAを配置したドラムにより、チタンドラムとDSAの間に下記組成の硫酸銅−硫酸の電解液を流し、チタンドラム−DSA間に電流を流して12μm厚さの電解銅箔を製造した。
電解液組成と電解条件;
Cu=50〜150g/L
2SO4=20〜200g/L
塩化物イオン=1〜60ppm
にかわ=1〜30ppm
温度=30〜70℃
電流密度:30〜100A/dm2
この銅箔の電解析出面(マット面)粗さはRz=6.0μm、Ra=0.7μm、ドラム面粗さはRz=1.5μm、Ra=0.2μmであった。
図6はこの電解銅箔の電子顕微鏡写真で、図6Xは電解析出面(マット面)を、図6Yは光沢面の写真である。
<Comparative Example 1>
With the electrolytic copper foil making apparatus shown in FIG. 2, a copper sulfate-sulfuric acid electrolyte having the following composition is allowed to flow between the titanium drum and the DSA using a rotating titanium drum as a cathode and a DSA disposed on the lower side of the rotating drum. Then, an electric current was passed between the titanium drum and the DSA to produce an electrolytic copper foil having a thickness of 12 μm.
Electrolyte composition and electrolysis conditions;
Cu = 50 to 150 g / L
H 2 SO 4 = 20 to 200 g / L
Chloride ion = 1-60ppm
Nika = 1-30ppm
Temperature = 30-70 ° C
Current density: 30 to 100 A / dm 2
The electrolytic deposition surface (matte surface) roughness of this copper foil was Rz = 6.0 μm, Ra = 0.7 μm, and the drum surface roughness was Rz = 1.5 μm, Ra = 0.2 μm.
FIG. 6 is an electron micrograph of the electrolytic copper foil, FIG. 6X is an electrolytic deposition surface (matte surface), and FIG. 6Y is a glossy surface.

次にこの銅箔を水洗後、実施例1と同様にして三酸化クロム溶液中で両面とも陰極電解を行い、水洗後乾燥させ、電池用電解銅箔とした。
ここで用いた銅電解液中の有機添加剤は、にかわであるため柱状晶が得られる。従ってその電解析出面(マット面)は、図6Xに示すように凹凸のある表面になっている。一方で光沢面はドラムに接触していた面であるため図6Yに示すように筋状の平滑な表面になっている。
Next, this copper foil was washed with water and then subjected to cathodic electrolysis on both sides in a chromium trioxide solution in the same manner as in Example 1, washed with water and dried to obtain an electrolytic copper foil for batteries.
Since the organic additive in the copper electrolyte used here is a glue, columnar crystals are obtained. Therefore, the electrolytic deposition surface (matte surface) is an uneven surface as shown in FIG. 6X. On the other hand, since the glossy surface is the surface that has been in contact with the drum, it has a smooth line-like surface as shown in FIG. 6Y.

この電解銅箔に実施例1と同じ活物質を塗布し、同じ方法で試験セルの作製と評価を行った。その結果を表1に併記した。   The same active material as Example 1 was apply | coated to this electrolytic copper foil, and preparation and evaluation of the test cell were performed by the same method. The results are also shown in Table 1.

<比較例2>
図2に示す電解製箔装置の回転するチタンドラムを陰極として、その下側にDSAを配置したドラムにより、チタンドラムとDSAの間に下記組成の硫酸銅−硫酸の電解液を流し、チタンドラム−DSA間に電流を流して12μm厚さの電解銅箔を製造した。
電解液組成と電解条件;
Cu=50〜150g/L
2SO4=20〜200g/L
塩化物イオン=1〜60ppm
ヒドロキシエチルセルロース=1〜30ppm
温度=30〜70℃
電流密度:30〜100A/dm2
この銅箔の電解析出面粗さはRz=4.1μm、Ra=0.6μm、ドラム面粗さはRz=2.2μm、Ra=0.4μmであった。
図7はこの電解銅箔の電子顕微鏡写真で、図7Xは電解析出面(マット面)を、図7Yは光沢面の写真である。
ここで用いた銅電解液中の有機添加剤は、ヒドロキシエチルセルロースであるため柱状晶が得られる。従ってその電解析出面は、図7Xに示すように凹凸のある表面になっている。一方で光沢面はドラムに接触していた面であるため図7Yに示すように筋状の平滑な表面になっている。
<Comparative Example 2>
A copper drum-sulfuric acid electrolytic solution having the following composition is allowed to flow between the titanium drum and the DSA by using a rotating titanium drum of the electrolytic foil making apparatus shown in FIG. A current was passed between DSA to produce an electrolytic copper foil having a thickness of 12 μm.
Electrolyte composition and electrolysis conditions;
Cu = 50 to 150 g / L
H 2 SO 4 = 20 to 200 g / L
Chloride ion = 1-60ppm
Hydroxyethyl cellulose = 1-30ppm
Temperature = 30-70 ° C
Current density: 30 to 100 A / dm 2
The electrolytic deposition surface roughness of this copper foil was Rz = 4.1 μm, Ra = 0.6 μm, and the drum surface roughness was Rz = 2.2 μm, Ra = 0.4 μm.
FIG. 7 is an electron micrograph of the electrolytic copper foil, FIG. 7X is an electrolytic deposition surface (matte surface), and FIG. 7Y is a glossy surface.
Since the organic additive in the copper electrolyte used here is hydroxyethyl cellulose, columnar crystals are obtained. Therefore, the electrolytic deposition surface is an uneven surface as shown in FIG. 7X. On the other hand, since the glossy surface is the surface that has been in contact with the drum, it has a streaky smooth surface as shown in FIG. 7Y.

次にこの銅箔を水洗後、実施例1と同様にして三酸化クロム溶液中で両面とも陰極電解を行い、水洗後乾燥させ、電池用電解銅箔とした。   Next, this copper foil was washed with water and then subjected to cathodic electrolysis on both sides in a chromium trioxide solution in the same manner as in Example 1, washed with water and dried to obtain an electrolytic copper foil for batteries.

この電解銅箔に実施例1と同じ活物質を塗布し、同じ方法で試験セルの作製と評価を行った。その結果を表1に併記した。   The same active material as Example 1 was apply | coated to this electrolytic copper foil, and preparation and evaluation of the test cell were performed by the same method. The results are also shown in Table 1.

<比較例3>
図2に示す電解製箔装置の回転するチタンドラムを陰極として、その下側にDSAを配置したドラムにより、チタンドラムとDSAの間に下記組成の硫酸銅−硫酸の電解液を流し、チタンドラム−DSA間に電流を流して6μm厚さの電解銅箔を製造した。
電解液組成と電解条件;
Cu=50〜150g/L
2SO4=20〜200g/L
塩化物イオン=1〜60ppm
3−メルカプト−1−プロパンスルホン酸ナトリウム=0.5〜10ppm
ヒドロキシエチルセルロース=1〜30ppm
低分子量ゼラチン(分子量3,000)=1〜30ppm
温度=30〜70℃
電流密度:30〜100A/dm2
この銅箔の電解析出面(マット面)粗さはRz=1.3μm、Ra=0.3μm、光沢面の粗さはRz=1.6μm、Ra=0.4μmであった。
この電解銅箔の電子顕微鏡写真を撮り、図8X:に電解析出面(マット面)を図8Y:に光沢面を示した。
<Comparative Example 3>
A copper drum-sulfuric acid electrolytic solution having the following composition is allowed to flow between the titanium drum and the DSA by using a rotating titanium drum of the electrolytic foil making apparatus shown in FIG. A 6 μm thick electrolytic copper foil was produced by passing an electric current between DSA.
Electrolyte composition and electrolysis conditions;
Cu = 50 to 150 g / L
H 2 SO 4 = 20 to 200 g / L
Chloride ion = 1-60ppm
Sodium 3-mercapto-1-propanesulfonate = 0.5-10 ppm
Hydroxyethyl cellulose = 1-30ppm
Low molecular weight gelatin (molecular weight 3,000) = 1-30 ppm
Temperature = 30-70 ° C
Current density: 30 to 100 A / dm 2
The electrolytic deposition surface (matte surface) roughness of this copper foil was Rz = 1.3 μm, Ra = 0.3 μm, and the glossy surface was Rz = 1.6 μm, Ra = 0.4 μm.
An electron micrograph of this electrolytic copper foil was taken, and the electrolytic deposition surface (matte surface) was shown in FIG. 8X: and the glossy surface was shown in FIG. 8Y :.

次いでこの銅箔の表面に電気めっきにより銅の焼けめっき処理を施し、粒粉状銅めっき層を形成した。さらに、該粒粉状銅めっき層の上にその凹凸形状を損なわないように、緻密な銅めっき(被せめっき)を行い、粒粉状銅と電解銅箔との密着性を向上させた粗面化電解銅箔を作成した。
当初、粒粉状銅めっき層及び被せめっきは重量厚さとして両面に各3μm行い、銅箔の厚さは最終的に12μm厚さになるようにめっきを施した。
なお銅箔表面粗面化のための粒粉状めっきの条件、緻密な銅めっき(被せめっき)の条件は以下のようである。
粒粉状めっき条件:
硫酸銅 80g/L
硫酸 110〜160g/L
添加剤 適量
液温 30〜60℃
電流密度 10〜50A/dm2
処理時間 2〜20秒
緻密な銅めっき(被せめっき)条件:
硫酸銅 200g/L
硫酸 90〜130g/L
液温 30〜60℃
電流密度 10〜30A/dm2
処理時間 2〜20秒
Subsequently, the surface of this copper foil was subjected to a copper baking plating process by electroplating to form a granular copper plating layer. Furthermore, the rough surface which improved the adhesiveness of granular copper and electrolytic copper foil by performing precise | minute copper plating (cover plating) so that the uneven | corrugated shape may not be spoiled on this granular powder copper plating layer Electrolytic copper foil was prepared.
Initially, the powdered copper plating layer and the covering plating were each 3 μm on both sides in terms of weight thickness, and the copper foil was finally plated so that the thickness was 12 μm.
The conditions for the granular powder plating for roughening the copper foil surface and the conditions for the dense copper plating (cover plating) are as follows.
Granular plating conditions:
Copper sulfate 80g / L
Sulfuric acid 110-160g / L
Additive Appropriate amount Liquid temperature 30-60 ° C
Current density 10-50A / dm 2
Processing time 2 to 20 seconds Dense copper plating (cover plating) conditions:
Copper sulfate 200g / L
Sulfuric acid 90 ~ 130g / L
Liquid temperature 30-60 ° C
Current density 10-30A / dm 2
Processing time 2 to 20 seconds

この銅箔の電解析出面(マット面)粗さはRz=3.1μm、Ra=0.4μmであり、光沢面粗さはRz=3.7μm、Ra=0.5μmであった。銅箔の引張強さ=370MPa、伸び=4.5%である。
この電解銅箔の電子顕微鏡写真を撮り、図9X:に電解析出面(マット面)を図9Y:に光沢面を示した。
この銅箔の原箔である6μmの段階ではマット面電解析出面(マット面)の方が光沢面より粗さが小さい。従って銅箔の表面に電気めっきにより銅のやけめっきに続いて緻密な銅めっき(被せめっき)を行って粒粉状銅めっき層を形成した表面は、粒粉状銅めっき層の条件は同じに設定した場合でも、原箔の粗さの影響を受けて電解析出面(マット面)の方が光沢面より粗さが小さくなる。
The electrolytic deposition surface (matte surface) roughness of this copper foil was Rz = 3.1 μm, Ra = 0.4 μm, and the glossy surface roughness was Rz = 3.7 μm, Ra = 0.5 μm. The tensile strength of the copper foil = 370 MPa and the elongation = 4.5%.
An electron micrograph of this electrolytic copper foil was taken, and an electrolytic deposition surface (matte surface) was shown in FIG. 9X: a glossy surface was shown in FIG. 9Y:
At the stage of 6 μm, which is the original foil of the copper foil, the matte surface electrolytic deposition surface (matte surface) has a smaller roughness than the glossy surface. Therefore, on the surface of the copper foil, the surface of the copper powder layer is formed by electroplating copper, followed by dense copper plating (covering plating) to form a granular copper plating layer. Even when it is set, the electrolytically deposited surface (matte surface) is less rough than the glossy surface due to the influence of the roughness of the raw foil.

次にこの銅箔を水洗後、実施例1と同様にして三酸化クロム溶液中で両面とも陰極電解を行い、水洗後乾燥させ、電池集電体用電解銅箔とした。
この電解銅箔に実施例1と同じ活物質を塗布し、同じ方法で試験セルの作製と評価を行った。その結果を表1に併記する。
Next, this copper foil was washed with water and then subjected to cathodic electrolysis on both sides in a chromium trioxide solution in the same manner as in Example 1, washed with water and dried to obtain an electrolytic copper foil for a battery current collector.
The same active material as Example 1 was apply | coated to this electrolytic copper foil, and preparation and evaluation of the test cell were performed by the same method. The results are also shown in Table 1.

本発明の電解銅箔は、図3〜図5に示すように銅箔の両表面ともに同様の表面形状を示し、実施例1〜5の電解銅箔を集電体としてSi系活物質を使用した電極を負極電極として作成したリチウムイオン二次電池は、表1に示すようにサイクル効率の低下が小さく、優れた性能のリチウムイオン二次電池であった。   The electrolytic copper foil of the present invention shows the same surface shape on both surfaces of the copper foil as shown in FIGS. 3 to 5, and uses the Si-based active material with the electrolytic copper foil of Examples 1 to 5 as a current collector. As shown in Table 1, the lithium ion secondary battery prepared by using the prepared electrode as the negative electrode was a lithium ion secondary battery having excellent performance with a small decrease in cycle efficiency.

サイクル効率の低下が小さい理由は、本発明の図3〜図5の実施例1〜3のSEM写真からわかるように、直径2μm〜5μ程度の小さな直径で、かつ山の高さが低い(Rzが小さい)凹凸であると、ここで用いたようなナノサイズのSi系活物質は山の谷底の部分まで入り込み充放電サイクルを繰り返しても、活物質と集電体の接触が保たれ、サイクル効率の低下が小さいと考えられる。   The reason why the reduction in the cycle efficiency is small is that the diameter of the peak is small (Rz), as can be seen from the SEM photographs of Examples 1 to 3 of FIGS. If the surface is uneven, the nano-sized Si-based active material used here enters the bottom of the mountain and the charge / discharge cycle is repeated, so that the contact between the active material and the current collector is maintained. The decrease in efficiency is considered small.

一方、図6〜図9の比較例1、2、3では、電解析出面(マット面)側はサイクル効率の低下が大きく、光沢面側も同様にサイクル効率の低下が大きく、表1に示すようにリチウムイオン二次電池としては満足できない結果となった。   On the other hand, in Comparative Examples 1, 2 and 3 of FIGS. 6 to 9, the decrease in cycle efficiency is large on the electrolytic deposition surface (mat surface) side, and the decrease in cycle efficiency is also large on the glossy surface side. Thus, the result was not satisfactory as a lithium ion secondary battery.

マット面側のサイクル効率の低下が大きい理由は、本発明の図6、図7のSEM写真からわかるように、電解析出面(マット面)側は直径5μm〜10μ程度の大きな直径で、かつ山の高さが高い(Rzが大きい)凹凸になっている。
このような表面であると、ここで用いたようなナノサイズのSi系活物質は山と山との間の谷底の部分まで入り込まず、活物質と集電体の接触が充分に保たれず、サイクル効率の低下が大きいと考えられる。
The reason why the reduction in the cycle efficiency on the mat surface side is large is that the electrolytic deposition surface (mat surface) side has a large diameter of about 5 μm to 10 μm and peaks as shown in the SEM photographs of FIGS. The height is uneven (Rz is large).
With such a surface, the nano-sized Si-based active material as used here does not enter the bottom of the valley between the peaks, and the contact between the active material and the current collector is not sufficiently maintained. It is considered that the reduction in cycle efficiency is large.

光沢面側のサイクル効率の低下が大きい理由は、光沢面は筋状の凹凸はあるものの光沢のある平滑な面であるため、ナノサイズのSi系活物質と集電体の密着強度が弱く、サイクル効率の低下が大きいと考えられる。   The reason for the large reduction in cycle efficiency on the glossy surface side is that the glossy surface is a glossy and smooth surface with streaks, but the adhesion strength between the nano-sized Si-based active material and the current collector is weak, The decrease in cycle efficiency is considered large.

また図9の電解析出により原箔表面に銅粒を付着させた表面は、直径で1〜5μm程度の銅粒が銅箔表面に付着しているため、ここで用いたようなナノサイズのSi系活物質は山の谷底の部分まで入り込まず、活物質と集電体の接触が充分に保たれず、サイクル効率の低下が大きいと考えられる。   Moreover, since the surface which made the copper particle adhere to the raw foil surface by the electrolytic deposition of FIG. 9 is about 1-5 micrometers in diameter, the copper particle surface adheres to the copper foil surface. It is considered that the Si-based active material does not enter the bottom of the mountain valley, the contact between the active material and the current collector is not sufficiently maintained, and the cycle efficiency is greatly reduced.

本発明の電解銅箔は、両面が銅の電解析出で形成された電解銅箔であって、該電解析出面は柱状晶の結晶組織である。
また本発明の電解銅箔は、両面が銅の電解析出で形成された電解銅箔であって、該電解銅箔の第一表面はドラム面上に柱状晶結晶組織の銅電析で形成された面であり、該第一表面と反対側の第二表面は第一表面製膜後に、該第一表面の裏側に柱状晶結晶組織の銅電析で形成された面である。
また本発明の電解銅箔は、両面が電解析出で形成された柱状晶結晶組織の電解銅箔表面が、更にめっき法、気相成長法、エッチング法、または研磨法により粗面化されている。
さらに本発明の電解銅箔は、両面が電解析出で形成された柱状晶結晶組織の電解銅箔表面に、更にめっき法により銅を主成分とする粒子からなる表面処理層が形成されている。
また、本発明の電解銅箔は、両面が電解析出で形成された柱状晶結晶組織の電解銅箔表面に、更に銅のやけめっきによる粒粉状銅めっき層と、該粒粉状銅めっき層上にその凹凸形状を損なわない緻密な銅めっき層(被せめっき層)とで形成された表面処理層が形成されている。
The electrolytic copper foil of the present invention is an electrolytic copper foil formed on both sides by electrolytic deposition of copper, and the electrolytic deposition surface has a columnar crystal structure.
Moreover, the electrolytic copper foil of the present invention is an electrolytic copper foil formed by electrolytic deposition of copper on both sides, and the first surface of the electrolytic copper foil is formed by copper electrodeposition of a columnar crystal structure on the drum surface. The second surface opposite to the first surface is a surface formed by copper electrodeposition of a columnar crystal structure on the back side of the first surface after the first surface is formed.
In the electrolytic copper foil of the present invention, the surface of the electrolytic copper foil having a columnar crystal structure formed by electrolytic deposition on both sides is further roughened by a plating method, a vapor phase growth method, an etching method, or a polishing method. Yes.
Furthermore, in the electrolytic copper foil of the present invention, a surface treatment layer composed of particles containing copper as a main component is further formed by plating on the surface of the electrolytic copper foil having a columnar crystal structure formed by electrolytic deposition on both sides. .
Moreover, the electrolytic copper foil of the present invention is further provided on the surface of the electrolytic copper foil having a columnar crystal structure formed by electrolytic deposition on both sides, and a granular copper plating layer by burnt plating of copper, and the granular copper plating A surface treatment layer formed of a dense copper plating layer (covered plating layer) that does not impair the uneven shape is formed on the layer.

本件銅箔は二次電池用銅箔、特にリチウムイオン二次電池負極集電体用として有用である。   The present copper foil is useful as a secondary battery copper foil, particularly as a negative electrode current collector for a lithium ion secondary battery.

1 電解銅箔
2 両面が析出面の電解銅箔
11 ドラム
12 ドラム
101 ドラム面
102 電解析出面
103 電解析出面
DESCRIPTION OF SYMBOLS 1 Electrolytic copper foil 2 Electrolytic copper foil in which both surfaces are deposition surfaces 11 Drum 12 Drum 101 Drum surface 102 Electrolytic deposition surface 103 Electrolytic deposition surface

本発明によれば、正極と、集電体の表面にシリコンまたはシリコン化合物活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池において、
前記負極を構成する前記集電体は電解銅箔からなり、該電解銅箔の両面は電解析出で形成され、該電解析出面は、銅−硫酸を主成分とする電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織である、リチウムイオン二次電池が提供される。
According to the present invention, in a lithium ion secondary battery comprising a positive electrode, a negative electrode in which a silicon or silicon compound active material layer is formed on the surface of a current collector, and a non-aqueous electrolyte,
The current collector constituting the negative electrode is made of an electrolytic copper foil, and both surfaces of the electrolytic copper foil are formed by electrolytic deposition. The electrolytic deposition surface is made of an electrolytic solution containing copper-sulfuric acid as a main component, chloride. Provided is a lithium ion secondary battery which is a crystal structure of columnar crystals having irregularities on the surface, which are electrolytically deposited from an electrolyte containing ions and glue, or chloride ions and hydroxyethyl cellulose .

また本発明によれば、正極と、集電体の表面にシリコンまたはシリコン化合物活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池において
前記負極を構成する前記集電体は電解銅箔からなり、該電解銅箔の両面は電解析出で形成され、該電解析出面は、銅−硫酸を主成分とする電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織である、リチウムイオン二次電池用負極集電体が提供される。
According to the present invention, positive and a negative electrode silicon or silicon compound Monokatsu material layer on the surface of the current collector is formed, in the lithium ion secondary batteries and a nonaqueous electrolyte,
The current collector constituting the negative electrode is made of an electrolytic copper foil, and both surfaces of the electrolytic copper foil are formed by electrolytic deposition. The electrolytic deposition surface is made of an electrolytic solution containing copper-sulfuric acid as a main component, chloride. Provided is a negative electrode current collector for a lithium ion secondary battery, which is a crystal structure of a columnar crystal having irregularities on the surface, which is electrolytically deposited from an electrolyte containing ions and glue, or chloride ions and hydroxyethyl cellulose. .

さらに本発明によれば、正極と、集電体の表面にシリコンまたは化合物活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池において、
前記負極の集電体を構成する電解銅箔の両面は電解析出で形成され、該電解析出面は、銅−硫酸を主成分とする電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織である、リチウムイオン二次電池負極集電体用電解銅箔が提供される
Furthermore, according to the present invention, in a lithium ion secondary battery comprising a positive electrode, a negative electrode having a silicon or compound active material layer formed on the surface of a current collector, and a non-aqueous electrolyte ,
Both surfaces of the electrolytic copper foil constituting the current collector of the negative electrode are formed by electrolytic deposition, and the electrolytic deposition surface is made of an electrolyte containing copper-sulfuric acid as a main component, chloride ions and glue, or chloride. There is provided an electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery, which is a crystal structure of columnar crystals having irregularities on the surface, which is electrolytically deposited from an electrolytic solution to which ions and hydroxyethyl cellulose are added .

本発明によれば、極と、集電体の表面にシリコンまたはシリコン化合物活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池において、
前記負極を構成する前記集電体は銅を電解析出して形成した電解銅箔であって、
該電解銅箔の第一表面は、回転するドラム面上に、銅−硫酸を主成分とする電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織の銅電析で形成した面であり、該第一表面と反対側の第二表面は、前記第一表面製膜後に、前記第一表面の裏側に銅−硫酸を主成分とする電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織の銅電析で形成した面である、リチウムイオン二次電池が提供される
According to the present invention, a positive electrode, a lithium ion secondary battery comprising a negative electrode silicon or silicon compound Monokatsu material layer is formed on the surface of the current collector, and a non-aqueous electrolyte solution,
The current collector constituting the negative electrode is an electrolytic copper foil formed by electrolytic deposition of copper,
The first surface of the electrolytic copper foil was charged on the rotating drum surface from an electrolytic solution obtained by adding chloride ions and glue or chloride ions and hydroxyethyl cellulose to an electrolytic solution mainly composed of copper-sulfuric acid. issued analyzed is a surface formed by copper electrodeposition of the columnar crystals of the crystal structure having unevenness on a surface, opposite to the second surface to said first surface, after the first surface casting, the first surface The crystal structure of the columnar crystals with irregularities on the surface, which are electrolytically deposited from the electrolyte solution containing chloride ions and glue or chloride ions and hydroxyethyl cellulose in the electrolyte solution containing copper-sulfuric acid as the main component A lithium ion secondary battery having a surface formed by copper electrodeposition is provided .

本発明によれば、正極と、集電体の表面に、シリコンまたはシリコン化合物活物質層が形成されてなる負極と、非水電解液とを備えるリチウムイオン二次電池において
該負極を構成する集電体は銅を電解析出して形成する電解銅箔であって、
該電解銅箔の第一表面は、回転するドラム面上に、銅−硫酸を主成分とする電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織の銅電析で形成した面であり、該第一表面と反対側の第二表面は、前記第一表面製膜後に、前記第一表面の裏側に銅−硫酸を主成分とする電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織の銅電析で形成した面である、リチウムイオン二次電池用負極集電体が提供される
According to the present invention, a positive electrode, on the surface of the current collector, a negative electrode silicon or silicon compound Monokatsu material layer are formed, in the lithium ion secondary battery and a nonaqueous electrolyte,
The current collector constituting the negative electrode is an electrolytic copper foil formed by electrolytic deposition of copper,
The first surface of the electrolytic copper foil was charged on the rotating drum surface from an electrolytic solution obtained by adding chloride ions and glue or chloride ions and hydroxyethyl cellulose to an electrolytic solution mainly composed of copper-sulfuric acid. issued analyzed is a surface formed by copper electrodeposition of the columnar crystals of the crystal structure having unevenness on a surface, opposite to the second surface to said first surface, after the first surface casting, the first surface The crystal structure of the columnar crystals with irregularities on the surface, which are electrolytically deposited from the electrolyte solution containing chloride ions and glue or chloride ions and hydroxyethyl cellulose in the electrolyte solution containing copper-sulfuric acid as the main component A negative electrode current collector for a lithium ion secondary battery, which is a surface formed by copper electrodeposition, is provided .

本発明によれば、正極と、集電体の表面にシリコンまたはシリコン化合物活物質層が形成されてなる負極と非水電解液とを備えるリチウムイオン二次電池において
前記負極を構成する前記集電体は、銅を電解析出して形成する電解銅箔であって、
該電解銅箔の第一表面は、回転するドラム面上に、銅−硫酸を主成分とする電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織の銅電析で形成した面であり、該第一表面と反対側の第二表面は、前記第一表面製膜後に、前記第一表面の裏側に銅−硫酸を主成分とする電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織の銅電析で形成した面である、リチウムイオン二次電池の負極集電体用電解銅箔が提供される
好ましくは、前記電解銅箔の表面が、めっき法、気相成長法、エッチング法、または研磨法により粗面化された銅の表面である。
また好ましくは、前記電解銅箔の表面が、めっき法により銅を主成分とする粒子を電解析出した表面である。
また、好ましくは、前記電解銅箔の表面が、銅のやけめっきによる粒粉状銅めっき層と、該粒粉状銅めっき層上にその凹凸形状を損なわない緻密な銅めっき層(被せめっき層)とで形成された表面である。
According to the present invention, positive and a negative electrode silicon or silicon compound Monokatsu material layer formed on the surface of the current collector, in the lithium ion secondary battery and a nonaqueous electrolyte,
The current collector constituting the negative electrode is an electrolytic copper foil formed by electrolytic deposition of copper,
The first surface of the electrolytic copper foil was charged on the rotating drum surface from an electrolytic solution obtained by adding chloride ions and glue or chloride ions and hydroxyethyl cellulose to an electrolytic solution mainly composed of copper-sulfuric acid. issued analyzed is a surface formed by copper electrodeposition of the columnar crystals of the crystal structure having unevenness on a surface, opposite to the second surface to said first surface, after the first surface casting, the first surface The crystal structure of the columnar crystals with irregularities on the surface, which are electrolytically deposited from the electrolyte solution containing chloride ions and glue or chloride ions and hydroxyethyl cellulose in the electrolyte solution containing copper-sulfuric acid as the main component An electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery, which is a surface formed by copper electrodeposition, is provided .
Preferably, the surface of the electrolytic copper foil is a copper surface roughened by a plating method, a vapor phase growth method, an etching method, or a polishing method.
Preferably, the surface of the electrolytic copper foil is a surface obtained by electrolytically depositing particles mainly composed of copper by a plating method.
Preferably, the surface of the electrolytic copper foil is a granular copper plating layer formed by copper burnt plating, and a dense copper plating layer (covered plating layer) that does not impair the irregular shape on the granular copper plating layer. ) And the surface formed.

本発明によれば、正極と、集電体の表面にシリコンまたはシリコン化合物活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池において、
前記負極を構成する前記集電体は電解銅箔からなり、該電解銅箔の両面は電解析出で形成され、該電解析出面は、硫酸銅−硫酸の電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織である、リチウムイオン二次電池が提供される。
According to the present invention, in a lithium ion secondary battery comprising a positive electrode, a negative electrode in which a silicon or silicon compound active material layer is formed on the surface of a current collector, and a non-aqueous electrolyte,
The current collector constituting the negative electrode is made of an electrolytic copper foil, and both surfaces of the electrolytic copper foil are formed by electrolytic deposition. The electrolytic deposition surface is formed of copper sulfate-sulfuric acid electrolyte solution , chloride ions, and a negative electrode. Alternatively, a lithium ion secondary battery having a columnar crystal structure with irregularities on the surface, which is electrolytically deposited from an electrolytic solution to which chloride ions and hydroxyethyl cellulose are added, is provided.

また本発明によれば、正極と、集電体の表面にシリコンまたはシリコン化合物活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池の負極を構成する負極集電体において、
前記負極を構成する前記集電体は電解銅箔からなり、該電解銅箔の両面は電解析出で形成され、該電解析出面は、硫酸銅−硫酸の電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織である、リチウムイオン二次電池用負極集電体が提供される。
According to the invention, a negative electrode current collector constituting a negative electrode of a lithium ion secondary battery comprising a positive electrode, a negative electrode having a silicon or silicon compound active material layer formed on the surface of a current collector, and a non-aqueous electrolyte. In the body ,
The current collector constituting the negative electrode is made of an electrolytic copper foil, and both surfaces of the electrolytic copper foil are formed by electrolytic deposition. The electrolytic deposition surface is formed of copper sulfate-sulfuric acid electrolyte solution , chloride ions, and a negative electrode. Alternatively, there is provided a negative electrode current collector for a lithium ion secondary battery, which is a crystal structure of columnar crystals having irregularities on the surface, which are electrolytically deposited from an electrolytic solution to which chloride ions and hydroxyethyl cellulose are added.

さらに本発明によれば、正極と、集電体の表面にシリコンまたはシリコン化合物活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池の負極集電体用電解銅箔において、
前記負極集電体を構成する電解銅箔の両面は電解析出で形成され、該電解析出面は、硫酸銅−硫酸の電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織である、リチウムイオン二次電池の負極集電体用電解銅箔が提供される。
Furthermore, according to the present invention, the electrolytic copper for a negative electrode current collector of a lithium ion secondary battery comprising a positive electrode , a negative electrode having a silicon or silicon compound active material layer formed on the surface of the current collector, and a non-aqueous electrolyte In foil ,
Both surfaces of the electrolytic copper foil constituting the negative electrode current collector are formed by electrolytic deposition, and the electrolytic deposition surface is formed of copper sulfate-sulfuric acid electrolytic solution , chloride ions and glue, or chloride ions and hydroxyethyl cellulose. There is provided an electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery, which is a crystal structure of a columnar crystal having irregularities on the surface, which is electrolytically deposited from an electrolytic solution to which is added.

本発明によれば、正極と、集電体の表面にシリコンまたはシリコン化合物活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池において、
前記負極を構成する前記集電体は銅を電解析出して形成した電解銅箔であって、
該電解銅箔の第一表面は、回転するドラム面上において硫酸銅−硫酸の電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織の銅電析で形成した面であり、
該第一表面と反対側の第二表面は、前記第一表面製膜後に、前記第一表面の裏側に硫酸銅−硫酸の電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織の銅電析で形成した面である、
リチウムイオン二次電池が提供される。
According to the present invention, in a lithium ion secondary battery comprising a positive electrode, a negative electrode in which a silicon or silicon compound active material layer is formed on the surface of a current collector, and a non-aqueous electrolyte,
The current collector constituting the negative electrode is an electrolytic copper foil formed by electrolytic deposition of copper,
The first surface of the electrolyte Kaidohaku is on the drum surface that rotates, copper sulfate - the electrolytic solution of sulfuric acid, chloride ions and glue, or electrolytically deposited from the addition of chloride ions and hydroxyethylcellulose electrolyte , A surface formed by copper electrodeposition of a columnar crystal structure with irregularities on the surface,
The second surface opposite to the first surface has a copper sulfate-sulfuric acid electrolyte solution on the back side of the first surface, chloride ions and glue, or chloride ions and hydroxy after the first surface film formation. It is a surface formed by copper electrodeposition of a crystal structure of columnar crystals with irregularities on the surface, which is electrolytically deposited from an electrolytic solution to which ethyl cellulose is added.
A lithium ion secondary battery is provided.

本発明によれば、正極と、集電体の表面にシリコンまたはシリコン化合物活物質層が形成されてなる負極と、非水電解液とを備えるリチウムイオン二次電池の負極を構成する負極集電体において、
該負極を構成する集電体は銅を電解析出して形成する電解銅箔であって、
該電解銅箔の第一表面は、回転するドラム面上において硫酸銅−硫酸の電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織の銅電析で形成した面であり、該第一表面と反対側の第二表面は、前記第一表面製膜後に、前記第一表面の裏側に硫酸銅−硫酸の電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織の銅電析で形成した面である、リチウムイオン二次電池用負極集電体が提供される。
According to the present invention, a negative electrode current collector constituting a negative electrode of a lithium ion secondary battery comprising a positive electrode, a negative electrode in which a silicon or silicon compound active material layer is formed on the surface of a current collector, and a non-aqueous electrolyte. In the body ,
The current collector constituting the negative electrode is an electrolytic copper foil formed by electrolytic deposition of copper,
The first surface of the electrolyte Kaidohaku is on the drum surface that rotates, copper sulfate - the electrolytic solution of sulfuric acid, chloride ions and glue, or electrolytically deposited from the addition of chloride ions and hydroxyethylcellulose electrolyte The surface formed by copper electrodeposition of the crystal structure of the columnar crystals with irregularities on the surface, and the second surface opposite to the first surface is on the back side of the first surface after the first surface is formed. Formed by copper electrodeposition of a columnar crystal structure with irregularities on the surface, which is electrolytically deposited from an electrolytic solution in which chloride ions and glue or chloride ions and hydroxyethyl cellulose are added to an electrolytic solution of copper sulfate-sulfuric acid. Thus, a negative electrode current collector for a lithium ion secondary battery is provided.

本発明によれば、正極と、集電体の表面にシリコンまたはシリコン化合物活物質層が形成されてなる負極と、非水電解液とを備えるリチウムイオン二次電池の負極集電体用電解銅箔において、
前記負極を構成する前記集電体は、銅を電解析出して形成する電解銅箔であって、
該電解銅箔の第一表面は、回転するドラム面上において硫酸銅−硫酸の電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織の銅電析で形成した面であり、該第一表面と反対側の第二表面は、前記第一表面製膜後に、前記第一表面の裏側に硫酸銅−硫酸の電解液に、塩化物イオン及びにかわ、または、塩化物イオン及びヒドロキシエチルセルロースを添加した電解液から電解析出した、表面に凹凸のある柱状晶の結晶組織の銅電析で形成した面である、リチウムイオン二次電池の負極集電体用電解銅箔が提供される。
好ましくは、前記電解銅箔の表面が、めっき法、気相成長法、エッチング法、または研磨法により粗面化された銅の表面である。
また好ましくは、前記電解銅箔の表面が、めっき法により銅を主成分とする粒子を電解析出した表面である。
また、好ましくは、前記電解銅箔の表面が、銅のやけめっきによる粒粉状銅めっき層と、該粒粉状銅めっき層上にその凹凸形状を損なわない緻密な銅めっき層(被せめっき層)とで形成された表面である。
According to the present invention, an electrolytic copper for a negative electrode current collector of a lithium ion secondary battery comprising a positive electrode, a negative electrode in which a silicon or silicon compound active material layer is formed on the surface of the current collector, and a nonaqueous electrolytic solution. In foil ,
The current collector constituting the negative electrode is an electrolytic copper foil formed by electrolytic deposition of copper,
The first surface of the electrolyte Kaidohaku is on the drum surface that rotates, copper sulfate - the electrolytic solution of sulfuric acid, chloride ions and glue, or electrolytically deposited from the addition of chloride ions and hydroxyethylcellulose electrolyte The surface formed by copper electrodeposition of the crystal structure of the columnar crystals with irregularities on the surface, and the second surface opposite to the first surface is on the back side of the first surface after the first surface is formed. Formed by copper electrodeposition of a columnar crystal structure with irregularities on the surface, which is electrolytically deposited from an electrolytic solution in which chloride ions and glue or chloride ions and hydroxyethyl cellulose are added to an electrolytic solution of copper sulfate-sulfuric acid. Thus, an electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery is provided.
Preferably, the surface of the electrolytic copper foil is a copper surface roughened by a plating method, a vapor phase growth method, an etching method, or a polishing method.
Preferably, the surface of the electrolytic copper foil is a surface obtained by electrolytically depositing particles mainly composed of copper by a plating method.
Preferably, the surface of the electrolytic copper foil is a granular copper plating layer formed by copper burnt plating, and a dense copper plating layer (covered plating layer) that does not impair the irregular shape on the granular copper plating layer. ) And the surface formed.

Claims (9)

正極と、集電体の表面に電極構成活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池において、負極を構成する前記集電体は電解銅箔からなり、該電解銅箔の両面は電解析出で形成され、該電解析出面は柱状晶の結晶組織であるリチウムイオン二次電池。   In a lithium ion secondary battery comprising a positive electrode, a negative electrode in which an electrode constituent active material layer is formed on the surface of the current collector, and a non-aqueous electrolyte, the current collector constituting the negative electrode is made of an electrolytic copper foil, Both surfaces of the electrolytic copper foil are formed by electrolytic deposition, and the electrolytic deposition surface is a lithium ion secondary battery having a columnar crystal structure. 正極と、集電体の表面に電極構成活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池の前記負極を構成する集電体であって、該集電体は電解銅箔からなり、該電解銅箔の両面は電解析出で形成され、該電解析出面は柱状晶の結晶組織であるリチウムイオン二次電池用集電体。   A current collector constituting the negative electrode of a lithium ion secondary battery comprising a positive electrode, a negative electrode having an electrode-constituting active material layer formed on the surface of the current collector, and a non-aqueous electrolyte, wherein the current collector Is made of electrolytic copper foil, and both surfaces of the electrolytic copper foil are formed by electrolytic deposition, and the electrolytic deposition surface is a current collector for a lithium ion secondary battery having a columnar crystal structure. 正極と負極と非水電解液とを備えるリチウムイオン二次電池の前記負極集電体を構成する電解銅箔であって、該電解銅箔の両面は電解析出で形成され、該電解析出面は柱状晶の結晶組織であるリチウムイオン二次電池負極集電体用電解銅箔。   An electrolytic copper foil constituting the negative electrode current collector of a lithium ion secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein both sides of the electrolytic copper foil are formed by electrolytic deposition, and the electrolytic deposition surface Is an electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery, which has a columnar crystal structure. 正極及び集電体の表面に電極構成活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池において、負極を構成する前記集電体は銅を電解析出して形成する電解銅箔であって、該電解銅箔の第一表面はドラム面上に柱状晶の結晶組織の銅電析で形成した面であり、該第一表面と反対側の第二表面は、第一表面製膜後に、第一表面の裏側に柱状晶の結晶組織の銅電析で形成した面であるリチウムイオン二次電池。   In a lithium ion secondary battery comprising a negative electrode having an electrode active material layer formed on the surface of a positive electrode and a current collector and a non-aqueous electrolyte, the current collector constituting the negative electrode is formed by electrolytic deposition of copper The first surface of the electrolytic copper foil is a surface formed by copper electrodeposition of a columnar crystal structure on the drum surface, and the second surface opposite to the first surface is A lithium ion secondary battery which is a surface formed by copper electrodeposition of a columnar crystal structure on the back side of the first surface after the first surface film formation. 正極と、集電体の表面に電極構成活物質層が形成された負極と、非水電解液とを備えるリチウムイオン二次電池の前記二次電池を構成する負極集電体であって、該負極集電体は銅を電解析出して形成する電解銅箔であって、該電解銅箔の第一表面はドラム面上に柱状晶の結晶組織の銅電析で形成した面であり、該第一表面と反対側の第二表面は、第一表面製膜後に、第一表面の裏側に柱状晶の結晶組織の銅電析で形成した面であるリチウムイオン二次電池用負極集電体。   A negative electrode current collector constituting the secondary battery of a lithium ion secondary battery comprising a positive electrode, a negative electrode having an electrode-constituting active material layer formed on a surface of the current collector, and a non-aqueous electrolyte, The negative electrode current collector is an electrolytic copper foil formed by electrolytic deposition of copper, and the first surface of the electrolytic copper foil is a surface formed by copper electrodeposition of a columnar crystal structure on the drum surface, The second surface opposite to the first surface is a negative electrode current collector for a lithium ion secondary battery, which is a surface formed by copper electrodeposition of a columnar crystal structure on the back side of the first surface after the first surface film formation. . 正極と負極と非水電解液とを備えるリチウムイオン二次電池の前記二次電池を構成する負極集電体用電解銅箔であって、該電解銅箔は銅を電解析出して形成する電解銅箔であって、該電解銅箔の第一表面はドラム面上に柱状晶の結晶組織の銅電析で形成した面であり、該第一表面と反対側の第二表面は、第一表面製膜後に、第一表面の裏側に柱状晶の結晶組織の銅電析で形成した面であるリチウムイオン二次電池の負極集電体用電解銅箔。   An electrolytic copper foil for a negative electrode current collector constituting the secondary battery of a lithium ion secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, the electrolytic copper foil being formed by electrolytic deposition of copper A first surface of the electrolytic copper foil is a surface formed by copper electrodeposition of a columnar crystal structure on a drum surface, and a second surface opposite to the first surface is a first surface An electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery, which is a surface formed by copper electrodeposition of a columnar crystal structure on the back side of a first surface after surface film formation. 前記電解銅箔の表面が、めっき法、気相成長法、エッチング法、または研磨法により粗面化された表面であることを特徴とする請求項3又は6に記載のリチウムイオン二次電池の負極集電体用電解銅箔。   7. The lithium ion secondary battery according to claim 3, wherein the surface of the electrolytic copper foil is a surface roughened by a plating method, a vapor phase growth method, an etching method, or a polishing method. Electrolytic copper foil for negative electrode current collector. 前記電解銅箔の表面が、めっき法により銅を主成分とする粒子を電解析出した表面であることを特徴とする請求項3又は6に記載のリチウムイオン二次電池の負極集電体用電解銅箔。   The surface of the electrolytic copper foil is a surface on which particles mainly composed of copper are electrolytically deposited by a plating method, for a negative electrode current collector of a lithium ion secondary battery according to claim 3 or 6 Electrolytic copper foil. 前記電解銅箔の表面が、銅のやけめっきによる粒粉状銅めっき層と、該粒粉状銅めっき層上にその凹凸形状を損なわない緻密な銅めっき層(被せめっき層)とで形成された表面であることを特徴とする請求項3又は6に記載のリチウムイオン二次電池の負極集電体用電解銅箔。   The surface of the electrolytic copper foil is formed of a granular copper plating layer formed by copper burnt plating and a dense copper plating layer (covered plating layer) that does not impair the irregular shape on the granular copper plating layer. The electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery according to claim 3 or 6, wherein the surface is a copper surface.
JP2013528164A 2012-02-28 2013-02-28 Lithium ion secondary battery, current collector constituting the negative electrode of the secondary battery, and electrolytic copper foil constituting the negative electrode current collector Active JP5598884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013528164A JP5598884B2 (en) 2012-02-28 2013-02-28 Lithium ion secondary battery, current collector constituting the negative electrode of the secondary battery, and electrolytic copper foil constituting the negative electrode current collector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012041154 2012-02-28
JP2012041154 2012-02-28
JP2013528164A JP5598884B2 (en) 2012-02-28 2013-02-28 Lithium ion secondary battery, current collector constituting the negative electrode of the secondary battery, and electrolytic copper foil constituting the negative electrode current collector
PCT/JP2013/055458 WO2013129588A1 (en) 2012-02-28 2013-02-28 Lithium ion secondary battery, collector constituting negative electrode of lithium ion secondary battery, and electrolytic copper foil constituting negative electrode collector

Publications (2)

Publication Number Publication Date
JP5598884B2 JP5598884B2 (en) 2014-10-01
JPWO2013129588A1 true JPWO2013129588A1 (en) 2015-07-30

Family

ID=49082779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013528164A Active JP5598884B2 (en) 2012-02-28 2013-02-28 Lithium ion secondary battery, current collector constituting the negative electrode of the secondary battery, and electrolytic copper foil constituting the negative electrode current collector

Country Status (3)

Country Link
JP (1) JP5598884B2 (en)
TW (1) TW201338238A (en)
WO (1) WO2013129588A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6521806B2 (en) * 2015-09-05 2019-05-29 株式会社Uacj Method of manufacturing aluminum foil
EP3309278B1 (en) * 2015-09-05 2020-01-29 UACJ Corporation Method for manufacturing electrolytic aluminum foil
KR20180022208A (en) 2016-08-23 2018-03-06 엘에스엠트론 주식회사 Electrolytic Copper Foil, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
JP6726780B1 (en) * 2019-03-04 2020-07-22 ナミックス株式会社 Copper foil, negative electrode current collector for lithium ion battery including the same, and method for producing the same
US20210135233A1 (en) * 2019-10-30 2021-05-06 Chang Chun Petrochemical Co., Ltd. Copper foil having excellent heat resistance property
JP2021123726A (en) * 2020-01-31 2021-08-30 日本電解株式会社 Metal foil, method of producing the same, and method of processing electrodeposition drum to be used therefor
CA3172490A1 (en) * 2021-12-24 2023-06-24 Circuit Foil Luxembourg Double layered electrolytic copper foil and manufacturing method thereof
JP2024016510A (en) * 2022-07-26 2024-02-07 国立大学法人東海国立大学機構 Electrode for power storage device, secondary battery, and manufacturing method of electrode for power storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143785A (en) * 1995-09-22 1997-06-03 Furukawa Circuit Foil Kk Electrolytic copper foil for fine pattern and its production
JPH11273683A (en) * 1998-03-19 1999-10-08 Furukawa Electric Co Ltd:The Copper foil for negative electrode current collector of nonaqueous solvent secondary battery and its manufacture
WO2010110205A1 (en) * 2009-03-24 2010-09-30 古河電気工業株式会社 Lithium ion secondary battery, electrode for the battery, and electrodeposited copper foil for the electrode for the battery
JP2012033475A (en) * 2010-06-28 2012-02-16 Furukawa Electric Co Ltd:The Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode
JP5158918B2 (en) * 2011-06-28 2013-03-06 古河電気工業株式会社 Lithium ion secondary battery, current collector constituting the negative electrode of the secondary battery, and electrolytic copper foil constituting the negative electrode current collector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143785A (en) * 1995-09-22 1997-06-03 Furukawa Circuit Foil Kk Electrolytic copper foil for fine pattern and its production
JPH11273683A (en) * 1998-03-19 1999-10-08 Furukawa Electric Co Ltd:The Copper foil for negative electrode current collector of nonaqueous solvent secondary battery and its manufacture
WO2010110205A1 (en) * 2009-03-24 2010-09-30 古河電気工業株式会社 Lithium ion secondary battery, electrode for the battery, and electrodeposited copper foil for the electrode for the battery
JP2012033475A (en) * 2010-06-28 2012-02-16 Furukawa Electric Co Ltd:The Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode
JP5158918B2 (en) * 2011-06-28 2013-03-06 古河電気工業株式会社 Lithium ion secondary battery, current collector constituting the negative electrode of the secondary battery, and electrolytic copper foil constituting the negative electrode current collector

Also Published As

Publication number Publication date
WO2013129588A1 (en) 2013-09-06
TW201338238A (en) 2013-09-16
JP5598884B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5598884B2 (en) Lithium ion secondary battery, current collector constituting the negative electrode of the secondary battery, and electrolytic copper foil constituting the negative electrode current collector
JP5158918B2 (en) Lithium ion secondary battery, current collector constituting the negative electrode of the secondary battery, and electrolytic copper foil constituting the negative electrode current collector
JP5090028B2 (en) Copper foil for negative electrode current collector of lithium secondary battery and method for producing the same
JP5666839B2 (en) Negative electrode for secondary battery, negative electrode current collector, secondary battery, and production method thereof
JP5466664B2 (en) Porous metal foil and method for producing the same
JP5400826B2 (en) Composite metal foil and manufacturing method thereof
JP4053576B2 (en) Anode for non-aqueous electrolyte secondary battery
JP4823384B1 (en) Copper foil for current collector of lithium secondary battery
KR20160138321A (en) Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector
JP2012151106A (en) Lithium ion secondary battery, negative electrode for the battery, and electrolytic copper foil for collector of the negative electrode for the battery
KR101346956B1 (en) Negative electrodes for secondary battery, copper foil for electrode, secondary battery, and processes for producing negative electrodes for secondary battery
JP2008277156A (en) Negative electrode for nonaqueous electrolyte secondary battery
TW201312839A (en) Method for producing negative electrode material of lithium ion secondary cell and negative electrode material for lithium ion secondary cell
CN111316486B (en) Electrolytic copper foil, method for producing same, and negative electrode for high-capacity lithium secondary battery comprising same
JP2006202635A (en) Copper foil for lithium secondary battery electrode, manufacturing method of copper foil, electrode for lithium secondary battery using copper foil, and lithium secondary battery
TWI747626B (en) Electrolytic copper foil to be prevented from being torn and wrinkled, electrode including the electrolytic copper foil, secondary battery including the electrode, and method of manufacturing the electrolytic copper foil
JPWO2004049476A1 (en) Negative electrode current collector for non-aqueous electrolyte secondary battery and method for producing the same
JP2013077462A (en) COPPER FOIL FOR Li BATTERY COLLECTOR, ELECTRODE FOR Li BATTERY USING THE SAME, AND Li BATTERY
JP6611751B2 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP2008041347A (en) Negative electrode for lithium ion secondary battery, and method for manufacturing the same
JP4460055B2 (en) Copper foil for lithium secondary battery electrode and method for producing the same, electrode for lithium secondary battery and lithium secondary battery using the copper foil
JP2006228652A (en) Copper foil for electrode of lithium secondary battery and its manufacturing method, and electrode for lithium secondary battery and lithium secondary battery using the copper foil
JP2013187114A (en) Copper foil for lithium secondary battery collector, and display method thereof, negative electrode for lithium secondary battery using copper foil, and lithium secondary battery
JP5117213B2 (en) Copper foil for negative electrode of lithium ion secondary battery and negative electrode for lithium ion secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140805

R151 Written notification of patent or utility model registration

Ref document number: 5598884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350