JPWO2013080255A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JPWO2013080255A1
JPWO2013080255A1 JP2013546838A JP2013546838A JPWO2013080255A1 JP WO2013080255 A1 JPWO2013080255 A1 JP WO2013080255A1 JP 2013546838 A JP2013546838 A JP 2013546838A JP 2013546838 A JP2013546838 A JP 2013546838A JP WO2013080255 A1 JPWO2013080255 A1 JP WO2013080255A1
Authority
JP
Japan
Prior art keywords
heat medium
heat
refrigerant
heat exchanger
indoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013546838A
Other languages
English (en)
Other versions
JP5710021B2 (ja
Inventor
嶋本 大祐
大祐 嶋本
森本 修
修 森本
孝好 本多
孝好 本多
幸志 東
幸志 東
浩二 西岡
浩二 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2013080255A1 publication Critical patent/JPWO2013080255A1/ja
Application granted granted Critical
Publication of JP5710021B2 publication Critical patent/JP5710021B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0312Pressure sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

圧縮機、冷媒流路切替装置、熱源側熱交換器、複数の絞り装置、熱源側冷媒と該冷媒と異なる熱媒体との間で熱交換する複数の熱媒体間熱交換器の冷媒側流路を、冷媒配管で接続して熱源側冷媒を循環させる冷媒循環回路と、ポンプ、複数の熱媒体流路切替装置、室内機として作用する複数の利用側熱交換器、複数の熱媒体流量調整装置、各熱媒体間熱交換器の熱媒体側流路を熱媒体配管で接続して熱媒体を循環させる熱媒体循環回路と、熱媒体間熱交換器から利用側熱交換器に送られる熱媒体の温度及び各利用側熱交換器から流出した熱媒体の温度を検出する温度検出手段と、熱媒体流量調整装置における熱媒体の流量を調整する開度制御手段と、ポンプの回転数、熱媒体流量調整装置の開度、及び温度検出手段の検出温度、及び各室内機自体の消費電力から、各室内機の使用能力を算出し、算出した各使用能力と各室内機に共通部分の消費電力とを基に、共通部分の消費電力を各室内機毎に按分する演算手段と、を備える。

Description

本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置に関するものである。
空気調和装置には、ビル用マルチエアコンなどのように、熱源機(室外機)が建物外に配置され、室内機が建物の室内に配置されたものがある。このような空気調和装置の冷媒回路を循環する冷媒は、室内機の熱交換器に供給される空気に放熱(吸熱)して、当該空気を加温又は冷却する。そして、加温又は冷却された空気が、空調対象空間に送り込まれて暖房又は冷房が行われるようになっている。
このような空気調和装置は、通常ビルが室内空間を複数有しているので、それに応じて室内機も複数からなる。また、ビルの規模が大きい場合には、室外機と室内機とを接続する冷媒配管が100mになる場合がある。室外機と室内機とを接続する配管長が長いと、その分だけ冷媒回路に充填される冷媒量が増加する。
このようなビル用マルチエアコンの室内機は、人が居る室内空間(たとえば、オフィス空間や居室、店舗等)に配置されて利用されることが通常である。何らかの原因によって、室内空間に配置された室内機から冷媒が漏れた場合、冷媒の種類によっては引火性、有毒性を有しているものもあり、人体への影響及び安全性の観点から問題となる可能性がある。また、人体に有害ではない冷媒であったとしても、冷媒漏れによって、室内空間での酸素濃度が低下し、人体に影響を及ぼすことも想定される。
このような課題に対応するために、空気調和装置に2次ループ方式を採用し、1次側ループには冷媒を用い、2次側ループには有害でない水やブラインを用い、人の居る空間を空調する方法が考えられている(たとえば、特許文献1参照)。
これとは別に、ビル用マルチエアコンにおいて、室内機を使用するテナント毎に電気代を計算する必要があった。そのため、室内機能力を室内機に付随する電子膨張弁開度等から室内機の使用能力により按分するようにしていたが、特許文献1に記載されているような新しい2次ループ方式の空気調和方式では、室内機の負荷計算方法がなく、冷媒を使用する従来のビル用マルチの方法を用いることができなかった。
特開2000−227242号公報(要約、第1図)
特許文献1のような2次ループ方式の空気調和装置においては、従来のビル用マルチエアコンのように室内機を使用するテナント毎に電気代を計算する手段及び方法案がなく、個別電気代計算を実施することができなかった。
本発明に係る空気調和装置は、熱源機側の熱媒体に冷媒、利用側の熱媒体に水等を使用する2次ループ方式のビル用マルチエアコンでも、共通部分の消費電力を室内機毎に按分できるようにして、室内機毎の消費電力使用料金計算を可能にするものである。
本発明の空気調和装置は、圧縮機、冷媒流路切替装置、熱源側熱交換器、複数の絞り装置、熱源側冷媒と該冷媒と異なる熱媒体との間で熱交換する複数の熱媒体間熱交換器の冷媒側流路を、冷媒配管で接続して熱源側冷媒を循環させる冷媒循環回路と、ポンプ、複数の熱媒体流路切替装置、室内機として作用する複数の利用側熱交換器、複数の熱媒体流量調整装置、各熱媒体間熱交換器の熱媒体側流路を熱媒体配管で接続して熱媒体を循環させる熱媒体循環回路と、熱媒体間熱交換器から利用側熱交換器に送られる熱媒体の温度及び各利用側熱交換器から流出した熱媒体の温度を検出する温度検出手段と、熱媒体流量調整装置における熱媒体の流量を調整する開度制御手段と、ポンプの回転数、熱媒体流量調整装置の開度、及び温度検出手段の検出温度、及び各室内機自体の消費電力から、各室内機の使用能力を算出し、算出した各使用能力と各室内機に共通部分の消費電力とを基に、共通部分の消費電力を各室内機毎に按分する演算手段と、を備える。
2次ループ回路方式を利用した空気調和装置において、共通部分の消費電力を室内機毎に按分できることになり、室内機毎の消費電力使用料金計算が可能となった。
本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態に係る空気調和装置の冷媒回路構成例である。 図2に示す熱媒体循環回路B空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。 図2に示す空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。 図2に示す空気調和装置の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。 図2に示す空気調和装置の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本実施の形態に係る空気調和装置に採用される全冷房・全暖房運転時の室内機の消費電力按分量計算フロー(パターンA)を説明するフローチャートである。 本実施の形態に係る空気調和装置に採用される全冷房・全暖房運転時の室内機の消費電力按分量計算フロー(パターンB)を説明するフローチャートである。 本実施の形態に係る空気調和装置に採用される冷房暖房混在運転時の室内機の消費電力按分量計算フロー(パターンC)を説明するフローチャートである。 本実施の形態で利用する流量調整弁の開度Fcvの補正方法を示した図である。 Fcv補正のための基準表の例示図である
実施の形態1.
まず、図1、図2に基づいて、本発明の実施の形態に係る空気調和装置100の概要を説明する。本実施の形態に係る空気調和装置100は、熱源側冷媒としてたとえばR−22、R−134a等の単一冷媒、R−410A、R−404A等の擬似共沸混合冷媒、R−407C等の非共沸混合冷媒、化学式内に二重結合を含む、CFCF=CH等の地球温暖化係数が比較的小さい値とされている冷媒やその混合物、あるいはCOやプロパン等の自然冷媒が採用された冷媒循環回路A(図2参照)と、利用側熱媒体として水などが採用された熱媒体循環回路B(図2参照)を有している。冷媒循環回路Aは冷凍サイクルを構成しており、熱媒体循環回路Bを構成している室内機2(2a〜2d)のそれぞれが、運転モードとして、冷房モードあるいは暖房モードを自由に選択できるものである。
本実施の形態に係る空気調和装置100は、熱源側冷媒を間接的に利用する方式(間接方式)を採用している。すなわち、熱源側冷媒に貯えた冷熱または温熱を、熱源側冷媒とは異なる熱媒体(以下、単に熱媒体と称する)に伝達し、熱媒体に貯えた冷熱または温熱で空調空間を冷房または暖房する。
図1に図示されるように、本実施の形態に係る空気調和装置100は、熱源機である1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する熱媒体変換機(中継器)3と、を有している。熱媒体変換機3は、熱源側冷媒と熱媒体との間で熱交換を行なうものである。室外機1と熱媒体変換機3とは、熱源側冷媒を循環させるための冷媒配管4で接続されている。熱媒体変換機3と室内機2とは、熱媒体を循環させるための配管(熱媒体配管)5で接続されている。
室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、熱媒体変換機3を介して室内機2に冷熱又は温熱を供給するものである。
室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に冷房用空気、或いは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。
熱媒体変換機3は、室外機1及び室内機2とは別筐体として、室外空間6及び室内空間7とは別の位置(ここでは空間8)に設置されるものである。熱媒体変換機3は、室外機1及び室内機2と、冷媒配管4及び配管5を介してそれぞれ接続されている。そして、室外機1から供給される冷熱又は温熱が、熱媒体変換機3を介して室内機2に伝達される。
図1に図示されるように、本実施の形態に係る空気調和装置100においては、室外機1と熱媒体変換機3とが2本の冷媒配管4を介して接続され、熱媒体変換機3と各室内機2a〜2dとが2本の配管5を介して接続されている。このように、実施の形態1に係る空気調和装置100では、冷媒配管4、及び配管5を介して各ユニット(室外機1、室内機2及び熱媒体変換機3)を接続することにより、施工が容易となっている。
なお、図1においては、熱媒体変換機3が、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間8に設置されている状態を例として図示している。熱媒体変換機3は、その他、エレベーター等がある共用空間等に設置してもよい。また、図1においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定されるものではない。すなわち、空気調和装置100は、天井埋込型、天井吊下式、室内空間7に直接又はダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていれば、どんな種類のものでもよい。
また、図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよいし、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよい。また、水冷式の室外機1を用いる場合においても、建物9の内部に設置するようにしてもよい。このような場所に室外機1を設置するとしても、特段の問題が発生することはない。
また、熱媒体変換機3は、室外機1の近傍に設置することもできる。ただし、熱媒体変換機3から室内機2までの距離が長すぎると、熱媒体の搬送動力がかなり大きくなるため、省エネの効果は薄れることに留意が必要である。さらに、室外機1、室内機2及び熱媒体変換機3の接続台数を図1に図示された台数に限定するものではなく、たとえば、空気調和装置100が設置される建物9に応じて台数を決定すればよい。
次に、図2に基づき、本実施の形態に係る空気調和装置100の冷媒及び熱媒体の回路構成について説明する。図2に示すように、室外機1と熱媒体変換機3とが、熱媒体変換機3に備えられている熱媒体間熱交換器15(15a,15b)を介して冷媒配管4で接続されている。また、熱媒体変換機3と室内機2も、熱媒体間熱交換器15(15a,15b)を介して配管5で接続されている。
[室外機1]
室外機1には、冷媒を圧縮する圧縮機10、四方弁等で構成される第1冷媒流路切替装置11、蒸発器又は凝縮器として機能する熱源側熱交換器12、及び余剰冷媒を貯留するアキュムレーター19が冷媒配管4に接続されて搭載されている。
また、室外機1には、第1接続配管4a、第2接続配管4b、逆止弁13(13a〜13d)が設けられている。第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び逆止弁13dを設けることで、室内機2の要求する運転に関わらず、熱媒体変換機3に流入させる熱源側冷媒の流れを一定方向にすることができる。
圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。
第1冷媒流路切替装置11は、暖房運転モード時(全暖房運転モード時及び暖房主体運転モード時)における熱源側冷媒の流れと冷房運転モード時(全冷房運転モード時及び冷房主体運転モード時)における熱源側冷媒の流れとを切り替えるものである。
熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能し、図示省略のファン等の送風機から供給される空気と熱源側冷媒との間で熱交換を行なうものである。
また、圧縮機10の前後には圧力検知装置である第2圧力センサー37と第3圧力センサー38が設けられており、圧縮機10の回転数とこの圧力検知装置37、38の検知値から、圧縮機10から吐出される冷媒流量を計算できるようになっている。
[室内機2]
室内機2(2a〜2d)には、それぞれ利用側熱交換器26(26a〜26d)が搭載されている。この利用側熱交換器26は、配管5によって熱媒体変換機3の熱媒体流量調整装置25(25a〜25d)と第2熱媒体流路切替装置23(23a〜23d)に接続されている。この利用側熱交換器26は、図示省略のファン等の送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。室内機2(2a〜2d)にはまた、吸込空気温度センサー39(39a〜39d)が設けられている。
[熱媒体変換機3]
熱媒体変換機3には、冷媒と熱媒体とが熱交換する2つの熱媒体間熱交換器15(15a,15b)、冷媒を減圧させる2つの絞り装置16(16a,16b)、冷媒配管4の流路を開閉する2つの開閉装置17(17a,17b)、冷媒流路を切り替える2つの第2冷媒流路切替装置18(18a,18b)、熱媒体を循環させる2つのポンプ21(21a,21b)、配管5の一方に接続される4つの第1熱媒体流路切替装置22(22a〜22d)、配管5の他方に接続される4つの第2熱媒体流路切替装置23(23a〜23d)、及び、第2熱媒体流路切替装置22(22a〜22d)が接続される方の配管5に接続される4つの熱媒体流量調整装置25(25a〜25d)が設けられている。
熱媒体間熱交換器15a、15bは、凝縮器(放熱器)又は蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行ない、室外機1で生成され熱源側冷媒に貯えられた冷熱又は温熱を熱媒体に伝達するものである。熱媒体間熱交換器15aは、冷媒循環回路Aにおける絞り装置16aと第2冷媒流路切替装置18aとの間に設けられており、冷房暖房混在運転モード時においては、熱媒体の冷却に供するものである。熱媒体間熱交換器15bは、冷媒循環回路Aにおける絞り装置16bと第2冷媒流路切替装置18bとの間に設けられており、冷房暖房混在運転モード時においては、熱媒体の加熱に供するものである。
絞り装置16a、16bは、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置16aは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの上流側に設けられている。絞り装置16bは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられている。これらの絞り装置16は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
開閉装置17a、17bは、二方弁等で構成されており、冷媒配管4を開閉するものである。
第2冷媒流路切替装置18a、18bは、四方弁等で構成され、運転モードに応じて熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置18aは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの下流側に設けられている。第2冷媒流路切替装置18bは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの下流側に設けられている。
ポンプ21a、21bは、配管5内の熱媒体を循環させるものである。ポンプ21aは、熱媒体間熱交換器15aと第2熱媒体流路切替装置23との間における配管5に設けられている。ポンプ21bは、熱媒体間熱交換器15bと第2熱媒体流路切替装置23との間における配管5に設けられている。これらのポンプ21は、たとえば容量制御可能なポンプ等で構成するとよい。なお、ポンプ21aを、熱媒体間熱交換器15aと第1熱媒体流路切替装置22との間における配管5に設けてもよい。また、ポンプ21bを、熱媒体間熱交換器15bと第1熱媒体流路切替装置22との間における配管5に設けてもよい。
第1熱媒体流路切替装置22a〜22dは、三方弁等で構成されており、熱媒体の流路を切り替えるもので、室内機2の設置台数に応じた個数が設けられている。第1熱媒体流路切替装置22の三方は、それぞれ、熱媒体間熱交換器15a、熱媒体間熱交換器15b、及び熱媒体流量調整装置25に接続されている。なお、室内機2に対応させて、紙面下側から第1熱媒体流路切替装置22a、第1熱媒体流路切替装置22b、第1熱媒体流路切替装置22c、第1熱媒体流路切替装置22dとして図示している。
第2熱媒体流路切替装置23a〜23dは、三方弁等で構成されており、熱媒体の流路を切り替えるもので、室内機2の設置台数に応じた個数が設けられている。第2熱媒体流路切替装置23の三方は、それぞれ、熱媒体間熱交換器15a、熱媒体間熱交換器15b、及び利用側熱交換器26に接続されている。第2熱媒体流路切替装置23は利用側熱交換器26の熱媒体流路の入口側に設けられている。なお、室内機2に対応させて、紙面下側から第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23b、第2熱媒体流路切替装置23c、第2熱媒体流路切替装置23dとして図示している。
熱媒体流量調整装置25a〜25dは、開口面積を制御できる二方弁等で構成されており、配管5に流れる熱媒体の流量を調整するものである。熱媒体流量調整装置25は、室内機2の設置台数に応じた個数が設けられている。熱媒体流量調整装置25は、一方が利用側熱交換器26に、他方が第1熱媒体流路切替装置22に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から熱媒体流量調整装置25a、熱媒体流量調整装置25b、熱媒体流量調整装置25c、熱媒体流量調整装置25dとして図示している。また、熱媒体流量調整装置25を利用側熱交換器26の熱媒体流路の入口側に設けてもよい。
また、熱媒体変換機3には、熱媒体間熱交換器15から出た熱媒体の温度を測定する第1温度センサー31(31a,31b)、室内機2から出た熱媒体の温度を測定する第2温度センサー34(34a〜34d)、熱媒体間熱交換器15の出入口の冷媒温度を測定する第3温度センサー35(35a〜35d)を備えている。さらに、第4温度センサー50及び第1圧力センサー36も設けられている。これらのセンサーで検知された情報(たとえば、温度情報や圧力情報)は、空気調和装置100の動作を統括制御する制御装置52,57に送られ、圧縮機10の駆動周波数、熱源側熱交換器12及び利用側熱交換器26近傍に設けられる図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動周波数、第2冷媒流路切替装置18の切り替え、熱媒体の流路の切り替え等の制御に利用されることになる。
制御装置52,57は、マイコン等で構成されており、演算装置52の算出結果に基づいて、蒸発温度、凝縮温度、飽和温度、過熱度、及び過冷却度を計算する。そして、制御装置は、これらの計算結果に基づいて、絞り装置16の開度、圧縮機10の回転数、熱源側熱交換器12や利用側熱交換器26のファンの速度(ON/OFF含む)等を制御し、空気調和装置100の動作を調整する。その他に、制御装置は、各センサーでの検知情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動、絞り装置16の開度、開閉装置17の開閉、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、及び、熱媒体流量調整装置25の開度等を制御するものである。すなわち、制御装置52,57は、後述する各運転モードを実行するために、各種機器を統括制御するものである。
さらに、本実施の形態では、制御装置52、57の何れかが、後述する室内機2毎の消費電力按分量の算出を行う。なお、この例では、制御装置52を熱媒体変換機3に設け、制御装置57を室外機1に設けた例を示したが、それらを一体としてもよい。
第1温度センサー31a、31bは、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15の出口における熱媒体の温度を検知するものである。第1温度センサー31aは、ポンプ21aの入口側における配管5に設けられている。第1温度センサー31bは、ポンプ21bの入口側における配管5に設けられている。
第2温度センサー34a〜34dは、第1熱媒体流路切替装置22と熱媒体流量調整装置25との間に設けられ、利用側熱交換器26から流出した熱媒体の温度を検知するものである。第2温度センサー34は、室内機2の設置台数に応じた個数が設けられている。なお、室内機2に対応させて、紙面下側から第2温度センサー34a、第2温度センサー34b、第2温度センサー34c、第2温度センサー34dとして図示している。
第3温度センサー35a〜35dは、熱媒体間熱交換器15の熱源側冷媒の入口側または出口側に設けられ、熱媒体間熱交換器15に流入出する熱源側冷媒の温度を検知するものである。第3温度センサー35aは、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間に設けられている。第3温度センサー35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設けられている。第3温度センサー35cは、熱媒体間熱交換器15bと第2冷媒流路切替装置18bとの間に設けられている。第3温度センサー35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。
第4温度センサー50は、蒸発温度と露点温度を算出する際に使用する温度情報を得るものであり、絞り装置16aと絞り装置16bの間に設けられている。
熱媒体を循環させるための配管5は、熱媒体間熱交換器15aに接続されるものと、熱媒体間熱交換器15bに接続されるものと、で構成されている。配管5は、熱媒体変換機3に接続される室内機2の台数に応じて分岐され、第1熱媒体流路切替装置22、及び第2熱媒体流路切替装置23で接続されている。第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を制御することで、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるか、が決定されるようになっている。
空気調和装置100は、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、第2冷媒流路切替装置18、熱媒体間熱交換器15の冷媒流路、絞り装置16、及び、アキュムレーター19を、冷媒配管4で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器15の熱媒体流路、ポンプ21、第1熱媒体流路切替装置22、熱媒体流量調整装置25、利用側熱交換器26、及び、第2熱媒体流路切替装置23を、配管5で接続して熱媒体循環回路Bを構成している。そして、熱媒体間熱交換器15のそれぞれに複数台の利用側熱交換器26が並列に接続されて、熱媒体循環回路Bが複数系統になっている。
よって、空気調和装置100では、室外機1と熱媒体変換機3とが、熱媒体変換機3に設けられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続され、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器15a及び熱媒体間熱交換器15bで、冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体とが、熱交換するようになっている。
[運転モードの説明]
次に、空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。
空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モード、冷房負荷の方が大きい冷房暖房混在運転モードとしての冷房主体運転モード、及び、暖房負荷の方が大きい冷房暖房混在運転モードとしての暖房主体運転モードがある。以下に、各運転モードについて、熱源側冷媒及び熱媒体の流れとともに説明する。
[全冷房運転モード]
図3は、図2に示す空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図3では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図3では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図3では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図3に示す全冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと、利用側熱交換器26a及び利用側熱交換器26bの双方との間を熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら高圧の液冷媒となる。熱源側熱交換器12から流出した高圧冷媒は、逆止弁13aを通って、室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高圧冷媒は、開閉装置17aを経由した後に分岐されて絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。なお、開閉装置17bは閉となっている。
この二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出したガス冷媒は、第2冷媒流路切替装置18a、第2冷媒流路切替装置18bを介し、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
このとき、第2冷媒流路切替装置18a、18bは低圧配管と連通されている。また、絞り装置16aは、第3温度センサー35aで検知された温度と第3温度センサー35bで検知された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、絞り装置16bは、第3温度センサー35cで検知された温度と第3温度センサー35dで検知された温度との差として得られるスーパーヒートが一定になるように開度が制御される。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
全冷房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気から吸熱することで、室内空間7の冷房を行なう。
それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて、利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検知された温度、あるいは、第1温度センサー31bで検知された温度と、第2温度センサー34で検知された温度との差を目標値として保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。
全冷房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図3において、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
第4温度センサー50の位置における冷媒は液冷媒であり、この温度情報をもとに制御装置52によって、液入口エンタルピーが算出できる。また、第3温度センサー35dから低圧二相温状態の温度を検知し、この温度情報をもとに制御装置52によって飽和液エンタルピー及び飽和ガスエンタルピーが算出できる。
[全暖房運転モード]
図4は、図2に示す空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図4では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図4では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図4に示す全暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を、熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと、利用側熱交換器26a及び利用側熱交換器26bの双方との間を熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11、逆止弁13bを通り、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、分岐されて第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。
熱媒体間熱交換器15a及び熱媒体間熱交換器15bに流入した高温・高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら高圧の液冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。この二相冷媒は、開閉装置17bを通って、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。なお、開閉装置17aは閉となっている。
室外機1に流入した冷媒は、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
このとき、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bは高圧配管と連通されている。また、絞り装置16aは、第1圧力センサー36で検知された圧力を飽和温度に換算した値と第3温度センサー35bで検知された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、絞り装置16bは、第1圧力センサー36で検知された圧力を飽和温度に換算した値と第3温度センサー35dで検知された温度との差として得られるサブクールが一定になるように開度が制御される。なお、熱媒体間熱交換器15の中間位置の温度が測定できる場合は、その中間位置での温度を第1圧力センサー36の代わりに用いてもよく、安価にシステムを構成できる。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
全暖房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気に放熱することで、室内空間7の暖房を行なう。
それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検知された温度、あるいは、第1温度センサー31bで検知された温度と第2温度センサー34で検知された温度との差を目標値として保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。
このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。また、本来、利用側熱交換器26aは、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31bで検知された温度とほとんど同じ温度であり、第1温度センサー31bを使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。
全暖房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図4において、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[冷房主体運転モード]
図5は、図2に示す空気調和装置100の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図5では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図5では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図5に示す冷房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26aとの間を、熱媒体間熱交換器15bと利用側熱交換器26bとの間を、それぞれ熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら液冷媒となる。熱源側熱交換器12から流出した冷媒は、室外機1から流出し、逆止弁13a、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
熱媒体間熱交換器15bに流入した冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら、さらに温度が低下した冷媒となる。熱媒体間熱交換器15bから流出した冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低圧のガス冷媒となる。このガス冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13d、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
このとき、第2冷媒流路切替装置18aは低圧配管と連通されており、一方、第2冷媒流路切替装置18bは高圧側配管と連通されている。また、絞り装置16bは、第3温度センサー35aで検知された温度と第3温度センサー35bで検知された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17a、17bは閉となっている。なお、絞り装置16bは、第1圧力センサー36で検知された圧力を飽和温度に換算した値と第3温度センサー35dで検知された温度との差として得られるサブクールが一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aでスーパーヒートまたはサブクールを制御するようにしてもよい。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
冷房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、冷房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21aで加圧されて流出した冷やされた熱媒体は、第2熱媒体流路切替装置23aを介して、利用側熱交換器26aに流入する。一方、ポンプ21bで加圧されて流出した暖められた熱媒体は、第2熱媒体流路切替装置23bを介して、利用側熱交換器26bに流入する。
利用側熱交換器26bでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。一方、利用側熱交換器26aを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。
この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検知された温度と第2温度センサー34で検知された温度との差を、冷房側においては第2温度センサー34で検知された温度と第1温度センサー31aで検知された温度との差を目標値として保つように制御することにより、賄うことができる。
冷房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図5において、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[暖房主体運転モード]
図6は、図2に示す空気調和装置100の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図6では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図6では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図6では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図6に示す暖房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を、熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26bとの間を、熱媒体間熱交換器15bと利用側熱交換器26aとの間を、それぞれ熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11、逆止弁13bを通り、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
熱媒体間熱交換器15bに流入したガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら液冷媒となる。熱媒体間熱交換器15bから流出した冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介し、熱媒体変換機3から流出し、再び室外機1へ流入する。
室外機1に流入した冷媒は、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
このとき、第2冷媒流路切替装置18aは低圧側配管と連通されており、一方、第2冷媒流路切替装置18bは高圧側配管と連通されている。また、絞り装置16bは、第1圧力センサー36で検知された圧力を飽和温度に換算した値と第3温度センサー35bで検知された温度との差として得られるサブクールが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17a、17bは閉となっている。なお、絞り装置16bを全開とし、絞り装置16aでサブクールを制御するようにしてもよい。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
暖房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21bで加圧されて流出した暖められた熱媒体は、第2熱媒体流路切替装置23aを介して、利用側熱交換器26aに流入する。一方、ポンプ21aで加圧されて流出した冷やされた熱媒体は、第2熱媒体流路切替装置23bを介して、利用側熱交換器26bに流入する。
利用側熱交換器26aでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また利用側熱交換器26bでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって、熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて、利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。一方、利用側熱交換器26aを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。
この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検知された温度と第2温度センサー34で検知された温度との差を、冷房側においては第2温度センサー34で検知された温度と第1温度センサー31aで検知された温度との差を目標値として保つように制御することにより、賄うことができる。
暖房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図6において、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[冷媒配管4]
以上説明したように、実施の形態1に係る空気調和装置100の各運転モードにおいて、室外機1と熱媒体変換機3とを接続する冷媒配管4には熱源側冷媒が流れている。
[配管5]
本実施の形態1に係る空気調和装置100の各運転モードにおいて、熱媒体変換機3と室内機2を接続する配管5には水や不凍液等の熱媒体が流れている。
[熱媒体]
熱媒体としては、たとえばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液等を用いることができる。したがって、空気調和装置100においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
空気調和装置100は、冷房暖房混在運転ができるものとして説明をしてきたが、これに限定するものではない。たとえば、熱媒体間熱交換器15及び絞り装置16がそれぞれ1つで、それらに複数の利用側熱交換器26と複数の熱媒体流量調整装置25が並列に接続され、冷房運転か暖房運転のいずれかしか行なえない構成であっても同様の効果を奏する。
さらに、熱媒体流量調整装置25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよい。
また、一般的に、熱源側熱交換器12及び利用側熱交換器26には、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。たとえば、利用側熱交換器26としては放射を利用したパネルヒーターのようなものを用いることもできるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものを用いることもできる。つまり、熱源側熱交換器12及び利用側熱交換器26としては、放熱あるいは吸熱をできる構造のものであれば種類を問わず、用いることができる。
次に、本発明の実施の形態に係る室内機の消費電力計算方法を説明する。
図7は、本実施の形態に係る空気調和装置100に採用される全冷・全暖時の室内機2毎の消費電力按分量の計算方法(パターンA)を説明するフローチャートである。
(ステップ1)
最初に、計算に必要な計測を実施する。計測値は、ポンプ21の出口又は入口の温度(ここでは第1温度センサー31a、31bの計測値T31a、T31b)、室内機2側からの熱媒体の戻りの温度T34(ここでは第2温度センサー34a〜34dの計測値T34a〜T34d)、熱媒体流量調整装置25(25a〜25d)の弁開度Fcv(Fcva、Fcvb、Fcvc、Fcvd)、ポンプ21の回転数Pump(ここでは21aと21bで同じ回転数とする)、室外機1と熱媒体変換機(中継器)3の消費電力Z[kW]、室内機2の消費電力I(Ia、Ib、Ic、Id[kW])である。なお、第1温度センサー31a、31bの計測値T31a、T31bを基に、それらの平均値T31を求めておく。
(ステップ2)
次に、室内機2の前後の熱媒体の温度差ΔT(=T34−T31[冷房]、=T31−T34[暖房])を各室内機2(2a〜2d)毎に計算する。
(ステップ3)
また、ポンプ21の回転数Pumpと、熱媒体流量調整装置25(25a〜25d)の弁開度Fcv(Fcva〜Fcvd)合計値から、ポンプ21の流量合計値Grを計算する。
(ステップ4)
さらに、ポンプの流量合計値Grと各弁開度Fcv(Fcva〜Fcvd)から、各室内機2の水流量Gra、Grb、Grc、Grd[kg/s]を計算する。
(ステップ5)
そして、各室内機2の能力Q(Qa〜Qd)を計算する。冷房の場合は、温度差ΔTと上記水流量を掛けた値から室内機消費電力Iを引いて算出し、暖房の場合の場合は、温度差ΔTと上記水流量を掛けた値に室内機消費電力Iを足して算出する。
(ステップ6)
次に、室外機1と熱媒体変換機3の消費電力の合計Zを、各室内機の能力Q(Qa〜Qd)に応じて按分して、空気調和装置の共通部消費電力按分量を計算する。
(ステップ7)
ステップ6で算出した共通部消費電力按分量に各室内機2自体の消費電力を足して、室内機2(2a〜2d)毎の消費電力按分量を算出する。
以上により、熱媒体として冷媒と水等を使用する2次ループ方式を利用する空気調和装置においても、共通部分の使用電力量が按分できるので、室内機毎の利用電力代を計算できることになり、正確に電力代の分配が可能となる。
図8は、本実施の形態に係る空気調和装置100に採用される全冷・全暖時の室内機2毎の消費電力按分量の計算方法(パターンB)を説明するフローチャートである。図8は、図7での計算方法において、室外機2、熱媒体変換機(中継器)3、室内機2の消費電力Iを、各々の運転状態から計算するようにしたものである。
(ステップ1)
まず、計算に必要な計測を実施する。ここでの計測値は、図7での計測値のうちで、室外機1と熱媒体変換機(中継器)3の消費電力Z[kW]と、室内機の消費電力Iの部分を、以下の計測値に代えたものである。すなわち、室外機3の高圧検知値37と低圧検知値38(これは圧縮機10の前後に設けた第2圧力センサー37と第3圧力センサー38の計測値から得る)、圧縮機10の回転数、室内機2のファンスピード。
(ステップ2)、(ステップ3)、(ステップ4)の内容は図7と同じある。
(ステップ5)
各室内機2の能力Q(Qa〜Qd)を計算する。冷房の場合は、温度差ΔTと上記水流量を掛けた値から室内機消費電力Iを引いて算出し、暖房の場合の場合は、温度差ΔTと上記水流量を掛けた値に室内機消費電力Iを足して算出する。なお、室内機の消費電力Iは、ステップ7‘で計算されるものである。
(ステップ6‘)
室外機1の高圧検知値37と低圧検知値38と圧縮機10の回転数から室外機消費電力を計算し、その計算値に熱媒体変換機(中継器)3の消費電力(一定値)を合計してZ[kW]を計算する。
(ステップ6)
室外機消費電力と中継器消費電力の合計Zを各室内機2の能力Qで按分し、共通部消費電力按分量を計算する。
(ステップ7‘)
各室内機2のファンスピードから、予め記憶しておいた室内機消費電力を計算する。
(ステップ7)
ステップ6で算出した共通部消費電力按分量の計算値に各室内機2自体の消費電力を足すことで、室内機2(2a〜2d)毎の消費電力按分量を算出する。
以上のように、室外機および室内機の実際の運転情報を利用することで、図7の場合と同様の効果を奏する事ができる。
図9は、本実施の形態に係る空気調和装置100に採用される冷房暖房混在運転時の室内機2毎の消費電力按分量の計算方法(パターンC)を説明するフローチャートである。
(ステップ1)
まず、計算に必要な計測を実施する。計測の対象については図8の場合と同じであるが、ポンプ21a、21bの出口温度は、図8のように平均値とするのではなく、それぞれの測定値が利用される。
(ステップ2)
各室内機の温度差ΔT(=T34−T31a[冷房]、=T31b−T34[暖房])を各室内機2(2a〜2d)毎に計算する。
(ステップ3)
ポンプ21の回転数Pumpと、熱媒体流量調整装置25(25a〜25d)の弁開度Fcv(Fcva〜Fcvd)合計値からポンプ21の流量合計値Grを計算する。
(ステップ4)
ポンプ流量合計値Gr及び各Fcv開度から、各室内機2の水流量Gra、Grb、Grc、Grd[kg/s]を計算する。
(ステップ5)
各室内機2の能力Q(Qa〜Qd)を計算する。これは、各室内機2の温度差ΔTと水流量を掛けた値に、冷房の場合は室内機2の消費電力Iを引いて、暖房の場合は室内機2の消費電力Iを足して計算する。なお、室内機2の消費電力Iは後述のステップ7‘で計算されるものである。
(ステップ6‘)
室外機3の高圧検知値37と低圧検知値38と圧縮機10の回転数から室外機消費電力を計算し、熱媒体変換機(中継器)3の消費電力(一定値)を合計してZを計算する。
(ステップ6)、(ステップ7‘)、(ステップ7)は、図8の場合と同じである。
以上により、熱媒体として冷媒と水等を使用する2次ループ方式を利用する空気調和装置においても、共通部分の消費電力按分量が求まるので、室内機毎の利用電力代を計算できることになり、正確に電力代の分配が可能となる。
[Fcvの補正について]
ところで、熱媒体流量調整装置25の開度Fcvは、室内機2と熱媒体変換機3の間の配管長が長い場合にその開度に差が生じるため、図7〜9の方法では消費電力計算に差が生じる場合がある。そこで、図7〜図9の方法において使用したFcvの補正方法について、図10及び図11により説明する。
初期工事終了後(ステップ101)、試運転開始(ステップ102)を行う。その後、ファン速度一定で室内機2の内の一台2aを運転する(ステップ103)。
前述した室内機の温度差ΔTa(図7〜図9のステップ2参照、各室内機に応じてΔTb、ΔTc、ΔTd)が目標値の前後0.5℃に3分連続で入っていれば、安定とみなす(ステップ104)。
室内機2aの動作が安定したら、室内機2aの吸込空気温度センサー39の検出温度T39、ポンプ入口での熱媒体温度T31、及び室内機の容量を基に、図11のような一覧表から算出される基準値FcvXを計算(ステップ105)。
さらに、現状のFcvと基準値FcvXの差から、通常運転時、図7〜図9で電力計算に使用するFcvの補正値を計算する(ステップ106)。
ステップ6が終了したら、設置されている全ての室内機2(ここでは2b〜2d)に関して補正値の計算が終了したか否か判断する(ステップ107)。補正値の計算が未完了のものがあれば、同様にして補正値を計算する(ステップ108)。全ての室内機2について補正値の計算が終了したら、終了とする(ステップ109)。
上記のようにして算出した補正値により補正したFcvを、図7〜図9の計算に利用することで、より正確な室内機の消費電力按分量が算出できることになる。
なお、図10では室内機2の運転状態の能力からFcv補正をしたが、室内機2と熱媒体変換機3を繋ぐ配管の両端に圧力センサーを付け、その差から補正値を求めても良い。
1 室外機、2(2a〜2d) 室内機、3 熱媒体変換機、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、5 配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13(13a〜13d) 逆止弁、15(15a、15b) 熱媒体間熱交換器、16(16a、16b) 絞り装置、17(17a、17b) 開閉装置、18(18a、18b) 第2冷媒流路切替装置、19 アキュムレーター、21(21a、21b) ポンプ、22(22a〜22d) 第1熱媒体流路切替装置、23(23a〜23d) 第2熱媒体流路切替装置、25(25a〜25d) 熱媒体流量調整装置、26(26a〜26d) 利用側熱交換器、31(31a、31b) 第1温度センサー、34(34a〜34d) 第2温度センサー、35(35a〜35d) 第3温度センサー、36 第1圧力センサー、37 第2圧力センサー、38 第3圧力センサー、39(39a〜39d) 吸込空気温度センサー、50 第4温度センサー、52 熱媒体変換機制御装置、57 室外機制御装置、100 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。
本発明の空気調和装置は、圧縮機、冷媒流路切替装置、熱源側熱交換器、複数の絞り装置、熱源側冷媒と前記冷媒と異なる熱媒体との間で熱交換する複数の熱媒体間熱交換器の冷媒側流路を、冷媒配管で接続して熱源側冷媒を循環させる冷媒循環回路と、ポンプ、複数の熱媒体流路切替装置、室内機として作用する複数の利用側熱交換器、複数の熱媒体流量調整装置、各熱媒体間熱交換器の熱媒体側流路を熱媒体配管で接続して熱媒体を循環させる熱媒体循環回路と、前記熱媒体間熱交換器から前記利用側熱交換器に送られる熱媒体の温度及び各利用側熱交換器から流出した熱媒体の温度を検出する温度検出手段と、前記熱媒体流量調整装置における熱媒体の流量を調整する開度制御手段と、前記ポンプの回転数、前記熱媒体流量調整装置の開度、及び前記温度検出手段の検出温度、及び各室内機自体の消費電力から、各室内機の使用能力を算出し、算出した各使用能力と各室内機に共通部分の消費電力とを基に、前記共通部分の消費電力を各室内機毎に按分する演算手段と、を備え、
前記熱媒体間熱交換器、前記ポンプおよび前記熱媒体流路切替装置が熱媒体変換機に設けられており、前記熱媒体変換機と各室内機との間の配管長に起因して生ずる前記熱媒体流量調整装置の開度差を補正する補正値を算出し、前記補正値により補正した開度を前記消費電力の按分に使用する前記熱媒体流量調整装置の開度とするものである。
本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態に係る空気調和装置の冷媒回路構成例である。 図2に示す空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。 図2に示す空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。 図2に示す空気調和装置の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。 図2に示す空気調和装置の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本実施の形態に係る空気調和装置に採用される全冷房・全暖房運転時の室内機の消費電力按分量計算フロー(パターンA)を説明するフローチャートである。 本実施の形態に係る空気調和装置に採用される全冷房・全暖房運転時の室内機の消費電力按分量計算フロー(パターンB)を説明するフローチャートである。 本実施の形態に係る空気調和装置に採用される冷房暖房混在運転時の室内機の消費電力按分量計算フロー(パターンC)を説明するフローチャートである。 本実施の形態で利用する流量調整弁の開度Fcvの補正方法を示した図である。 Fcv補正のための基準表の例示図である
また、圧縮機10の前後には圧力検知装置である第2圧力センサー37と第3圧力センサー38が設けられており、圧縮機10の回転数とこの圧力センサー37、38の検知値から、圧縮機10から吐出される冷媒流量を計算できるようになっている。
[熱媒体変換機3]
熱媒体変換機3には、冷媒と熱媒体とが熱交換する2つの熱媒体間熱交換器15(15a,15b)、冷媒を減圧させる2つの絞り装置16(16a,16b)、冷媒配管4の流路を開閉する2つの開閉装置17(17a,17b)、冷媒流路を切り替える2つの第2冷媒流路切替装置18(18a,18b)、熱媒体を循環させる2つのポンプ21(21a,21b)、配管5の一方に接続される4つの第1熱媒体流路切替装置22(22a〜22d)、配管5の他方に接続される4つの第2熱媒体流路切替装置23(23a〜23d)、及び、第熱媒体流路切替装置22(22a〜22d)が接続される方の配管5に接続される4つの熱媒体流量調整装置25(25a〜25d)が設けられている。
制御装置52,57は、マイコン等で構成されており、それらの演算装置の算出結果に基づいて、蒸発温度、凝縮温度、飽和温度、過熱度、及び過冷却度を計算する。そして、制御装置は、これらの計算結果に基づいて、絞り装置16の開度、圧縮機10の回転数、熱源側熱交換器12や利用側熱交換器26のファンの速度(ON/OFF含む)等を制御し、空気調和装置100の動作を調整する。その他に、制御装置は、各センサーでの検知情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動、絞り装置16の開度、開閉装置17の開閉、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、及び、熱媒体流量調整装置25の開度等を制御するものである。すなわち、制御装置52,57は、後述する各運転モードを実行するために、各種機器を統括制御するものである。
さらに、本実施の形態では、制御装置52、57の何れかが、後述する室内機2毎の消費電力按分量の算出を行う。なお、この例では、制御装置52を熱媒体変換機3に設け、制御装置57を室外機1に設けた例を示したが、それらを一体としてもよい。
このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。また、本来、利用側熱交換器26は、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31bで検知された温度とほとんど同じ温度であり、第1温度センサー31bを使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。
図8は、本実施の形態に係る空気調和装置100に採用される全冷・全暖時の室内機2毎の消費電力按分量の計算方法(パターンB)を説明するフローチャートである。図8は、図7での計算方法において、室外機、熱媒体変換機(中継器)3、室内機2の消費電力Iを、各々の運転状態から計算するようにしたものである。
(ステップ1)
まず、計算に必要な計測を実施する。ここでの計測値は、図7での計測値のうちで、室外機1と熱媒体変換機(中継器)3の消費電力Z[kW]と、室内機の消費電力Iの部分を、以下の計測値に代えたものである。すなわち、室外機の高圧検知値37と低圧検知値38(これは圧縮機10の前後に設けた第2圧力センサー37と第3圧力センサー38の計測値から得る)、圧縮機10の回転数、室内機2のファンスピード。
(ステップ6‘)
室外機の高圧検知値37と低圧検知値38と圧縮機10の回転数から室外機消費電力を計算し、熱媒体変換機(中継器)3の消費電力(一定値)を合計してZを計算する。

Claims (7)

  1. 圧縮機、冷媒流路切替装置、熱源側熱交換器、複数の絞り装置、熱源側冷媒と前記冷媒と異なる熱媒体との間で熱交換する複数の熱媒体間熱交換器の冷媒側流路を、冷媒配管で接続して熱源側冷媒を循環させる冷媒循環回路と、
    ポンプ、複数の熱媒体流路切替装置、室内機として作用する複数の利用側熱交換器、複数の熱媒体流量調整装置、各熱媒体間熱交換器の熱媒体側流路を熱媒体配管で接続して熱媒体を循環させる熱媒体循環回路と、
    前記熱媒体間熱交換器から前記利用側熱交換器に送られる熱媒体の温度及び各利用側熱交換器から流出した熱媒体の温度を検出する温度検出手段と、
    前記熱媒体流量調整装置における熱媒体の流量を調整する開度制御手段と、
    前記ポンプの回転数、前記熱媒体流量調整装置の開度、及び前記温度検出手段の検出温度、及び各室内機自体の消費電力から、各室内機の使用能力を算出し、算出した各使用能力と各室内機に共通部分の消費電力とを基に、前記共通部分の消費電力を各室内機毎に按分する演算手段と、
    を備えたことを特徴とする空気調和装置。
  2. 前記共通部分の消費電力は、前記圧縮機を含んだ室外機の消費電力と、前記室外機から前記室内機までの間の消費電力とからなることを特徴とする請求項1記載の空気調和装置。
  3. 前記室内機の消費電力は、各室内機の利用側熱交換器に対応して設けられているファンの回転速度から算出することを特徴とする請求項1または2記載の空気調和装置。
  4. 前記室外機の消費電力は、前記圧縮機の回転数、及び前記圧縮機の前後の圧力から算出することを特徴とする請求項2または3記載の空気調和装置。
  5. 前記演算手段は、室内機毎に按分された共通部分の消費電力に、各室内機自体が消費した消費電力を加えて、室内機毎の消費電力按分量を算出することを特徴とする請求項1〜4のいずれか一項に記載の空気調和装置。
  6. 前記室内機の容量、前記室内機の吸込空気温度、及び前記熱媒体間熱交換器から前記利用側熱交換器に送られる熱媒体の温度を基に定めた基準開度を基に、前記熱媒体流量調整装置の開度を補正することを特徴とする請求項1〜5のいずれか一項に記載の空気調和装置。
  7. 前記室内機と前記熱媒体変換機とを繋ぐ配管の両端に圧力センサーを付け、該センサーの検出値の差から補正値を求めて、前記熱媒体流量調整装置の開度を補正することを特徴とする請求項1〜5のいずれか一項に記載の空気調和装置。
JP2013546838A 2011-11-30 2011-11-30 空気調和装置 Active JP5710021B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006686 WO2013080255A1 (ja) 2011-11-30 2011-11-30 空気調和装置

Publications (2)

Publication Number Publication Date
JPWO2013080255A1 true JPWO2013080255A1 (ja) 2015-04-27
JP5710021B2 JP5710021B2 (ja) 2015-04-30

Family

ID=48534787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013546838A Active JP5710021B2 (ja) 2011-11-30 2011-11-30 空気調和装置

Country Status (6)

Country Link
US (1) US9791180B2 (ja)
EP (1) EP2787298B1 (ja)
JP (1) JP5710021B2 (ja)
CN (1) CN103958977B (ja)
ES (1) ES2744999T3 (ja)
WO (1) WO2013080255A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2787298B1 (en) * 2011-11-30 2019-08-07 Mitsubishi Electric Corporation Air conditioning device
US9709288B2 (en) * 2012-04-23 2017-07-18 Mitsubishi Electric Corporation Air-conditioning system
JPWO2016009565A1 (ja) * 2014-07-18 2017-04-27 三菱電機株式会社 冷凍サイクル装置
CN108375163B (zh) * 2016-11-10 2021-08-06 大金工业株式会社 空调***及其控制方法
US11009898B2 (en) * 2016-12-23 2021-05-18 Marc Zuluaga Thermal energy usage metering system for steam-heated multiple unit building
EP3751213A4 (en) * 2018-02-07 2021-02-17 Mitsubishi Electric Corporation AIR CONDITIONING CONTROL SYSTEM AND AIR CONDITIONING CONTROL PROCEDURES
US11954713B2 (en) * 2018-03-13 2024-04-09 Johnson Controls Tyco IP Holdings LLP Variable refrigerant flow system with electricity consumption apportionment
US20210310677A1 (en) * 2018-03-23 2021-10-07 Mitsubishi Electric Corporation Air-conditioning apparatus
KR20210094213A (ko) * 2020-01-21 2021-07-29 엘지전자 주식회사 공기조화장치
CN113137712B (zh) * 2021-04-08 2022-03-18 珠海格力电器股份有限公司 电子膨胀阀耗电量的计量方法及空调

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306046A (ja) * 1989-05-20 1990-12-19 Hitachi Ltd マルチエアコンシステム
JP2010156506A (ja) * 2008-12-26 2010-07-15 Daikin Ind Ltd 空気調和機
WO2010109617A1 (ja) * 2009-03-26 2010-09-30 三菱電機株式会社 空気調和装置
WO2011080804A1 (ja) * 2009-12-28 2011-07-07 ダイキン工業株式会社 熱源ユニット消費電力按分システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588956A (ja) * 1981-07-10 1983-01-19 株式会社システム・ホ−ムズ ヒ−トポンプ式冷暖房装置
JPS58120054A (ja) * 1982-01-09 1983-07-16 三菱電機株式会社 空気調和装置
JP2000227242A (ja) 1999-02-02 2000-08-15 Oki Electric Ind Co Ltd 空調設備の予冷予熱制御方法
US6883339B2 (en) * 2001-04-04 2005-04-26 Lg Electronics Inc. Method for controlling power saving operation of refrigerator with two evaporator
US7457735B2 (en) * 2001-11-14 2008-11-25 Bentley Systems, Incorporated Method and system for automatic water distribution model calibration
US6637229B1 (en) * 2002-10-21 2003-10-28 Delphi Technologies, Inc. Cooling fan control method for minimizing the power consumption of a vehicle air conditioning system
JP4284290B2 (ja) * 2005-03-24 2009-06-24 日立アプライアンス株式会社 ヒートポンプ給湯機
JP2010243047A (ja) * 2009-04-03 2010-10-28 Honda Motor Co Ltd 温水供給装置
JP5377653B2 (ja) 2009-09-10 2013-12-25 三菱電機株式会社 空気調和装置
JP5669402B2 (ja) * 2010-01-08 2015-02-12 三菱重工業株式会社 ヒートポンプ及びヒートポンプの熱媒流量演算方法
EP2787298B1 (en) * 2011-11-30 2019-08-07 Mitsubishi Electric Corporation Air conditioning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306046A (ja) * 1989-05-20 1990-12-19 Hitachi Ltd マルチエアコンシステム
JP2010156506A (ja) * 2008-12-26 2010-07-15 Daikin Ind Ltd 空気調和機
WO2010109617A1 (ja) * 2009-03-26 2010-09-30 三菱電機株式会社 空気調和装置
WO2011080804A1 (ja) * 2009-12-28 2011-07-07 ダイキン工業株式会社 熱源ユニット消費電力按分システム

Also Published As

Publication number Publication date
US9791180B2 (en) 2017-10-17
JP5710021B2 (ja) 2015-04-30
US20140238061A1 (en) 2014-08-28
WO2013080255A1 (ja) 2013-06-06
EP2787298A1 (en) 2014-10-08
CN103958977A (zh) 2014-07-30
CN103958977B (zh) 2017-04-26
ES2744999T3 (es) 2020-02-27
EP2787298A4 (en) 2015-07-22
EP2787298B1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
JP5710021B2 (ja) 空気調和装置
JP5340406B2 (ja) 空気調和装置
JP5984960B2 (ja) 空気調和装置
US9651287B2 (en) Air-conditioning apparatus
WO2013008278A1 (ja) 空気調和装置
JP5748850B2 (ja) 空気調和装置
JP5905110B2 (ja) 空気調和装置
JP5959716B2 (ja) 空気調和装置
JP5689079B2 (ja) 冷凍サイクル装置
JP6120943B2 (ja) 空気調和装置
US9746222B2 (en) Air-conditioning apparatus
JP5837231B2 (ja) 空気調和装置
JP5996089B2 (ja) 空気調和装置
US9587861B2 (en) Air-conditioning apparatus
JPWO2013008365A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150303

R150 Certificate of patent or registration of utility model

Ref document number: 5710021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250