JPWO2013073420A1 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JPWO2013073420A1
JPWO2013073420A1 JP2013544224A JP2013544224A JPWO2013073420A1 JP WO2013073420 A1 JPWO2013073420 A1 JP WO2013073420A1 JP 2013544224 A JP2013544224 A JP 2013544224A JP 2013544224 A JP2013544224 A JP 2013544224A JP WO2013073420 A1 JPWO2013073420 A1 JP WO2013073420A1
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
active material
lead
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013544224A
Other languages
Japanese (ja)
Other versions
JP5858048B2 (en
Inventor
悟 高橋
悟 高橋
柴原 敏夫
敏夫 柴原
一郎 向谷
一郎 向谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2013544224A priority Critical patent/JP5858048B2/en
Publication of JPWO2013073420A1 publication Critical patent/JPWO2013073420A1/en
Application granted granted Critical
Publication of JP5858048B2 publication Critical patent/JP5858048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

液式鉛蓄電池において、PSOC下での寿命特性向上と高温耐食性の両立を達成し、より過酷な環境での寿命性能を満足する電池を提供する。正極板には単位極板群体積当たりの正極活物質総表面積を3.5〜15.6m2/cm3の範囲とする正極活物質を用い、負極板には炭素質導電材と負極活物質の粗大化を抑制する有機化合物を添加した負極活物質を使用する。加えて、正極集電体には、カルシウムを0.01〜0.1質量%、錫を0.05〜2質量%、及びビスマスを0.05〜0.15質量%含み、さらに銀またはインジウムを含む鉛合金の集電体を使用する。好ましくは、銀の含有量は0.005〜2質量%であり、インジウムの含有量は0.01〜0.5質量%である。In a liquid lead-acid battery, a battery that achieves both improved life characteristics under PSOC and high-temperature corrosion resistance and satisfies the life performance in a harsher environment is provided. A positive electrode active material having a total surface area of the positive electrode active material per unit electrode plate group volume of 3.5 to 15.6 m 2 / cm 3 is used for the positive electrode plate, and a coarse carbonaceous conductive material and a negative electrode active material are used for the negative electrode plate. A negative electrode active material to which an organic compound that suppresses oxidization is added is used. In addition, the positive electrode current collector contains 0.01 to 0.1 mass% calcium, 0.05 to 2 mass% tin, and 0.05 to 0.15 mass% bismuth, and further contains silver or indium. Use a lead alloy current collector containing. Preferably, the silver content is 0.005 to 2 mass% and the indium content is 0.01 to 0.5 mass%.

Description

本発明は、電槽内に極板群・セパレータから遊離した電解液を有する液式鉛蓄電池に関するものである。   The present invention relates to a liquid lead-acid battery having an electrolytic solution released from an electrode plate group / separator in a battery case.

従来から、鉛蓄電池は車両のエンジン始動用やバックアップ電源用などに用いられている。その中でもエンジン始動用の鉛蓄電池は、エンジン始動用セルモータや各種電気・電子機器への電力供給を行う。エンジン始動後の鉛蓄電池は、エンジンの動力を用いてオルタネータで発電された電力によって充電される。   Conventionally, lead-acid batteries have been used for starting an engine of a vehicle and for a backup power source. Among them, the lead storage battery for starting the engine supplies power to the cell motor for starting the engine and various electric / electronic devices. The lead storage battery after the engine is started is charged by the electric power generated by the alternator using the engine power.

近年、自動車においては、大気汚染防止、地球温暖化防止のため、様々な燃費向上対策が検討されている。燃費向上対策を施した自動車としては、エンジンの動作時間を少なくするアイドリングストップ車(以下、ISS車)や、エンジンの回転をオルタネータ以外の動力に無駄なく使用する発電制御車といったマイクロハイブリッド車が検討されている。   In recent years, various measures for improving fuel efficiency have been studied for automobiles in order to prevent air pollution and global warming. Considering micro-hybrid vehicles such as idling stop vehicles (hereafter referred to as ISS vehicles) that reduce engine operation time and power generation control vehicles that use engine rotation for power other than alternators as vehicles that have improved fuel efficiency measures Has been.

このような自動車では、オルタネータより鉛蓄電池に供給される電力は従来の自動車に比べて少なくなることから、鉛蓄電池は満充電とならないPSOC(Partial State Of Charge 部分充電状態)と呼ばれる状態で使用される。鉛蓄電池がPSOCで用いられる場合、負極板において放電生成物である硫酸鉛が粗大化し、充電生成物である金属鉛に戻りにくくなるため、満充電で使用される場合に比べて寿命が短くなる傾向がある。   In such a car, the power supplied to the lead acid battery from the alternator is less than that of a conventional car, so the lead acid battery is used in a state called PSOC (Partial State Of Charge partial charge state) where it is not fully charged. The When lead-acid batteries are used in PSOC, lead sulfate, which is a discharge product, becomes coarse in the negative electrode plate, and it is difficult to return to metal lead, which is a charge product, so the life is shortened compared to when it is used at full charge. Tend.

また、自動車のエンジンルームには各種部品が高密度に搭載されており、一緒に搭載されている鉛蓄電池の周囲に冷却のための空間が少なく温度は上昇傾向にある。鉛蓄電池が高温環境にさらされるとき、鉛合金により作られる正極集電体の腐食が進行し、集電体の変形や破断により電池そのものが早期に寿命となることがある。   In addition, various parts are mounted at high density in the engine room of an automobile, and there is little space for cooling around the lead storage battery mounted together, and the temperature tends to rise. When a lead storage battery is exposed to a high temperature environment, corrosion of a positive electrode current collector made of a lead alloy proceeds, and the battery itself may have an early life due to deformation or breakage of the current collector.

従来、集電体の材料には強度に優れかつ電解液の減少が少ない鉛−カルシウム−錫合金が使用されるが、この合金は結晶粒界で腐食が選択的に進行するいわゆる粒界腐食と呼ばれる現象が生じやすく、集電体全体の腐食量が小さい場合でも局所的な腐食の進行により、集電体の変形や破断が発生しやすいという欠点をもつ。   Conventionally, a lead-calcium-tin alloy having excellent strength and little decrease in electrolyte is used as a current collector material, but this alloy has a so-called intergranular corrosion in which corrosion selectively proceeds at grain boundaries. The phenomenon called is easy to occur, and even when the amount of corrosion of the current collector as a whole is small, the current collector tends to be deformed or broken due to the progress of local corrosion.

以上のような厳しい使用条件に適合する長寿命の鉛蓄電池を得るには、充電受け入れ性を向上させ少ない電力で効率よく充電されること、負極板の硫酸鉛の粗大化を防ぎ金属鉛を生成しやすくすること、さらに優れた強度と耐食性をもつ集電体を使用することが必要となる。   In order to obtain a long-life lead-acid battery that meets the strict usage conditions described above, it is possible to improve charge acceptability and efficiently charge with less power, and to prevent lead sulfate from becoming coarse and to produce metallic lead It is necessary to use a current collector having excellent strength and corrosion resistance.

鉛蓄電池の充電受け入れ性は、これまでは負極活物質の方が正極活物質に比べて劣っていると考えられていた。負極活物質の充電受け入れ性を向上させる手段として、特許文献1(特開2003−36882号公報)や特許文献2(特開平07−201331号公報)には、負極活物質に添加する炭素質導電材を増量することが開示されている。しかし液式の鉛蓄電池において負極活物質に添加する炭素質導電材の量をむやみに増加させると、炭素質導電材が電解液に流出し最悪の場合内部短絡を引き起こしてしまう。したがって液式の鉛蓄電池では、負極活物質に炭素質導電材を添加することにより充電受け入れ性を向上させることには限界があった。   Until now, it has been thought that the negative electrode active material is inferior to the positive electrode active material in terms of charge acceptability of the lead acid battery. As means for improving the charge acceptability of the negative electrode active material, Patent Document 1 (Japanese Patent Laid-Open No. 2003-36882) and Patent Document 2 (Japanese Patent Laid-Open No. 07-201331) describe carbonaceous conductivity added to the negative electrode active material. Increasing the amount of material is disclosed. However, if the amount of the carbonaceous conductive material added to the negative electrode active material in the liquid lead-acid battery is increased excessively, the carbonaceous conductive material flows into the electrolyte and causes an internal short circuit in the worst case. Therefore, in a liquid lead-acid battery, there has been a limit to improving charge acceptability by adding a carbonaceous conductive material to the negative electrode active material.

また、負極活物質の放電によって生じる硫酸鉛の粗大化を防ぐ手段として、従来はリグニンが用いられていた。しかしリグニンは鉛蓄電池の充放電によって分解されるため、その効果を長期間維持することはできず、さらに充電の際に硫酸鉛から溶け出す鉛イオンに吸着して反応性を低下させ、充電反応を阻害するという副作用があり、充電受け入れ性の向上を妨げるという問題があった。これらのことからリグニンの代替として、リグニンの基本構造であるフェニルプロパン構造の側鎖のα位にスルホン基を導入した、リグニンスルホン酸ナトリウムや、ビスフェノール類・アミノベンゼンスルホン酸・ホルムアルデヒド縮合物などを負極活物質に添加することが提案されている。特許文献3(特開平11−250913号公報)及び特許文献4(特開2006−196191号公報)には、負極活物質にビスフェノール類・アミノベンゼンスルホン酸・ホルムアルデヒド縮合物と炭素質導電材とを添加することが開示されている。また、特許文献5(特開2003−051306号公報)には、負極活物質に導電性カーボンと活性炭を添加して、PSOCでの放電特性を改善することが開示されている。   Conventionally, lignin has been used as a means for preventing the coarsening of lead sulfate caused by the discharge of the negative electrode active material. However, since lignin is decomposed by charging / discharging of lead acid batteries, its effect cannot be maintained for a long time, and further, it decreases the reactivity by adsorbing to lead ions dissolved from lead sulfate during charging, and charging reaction There is a side effect of inhibiting charging, and there is a problem of hindering improvement in charge acceptability. Therefore, as an alternative to lignin, sodium lignin sulfonate, bisphenols, aminobenzene sulfonic acid, formaldehyde condensate, etc., in which a sulfone group is introduced at the α-position of the side chain of the phenylpropane structure, which is the basic structure of lignin, are used. It has been proposed to add to the negative electrode active material. In Patent Document 3 (Japanese Patent Laid-Open No. 11-250913) and Patent Document 4 (Japanese Patent Laid-Open No. 2006-196191), bisphenols / aminobenzenesulfonic acid / formaldehyde condensate and a carbonaceous conductive material are used as a negative electrode active material. The addition is disclosed. Patent Document 5 (Japanese Patent Laid-Open No. 2003-051306) discloses that conductive characteristics and activated carbon are added to the negative electrode active material to improve the discharge characteristics in PSOC.

一方、耐食性に優れる正極集電体として、特許文献6(特開2003−346811号公報)には、鉛−銀−錫合金の圧延シートをエキスパンド加工した集電体(格子体)が開示されている。この格子体はカルシウムを含まないことにより粒界腐食の発生を抑えて高い耐食性を得ている。また、特許文献7(特開2001−236962号公報)には、鉛−カルシウム−錫合金にさらにインジウムを含む合金を用いた集電体(格子体)が開示されている。この格子体はカルシウムを含む合金にインジウムを加えることにより合金元素の偏析を抑え、粒界腐食を抑制して高耐食性を実現している。しかし、いずれも集電体そのものの機械的強度について言及しておらず、想定以上の高温環境に晒されることによって腐食が進行し集電体の変形を生じる場合、それを抑制できるだけの強度を具備していない可能性が考えられ、鉛蓄電池の長寿命化の障害となっていた。   On the other hand, as a positive electrode current collector excellent in corrosion resistance, Patent Document 6 (Japanese Patent Laid-Open No. 2003-346811) discloses a current collector (lattice) obtained by expanding a rolled sheet of a lead-silver-tin alloy. Yes. Since this lattice body does not contain calcium, the occurrence of intergranular corrosion is suppressed and high corrosion resistance is obtained. Patent Document 7 (Japanese Patent Laid-Open No. 2001-236926) discloses a current collector (lattice) using a lead-calcium-tin alloy and an alloy containing indium. This lattice body achieves high corrosion resistance by suppressing segregation of alloy elements by adding indium to an alloy containing calcium and suppressing intergranular corrosion. However, none of them mentions the mechanical strength of the current collector itself, and if the corrosion progresses and the current collector is deformed by exposure to a higher temperature environment than expected, the current collector has sufficient strength to suppress it. The possibility of not doing so has been considered, which has been an obstacle to extending the life of lead-acid batteries.

特開2003−36882号公報JP 2003-36882 A 特開平07−201331号公報Japanese Patent Laid-Open No. 07-201331 特開平11−250913号公報JP-A-11-250913 特開2006−196191号公報JP 2006-196191 A 特開2003−051306号公報JP 2003-051306 A 特開2003−346811号公報Japanese Patent Laid-Open No. 2003-346811 特開2001−236962号公報Japanese Patent Laid-Open No. 2001-23662

上記のように、液式鉛蓄電池の性能向上のための様々な技術が提案されてきた。しかしながら、PSOC下での寿命特性と高温環境での耐食性を両立する方法は開示されておらす、これらの厳しい使用条件で寿命性能を満足することは困難となっている。   As described above, various techniques for improving the performance of liquid lead-acid batteries have been proposed. However, a method for achieving both life characteristics under PSOC and corrosion resistance in a high-temperature environment is disclosed, and it is difficult to satisfy life performance under these severe use conditions.

本発明の目的は、液式鉛蓄電池において、充電受け入れ性を向上させるとともに、PSOC下での寿命特性向上と高温耐食性の両立を達成し、より過酷な環境での寿命性能を満足する電池を提供することである。   The object of the present invention is to provide a battery that satisfies the life performance in a harsh environment by improving the charge acceptability and achieving both the improvement of the life characteristics under PSOC and the high temperature corrosion resistance in the liquid lead acid battery. It is to be.

本発明は、負極活物質を負極集電体に充填してなる負極板と、正極活物質を正極集電体に充填してなる正極板とをセパレータを介して積層した極板群を、電解液とともに電槽内に収容した構成を有する液式鉛蓄電池を対象とする。   The present invention provides an electrode plate group in which a negative electrode plate in which a negative electrode active material is filled in a negative electrode current collector and a positive electrode plate in which a positive electrode active material is filled in a positive electrode current collector are stacked via a separator. A liquid lead-acid battery having a configuration housed in a battery case together with a liquid is an object.

本発明においては、少なくとも、炭素質導電材と、充放電の繰り返しに伴って負極活物質が粗大化するのを抑制する作用をもつ有機化合物(以下「負極活物質の粗大化を抑制する有機化合物」という)とが負極活物質に添加される。また、正極集電体に用いられる鉛合金は、カルシウムを0.01〜0.1質量%、錫を0.05〜2質量%、及びビスマスを0.05〜0.15質量%含み、かつ銀またはインジウムのいずれかの元素を含んでいる。   In the present invention, at least a carbonaceous conductive material and an organic compound having an effect of suppressing the coarsening of the negative electrode active material due to repeated charge / discharge (hereinafter referred to as “an organic compound that suppresses the coarsening of the negative electrode active material”). Is added to the negative electrode active material. Moreover, the lead alloy used for the positive electrode current collector contains 0.01 to 0.1% by mass of calcium, 0.05 to 2% by mass of tin, and 0.05 to 0.15% by mass of bismuth, and Contains either silver or indium.

さらに、正極板は、単位極板群体積[cm]当たりの正極活物質総表面積[m]を3.5〜15.6[m/cm]の範囲とするように構成される。Further, the positive electrode plate is configured a positive electrode active material total surface area per unit plate group volume [cm 3] [m 2] to a range of 3.5~15.6 [m 2 / cm 3] .

本発明の好ましい態様では、少なくとも、炭素質導電材と、負極活物質の粗大化を抑制する有機化合物とが負極活物質に添加された負極板を用い、単位極板群体積[cm]当たりの正極活物質総表面積[m]を3.5〜15.6[m/cm]の範囲に設定するとともに、単位極板群体積[cm]当たりの正極板総表面積[cm]を2.6ないし3.9[cm/cm]の範囲とするように正極板が構成される。In a preferred embodiment of the present invention, a negative electrode plate in which at least a carbonaceous conductive material and an organic compound that suppresses coarsening of the negative electrode active material are added to the negative electrode active material is used, and the unit electrode plate group volume [cm 3 ] is The positive electrode active material total surface area [m 2 ] is set in the range of 3.5 to 15.6 [m 2 / cm 3 ] and the positive electrode plate total surface area [cm 2 ] per unit electrode plate group volume [cm 3 ]. ] Is in the range of 2.6 to 3.9 [cm 2 / cm 3 ].

ここで、「極板群体積」とは、鉛蓄電池の最小単位である1セル内に収容される極板群の各部のうち、発電に関与する部分を外面の凹凸を無視して全体的に見た場合の見かけの体積である。本発明においては、極板群の各部の内、正極集電体及び負極集電体のそれぞれの耳部と脚部とを除いた部分(脚部が設けられていない場合には耳部のみを除いた部分、以下同じ)を、極板群の発電に関与する部分とする。本明細書では、極板群体積の単位として[cm]を用いる。Here, the “electrode group volume” is the entire part of the electrode plate group accommodated in one cell, which is the smallest unit of the lead storage battery, with respect to the part relating to power generation, ignoring the irregularities on the outer surface. It is the apparent volume when viewed. In the present invention, in each part of the electrode plate group, a part excluding the respective ear part and leg part of the positive electrode current collector and the negative electrode current collector (if the leg part is not provided, only the ear part is provided. The removed part (hereinafter the same) is the part involved in the power generation of the electrode plate group. In this specification, [cm 3 ] is used as a unit of the electrode plate group volume.

極板群を構成する正極板及び負極板の大きさが同じである場合には、負極集電体の耳部と脚部とを除いた部分の片面の面積に、セル室内に収容された状態での極板群の厚み寸法(極板の積層方向に測った寸法)を乗じる演算を行うか、または正極集電体の耳部と脚部とを除いた部分の片面の面積に、セル室内に収容された状態での極板群の厚み寸法を乗じる演算を行うことにより、極板群体積を求めるものとする。   When the positive electrode plate and the negative electrode plate constituting the electrode plate group have the same size, the negative electrode current collector is housed in the cell chamber in the area of one side excluding the ear portion and the leg portion. Calculate by multiplying the thickness dimension of the electrode plate group (measured in the stacking direction of the electrode plates) at the area of the single-sided area of the positive electrode current collector excluding the ears and legs. The volume of the electrode plate group is obtained by performing a calculation that multiplies the thickness dimension of the electrode plate group in the state accommodated in the electrode plate.

正極板及び負極板の大きさが異なる場合には、大きい方の極板の集電体の耳部と脚部とを除いた部分の片面の面積に、セル室内に収容された状態での極板群の奥行き寸法を乗じる演算を行うことにより、上記極板群体積を求めるものとする。   When the size of the positive electrode plate and the negative electrode plate is different, the electrode in the state of being accommodated in the cell chamber on the area of one side of the larger electrode plate excluding the ears and legs. The electrode plate group volume is obtained by performing an operation of multiplying the depth dimension of the plate group.

また「正極活物質総表面積」とは、鉛蓄電池の最小単位である1セル内に収容される極板群を構成しているすべての正極板の正極活物質の表面積の総計である。k枚目の正極活物質の表面積Skは、その正極板に充填されている活物質の比表面積と活物質質量との積で表わすことができる。一つの極板群を構成する正極板の枚数がnである場合、正極活物質総表面積をSpとすると、Sp=S1+S2+…+Snで表わすことができる。本発明では、上記「正極活物質総表面積」を前述のように定義された「極板群体積」で除したものを「単位極板群体積当たりの正極活物質総表面積」としている。本明細書では、「単位極板群体積当たりの正極活物質総表面積」の数値が大きくなりすぎるのを避けるために、正極活物質総表面積の単位として[m]を用い、活物質質量の単位として[g]を用いる。従って、比表面積の単位は[m/g]となる。なお、本発明においては、活物質の比表面積を後述する測定方法により測定するものとする。The “positive electrode active material total surface area” is the total surface area of the positive electrode active materials of all the positive electrode plates constituting the electrode plate group accommodated in one cell which is the minimum unit of the lead storage battery. The surface area Sk of the kth positive electrode active material can be expressed by the product of the specific surface area of the active material filled in the positive electrode plate and the mass of the active material. When the number of positive electrode plates constituting one electrode plate group is n, if the total surface area of the positive electrode active material is Sp, it can be expressed as Sp = S1 + S2 +. In the present invention, the “total surface area of positive electrode active material” divided by the “electrode group volume” defined as described above is defined as “total surface area of positive electrode active material per unit electrode plate group volume”. In this specification, in order to avoid the numerical value of “the total surface area of the positive electrode active material per unit electrode plate group volume” being too large, [m 2 ] is used as the unit of the total surface area of the positive electrode active material, [G] is used as a unit. Therefore, the unit of the specific surface area is [m 2 / g]. In the present invention, the specific surface area of the active material is measured by a measuring method described later.

本発明の好ましい態様では、少なくとも、炭素質導電材と、負極活物質の粗大化を抑制する有機化合物とが負極活物質に添加された負極板を用い、また、正極集電体に用いられる鉛合金はカルシウム、錫及びビスマスを含み、かつ銀またはインジウムのいずれかの元素を含んでおり、かつ、単位極板群体積[cm]当たりの正極活物質総表面積[m]を3.5〜15.6[m/cm]の範囲に設定し、単位極板群体積[cm]当たりの正極板総表面積[cm]を2.6〜3.9[cm/cm]の範囲とするように正極板が構成される。本明細書では、前述のように、正極活物質総表面積の単位として[m]を用いるが、正極板総表面積の単位としては[cm]を用いる。In a preferred embodiment of the present invention, a negative electrode plate in which at least a carbonaceous conductive material and an organic compound that suppresses coarsening of the negative electrode active material are added to the negative electrode active material is used, and lead used for the positive electrode current collector is used. The alloy contains calcium, tin, and bismuth, contains any element of silver or indium, and has a total positive electrode active material surface area [m 2 ] per unit electrode plate group volume [cm 3 ] of 3.5. ~15.6 [m 2 / cm 3] was set in the range of the positive electrode plate total surface area per unit plate group volume [cm 3] [cm 2] of 2.6~3.9 [cm 2 / cm 3 The positive electrode plate is configured to have a range of In the present specification, as described above, [m 2 ] is used as a unit of the total surface area of the positive electrode active material, but [cm 2 ] is used as a unit of the total surface area of the positive electrode plate.

ここで、「正極板総表面積」とは、鉛蓄電池の最小単位である1セル内に収容される極板群を構成する正極板の発電に関与する部分の表面積の合計である。本発明においては、各正極板の集電体の耳部及び脚部を除いた部分の表裏両面の表面積の合計(集電体の枠部が正方形または長方形である場合には、集電体の枠部の縦寸法と横寸法との積の2倍)[cm]に、極板群を構成する正極板の枚数を乗じることにより、「正極板総表面積」を求めるものとし、上記「正極板総表面積」を「極板群体積」で除したものを「単位極板群体積当たりの正極板総表面積」とする。Here, the “total surface area of the positive electrode plate” is the total surface area of the portions involved in power generation of the positive electrode plate constituting the electrode plate group accommodated in one cell which is the minimum unit of the lead storage battery. In the present invention, the total surface area of both the front and back surfaces of each positive electrode plate excluding the ears and legs (if the current collector frame is square or rectangular, The total surface area of the positive electrode plate is obtained by multiplying [cm 2 ] by the number of the positive electrode plates constituting the electrode plate group, which is twice the product of the vertical dimension and the horizontal dimension of the frame portion. A value obtained by dividing “plate total surface area” by “electrode plate group volume” is referred to as “positive electrode plate total surface area per unit electrode plate group volume”.

本発明では、単位極板群体積当たりの正極活物質総表面積を適切な範囲に設定すると、正極活物質の充電反応における反応過電圧を低下させて充電反応の進行を容易にし、正極活物質の充電受け入れ性を向上させることができること、及びこのようにして充電受け入れ性を向上させた正極板を、少なくとも炭素質導電材と、負極活物質の粗大化を抑制する有機化合物とが負極活物質に添加されることにより充電受け入れ性が改善され、寿命性能が改善された負極板(以下「性能が改善された負極板」という)と共に用いると、鉛蓄電池全体の充電受け入れ性を従来の鉛蓄電池よりも更に向上させ、PSOC下で使用された場合の寿命性能を更に改善することができることを見出した。   In the present invention, when the total surface area of the positive electrode active material per unit electrode plate group volume is set to an appropriate range, the reaction overvoltage in the charge reaction of the positive electrode active material is reduced to facilitate the progress of the charge reaction, and the positive electrode active material is charged. The positive electrode plate having improved acceptability and thus improved charge acceptability is added to the negative electrode active material with at least a carbonaceous conductive material and an organic compound that suppresses coarsening of the negative electrode active material. When used together with a negative electrode plate with improved charge acceptability and improved life performance (hereinafter referred to as “a negative electrode plate with improved performance”), the charge acceptability of the entire lead acid battery is better than that of a conventional lead acid battery. It has been found that the lifetime performance when used under PSOC can be further improved.

また、性能が改善された負極板を用い、単位極板群体積当たりの正極活物質総表面積を適切な範囲に設定した上で、更に単位極板群体積当たりの正極板総表面積を適切な範囲に設定することにより、鉛蓄電池全体の充電受け入れ性及びPSOC下で使用された場合の寿命性能を更に改善することができることを見出した。   Also, using a negative electrode plate with improved performance, setting the total surface area of the positive electrode active material per unit electrode plate group volume to an appropriate range, and further setting the total surface area of the positive electrode plate per unit electrode plate group volume to an appropriate range It has been found that the charge acceptability of the entire lead-acid battery and the life performance when used under PSOC can be further improved by setting to.

本発明では、正極活物質の充電反応における反応過電圧を低下させて充電反応の進行を容易にする効果を得るために必要とされる正極板の構成をより的確に特定するためのパラメータとして、「単位極板群体積当たりの正極活物質総表面積」と、「単位極板群体積当たりの正極板総表面積」とを新たに導入した。   In the present invention, as a parameter for more accurately identifying the configuration of the positive electrode plate required to obtain the effect of facilitating the progress of the charging reaction by reducing the reaction overvoltage in the charging reaction of the positive electrode active material, “Total positive electrode active material surface area per unit electrode plate group volume” and “total positive electrode plate surface area per unit electrode plate group volume” were newly introduced.

正極活物質の充電反応における反応過電圧を低下させて充電反応の進行を容易にするという所期の効果を得るために、例えば、正極活物質の比表面積の範囲を広い範囲に特定することが考えられるが、正極活物質の比表面積を特定しただけでは、上記の効果を得るために必要な正極板の構成を一義的に限定することができない。すなわち、比表面積が狭い活物質を使用しても、活物質量を多くすることで正極活物質の充電反応における反応過電圧を低下させて充電反応の進行を容易にする効果を得ることができるため、比表面積の範囲を特定しただけでは、上記の効果を得るために必要な正極板の構成を的確に特定したということができない。   In order to obtain the desired effect of facilitating the progress of the charging reaction by reducing the reaction overvoltage in the charging reaction of the positive electrode active material, for example, it is considered to specify the range of the specific surface area of the positive electrode active material in a wide range. However, simply specifying the specific surface area of the positive electrode active material cannot uniquely limit the configuration of the positive electrode plate necessary to obtain the above-described effect. That is, even if an active material having a small specific surface area is used, an effect of facilitating the progress of the charging reaction by reducing the reaction overvoltage in the charging reaction of the positive electrode active material by increasing the amount of the active material can be obtained. By simply specifying the specific surface area range, it cannot be said that the configuration of the positive electrode plate necessary for obtaining the above effect has been specified accurately.

また、極板の枚数を多くし、正極板総表面積を大きくすることでも同様の効果を得ることができる。しかしながら、実際の鉛蓄電池では、例えば、JIS D 5301に規定されているように、一定の電池体積の中に極板群を収納して定格容量を満足するという制限が加わるため、活物質量や表面積(極板枚数)を自由に設定することはできない。本発明では、これらの制限を加味して、所期の効果を得るために必要な正極板の構成を厳密に規定するために、比表面積の代わりに比表面積と活物質量の積である「正極活物質総表面積」を用い、更に極板枚数の代わりに正極板の発電に関与する部分の表面積の総計である「正極板総表面積」を用いて、この正極板総表面積を極板群体積で除したものを、単位極板群体積当たりの正極板総表面積として、正極板の構成を特定するためのパラメータとして用いている。   The same effect can also be obtained by increasing the number of electrode plates and increasing the total surface area of the positive electrode plates. However, in an actual lead acid battery, for example, as defined in JIS D 5301, there is a restriction that the electrode plate group is housed in a certain battery volume and the rated capacity is satisfied. The surface area (number of electrode plates) cannot be set freely. In the present invention, in consideration of these restrictions, in order to strictly define the configuration of the positive electrode plate necessary for obtaining the desired effect, the product of the specific surface area and the amount of active material is used instead of the specific surface area. The total surface area of the positive electrode active material is used, and the total surface area of the positive electrode plate, which is the total surface area of the parts involved in power generation of the positive electrode plate, is used instead of the number of electrode plates. Is used as a parameter for specifying the configuration of the positive electrode plate as the total surface area of the positive electrode plate per unit electrode plate group volume.

単位極板群体積当たりの正極活物質総表面積を3.5m/cm未満とした場合には、鉛蓄電池全体の充電受け入れ性を向上させる効果を顕著に得ることはできないが、単位極板群体積当たりの正極活物質総表面積を3.5m/cm以上とすれば、鉛蓄電池全体の充電受け入れ性を向上させる効果を顕著に得ることができる。鉛蓄電池全体の充電受け入れ性を向上させることができれば、PSOC下での負荷への高率放電を支障なく行わせることができ、また充電不足の状態で充放電が繰り返されることにより放電生成物である硫酸鉛が粗大化するのを抑制することができるため、PSOC下で使用された場合の電池の寿命性能を向上させることができる。When the total surface area of the positive electrode active material per unit electrode plate group volume is less than 3.5 m 2 / cm 3, the effect of improving the charge acceptance of the entire lead storage battery cannot be obtained significantly, but the unit electrode plate When the total surface area of the positive electrode active material per group volume is 3.5 m 2 / cm 3 or more, the effect of improving the charge acceptance of the entire lead storage battery can be significantly obtained. If the charge acceptability of the entire lead-acid battery can be improved, high-rate discharge to the load under PSOC can be performed without hindrance, and the discharge product can be obtained by repeating charge and discharge in a state of insufficient charge. Since lead sulfate can be prevented from becoming coarse, the life performance of the battery when used under PSOC can be improved.

単位極板群体積当たりの正極活物質総表面積の値を過度に大きくすると、正極活物質が微細になり過ぎて、充放電の繰り返しにより活物質の構造が崩壊し、所謂泥状化と呼ばれる現象が起るため、正極板の寿命が短くなり、実用に耐える鉛蓄電池を得ることができなくなる。従って、単位極板群体積当たりの正極活物質総表面積はむやみに高くすればよいと言うわけではない。実験によれば、単位極板群体積当たりの正極活物質総表面積を3.5m/cm以上とすると電池の充電受け入れ性及び寿命性能を改善することができるが、単位極板群体積当たりの正極活物質総表面積の値が15.6m/cmを超えると、正極活物質が泥状化する現象が顕著に起ることが明らかになった。従って、単位極板群体積当たりの正極活物質総表面積の値は、3.5m/cm以上15.6m/cm以下の範
囲に設定する。
When the value of the total surface area of the positive electrode active material per unit electrode plate group volume is excessively increased, the positive electrode active material becomes too fine, and the structure of the active material collapses due to repeated charge and discharge, a so-called mudification phenomenon. Therefore, the life of the positive electrode plate is shortened, and a lead storage battery that can withstand practical use cannot be obtained. Therefore, the total surface area of the positive electrode active material per unit electrode plate group volume is not necessarily increased. According to experiments, when the total surface area of the positive electrode active material per unit electrode plate group volume is 3.5 m 2 / cm 3 or more, the battery charge acceptability and life performance can be improved. When the value of the total surface area of the positive electrode active material exceeds 15.6 m 2 / cm 3 , it has been revealed that the phenomenon that the positive electrode active material becomes muddy is prominent. Therefore, the value of the total surface area of the positive electrode active material per unit electrode plate group volume is set in the range of 3.5 m 2 / cm 3 or more and 15.6 m 2 / cm 3 or less.

すなわち、負極活物質に、少なくとも、炭素質導電材と、充放電に伴う負極活物質の粗大化を抑制する有機化合物とが添加されることにより性能が改善された負極板と、放電反応に関する単位極板群体積当たりの正極活物質総表面積が3.5m/cm以上15.6m/cm以下の範囲に設定された正極板とを用いて鉛蓄電池を組み立てると、専ら負極の性能を向上させることにより充電受け入れ性を向上させていた従来の鉛蓄電池よりも更に充電受け入れ性を向上させてPSOC下での負荷への高率放電を可能にするとともに、充電が不足する状態で充放電が繰り返されることにより放電生成物である硫酸鉛が粗大化するのを抑制して、PSOC下で使用される場合の寿命性能を向上させた鉛蓄電池を得る
ことができる。
That is, a negative electrode plate whose performance is improved by adding at least a carbonaceous conductive material and an organic compound that suppresses the coarsening of the negative electrode active material associated with charge and discharge to the negative electrode active material, and a unit related to the discharge reaction When a lead-acid battery is assembled using a positive electrode plate having a total surface area of positive electrode active material per electrode plate volume of 3.5 m 2 / cm 3 or more and 15.6 m 2 / cm 3 or less, the performance of the negative electrode exclusively The charge acceptability is further improved compared to the conventional lead storage battery, which has improved the charge acceptability by improving the battery, enabling a high rate discharge to the load under PSOC and charging in a state where the charge is insufficient. It is possible to obtain a lead storage battery with improved life performance when used under PSOC by suppressing the lead sulfate as a discharge product from being coarsened by repeating discharge.

また、本発明の正極集電体に用いられる鉛合金は、銀を含有する場合はその量を0.005〜2質量%とし、インジウムを含有する場合はその量を0.01〜0.5質量%とすることが好ましい。   Moreover, when the lead alloy used for the positive electrode current collector of the present invention contains silver, the amount is 0.005 to 2% by mass, and when it contains indium, the amount is 0.01 to 0.5%. It is preferable to set it as the mass%.

本発明は、単位極板群体積当たりの正極活物質総表面積を適正な範囲に設定した正極板と充電受け入れ性及び寿命性能が改善された負極板を組み合わせ、さらにカルシウム、錫及びビスマスを含み、かつ銀またはインジウムを含む鉛合金からなる正極集電体を用いることにより、液式鉛蓄電池のPSOC下での寿命特性向上と高温耐食性の両立を達成すること、及び、単位極板群体積当たりの正極活物質総表面積を適正な範囲に設定し、かつ単位極板群体積当たりの正極板総表面積を適正な範囲に設定した正極板と充電受け入れ性及び寿命性能が改善された負極板を組み合わせ、さらにカルシウム、錫及びビスマスを含み、かつ銀またはインジウムを含む鉛合金からなる正極集電体を用いることにより、液式鉛蓄電池のPSOC下での寿命特性向上と高温耐食性の両立を達成することを明らかにした
ものである。
The present invention combines a positive electrode plate in which the total surface area of the positive electrode active material per unit electrode plate group volume is set to an appropriate range and a negative electrode plate with improved charge acceptance and life performance, and further includes calcium, tin and bismuth, In addition, by using a positive electrode current collector made of a lead alloy containing silver or indium, it is possible to achieve both improvement of life characteristics under PSOC and high temperature corrosion resistance of a liquid lead acid battery, and per unit electrode plate group volume. Combining a positive electrode plate with a positive electrode active material total surface area set to an appropriate range and a positive electrode plate total surface area per unit electrode plate group volume set to an appropriate range, and a negative electrode plate with improved charge acceptance and life performance, Furthermore, by using a positive electrode current collector made of a lead alloy containing calcium, tin and bismuth and containing silver or indium, the life characteristics of the liquid lead acid battery under PSOC In which it revealed that to achieve a balance between improvement and high temperature corrosion resistance.

本発明によれば、単位極板群体積当たりの正極活物質総表面積を3.5m/cm以上15.6m/cm以下として充電受け入れ性を向上させた正極板と、負極活物質に炭素質導電材と負極活物質の粗大化を抑制する有機化合物とを添加して充電受け入れ性及び寿命性能を改善した負極板とを組み合わせ、さらには正極集電体にカルシウム、錫及びビスマスを含み、かつ銀またはインジウムのいずれかを含む鉛合金を用いることにより、PSOC下での寿命特性向上と高温耐食性の両立を達成することができる。According to the present invention, a positive electrode plate having a positive electrode active material total surface area per unit electrode plate group volume of 3.5 m 2 / cm 3 or more and 15.6 m 2 / cm 3 or less and improved charge acceptance, and a negative electrode active material In addition, a carbonaceous conductive material and an organic compound that suppresses the coarsening of the negative electrode active material are combined with a negative electrode plate that has improved charge acceptability and life performance, and further, calcium, tin, and bismuth are added to the positive electrode current collector. By using a lead alloy that contains either silver or indium, it is possible to achieve both improvement in life characteristics under PSOC and high-temperature corrosion resistance.

充電電圧を14V(一定)として、開回路電圧が12Vの自動車用鉛蓄電池を充電する場合の充電電流と負極板及び正極板の電位との関係を示した線図である。It is the diagram which showed the relationship between the charging current and the electric potential of a negative electrode plate and a positive electrode plate in case the charging voltage is 14V (constant) and charging the lead acid battery for motor vehicles whose open circuit voltage is 12V. 正極板の腐食伸び及び腐食深さを測定する箇所を示す模式図である。It is a schematic diagram which shows the location which measures the corrosion elongation and corrosion depth of a positive electrode plate. 高温サイクル試験後の正極集電体の、表面近傍断面の模式図である。It is a schematic diagram of the surface vicinity cross section of the positive electrode electrical power collector after a high temperature cycle test.

本発明に係わる鉛蓄電池は、充電が間欠的に行われ、PSOC下で負荷への高率放電が行われる液式鉛蓄電池で、ISS車などのマイクロハイブリッド車等で用いるのに好適なものである。本発明に係わる鉛蓄電池は、負極活物質を負極集電体に充填してなる負極板と、正極活物質を正極集電体に充填してなる正極板とをセパレータを介して積層して構成した極板群を、電解液とともに電槽内に収容した構成を有する。これらの基本構成は、従来の鉛蓄電池と同様である。   The lead acid battery according to the present invention is a liquid lead acid battery in which charging is performed intermittently and high rate discharge to a load is performed under PSOC, and is suitable for use in a micro hybrid vehicle such as an ISS car. is there. A lead storage battery according to the present invention is configured by laminating a negative electrode plate formed by filling a negative electrode current collector with a negative electrode active material and a positive electrode plate formed by filling a positive electrode current collector with a positive electrode current collector through a separator. The electrode plate group is housed in the battery case together with the electrolytic solution. These basic configurations are the same as those of conventional lead-acid batteries.

これまで、鉛蓄電池においては、充電受け入れ性を向上させるために、専ら負極の充電受け入れ性を向上させる努力がなされていたが、本発明では、負極だけでなく、正極の充電受け入れ性をも向上させ、充電受け入れ性が改善された負極板と、充電受け入れ性が改善された正極板とを組み合わせて用いることにより、充電不足の状態で充放電が繰り返されることにより硫酸鉛が粗大化するのを抑制して、寿命性能の更なる向上を図る。本発明の実施例を説明するのに先立ち、本発明の基本的な技術思想について説明する。   Until now, in lead-acid batteries, efforts have been made exclusively to improve the charge acceptability of the negative electrode in order to improve the charge acceptability. However, in the present invention, not only the negative electrode but also the charge acceptability of the positive electrode is improved. In combination with a negative electrode plate with improved charge acceptance and a positive electrode plate with improved charge acceptance, lead sulfate is coarsened by repeated charge and discharge in a state of insufficient charge. Suppressing and further improving the life performance. Prior to describing the embodiments of the present invention, the basic technical idea of the present invention will be described.

本発明では、充電時の正極板の電位の変化と充電電流との関係及び負極板の電位の変化と充電電流との関係を分析した結果から、反応過電圧を低下させて充電受け入れ性を向上させた負極板と、反応過電圧を低下させて充電受け入れ性を向上させた正極板を組み合わせることにより、鉛蓄電池全体としての充電受け入れ性を、負極板の充電受け入れ性のみを向上させていた従来の鉛蓄電池から更に向上させた。充電受け入れ性を向上させることができれば、PSOC下での負荷への高率放電を支障なく行わせることができるだけでなく、充電不足の状態で充放電が繰り返されることにより硫酸鉛が粗大化するのを抑制して、寿命性能を向上させことができる。   In the present invention, from the result of analyzing the relationship between the change in the potential of the positive electrode plate during charging and the charging current and the relationship between the change in the potential of the negative electrode plate and the charging current, the reaction overvoltage is reduced to improve the charge acceptance. By combining a negative electrode plate with a positive electrode plate that has improved the charge acceptance by reducing the reaction overvoltage, the conventional lead that has improved only the charge acceptance of the negative electrode plate as a whole lead storage battery Further improvements from storage batteries. If the charge acceptability can be improved, not only can high-rate discharge to the load under PSOC be performed without trouble, but lead sulfate is coarsened by repeated charge and discharge in a state of insufficient charge. The life performance can be improved.

図1は、充電電圧を14V(一定)として、開回路電圧が12Vの自動車用鉛蓄電池を充電する場合の充電電流と負極板及び正極板の電位との関係を示したものである。図1において、縦軸は充電電流を示し、横軸は標準水素電極を基準にして測定された正極板及び負極板の電位(vs. SHE)を示している。図中N1及びN2は負極板の充電電流対電位曲線を示し、P1及びP2は、正極板の充電電流対電位曲線を示している。なお本来であれば、負極板の充電電流対電位曲線は、直交座標系の第3象限に図示されるべきであるが、図1においては、説明の便宜上、負極板の充電電流対電位曲線を、電位及び電流の極性を反転させて正極板の充電電流対電位曲線と共に第1象限に図示している。   FIG. 1 shows the relationship between the charging current and the potentials of the negative electrode plate and the positive electrode plate when charging a lead acid battery for an automobile having a charging voltage of 14 V (constant) and an open circuit voltage of 12 V. In FIG. 1, the vertical axis indicates the charging current, and the horizontal axis indicates the potential (vs. SHE) of the positive electrode plate and the negative electrode plate measured with reference to the standard hydrogen electrode. In the figure, N1 and N2 indicate the charging current versus potential curve of the negative electrode plate, and P1 and P2 indicate the charging current versus potential curve of the positive electrode plate. Originally, the charging current vs. potential curve of the negative electrode plate should be shown in the third quadrant of the orthogonal coordinate system, but in FIG. In the first quadrant, the polarity of the potential and current is reversed and the charging current vs. potential curve of the positive electrode plate is shown.

図1において、N1はN2に比べて負極板で行われる充電反応の過電圧が高い場合の充電電流対電位曲線を示している。充電反応の過電圧が高い場合、負極板の充電電流対電位曲線は、図示のN1のように大きく外側に膨らんだ形になるが、過電圧が低い場合には、N2のように、N1よりも起立した曲線になる。   In FIG. 1, N1 indicates a charging current vs. potential curve when the overvoltage of the charging reaction performed on the negative electrode plate is higher than that of N2. When the overvoltage of the charging reaction is high, the charging current vs. potential curve of the negative electrode plate is greatly swelled outward as shown in the figure, but when the overvoltage is low, it stands up from N1 as in N2. Become a curved line.

またP1はP2に比べて正極板で行われる充電反応の過電圧が高い場合の充電電流対電位曲線を示している。過電圧が高い場合の充電電流対電位曲線P1は、反応過電圧が低い場合の充電電流対電位曲線P2よりも外側に膨らんだ形になり、反応過電圧が低い場合には、P1よりも起立した曲線になる。   P1 shows a charging current versus potential curve when the overvoltage of the charging reaction performed on the positive electrode plate is higher than that of P2. When the overvoltage is high, the charge current vs. potential curve P1 swells outward from the charge current vs. potential curve P2 when the reaction overvoltage is low, and when the reaction overvoltage is low, the curve rises more than P1. Become.

ここで充電反応の過電圧ηは、開回路の状態で充電電圧を印加した際に各電極で生じる電位の変化分であり、過電圧ηは、充電電圧を印加した際の各電極の電位と平衡電位(開回路電圧)との差の絶対値、すなわち、η=|充電電圧を印加した際の電極電位−平衡電位|で表わされる。   Here, the overvoltage η of the charging reaction is a change in potential generated at each electrode when the charging voltage is applied in an open circuit state, and the overvoltage η is the potential of each electrode and the equilibrium potential when the charging voltage is applied. The absolute value of the difference from (open circuit voltage), that is, η = | electrode potential when applying the charging voltage−equilibrium potential |

負極活物質の充電受け入れ性を向上させる工夫が特にされていない負極板の充電電流対電位曲線は、図1のN1のように外側に膨らんだ形をとるが、負極活物質に炭素質導電材及び充放電に伴って生じる負極活物質の粗大化を抑制する有機化合物が適量添加されて充電受け入れ性が改善された負極板の充電電流対電位曲線は、N2のように起立した形をとる。   The charging current vs. potential curve of the negative electrode plate, which is not particularly devised to improve the charge acceptability of the negative electrode active material, has a shape bulging outward as shown by N1 in FIG. 1, but the negative electrode active material is a carbonaceous conductive material. In addition, the charge current vs. potential curve of the negative electrode plate improved in charge acceptability by adding an appropriate amount of an organic compound that suppresses the coarsening of the negative electrode active material caused by charging and discharging takes an upright shape such as N2.

正極活物質の充電受け入れ性を向上させる工夫が特にされていない正極板の充電電流対電位曲線は、図1のP1のような形をとる。P1は従来の鉛蓄電池で用いられていた正極板の充電電流対電位曲線であり、N1に比べて起立した曲線となっている。このことは、鉛蓄電池においては、もともと負極板の充電受け入れ性が低く、正極板の充電受け入れ性が高いことを意味している。正極活物質の充電反応の過電圧を低下させて正極板の充電受け入れ性を向上させた場合、正極板の充電電流対電位曲線は、図1のP2のようにP1よりも更に起立した形をとる。   The charge current vs. potential curve of the positive electrode plate that is not particularly devised to improve the charge acceptability of the positive electrode active material takes the form of P1 in FIG. P1 is a charging current versus potential curve of the positive electrode plate used in the conventional lead-acid battery, and is a curve that stands up compared to N1. This means that in a lead-acid battery, the negative electrode plate originally has low charge acceptability and the positive electrode plate has high charge acceptability. When the overvoltage of the charging reaction of the positive electrode active material is reduced to improve the charge acceptability of the positive electrode plate, the charge current vs. potential curve of the positive electrode plate takes a more standing form than P1 as shown in P2 of FIG. .

今、充電電流対電位特性曲線がそれぞれN1及びP1である負極板及び正極板を用いて鉛蓄電池を組み立てたとすると、開回路電圧(12V)の状態から14Vの充電電圧を印加したときに流れる充電電流はI11となる。開回路電圧は、正極電位と負極電位との差であり、印加する14Vも両極電位の差である。   Assuming that a lead-acid battery is assembled using a negative electrode plate and a positive electrode plate whose charging current vs. potential characteristic curves are N1 and P1, respectively, charging that flows when a charging voltage of 14 V is applied from an open circuit voltage (12 V) state The current is I11. The open circuit voltage is the difference between the positive electrode potential and the negative electrode potential, and 14 V to be applied is also the difference between the bipolar potentials.

次に充電電流対電位特性曲線がN2となるように充電反応の過電圧を低下させて充電受け入れ性を改善した負極板と、充電電流対電位曲線がP1となる正極板とを組み合わせて鉛蓄電池を構成したとすると、14Vの充電電圧を印加したときに流れる充電電流はI21(>I11)となる。このことから、正極板の充電電流対電位曲線がP1のままであっても(正極板の性能を特に改善しなくても)、充電電流を大きく増大させることができることが分かる。すなわち、充電電流対電位特性曲線がN2となるように負極活物質の充電受け入れ性を改善すれば、正極板の充電受け入れ性を特に改善しなくても、鉛蓄電池全体としての充電受け入れ性を大きく向上させることができる。   Next, combine a negative electrode plate that improves charge acceptance by reducing the overvoltage of the charge reaction so that the charge current vs. potential characteristic curve is N2, and a positive electrode plate that has a charge current vs. potential curve of P1 When configured, the charging current that flows when a charging voltage of 14 V is applied is I21 (> I11). From this, it can be seen that the charging current can be greatly increased even if the charging current vs. potential curve of the positive electrode plate remains P1 (without particularly improving the performance of the positive electrode plate). In other words, if the charge acceptability of the negative electrode active material is improved so that the charge current vs. potential characteristic curve is N2, the charge acceptability of the lead acid battery as a whole can be greatly increased without particularly improving the charge acceptability of the positive electrode plate. Can be improved.

次に、充電電流対電位曲線がP2となるように反応過電圧を低下させた正極板を、充電電流対電位曲線がN1である負極板と組み合わせて鉛蓄電池を組み立てたとすると、14Vの充電電圧を印加したときに流れる充電電流はI12(>I11)となり、充電電流対電位曲線がP1の正極板と、充電電流対電位曲線がN1の負極板を用いた場合よりも充電受け入れ性を向上させることができる。しかし、充電電流対電位曲線がP1の正極板と充電電流対電位曲線がN2の負極板とを組み合わせた場合ほどの充電受け入れ性の向上を図ることはできない。   Next, assuming that a lead-acid battery is assembled by combining a positive electrode plate having a reduced reaction overvoltage so that the charging current vs. potential curve is P2 and a negative electrode plate having a charging current vs. potential curve of N1, a charging voltage of 14V is obtained. The charging current that flows when applied is I12 (> I11), which improves the charge acceptance compared to using a positive electrode plate with a charging current vs. potential curve of P1 and a negative electrode plate with a charging current vs. potential curve of N1. Can do. However, the charge acceptability cannot be improved as much as the combination of the positive electrode plate having the charge current vs. potential curve P1 and the negative electrode plate having the charge current vs. potential curve N2.

ところが、充電電流対電位曲線がN2となるように過電圧を低下させた(充電受け入れ性を向上させた)負極板と、充電電流対電位曲線がP2となるように過電圧を低下させた(充電受け入れ性を向上させた)正極板とを組み合わせて鉛蓄電池を組み立てると、14Vの充電電圧を印加した際に流れる充電電流をI22(>I11)まで増大させることができ、鉛蓄電池全体としての充電受け入れ性を、負極板の充電受け入れ性のみを向上させた場合に比べて、大幅に向上させることができる。   However, the overvoltage was reduced so that the charge current vs. potential curve would be N2 (improvement of charge acceptance) and the overvoltage was lowered so that the charge current vs. potential curve would be P2 (charge acceptance) When a lead-acid battery is assembled by combining the positive electrode plate (which has improved performance), the charging current that flows when a 14V charging voltage is applied can be increased to I22 (> I11), allowing the entire lead-acid battery to accept charging. As compared with the case where only the charge acceptability of the negative electrode plate is improved, the characteristics can be greatly improved.

本発明では、上記のように、正極板の充電受け入れ性を改善することができると、当該正極板を充電受け入れ性が改善された負極板と組み合わせて用いることにより、鉛蓄電池全体としての充電受け入れ性を、負極板の充電受け入れ性のみを向上させていた従来の鉛蓄電池よりも大幅に向上させ得ることに着目した。   In the present invention, as described above, when the charge acceptability of the positive electrode plate can be improved, by using the positive electrode plate in combination with the negative electrode plate having improved charge acceptability, the charge acceptability of the lead acid battery as a whole is achieved. We focused on the fact that the battery performance can be improved significantly compared with the conventional lead-acid battery that has improved only the charge acceptance of the negative electrode plate.

そこで、正極板の充電受け入れ性を向上させるためにとるべき手段を種々検討し、実験を行った結果、単位極板群体積当たりの正極活物質総表面積を増大させれば、充電電流対電位曲線が図1のP2のように起立した曲線となるように、正極板の充電受け入れ性を改善することができることを見出した。そして、単位極板群体積当たりの正極活物質総表面積を3.5m/cm以上の範囲に設定することにより充電受け入れ性を改善した正極板を、炭素質導電材と充放電に伴って生じる負極活物質の粗大化を抑制する作用をする有機化合物とを負極活物質に添加して充電受け入れ性及び寿命性能を改善した負極板と組み合わせて鉛蓄電池を組み立てることにより、負極板の充電受け入れ性のみを改善することにより電池全体としての充電受け入れ性を改善していた従来の鉛蓄電池よりも、鉛蓄電池全体としての充電受け入れ性を更に向上させ、PSOC下での使用時の寿命性能を改善することができることを見出した。Therefore, as a result of examining various means to improve the charge acceptability of the positive electrode plate and conducting experiments, if the total surface area of the positive electrode active material per unit electrode plate group volume is increased, the charge current vs. potential curve It has been found that the charge acceptability of the positive electrode plate can be improved so that the curve becomes a standing curve like P2 in FIG. And the positive electrode plate which improved the charge acceptance by setting the positive electrode active material total surface area per unit electrode plate group volume to the range of 3.5 m < 2 > / cm < 3 > or more is attached to the carbonaceous conductive material and charging / discharging. The negative electrode plate can be charged by assembling a lead-acid battery in combination with a negative electrode plate that has been improved in charge acceptance and life performance by adding to the negative electrode active material an organic compound that acts to suppress the coarsening of the resulting negative electrode active material. Compared to the conventional lead storage battery, which has improved the charge acceptability of the battery as a whole by improving only the battery performance, the charge acceptability of the lead acid battery as a whole is further improved, and the life performance when used under PSOC is improved. Found that you can.

本発明においては、正極活物質の活物質比表面積をガス吸着法により測定するものとする。ガス吸着法は、一つの分子の大きさが分かっている不活性ガスを測定試料の表面に吸着させ、その吸着量と不活性ガスの占有面積とから表面積を求める方法であり、比表面積測定の一般的な手法である。不性ガスとしては、窒素ガスを用いることができる。具体的には、以下のBET式に基づいて測定する。   In the present invention, the active material specific surface area of the positive electrode active material is measured by a gas adsorption method. In the gas adsorption method, an inert gas whose molecular size is known is adsorbed on the surface of a measurement sample, and the surface area is obtained from the amount of adsorption and the area occupied by the inert gas. This is a general technique. Nitrogen gas can be used as the inert gas. Specifically, it is measured based on the following BET equation.

式(1)の関係式は、P/P0が0.05〜0.35の範囲でよく成立する。式(1)を変形して(左辺の分子分母をPで割る)、式(2)を得る。   The relational expression (1) is well established when P / P0 is in the range of 0.05 to 0.35. The equation (1) is transformed (the numerator denominator on the left side is divided by P) to obtain the equation (2).

測定に用いる比表面積計では、試料に吸着占有面積のわかったガス分子を吸着させその吸着量(V)と相対圧力(P/Po)の関係を測定する。測定したVとP/Poより、式(2)の左辺とP/Poをプロットする。ここで、勾配をsとし、式(2)より式(3)を導く。   In the specific surface area meter used for the measurement, gas molecules whose adsorption occupation area is known are adsorbed on the sample, and the relationship between the adsorption amount (V) and the relative pressure (P / Po) is measured. From the measured V and P / Po, the left side of Equation (2) and P / Po are plotted. Here, the gradient is s, and Equation (3) is derived from Equation (2).

切片をiとすると、切片i、勾配sは、それぞれ式(4)、式(5)のとおりとなる。式(4)、式(5)を変形すると、それぞれ式(6)、式(7)となり、単分子層吸着量Vmを求める式(8)が得られる。   Assuming that the intercept is i, the intercept i and the gradient s are as shown in equations (4) and (5), respectively. When Expression (4) and Expression (5) are modified, Expression (6) and Expression (7) are obtained, respectively, and Expression (8) for obtaining the monomolecular layer adsorption amount Vm is obtained.

すなわち、ある相対圧力P/Poにおける吸着量Vを数点測定し、プロットの傾きと切片を求めると、単分子層吸着量Vmが求まる。試料の全表面積Stotalは式(9)で求められ、比表面積Sは全表面積Stotalより式(10)で求められる。   That is, when the adsorption amount V at a certain relative pressure P / Po is measured at several points and the slope and intercept of the plot are obtained, the monomolecular layer adsorption amount Vm is obtained. The total surface area Total of the sample is obtained by the equation (9), and the specific surface area S is obtained by the equation (10) from the total surface area Total.

Figure 2013073420
Figure 2013073420

Figure 2013073420
Figure 2013073420

Figure 2013073420
Figure 2013073420

Figure 2013073420
Figure 2013073420

Figure 2013073420
Figure 2013073420

Figure 2013073420
Figure 2013073420

Figure 2013073420
Figure 2013073420

Figure 2013073420
Figure 2013073420

Figure 2013073420
Figure 2013073420

Figure 2013073420
Figure 2013073420

単位極板群体積当たりの正極活物質総表面積すなわち、活物質比表面積と活物質量との積が高いことは、放電反応の反応種である水素イオン(H)や硫酸イオン(SO 2−)の拡散移動が速やかに行われる状態を長く維持して、放電反応を長時間に亘って継続させることができることを意味する。反応種の拡散が長時間に亘って維持されることは、反応種の拡散パスが多く存在していることを意味している。The total surface area of the positive electrode active material per unit electrode group volume, that is, the product of the active material specific surface area and the amount of active material is high. This is because hydrogen ions (H + ) and sulfate ions (SO 4 2 ) that are reactive species of the discharge reaction. - ) It means that the state in which the diffusion movement is performed quickly can be maintained for a long time and the discharge reaction can be continued for a long time. The fact that the diffusion of the reactive species is maintained for a long time means that there are many diffusion paths of the reactive species.

一方、充電反応においては、充電反応の進行に伴って生成してくる水素イオンや硫酸イオンの拡散パスが必要になるが、単位極板群体積当たりの正極活物質総表面積を高くしておくと、充電反応を行わせる際に生成してくる水素イオンや硫酸イオンの拡散パスを多く存在させて、生成物を極板の反応表面に蓄積させることなく速やかに拡散させることができ、これにより、充電反応を極板全体に亘って円滑に行わせて、充電反応の進行を容易にし、正極板の充電受け入れ性を向上させることができるものと思われる。   On the other hand, in the charging reaction, a diffusion path of hydrogen ions and sulfate ions generated with the progress of the charging reaction is necessary. However, if the total surface area of the positive electrode active material per unit electrode plate group volume is increased, , There are many diffusion paths of hydrogen ions and sulfate ions that are generated when the charging reaction is performed, and the product can be diffused quickly without accumulating on the reaction surface of the electrode plate, It seems that the charging reaction can be performed smoothly over the entire electrode plate, the progress of the charging reaction can be facilitated, and the charge acceptability of the positive electrode plate can be improved.

本発明において、負極活物質の充電受け入れ性を改善するために負極活物質に添加する炭素質導電材は、カーボン系の導電材であって、従来から知られている、黒鉛、カーボンブラック、活性炭、炭素繊維及びカーボンナノチューブからなる炭素質導電材群の中から選択された少なくとも1つであればよい。   In the present invention, the carbonaceous conductive material added to the negative electrode active material in order to improve the charge acceptability of the negative electrode active material is a carbon-based conductive material, and conventionally known graphite, carbon black, activated carbon And at least one selected from the group of carbonaceous conductive materials composed of carbon fibers and carbon nanotubes.

炭素質導電材は、好ましくは、黒鉛、カーボンブラック、活性炭、炭素繊維及びカーボンナノチューブからなる材料群の中から選択される。炭素質導電材の添加量は、負極活物質100質量部に対し0.1〜3質量部の範囲とするのが好ましい。   The carbonaceous conductive material is preferably selected from a material group consisting of graphite, carbon black, activated carbon, carbon fiber, and carbon nanotube. The amount of carbonaceous conductive material added is preferably in the range of 0.1 to 3 parts by mass with respect to 100 parts by mass of the negative electrode active material.

ISS車や発電制御車などのマイクロハイブリッド車両に搭載される鉛蓄電池は、PSOCと呼ばれる部分充電状態で使用される。このような状況下で使用される鉛蓄電池においては、放電の際に負極活物質に生成される絶縁体である硫酸鉛が充放電の繰り返しに伴って粗大化していく、サルフェーションと呼ばれる現象が早期に生じる。サルフェーションが起ると、負極活物質の充電受け入れ性及び放電性能が著しく低下する。   Lead-acid batteries mounted on micro hybrid vehicles such as ISS vehicles and power generation control vehicles are used in a partially charged state called PSOC. In a lead-acid battery used under such circumstances, a phenomenon called sulfation, in which lead sulfate, which is an insulator generated in the negative electrode active material during discharge, becomes coarse with repeated charging and discharging, is an early phenomenon. To occur. When sulfation occurs, the charge acceptability and discharge performance of the negative electrode active material are significantly reduced.

負極活物質に添加された炭素質導電材は、硫酸鉛の粗大化を抑制し、硫酸鉛を微細な状態に維持して、硫酸鉛から溶け出す鉛イオンの濃度が低下するのを抑制し、充電受け入れ性が高い状態を維持する作用をする。   The carbonaceous conductive material added to the negative electrode active material suppresses the coarsening of lead sulfate, maintains the lead sulfate in a fine state, suppresses the decrease in the concentration of lead ions dissolved from the lead sulfate, It acts to maintain a state with high charge acceptability.

負極活物質の充電反応は、放電生成物である硫酸鉛から溶解する鉛イオンの濃度に依存し、鉛イオンが多いほど充電受け入れ性が高くなる。負極活物質に添加する炭素質導電材は、放電の際に負極活物質に生成される硫酸鉛を微細に分散させる作用がある。充電不足の状態で充放電サイクルを繰り返すと、放電生成物である硫酸鉛の粗大化を招き、硫酸鉛から溶解する鉛イオンの濃度が低下して充電受け入れ性が低下するが、負極活物質に炭素質導電材を添加しておくと、硫酸鉛の粗大化を抑制して硫酸鉛を微細な状態に維持し、硫酸鉛から溶解する鉛イオンの濃度を高い状態に維持することができるため、長期間に亘って負極の充電受け入れ性を高い状態に維持することができる。   The charging reaction of the negative electrode active material depends on the concentration of lead ions dissolved from lead sulfate, which is a discharge product, and the charge acceptance increases as the amount of lead ions increases. The carbonaceous conductive material added to the negative electrode active material has a function of finely dispersing lead sulfate generated in the negative electrode active material during discharge. If the charge / discharge cycle is repeated in a state of insufficient charge, lead sulfate, which is a discharge product, is coarsened, and the concentration of lead ions dissolved from lead sulfate decreases, resulting in a decrease in charge acceptability. If carbonaceous conductive material is added, it is possible to keep lead sulfate in a fine state by suppressing the coarsening of lead sulfate, and to maintain a high concentration of lead ions dissolved from lead sulfate. The charge acceptability of the negative electrode can be maintained in a high state over a long period.

本発明では、負極板の性能を改善するために、負極活物質に、上記の炭素質導電材のほかに、少なくとも充放電に伴う負極活物質の粗大化を抑制する有機化合物を添加する。   In the present invention, in order to improve the performance of the negative electrode plate, in addition to the carbonaceous conductive material, an organic compound that suppresses at least coarsening of the negative electrode active material due to charge / discharge is added to the negative electrode active material.

ここで、負極活物質の粗大化を抑制する有機化合物は、ビスフェノール類・アミノベンゼンスルホン酸・ホルムアルデヒド縮合物、例えば、化学構造式1に示すビスフェノール類・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物を用いることが望ましいが、リグニンスルホン酸ナトリウム等、その他の同作用を有する化合物を用いることを妨げるものではない。また、ビスフェノール類と亜硫酸塩のホルムアルデヒド縮合物もしくはビスフェノール類とアミノ酸塩のホルムアルデヒド縮合物等を同様に用いることができる。   Here, as the organic compound for suppressing the coarsening of the negative electrode active material, a bisphenol / aminobenzenesulfonic acid / formaldehyde condensate, for example, a bisphenol / sodium aminobenzenesulfonic acid / formaldehyde condensate represented by the chemical structural formula 1 is used. However, it does not preclude the use of other compounds having the same action such as sodium lignin sulfonate. Further, a formaldehyde condensate of bisphenols and sulfites or a formaldehyde condensate of bisphenols and amino acids can be used in the same manner.

Figure 2013073420
Figure 2013073420

前述のように、負極活物質の充電反応は、放電生成物である硫酸鉛から溶解する鉛イオンの濃度に依存し、鉛イオンが多いほど充電受け入れ性が高くなる。充放電に伴う負極活物質の粗大化を抑制するために負極活物質に添加する有機化合物として広く用いられているリグニンは、鉛イオンに吸着して鉛イオンの反応性を低下させてしまうため、負極活物質の充電反応を阻害し、充電受け入れ性の向上を抑制するという副作用がある。これに対し、上記の有機化合物は、鉛イオンへの吸着力が弱く、鉛イオンへの吸着量も少ないことから、リグニンに代えて上記の縮合物を用いると、充電受け入れ性を妨げることが殆どなくなり、炭素質導電材の添加による充電受け入れ性の維持を妨げることが少なくなる。   As described above, the charging reaction of the negative electrode active material depends on the concentration of lead ions dissolved from lead sulfate, which is a discharge product, and the charge acceptance increases as the amount of lead ions increases. Lignin, which is widely used as an organic compound added to the negative electrode active material in order to suppress the coarsening of the negative electrode active material due to charge / discharge, decreases the reactivity of lead ions by adsorbing to lead ions, There is a side effect of inhibiting the charging reaction of the negative electrode active material and suppressing the improvement of charge acceptability. On the other hand, the above organic compounds have a weak adsorption force to lead ions and a small amount of adsorption to lead ions, and therefore, when the above condensate is used instead of lignin, charge acceptability is hardly disturbed. Therefore, it is less likely to prevent the charge acceptability from being maintained by adding the carbonaceous conductive material.

負極板としては、充電受け入れ性及び寿命性能ができるだけ高いものを用いることが好ましい。本発明においては、負極板の充電受け入れ性を改善するために負極活物質に添加する炭素質導電材の量及び充放電による負極活物質の粗大化を抑制するために負極活物質に添加する有機化合物の量を特に規定しないが、本発明を実施するに当って、負極板の性能を可能な限り向上させるように、上記添加物の添加量を設定することは当然である。   As the negative electrode plate, it is preferable to use one having as high charge acceptability and life performance as possible. In the present invention, the amount of carbonaceous conductive material added to the negative electrode active material in order to improve the charge acceptability of the negative electrode plate and the organic added to the negative electrode active material to suppress the coarsening of the negative electrode active material due to charge / discharge Although the amount of the compound is not particularly defined, it is natural to set the addition amount of the additive so as to improve the performance of the negative electrode plate as much as possible in carrying out the present invention.

本発明で正極集電体に用いられる鉛合金は、高温環境での腐食による集電体の変形や破断に耐えうる機械的強度と耐食性を両立するものとして、カルシウム、錫及びビスマスを含み、かつ銀またはインジウムのいずれかの元素を含むが、これらの元素は、カルシウムを0.01〜0.1質量%、錫を0.05〜2質量%及びビスマスを0.05〜0.15質量%含み、かつ銀を0.005〜2質量%またはインジウムを0.01〜0.5質量%含むことが好ましい。   The lead alloy used for the positive electrode current collector in the present invention includes calcium, tin and bismuth as having both mechanical strength and corrosion resistance capable of withstanding deformation and fracture of the current collector due to corrosion in a high temperature environment, and These elements contain either silver or indium. These elements are 0.01 to 0.1% by weight of calcium, 0.05 to 2% by weight of tin and 0.05 to 0.15% by weight of bismuth. It is preferable to contain 0.005 to 2% by mass of silver or 0.01 to 0.5% by mass of indium.

従来、液式鉛蓄電池の集電体には、鉛−カルシウム−錫合金が用いられる。この合金は機械的強度が高く、自己放電による電解液の減少が少ないため液式鉛蓄電池の集電体材料として好適である。しかし鉛−カルシウム−錫合金は結晶粒界が選択的に腐食される粒界腐食と呼ばれる現象が発生しやすく、集電体全体として見たときの腐食量が小さい場合でも局所的な腐食の進行により集電体の変形や破断が発生し電池が寿命を迎えるという欠点がある。電池の周囲温度が高い場合、腐食反応の進行がより早まるため、たとえ、活物質が十分な性能を保持している場合でも早期に電池が寿命となることがある。   Conventionally, a lead-calcium-tin alloy is used for a current collector of a liquid lead-acid battery. This alloy is suitable as a current collector material for a liquid lead-acid battery because of its high mechanical strength and little decrease in electrolyte due to self-discharge. However, lead-calcium-tin alloys are prone to a phenomenon called intergranular corrosion, where the grain boundaries are selectively corroded, and local corrosion proceeds even when the current collector as a whole has a small amount of corrosion. As a result, the current collector is deformed or broken, and there is a drawback that the battery reaches the end of its life. When the ambient temperature of the battery is high, the progress of the corrosion reaction is accelerated, so that even if the active material retains sufficient performance, the battery may have an early life.

本発明では、上記の欠点を解消し高温環境での電池寿命を向上させるために、鉛合金に種々の元素を添加し調査を行った結果、従来の鉛−カルシウム−錫合金に0.05〜0.15質量%のビスマスを添加することによって機械的強度を向上させ、さらに銀を0.005〜2質量%またはインジウムを0.01〜0.5質量%添加することによって耐食性を改善した。   In the present invention, in order to eliminate the above-mentioned drawbacks and improve the battery life in a high temperature environment, various elements were added to the lead alloy and investigated. As a result, the conventional lead-calcium-tin alloy was 0.05- The mechanical strength was improved by adding 0.15% by mass of bismuth, and the corrosion resistance was further improved by adding 0.005 to 2% by mass of silver or 0.01 to 0.5% by mass of indium.

鉛−カルシウム−錫合金にビスマスを添加すると、金属組織中に鉛とカルシウムの化合物の生成を促進し、この物質が結晶粒を微細化させるため集電体の機械的強度が向上する。しかし、ビスマスを添加すると結晶粒界に錫濃度の高い領域が生成しやすく、この部分は腐食に弱いため、もとの鉛−カルシウム−錫合金より粒界腐食が発生しやすくなる。   When bismuth is added to the lead-calcium-tin alloy, the formation of a compound of lead and calcium is promoted in the metal structure, and this substance refines the crystal grains, thereby improving the mechanical strength of the current collector. However, when bismuth is added, a region having a high tin concentration is likely to be generated at the crystal grain boundary, and this part is susceptible to corrosion, so intergranular corrosion is more likely to occur than the original lead-calcium-tin alloy.

上記の欠点をもつ鉛−カルシウム−錫−ビスマス合金であるが、さらに銀またはインジウムを添加すると、ビスマスの添加によって生じる結晶粒界の錫濃度が高い部分の形成が抑制される。この効果によりビスマスを含む合金の欠点である耐食性の低下を改善することができる。以上のようにして得られた鉛合金を正極集電体に用いることにより、鉛蓄電池の高温での寿命特性を向上させることができる。   Although it is a lead-calcium-tin-bismuth alloy having the above disadvantages, when silver or indium is further added, formation of a portion having a high tin concentration at a grain boundary caused by the addition of bismuth is suppressed. This effect can improve the decrease in corrosion resistance, which is a drawback of alloys containing bismuth. By using the lead alloy obtained as described above for the positive electrode current collector, the life characteristics at high temperatures of the lead acid battery can be improved.

以下、本発明の実施例を、従来例と参考例とともに説明する。   Examples of the present invention will be described below together with conventional examples and reference examples.

従来例、参考例I
まず、未化成の正極板を作製した。酸化鉛と鉛丹とカットファイバ(ポリエチレンテレフタレート短繊維、以下同)との混合物に水を加えて混練し、続いて希硫酸を少量ずつ添加しながら混練して、正極用活物質ペーストを製造した。この活物質ペーストを、鉛合金(Pb−0.05質量%Ca−1.5質量%Sn)からなる鉛合金圧延シート(1mm厚)にエキスパンド加工して作製されたエキスパンド式集電体に充填し、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して未化成の正極板を作製した。
Conventional example, reference example I
First, an unchemically formed positive electrode plate was produced. A mixture of lead oxide, red lead and cut fiber (polyethylene terephthalate short fiber, hereinafter the same) was kneaded with water, and then kneaded with dilute sulfuric acid added in small portions to produce a positive electrode active material paste. . This active material paste is filled into an expanded current collector produced by expanding a lead alloy rolled sheet (1 mm thickness) made of a lead alloy (Pb-0.05 mass% Ca-1.5 mass% Sn). Then, it was aged for 24 hours in an atmosphere of 40 ° C. and 95% humidity, and then dried to produce an unchemically formed positive electrode plate.

次に、未化成の負極板を作製した。酸化鉛と、カットファイバと、硫酸バリウムと、炭素質導電材としてのカーボンブラックと、負極活物質の粗大化を抑制する有機化合物としてのビスフェノールA・アミノベンゼンスルホン酸ナトリウム塩・ホルムアルデヒド縮合物の混合物に水を加えて混練し、続いて希硫酸を少量ずつ添加しながら混練して、負極用活物質ペーストを作製した。この活物質ペーストを、鉛合金(Pb−0.05質量%Ca−1.5質量%Sn)からなる鉛合金圧延シート(1mm厚)にエキスパンド加工して作製されたエキスパンド式集電体に充填し、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して未化成の負極板を作製した。   Next, an unformed negative electrode plate was produced. A mixture of lead oxide, cut fiber, barium sulfate, carbon black as a carbonaceous conductive material, and bisphenol A, aminobenzenesulfonic acid sodium salt, formaldehyde condensate as an organic compound that suppresses the coarsening of the negative electrode active material Water was added to and kneaded, and then kneaded while dilute sulfuric acid was added little by little to prepare an active material paste for negative electrode. This active material paste is filled into an expanded current collector produced by expanding a lead alloy rolled sheet (1 mm thickness) made of a lead alloy (Pb-0.05 mass% Ca-1.5 mass% Sn). Then, it was aged for 24 hours in an atmosphere of 40 ° C. and humidity of 95%, and then dried to produce an unformed negative electrode plate.

次に上記正極板と、負極板と、一般に用いられているポリエチレン製セパレータとを組み合わせて、JIS D5301に規定するB19サイズの鉛蓄電池を組み立てた。電池の組み立ては、正極板と負極板とをセパレータを介して交互に積層し、単位極板群体積当たりの正極板総表面積が1.9cm/cm(正極板3枚、負極板3枚)から4.5cm/cm(正極板7枚、負極板7枚)となるように規定した極板群を構成し、キャストオンストラップ(COS)方式で同極の極板の耳部同士を溶接して極板群を作製した。この鉛蓄電池の極板群体積は、350[cm]であった。Next, a B19 size lead-acid battery defined in JIS D5301 was assembled by combining the positive electrode plate, the negative electrode plate, and a commonly used polyethylene separator. The battery is assembled by alternately laminating positive electrodes and negative electrodes through separators so that the total surface area of the positive electrode plates per unit electrode plate group volume is 1.9 cm 2 / cm 3 (three positive electrodes and three negative electrodes). ) To 4.5 cm 2 / cm 3 (seven positive electrode plates, seven negative electrode plates), and the ears of the same electrode plates are cast-on-strap (COS). Were welded to produce an electrode plate group. The electrode group volume of this lead storage battery was 350 [cm 3 ].

本例では、同じ大きさの正極板及び負極板を用いて極板群を構成したので、負極集電体の耳部と脚部とを除いた部分の片面の面積(幅10.1[cm]と高さ11.1[cm]の積)に、セル室内に収容された状態での極板群の厚み寸法(極板の積層方向に測った寸法)3.12[cm]を乗じる演算を行うことにより、極板群体積を求めた。   In this example, the positive electrode plate and the negative electrode plate having the same size were used to form the electrode plate group. Therefore, the area of one side of the negative electrode current collector excluding the ear and the leg (width 10.1 [cm] ] And the height of 11.1 [cm]) multiplied by the thickness dimension of the electrode group in the state accommodated in the cell chamber (dimension measured in the stacking direction of the electrode sheets) 3.12 [cm] The electrode group volume was determined by performing

次に電槽化成を行った。比重が1.24の希硫酸を電槽内に注入し、活物質量に基づく理論容量の200%の電気量を通電して充電し、鉛蓄電池を完成した。正極活物質は、化成時の温度、電流密度、電解液比重及び正極活物質ペーストに含まれる硫酸鉛量によって、活物質の特性と量が変化する。正極活物質比表面積は、化成温度を高くすると減少し、電解液比重を高くすると増加させることができる。そこで、正極活物質ペーストに含まれる硫酸鉛量により活物質量を調整すると同時に電槽化成時の温度、電解液比重を調整し、単位極板群体積当たりの正極活物質総表面積が異なる各種鉛蓄電池を準備した。単位極板群体積当たりの正極活物質総表面積の調整は、前記の正極活物質ペーストに含まれる硫酸鉛量と化成条件以外にも、例えば、鉛粉出発原料、鉛粉練合条件、極板熟成条件等を適宜選択することにより実現できる。単位極板群体積当たりの正極活物質総表面積を調整する手段が異なっても、結果として、単位極板群体積当たりの正極活物質総表面積が本発明の範囲内であれば、本発明所定の効果を得ることができる。   Next, a battery case was formed. A dilute sulfuric acid having a specific gravity of 1.24 was injected into the battery case, and charged with an amount of electricity of 200% of the theoretical capacity based on the amount of active material charged to complete the lead acid battery. The characteristics and amount of the active material of the positive electrode active material vary depending on the temperature at the time of chemical conversion, the current density, the electrolyte specific gravity, and the amount of lead sulfate contained in the positive electrode active material paste. The specific surface area of the positive electrode active material can be decreased by increasing the chemical conversion temperature, and can be increased by increasing the specific gravity of the electrolyte. Therefore, the amount of the active material is adjusted by the amount of lead sulfate contained in the positive electrode active material paste, and at the same time, the temperature at the time of forming the battery case and the specific gravity of the electrolyte are adjusted, and various lead having different total positive electrode active material surface areas per unit electrode plate group volume. A storage battery was prepared. Adjustment of the total surface area of the positive electrode active material per unit electrode plate group volume is not limited to the amount of lead sulfate contained in the positive electrode active material paste and the chemical conversion conditions, for example, lead powder starting material, lead powder kneading conditions, electrode plate This can be realized by appropriately selecting aging conditions and the like. Even if the means for adjusting the total surface area of the positive electrode active material per unit electrode plate group volume is different, as a result, if the total surface area of the positive electrode active material per unit electrode plate group volume is within the scope of the present invention, An effect can be obtained.

単位極板群体積当たりの正極活物質総表面積は、活物質特性測定用の電池を作製し、解体して正極板を取り出し、先に、式(1)から式(10)で示した比表面積の測定値と活物質重量の積を求めて、これを極板群体積にて除する方法により測定した。   The total surface area of the positive electrode active material per unit electrode plate group volume was determined by preparing a battery for measuring the active material characteristics, disassembling and taking out the positive electrode plate, and then calculating the specific surface area shown in equations (1) to (10) above. The product of the measured value and the weight of the active material was obtained, and the product was measured by a method of dividing this by the electrode plate group volume.

作製した鉛蓄電池について、充電受け入れ性の測定と、サイクル特性の測定とを行った。まず、充電受け入れ性の測定は次のようにして行なった。組立て初期の鉛蓄電池を、25℃の恒温槽の中でSOC(充電状態)を満充電状態の90%に調整し、14Vの充電電圧の印加(但し、14Vに達する前の電流を100Aに制限)開始時から5秒目の充電電流値(5秒目充電電流値)を計測した。5秒目充電電流値が高いほど初期の充電受け入れ性が高いことを意味する。また、40℃の恒温槽の中で、充電電圧14.8V(但し、14.8Vに達する前の電流を25Aに制限),充電時間10分の充電と、25A定電流放電,放電時間4分の放電を1サイクルとしたサイクル試験を5000サイクル繰り返した後、上記の初期と同様の条件で充電受け入れ性の測定を行った。すなわち、5000サイクル後の5秒目充電電流値が高いほど初期の良好な充電受け入れ性をその後も維持していることを意味する。   About the produced lead acid battery, the measurement of charge acceptance and the measurement of cycle characteristics were performed. First, the charge acceptability was measured as follows. Adjust the SOC (charged state) to 90% of the fully charged state in a constant temperature bath at 25 ° C and apply 14V charging voltage (however, the current before reaching 14V is limited to 100A). ) The charging current value at 5 seconds from the start (5th charging current value) was measured. Higher charging current value at the 5th second means higher initial charge acceptability. In a constant temperature bath at 40 ° C., charging voltage 14.8V (however, the current before reaching 14.8V is limited to 25A), charging time 10 minutes, 25A constant current discharging, discharging time 4 minutes After repeating the cycle test in which the discharge of 1 cycle was 5000 cycles, the charge acceptance was measured under the same conditions as in the initial stage. That is, the higher the charge current value at the 5th second after 5000 cycles, the better the initial good charge acceptability is maintained thereafter.

サイクル特性の測定(寿命試験)は次のように行なった。電池温度が25℃になるように雰囲気温度を調整し、45A−59秒間、300A−1秒間の定電流放電を行った後、100A−14V−60秒間の定電流・定電圧充電を1サイクルとする寿命試験を行った。この試験はISS車での鉛蓄電池の使われ方を模擬したサイクル試験である。この寿命試験では、放電量に対して充電量が少ないため、充電が完全に行なわれないと徐々に充電不足になり、その結果、放電電流を300Aとして1秒間放電した時の1秒目電圧が徐々に低下する。すなわち、定電流・定電圧充電時に負極が分極して早期に定電圧充電に切り替わると、充電電流が減衰して充電不足になる。この寿命試験では、300A放電時の1秒目電圧が7.2Vを下回ったときを、その電池の寿命と判定した。   The measurement of cycle characteristics (life test) was performed as follows. Adjust the ambient temperature so that the battery temperature is 25 ° C., perform constant current discharge for 45A-59 seconds and 300A-1 seconds, and then perform constant current / constant voltage charging for 100A-14V-60 seconds as one cycle. A life test was conducted. This test is a cycle test that simulates the use of lead-acid batteries in ISS cars. In this life test, since the amount of charge is small relative to the amount of discharge, the battery gradually becomes insufficient when charging is not performed completely. As a result, the voltage at the first second when the discharge current is 300 A for 1 second is obtained. Decrease gradually. That is, if the negative electrode is polarized during constant current / constant voltage charging and switched to constant voltage charging at an early stage, the charging current is attenuated, resulting in insufficient charging. In this life test, when the first-second voltage at the time of discharge of 300 A was lower than 7.2 V, the battery life was determined.

充放電サイクル中も高い充電受け入れ性を維持しなければ、充電不足の状態が継続し、サイクル特性は悪くなる。上記の5秒目充電電流値の充放電サイクルに伴う変化とサイクル特性を評価することで、充放電サイクル中の充電受け入れ性の良否を適正に評価することになる。   Unless high charge acceptability is maintained even during the charge / discharge cycle, the state of insufficient charge continues and the cycle characteristics deteriorate. By evaluating the change and cycle characteristics of the charging current value at the fifth second and the cycle characteristics, it is possible to appropriately evaluate the quality of charge acceptance during the charge / discharge cycle.

上記の試験により、定電圧充電時の充電受け入れ性と、PSOC下で使用されたときの耐久性とを評価できる。   By the above test, it is possible to evaluate the charge acceptability during constant voltage charging and the durability when used under PSOC.

作製した各種の鉛蓄電池について行った5秒目充電電流の測定結果と、サイクル特性の測定結果とを表1から表3に示した。表1において、単位極板群体積当たりの正極活物質総表面積が3.0m/cmで単位極板群体積当たりの正極板表面積が3.2cm/cmである場合を従来例(No.1)とし、単位極板群体積当たりの正極活物質総表面積が3.5〜16.0m/cmで単位極板群体積当たりの正極板表面積が3.2cm/cmである場合(No.2〜8)を参考例とした。また、表2、表3における鉛蓄電池は、いずれも参考例である。Tables 1 to 3 show the measurement results of the charging current at the 5th second and the measurement results of the cycle characteristics, which were performed on the various lead storage batteries produced. In Table 1, a conventional example in which the total surface area of the positive electrode active material per unit electrode plate group volume is 3.0 m 2 / cm 3 and the surface area of the positive electrode plate per unit electrode plate group volume is 3.2 cm 2 / cm 3 ( No. 1), the positive electrode active material total surface area per unit electrode plate group volume is 3.5 to 16.0 m 2 / cm 3 , and the positive electrode plate surface area per unit electrode plate group volume is 3.2 cm 2 / cm 3 . In some cases (Nos. 2 to 8) were used as reference examples. Moreover, all the lead acid batteries in Tables 2 and 3 are reference examples.

各表に示された5秒目充電電流及びサイクル特性は、表1の従来例を100(5秒目充電電流にあっては、初期を100)として相対評価したものである。   The charging current and cycle characteristics at the 5th second shown in each table are relative evaluations with the conventional example of Table 1 being 100 (the initial value is 100 for the 5th charging current).

Figure 2013073420
Figure 2013073420

表1の結果は、単位極板群体積当たりの正極板総表面積を3.2m/cmに固定し、単位極板群体積当たりの正極活物質総表面積を3.0から16.0m/cmまで変化させた8種類の正極板を用いた場合の5秒目充電電流の測定結果と、サイクル特性の測定結果を示したものである。The results of Table 1 show that the total surface area of the positive electrode plate per unit electrode plate group volume is fixed to 3.2 m 2 / cm 3 , and the total surface area of the positive electrode active material per unit electrode plate group volume is 3.0 to 16.0 m 2. The measurement result of the 5th-second charging current and the measurement result of the cycle characteristics when using eight types of positive electrode plates changed to / cm 3 are shown.

5秒目充電電流は、単位極板群体積当たりの正極活物質総表面積を増大させるにつれて上昇し続けるが、サイクル特性は、中間でピークを迎えて減少に転じる。特に、単位極板群体積当たりの正極活物質総表面積が16.0m/cmとなると、15.6m/cmの場合よりサイクル特性が急激に低下する傾向にある。これは、充放電の繰り返しにより活物質の構造が崩壊する、泥状化と呼ばれる現象が起こったためである。このことから、単位極板群体積当たりの正極活物質総表面積は3.5〜15.6m/cmの範囲にあることが好ましい。The charging current at 5 seconds continues to increase as the total surface area of the positive electrode active material per unit electrode plate group volume increases, but the cycle characteristic reaches a peak in the middle and starts to decrease. In particular, the positive electrode active material total surface area per unit plate group volume when it comes to 16.0 m 2 / cm 3, they tend to cycle characteristics than that of 15.6 m 2 / cm 3 is rapidly lowered. This is because a phenomenon called mudification occurred in which the structure of the active material collapses due to repeated charge and discharge. Therefore, the total surface area of the positive electrode active material per unit electrode plate group volume is preferably in the range of 3.5 to 15.6 m 2 / cm 3 .

Figure 2013073420
Figure 2013073420

表2の結果は、単位極板群体積当たりの正極活物質総表面積が6.0及び12.5m/cmである場合に、単位極板群体積当たりの正極板総表面積を1.9から4.5cm/cmまで変化させた場合の5秒目充電電流の測定結果と、サイクル特性の測定結果とを示したものである。The results of Table 2 show that the total surface area of the positive electrode plate per unit electrode plate group volume is 1.9 when the total surface area of the positive electrode active material per unit electrode plate group volume is 6.0 and 12.5 m 2 / cm 3. 5 shows the measurement results of the charging current at the 5th second and the measurement results of the cycle characteristics when changing from 1 to 4.5 cm 2 / cm 3 .

この結果から、単位極板群体積当たりの正極板総表面積を大きくすると、すなわち極板枚数を増やすと、5秒目充電電流は増加するがサイクル特性は逆に低下してゆくことが分かる。極板群は一定体積の電槽内に収納するという制限があり、極板を薄くすることには限界があるため、単位極板群体積当たりの正極板総表面積を4.5cm/cmにすることは通常困難である。逆に、単位極板群体積当たりの正極板総表面積を1.9cm/cmとすることは極板を厚くすることになり、一定体積の電槽内に収納するという制限上、定格容量を満足することが通常困難である。そのため、単位極板群体積当たりの正極板総表面積は、2.6〜3.9cm/cmの範囲にあることが好ましい。From this result, it is understood that if the total surface area of the positive electrode plate per unit electrode plate group volume is increased, that is, the number of electrode plates is increased, the charging current at the 5th second is increased, but the cycle characteristics are decreased. There is a limitation that the electrode plate group is housed in a fixed volume battery case, and there is a limit to thinning the electrode plate. Therefore, the total surface area of the positive electrode plate per unit electrode plate group volume is 4.5 cm 2 / cm 3. It is usually difficult to make. Conversely, when the total surface area of the positive electrode plate per unit electrode plate group volume is set to 1.9 cm 2 / cm 3 , the electrode plate becomes thicker, and the rated capacity is restricted due to the limitation that it is housed in a fixed volume battery case. Is usually difficult to satisfy. Therefore, the total surface area of the positive electrode plate per unit electrode plate group volume is preferably in the range of 2.6 to 3.9 cm 2 / cm 3 .

Figure 2013073420
Figure 2013073420

表3の結果は、正負極板の枚数が同枚数である表1のNo.3を基準に、正負極板の枚数をいずれか一方が多い枚数構成とした場合について、5秒目充電電流の測定結果と、サイクル特性の測定結果とを示したものである。表3のNo.17及びNo.18では、極板枚数合計が1枚減る分の厚みを、正負極板の厚みに均等に割り振って調節した。その結果、単位極板群体積当たりの正極活物質総表面積と単位極板群体積当たりの正極板総表面積は表3のように変化した。   The results of Table 3 show that the charging current at the 5th second is obtained when the number of positive and negative electrode plates is larger than that of No. 3 in Table 1 where the number of positive and negative electrode plates is the same. The measurement results and the measurement results of cycle characteristics are shown. In No. 17 and No. 18 in Table 3, the thickness corresponding to the decrease in the total number of the electrode plates by 1 was allocated to the thickness of the positive and negative electrode plates and adjusted. As a result, the total surface area of the positive electrode active material per unit electrode plate group volume and the total surface area of the positive electrode plate per unit electrode plate group volume changed as shown in Table 3.

この結果から、正極板の枚数が負極板の枚数より多い方が5秒目充電電流及びサイクル特性が向上することが分かる。   From this result, it can be seen that the charging current and the cycle characteristics at the 5th second are improved when the number of the positive plates is larger than the number of the negative plates.

表1〜表3の結果から、鉛蓄電池の充電受け入れ性について従来は着目されることがなかった正極活物質について改善を行うことにより、鉛蓄電池全体の充電受け入れ性を向上させることができることが分かる。また、鉛蓄電池の充電受け入れ性を改善できることにより、充電不足の状態で充放電が繰り返されるのを防ぐことができるため、充電不足の状態で充放電が繰り返されることにより放電生成物である硫酸鉛が粗大化するのを防ぐことができ、PSOC下での鉛蓄電池の寿命性能を改善することができる。   From the results of Tables 1 to 3, it can be seen that the charge acceptability of the entire lead storage battery can be improved by improving the positive electrode active material that has not been noted in the past with respect to the charge acceptability of the lead storage battery. . In addition, the ability to improve the charge acceptability of the lead storage battery can prevent repeated charging and discharging in an insufficiently charged state, so that lead sulfate, which is a discharge product, is repeatedly charged and discharged in an insufficiently charged state. Can be prevented, and the life performance of the lead-acid battery under PSOC can be improved.

参考例II
参考例Iにおいて、正極集電体に用いる鉛合金の組成を種々変更した。
すなわち、カルシウム(Ca)は0.005〜0.15質量%、錫(Sn)は0.01〜2.5質量%、ビスマス(Bi)は0〜0.2質量%の範囲で選択した。ここで、各元素の添加量は、エキスパンド加工に供する鉛合金圧延シートを作製するための鋳塊の仕上り質量に対する割合で決定される。材料の酸化を防ぐため窒素やアルゴンなどの不活性ガスを充填した溶融炉内で各元素を融解、混合して、厚さ12mmの鋳塊とし、これを冷間圧延して鉛合金シート(1mm厚)を作製しエキスパンド加工に供して正極集電体を作製した。
そのほかは、参考例Iに準じて鉛蓄電池を作製した。
Reference Example II
In Reference Example I, the composition of the lead alloy used for the positive electrode current collector was variously changed.
That is, calcium (Ca) was selected in the range of 0.005 to 0.15 mass%, tin (Sn) in the range of 0.01 to 2.5 mass%, and bismuth (Bi) in the range of 0 to 0.2 mass%. Here, the addition amount of each element is determined by the ratio with respect to the finishing mass of the ingot for producing the lead alloy rolling sheet | seat used for an expanding process. Each element is melted and mixed in a melting furnace filled with an inert gas such as nitrogen or argon to prevent oxidation of the material to form a 12 mm thick ingot, which is cold-rolled to lead alloy sheet (1 mm Thickness) was prepared and subjected to an expanding process to produce a positive electrode current collector.
Other than that, a lead-acid battery was produced according to Reference Example I.

作製した鉛蓄電池について、高温環境でのサイクル寿命特性の試験を行った。すなわち、75℃の恒温槽の中で、充電電圧14.8V(ただし14.8Vに達する前の電流を25Aに制限)、充電時間10分の充電と、25A定電流放電、放電時間4分の放電を1サイクルとし、480サイクル毎に300A定電流放電、放電時間30秒の性能確認を行い、前記30秒間の放電中に電圧が7.2V以下になる時点で電池が寿命を迎えたと判断した。寿命となった電池から正極板を取り出して集電体の伸び及び集電体の表面からの腐食深さの測定を行った。   About the produced lead acid battery, the test of the cycle life characteristic in a high temperature environment was done. That is, in a constant temperature bath at 75 ° C., a charging voltage of 14.8V (however, the current before reaching 14.8V is limited to 25A), charging time of 10 minutes, 25A constant current discharging, discharging time of 4 minutes The discharge was defined as one cycle, and the performance was confirmed with a constant current discharge of 300 A and discharge time of 30 seconds every 480 cycles, and it was determined that the battery had reached the end of its life when the voltage dropped to 7.2 V or less during the discharge for 30 seconds. . The positive electrode plate was taken out from the battery that had reached the end of its life, and the elongation of the current collector and the corrosion depth from the surface of the current collector were measured.

図2は、正極集電体の伸び及び腐食深さを測定する箇所を示している。極板の横幅をWとし、両側縁から0.2Wの長さだけ内側の箇所(すなわち図2中のA点及びC点)及び0.5Wの長さだけ内側の箇所(すなわち図2中のB点)において極板の高さ方向の寸法を比較し、3点の高さの平均値を集電体の伸びの算出に使用した。   FIG. 2 shows the locations where the elongation and corrosion depth of the positive electrode current collector are measured. The width of the electrode plate is W, and the inner side is 0.2 W from both side edges (ie, points A and C in FIG. 2) and the inner side is 0.5 W in length (ie, in FIG. 2). The size in the height direction of the electrode plate was compared at point B), and the average value of the heights at the three points was used for calculation of the elongation of the current collector.

また、極板の耳部を除いた高さをHとしたとき、伸びを測定した箇所の直線上で0.5H(すなわち高さ方向の中点)の地点に位置する集電体の断面観察を行い、腐食深さを測定した。   In addition, when the height excluding the ears of the electrode plate is H, cross-sectional observation of the current collector located at a point of 0.5H (that is, the midpoint in the height direction) on the straight line where the elongation is measured And the corrosion depth was measured.

集電体の伸びは次のように算出した。電池を組み立てる直前の未化成正極板の高さ方向の寸法(L0)を測定しておき、高温サイクル寿命試験で寿命となった電池から取り出した正極板の高さ方向の寸法(L)を測定し、集電体の伸び(E)を式(11)で求める。   The elongation of the current collector was calculated as follows. Measure the dimension (L0) in the height direction of the unformed positive electrode plate just before assembling the battery, and measure the dimension (L) in the height direction of the positive electrode plate taken out from the battery that has reached the end of its life in the high-temperature cycle life test. Then, the elongation (E) of the current collector is obtained by equation (11).

Figure 2013073420
Figure 2013073420

図3は、高温サイクル寿命試験後における正極集電体断面のうち、表面近傍の形態を模式的に示している。高温サイクル試験を行った正極集電体の表面には腐食生成物の層1が形成され、その下には集電体の金属層2が残存している。しかし、金属層2の一部では、結晶粒界にそって腐食が深く進行した粒界腐食3が発生している。   FIG. 3 schematically shows the form in the vicinity of the surface in the cross section of the positive electrode current collector after the high-temperature cycle life test. A corrosion product layer 1 is formed on the surface of the positive electrode current collector subjected to the high-temperature cycle test, and a metal layer 2 of the current collector remains below the corrosion product layer 1. However, in a part of the metal layer 2, intergranular corrosion 3 is generated in which corrosion proceeds deeply along the crystal grain boundary.

集電体の腐食深さは次のように測定した。高温サイクル寿命試験後の正極集電体について、表面近傍の断面観察を行い、腐食生成物の層1と残存する金属層2の境界から最も内側に粒界腐食3が到達している点について、境界からの距離Dを測定する。   The corrosion depth of the current collector was measured as follows. About the positive electrode current collector after the high-temperature cycle life test, a cross-sectional observation in the vicinity of the surface is performed, and the intergranular corrosion 3 reaches the innermost side from the boundary between the corrosion product layer 1 and the remaining metal layer 2. Measure the distance D from the boundary.

以上の定義から、正極集電体の伸び及び腐食深さは数値がより小さいほど耐食性が高いことを示しており、一方、高温サイクル寿命特性については数値が高いほど長寿命であることを示している。   From the above definition, the smaller the numerical value, the higher the corrosion resistance of the positive electrode current collector and the corrosion depth, while the higher the high-temperature cycle life characteristics, the longer the life. Yes.

参考例IIは、正極集電体の伸び、腐食深さ及び高温サイクル寿命特性によって正極集電体の耐食性を評価するものである。ここで、伸び及び腐食深さが低減されることは、正極集電体が優れた耐食性をもつことを示すが、高温サイクル特性が劣る場合、寿命特性の改善という本発明の課題を達成できない。   Reference Example II evaluates the corrosion resistance of the positive electrode current collector based on the elongation, corrosion depth, and high-temperature cycle life characteristics of the positive electrode current collector. Here, the reduction in elongation and corrosion depth indicates that the positive electrode current collector has excellent corrosion resistance. However, when the high-temperature cycle characteristics are inferior, the problem of the present invention of improving the life characteristics cannot be achieved.

作製した各種の鉛蓄電池について行った正極集電体の伸び、腐食深さ及び高温サイクル特性の測定結果を表4〜表8に示す。ここで、高温サイクル特性は、表1におけるNo.3に示す単位極板群体積当たりの正極活物質総表面積が6.0m/cm、単位極板群体積当たりの正極板総表面積が3.2m/cmとなるPSOC下での寿命特性に優れた鉛蓄電池の測定結果を100として相対的に示した。Tables 4 to 8 show the measurement results of the elongation, corrosion depth, and high-temperature cycle characteristics of the positive electrode current collector, which were performed on the various lead-acid batteries produced. Here, in the high-temperature cycle characteristics, the total positive electrode active material surface area per unit electrode plate group volume shown in No. 3 in Table 1 is 6.0 m 2 / cm 3 , and the total positive electrode plate surface area per unit electrode plate group volume is 3 The measurement result of a lead storage battery having excellent life characteristics under PSOC of 2 m 2 / cm 3 is shown as 100.

Figure 2013073420
Figure 2013073420

表4の結果は、錫含有量を1.5質量%に固定し、カルシウム含有量を0.005〜0.15質量%の範囲で変化させたPb−Ca−Sn合金を正極集電体に用いたときの正極集電体の伸び、腐食深さ及び高温サイクル特性の測定結果を示している。   The results of Table 4 show that the Pb—Ca—Sn alloy in which the tin content was fixed to 1.5 mass% and the calcium content was changed in the range of 0.005 to 0.15 mass% was used as the positive electrode current collector. The measurement results of elongation, corrosion depth, and high-temperature cycle characteristics of the positive electrode current collector when used are shown.

鉛合金中にカルシウムを含有すると機械的強度が向上する。No.19はカルシウムの含有量が0.005質量%と少なく強度不足となるため、伸びが大きくなる。一方、No.22は伸びが抑制されるが、腐食深さが大きくなっている。これはカルシウムの含有量が増加すると粒界腐食が生じやすくなることに起因する。いずれの場合も正極集電体の腐食進行により高温サイクル特性の低下が見られた。   When calcium is contained in the lead alloy, the mechanical strength is improved. No. 19 has a calcium content as low as 0.005% by mass and is insufficient in strength, so that elongation increases. On the other hand, No. 22 is suppressed in elongation but has a large corrosion depth. This is because intergranular corrosion tends to occur when the calcium content increases. In either case, the high-temperature cycle characteristics decreased due to the corrosion of the positive electrode current collector.

この結果から、正極集電体に用いる鉛合金のカルシウム含有量は0.01〜0.1質量%の範囲とする。   From this result, the calcium content of the lead alloy used for the positive electrode current collector is in the range of 0.01 to 0.1% by mass.

Figure 2013073420
Figure 2013073420

表5の結果は、カルシウム含有量を0.05質量%に固定し、錫含有量を0.01〜2.5質量%の範囲で変化させたPb−Ca−Sn合金を正極集電体に用いたときの正極集電体の伸び、腐食深さ及び高温サイクル特性の測定結果を示している。   The results of Table 5 show that the Pb—Ca—Sn alloy in which the calcium content is fixed to 0.05 mass% and the tin content is changed in the range of 0.01 to 2.5 mass% is used as the positive electrode current collector. The measurement results of elongation, corrosion depth, and high-temperature cycle characteristics of the positive electrode current collector when used are shown.

鉛合金中の錫含有量が少ないNo.23でも含有量が多いNo.28でも伸び及び腐食深さは大きくなっている。これは、いずれの場合も結晶粒界に耐食性の低い化合物が生成するため粒界腐食が進行するためである。いずれの場合も正極集電体の腐食進行により高温サイクル特性の低下が見られた。   The elongation and the corrosion depth are large even in No. 23 where the tin content in the lead alloy is low and No. 28 where the content is high. This is because intergranular corrosion proceeds because a compound having low corrosion resistance is generated at the crystal grain boundary in any case. In either case, the high-temperature cycle characteristics decreased due to the corrosion of the positive electrode current collector.

この結果から、正極集電体に用いる鉛合金の錫含有量は0.05〜2.0質量%の範囲とする。   From this result, the tin content of the lead alloy used for the positive electrode current collector is in the range of 0.05 to 2.0 mass%.

Figure 2013073420
Figure 2013073420

表6の結果は、カルシウム含有量を0.05質量%、錫含有量を1.5質量%に固定し、ビスマス含有量を0〜0.2質量%の範囲で変化させたPb−Ca−Sn−Bi合金を正極集電体に用いたときの正極集電体の伸び、腐食深さ及び高温サイクル特性の測定結果を示している。   The results of Table 6 show that Pb—Ca— in which the calcium content is fixed to 0.05 mass%, the tin content is fixed to 1.5 mass%, and the bismuth content is changed in the range of 0 to 0.2 mass%. The measurement results of elongation, corrosion depth, and high-temperature cycle characteristics of the positive electrode current collector when Sn—Bi alloy is used for the positive electrode current collector are shown.

Pb−Ca−Sn合金にビスマスを含有すると、機械的強度が向上するため腐食伸びが抑制される。しかしビスマスは結晶粒界に錫の濃度が高い部分が生成する現象を促進する。錫濃度の高い部分は結晶粒に比べて耐食性が低いため、ビスマスの含有量が増大すると腐食深さが大きくなり、結果として高温サイクル特性が悪化する。   When bismuth is contained in the Pb—Ca—Sn alloy, the mechanical strength is improved, so that the corrosion elongation is suppressed. However, bismuth promotes a phenomenon in which a portion having a high tin concentration is formed at the grain boundary. The portion with a high tin concentration has lower corrosion resistance than the crystal grains. Therefore, when the bismuth content increases, the corrosion depth increases, and as a result, the high-temperature cycle characteristics deteriorate.

この結果から、正極集電体に用いる鉛合金のビスマス含有量は0.05〜0.15質量%の範囲とする。   From this result, the bismuth content of the lead alloy used for the positive electrode current collector is in the range of 0.05 to 0.15 mass%.

実施例
まず、正極集電体に用いる鉛合金を鋳造法により作製した。ここで作製する合金はPb−Ca−Sn合金、Pb−Ca−Sn−Bi合金、Pb−Ca−Sn−Bi−Ag合金及びPb−Ca−Sn−Bi−In合金である。銀は0〜2.5質量%、インジウムは0〜1質量%の範囲から選択した。これら鉛合金の圧延シートをエキスパンド加工して作製されたエキスパンド式集電体を正極集電体に用い、以下、参考例Iに準じて鉛蓄電池を作製した。
Example First, a lead alloy used for the positive electrode current collector was produced by a casting method. The alloys produced here are a Pb—Ca—Sn alloy, a Pb—Ca—Sn—Bi alloy, a Pb—Ca—Sn—Bi—Ag alloy, and a Pb—Ca—Sn—Bi—In alloy. Silver was selected from the range of 0 to 2.5% by mass, and indium was selected from the range of 0 to 1% by mass. An expandable current collector produced by expanding these lead alloy rolled sheets was used as a positive electrode current collector, and a lead storage battery was produced in accordance with Reference Example I below.

Figure 2013073420
Figure 2013073420

表7の結果は、カルシウム含有量を0.05質量%、錫含有量を1.5質量%、ビスマス含有量を0.1質量%に固定し、銀含有量を0〜2.5質量%の範囲で変化させたPb−Ca−Sn−Bi−Ag合金を正極集電体に用いたときの正極集電体の伸び、腐食深さ及び高温サイクル特性の測定結果を示している。なお、比較例としてNo.39に特許文献7(特開2003−346811号公報)で開示される鉛−錫−銀合金の測定結果を示す。   The results in Table 7 show that the calcium content is fixed to 0.05 mass%, the tin content is fixed to 1.5 mass%, the bismuth content is fixed to 0.1 mass%, and the silver content is 0 to 2.5 mass%. The measurement result of the elongation of the positive electrode collector, the corrosion depth, and the high-temperature cycle characteristic when the Pb-Ca-Sn-Bi-Ag alloy changed in the range of is used for the positive electrode collector is shown. As a comparative example, No. 39 shows the measurement result of a lead-tin-silver alloy disclosed in Patent Document 7 (Japanese Patent Laid-Open No. 2003-346811).

Pb−Ca−Sn−Bi合金に銀を含有すると、ビスマスの存在によって結晶粒界に錫濃度が高い部分が形成される現象を抑制するため、ビスマス含有合金の欠点であった耐食性が改善され、高い機械的強度と耐食性を両立する正極集電体を得ることができる。   When silver is contained in the Pb—Ca—Sn—Bi alloy, the corrosion resistance that has been a drawback of the bismuth-containing alloy is improved in order to suppress the phenomenon that a portion having a high tin concentration is formed at the grain boundary due to the presence of bismuth. A positive electrode current collector having both high mechanical strength and corrosion resistance can be obtained.

この結果から、正極集電体に用いる鉛合金は、ビスマス、カルシウム及び錫を含み、かつ銀を含むこととする。   From this result, the lead alloy used for the positive electrode current collector contains bismuth, calcium and tin, and also contains silver.

ただし、銀の含有量が上昇すると、活物質と集電体の密着性が低下してしまうため、高温サイクル特性が低下する傾向にあるので、銀含有量は0.005〜2質量%の範囲にあることが最も好ましい。   However, since the adhesiveness between the active material and the current collector decreases when the silver content increases, the high-temperature cycle characteristics tend to decrease, so the silver content is in the range of 0.005 to 2 mass%. Most preferably.

Figure 2013073420
Figure 2013073420

表8の結果は、カルシウム含有量を0.05質量%、錫含有量を1.5質量%、ビスマス含有量を0.1質量%に固定し、インジウム含有量を0〜1質量%の範囲で変化させたPb−Ca−Sn−Bi−In合金を正極集電体に用いたときの正極集電体の伸び、腐食深さ及び高温サイクル特性の測定結果を示している。なお、比較例としてNo.44に特許文献8(特開2001−236962号公報)で開示されるPb−Ca−Sn−In合金の測定結果を示す。   The results in Table 8 show that the calcium content is 0.05 mass%, the tin content is 1.5 mass%, the bismuth content is fixed to 0.1 mass%, and the indium content is in the range of 0 to 1 mass%. 3 shows the measurement results of the elongation, corrosion depth, and high-temperature cycle characteristics of the positive electrode current collector when the Pb—Ca—Sn—Bi—In alloy changed in (1) was used for the positive electrode current collector. As a comparative example, No. 44 shows the measurement result of the Pb—Ca—Sn—In alloy disclosed in Patent Document 8 (Japanese Patent Laid-Open No. 2001-23662).

Pb−Ca−Sn−Bi合金にインジウムを含有すると、銀を含有したときと同様の効果を生じる。すなわち、結晶粒界に錫濃度が高い部分が形成される現象を抑制し、ビスマス含有合金の欠点である耐食性が改善され、高い機械的強度と耐食性を両立する正極集電体を得られる。   When indium is contained in the Pb—Ca—Sn—Bi alloy, the same effect as when silver is contained is produced. That is, the phenomenon that a portion having a high tin concentration is formed at the crystal grain boundary is suppressed, the corrosion resistance, which is a defect of the bismuth-containing alloy, is improved, and a positive electrode current collector having both high mechanical strength and corrosion resistance can be obtained.

この結果から、正極集電体に用いる鉛合金は、ビスマス、カルシウム及び錫を含み、かつインジウムを含むことが望ましい。   From this result, it is desirable that the lead alloy used for the positive electrode current collector contains bismuth, calcium and tin, and also contains indium.

ただし、銀と同様に、インジウムの含有量が上昇すると高温サイクル特性が低下する。   However, like silver, when the content of indium increases, the high-temperature cycle characteristics deteriorate.

この結果から、正極集電体に用いる鉛合金のインジウム含有量は0.01〜0.5質量%の範囲にあることが最も好ましい。   From this result, the indium content of the lead alloy used for the positive electrode current collector is most preferably in the range of 0.01 to 0.5% by mass.

表4〜表8の結果より、従来のPb−Ca−Sn合金及び公知の高耐食性合金の正極集電体を用いた鉛蓄電池と比較して、本発明の実施例における鉛蓄電池は、高温サイクル試験の結果が良好であることから、高温環境での集電体の耐食性が改善されることが示された。   From the results of Tables 4 to 8, the lead acid batteries in the examples of the present invention were compared with the lead acid batteries using the positive electrode current collectors of the conventional Pb—Ca—Sn alloy and the known high corrosion resistance alloy. Since the result of the test was good, it was shown that the corrosion resistance of the current collector in a high temperature environment was improved.

本発明では、鉛蓄電池の充電受け入れ性を改善するにあたって従来注目されてこなかった正極活物質の性能を改善することにより、電池全体としての充電受け入れ性を更に改善することを可能にした。そして、本発明では、従来の正極集電体に用いられるPb−Ca−Sn合金に、機械的強度を改善するためのビスマス及び耐食性を向上させる銀またはインジウムを最適な量で含有させることにより、高温環境下での集電体の変形や腐食を抑制し、より過酷な使用条件での鉛蓄電池の寿命特性を改善できることを見出した。これらのことを総合し、本発明を実施することによって、PSOC下での寿命特性向上と高温耐食性の両立したこれまでにない性能を有する鉛蓄電池を可能とした。   In the present invention, by improving the performance of the positive electrode active material that has not been noticed in the past in improving the charge acceptability of a lead storage battery, the charge acceptability of the battery as a whole can be further improved. In the present invention, the Pb-Ca-Sn alloy used in the conventional positive electrode current collector contains bismuth for improving mechanical strength and silver or indium for improving corrosion resistance in an optimum amount. The present inventors have found that the life characteristics of lead-acid batteries can be improved under more severe use conditions by suppressing the deformation and corrosion of the current collector in a high temperature environment. By combining these things and carrying out the present invention, a lead-acid battery having unprecedented performance that has both improved life characteristics under PSOC and high-temperature corrosion resistance has been made possible.

以上のように本発明は、PSOC下での寿命特性向上と高温耐食性の両立を達成した液式鉛蓄電池を提供することを可能にするものであり、ISS車や発電制御車などのマイクロハイブリッド車等の普及に寄与するものである。従って、本発明は、自動車の燃費向上により炭酸ガスの排出量の低減を図り、地球温暖化を抑制するという地球規模の課題の解決に役立つものであり、産業上の利用可能性が大である。   As described above, the present invention makes it possible to provide a liquid lead-acid battery that achieves both improved life characteristics under PSOC and high-temperature corrosion resistance, and is a micro hybrid vehicle such as an ISS vehicle or a power generation control vehicle. It contributes to the spread of such. Therefore, the present invention is useful for solving the global problem of reducing carbon dioxide emission by improving the fuel efficiency of automobiles and suppressing global warming, and has great industrial applicability. .

1:腐食生成物の層
2:金属層
3:粒界腐食
1: Corrosion product layer 2: Metal layer 3: Intergranular corrosion

Claims (4)

負極活物質を負極集電体に充填してなる負極板と、正極活物質を正極集電体に充填してなる正極板とをセパレータを介して積層した極板群を、電解液とともに電槽内に収容した構成を有する鉛蓄電池であって、
少なくとも、炭素質導電材と、充放電に伴う負極活物質の粗大化を抑制する有機化合物とが前記負極活物質に添加され、
前記正極集電体に用いる鉛合金はカルシウムを0.01〜0.1質量%、錫を0.05〜2質量%、及びビスマスを0.05〜0.15質量%含み、かつ銀またはインジウムのいずれかの元素を含み、
前記正極板は、単位極板群体積[cm]当たりの正極活物質総表面積[m]を、3.5〜15.6[m/cm]の範囲とするように構成されていることを特徴とする鉛蓄電池。
An electrode group comprising a negative electrode plate in which a negative electrode active material is filled in a negative electrode current collector and a positive electrode plate in which a positive electrode active material is filled in a positive electrode current collector with a separator interposed therebetween. A lead storage battery having a configuration housed therein,
At least a carbonaceous conductive material and an organic compound that suppresses the coarsening of the negative electrode active material associated with charge and discharge are added to the negative electrode active material,
The lead alloy used for the positive electrode current collector contains 0.01 to 0.1% by mass of calcium, 0.05 to 2% by mass of tin, and 0.05 to 0.15% by mass of bismuth, and silver or indium. Containing any element of
The positive electrode plate, a positive electrode active material total surface area per unit plate group volume [cm 3] [m 2] , is configured to a range of 3.5~15.6 [m 2 / cm 3] Lead-acid battery characterized by being.
前記正極板は、単位極板群体積[cm]当たりの正極板総表面積[cm]を2.6〜3.9cm/cmの範囲とするように構成されていることを特徴とする請求項1記載の鉛蓄電池。The positive electrode plate is configured to have a total positive electrode plate surface area [cm 2 ] per unit electrode plate group volume [cm 3 ] in a range of 2.6 to 3.9 cm 2 / cm 3. The lead acid battery according to claim 1. 前記鉛合金は、銀を0.005〜2質量%含有することを特徴とする請求項1もしくは2記載の鉛蓄電池。   The lead storage battery according to claim 1 or 2, wherein the lead alloy contains 0.005 to 2 mass% of silver. 前記鉛合金は、インジウムを0.01〜0.5質量%含有することを特徴とする請求項1もしくは2記載の鉛蓄電池。   The lead acid battery according to claim 1 or 2, wherein the lead alloy contains 0.01 to 0.5 mass% of indium.
JP2013544224A 2011-11-16 2012-11-06 Lead acid battery Active JP5858048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013544224A JP5858048B2 (en) 2011-11-16 2012-11-06 Lead acid battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011250237 2011-11-16
JP2011250237 2011-11-16
JP2013544224A JP5858048B2 (en) 2011-11-16 2012-11-06 Lead acid battery
PCT/JP2012/078748 WO2013073420A1 (en) 2011-11-16 2012-11-06 Lead storage battery

Publications (2)

Publication Number Publication Date
JPWO2013073420A1 true JPWO2013073420A1 (en) 2015-04-02
JP5858048B2 JP5858048B2 (en) 2016-02-10

Family

ID=48429483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013544224A Active JP5858048B2 (en) 2011-11-16 2012-11-06 Lead acid battery

Country Status (2)

Country Link
JP (1) JP5858048B2 (en)
WO (1) WO2013073420A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884528B2 (en) * 2012-02-03 2016-03-15 株式会社Gsユアサ Liquid lead-acid battery
EP3125341B1 (en) * 2014-03-28 2018-11-14 Hitachi Chemical Company, Ltd. Lead storage cell and electrode collector for lead storage cell
CN107210495A (en) * 2015-01-28 2017-09-26 日立化成株式会社 Lead accumulator and the automobile for possessing it
JP6658730B2 (en) * 2015-03-18 2020-03-04 株式会社Gsユアサ Lead storage battery
WO2020241883A1 (en) * 2019-05-31 2020-12-03 株式会社Gsユアサ Lead storage battery
JP6791326B2 (en) * 2019-09-04 2020-11-25 昭和電工マテリアルズ株式会社 Lead-acid battery
WO2022202443A1 (en) * 2021-03-26 2022-09-29 古河電池株式会社 Current collection sheet for lead storage battery, lead storage battery, and bipolar lead storage battery
JP7198890B1 (en) 2021-09-13 2023-01-04 古河電池株式会社 lead acid battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091572A (en) * 1983-10-24 1985-05-22 Yuasa Battery Co Ltd Sealed lead storage battery
JPS62177868A (en) * 1986-01-31 1987-08-04 Matsushita Electric Ind Co Ltd Sealed type lead storage battery
JPH01117279A (en) * 1987-10-30 1989-05-10 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JPH11121008A (en) * 1997-10-13 1999-04-30 Japan Storage Battery Co Ltd Negative electrode plate for lead-acid battery
JP2001236962A (en) * 2000-02-23 2001-08-31 Yuasa Corp Lead battery
JP2003306733A (en) * 2002-04-18 2003-10-31 Furukawa Battery Co Ltd:The Lead based alloy for lead storage battery, and lead storage battery using the same
WO2011108056A1 (en) * 2010-03-01 2011-09-09 新神戸電機株式会社 Lead storage battery
WO2011142072A1 (en) * 2010-05-10 2011-11-17 新神戸電機株式会社 Lead storage battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8235549B2 (en) * 2009-12-09 2012-08-07 Tyco Electronics Corporation Solid state lighting assembly

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091572A (en) * 1983-10-24 1985-05-22 Yuasa Battery Co Ltd Sealed lead storage battery
JPS62177868A (en) * 1986-01-31 1987-08-04 Matsushita Electric Ind Co Ltd Sealed type lead storage battery
JPH01117279A (en) * 1987-10-30 1989-05-10 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JPH11121008A (en) * 1997-10-13 1999-04-30 Japan Storage Battery Co Ltd Negative electrode plate for lead-acid battery
JP2001236962A (en) * 2000-02-23 2001-08-31 Yuasa Corp Lead battery
JP2003306733A (en) * 2002-04-18 2003-10-31 Furukawa Battery Co Ltd:The Lead based alloy for lead storage battery, and lead storage battery using the same
WO2011108056A1 (en) * 2010-03-01 2011-09-09 新神戸電機株式会社 Lead storage battery
WO2011142072A1 (en) * 2010-05-10 2011-11-17 新神戸電機株式会社 Lead storage battery

Also Published As

Publication number Publication date
JP5858048B2 (en) 2016-02-10
WO2013073420A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP5858048B2 (en) Lead acid battery
JP6597842B2 (en) Lead acid battery
JP5783170B2 (en) Lead acid battery
JP5621841B2 (en) Lead acid battery
JP5522444B2 (en) Lead acid battery
JP5500315B2 (en) Lead acid battery
JP5598532B2 (en) Lead acid battery
JPWO2012042917A1 (en) Lead acid battery
JPWO2005107004A1 (en) Lead acid battery
JP2013065443A (en) Lead storage battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP2008243493A (en) Lead acid storage battery
JP6388094B1 (en) Lead acid battery
JP2008140645A (en) Lead acid battery
JP2006114417A (en) Lead-acid storage battery
JP4892827B2 (en) Lead acid battery
JP2007305370A (en) Lead storage cell
JP2019207786A (en) Lead acid battery
JP2006114416A (en) Lead-acid battery
JP5088679B2 (en) Lead acid battery
JP2007213896A (en) Lead-acid storage battery
JP2018170303A (en) Lead-acid battery
JP2007305369A (en) Lead-acid storage battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5858048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250