JP2003123760A - Negative electrode for lead-acid battery - Google Patents

Negative electrode for lead-acid battery

Info

Publication number
JP2003123760A
JP2003123760A JP2001315036A JP2001315036A JP2003123760A JP 2003123760 A JP2003123760 A JP 2003123760A JP 2001315036 A JP2001315036 A JP 2001315036A JP 2001315036 A JP2001315036 A JP 2001315036A JP 2003123760 A JP2003123760 A JP 2003123760A
Authority
JP
Japan
Prior art keywords
negative electrode
lead
acetylene black
battery
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001315036A
Other languages
Japanese (ja)
Other versions
JP4053272B2 (en
Inventor
Atsushi Furukawa
淳 古川
Hikari Sakamoto
光 坂本
Kozo Sogabe
幸蔵 曽我部
Hidetoshi Abe
英俊 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2001315036A priority Critical patent/JP4053272B2/en
Publication of JP2003123760A publication Critical patent/JP2003123760A/en
Application granted granted Critical
Publication of JP4053272B2 publication Critical patent/JP4053272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode for a lead-acid battery having superior regenerative charging characteristic and discharging characteristic, and capable of repeating high rate charging and discharging from a PSOC condition. SOLUTION: This negative electrode for the lead-acid battery is prepared by adding 0.5-4 pts.wt. of acetylene black having an average particle diameter of 30 nm or less, a specific surface area of 100-150 m<2> /g, and DBP oil absorption of 200 cm<3> /100 g or more, to 100 pts.wt. of a negative electrode active material. Preferably, when both of acetylene black and barium sulfate are added together, the weight ratio of 1:1 to 1:1.7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特にPSOC状態
でアイドルストップ、加速アシスト、回生充電等の高率
充放電を繰り返すHEV用に適するシール型鉛蓄電池な
どの鉛蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-acid battery such as a sealed lead-acid battery particularly suitable for HEVs in which high-rate charging / discharging such as idle stop, acceleration assist, and regenerative charging is repeated in a PSOC state.

【0002】[0002]

【従来の技術】最近、自動車用鉛蓄電池を従来の12V
から36Vに高電圧化する動きが活発化している。これ
は当初、利便性や低コスト化を目的とした自動車搭載機
器の電動化に伴う電力需要急増への対応やワイヤーハー
ネス重量抑制を目的として進められていた。しかしその
後、環境対策や低燃費化が大きな関心事となると共に、
高効率スタータ・ジェネレータが開発された事で、36
Vでもアイドルストップ機能は勿論、スタート・アシス
トやブレーキ時のエネルギー回生が可能となり、従来の
HEVの範疇を大幅に拡げる事となった。その結果、安
価でメンテナンスフリーのシール型鉛蓄電池をこの用途
に用いる試みが活発化している。ところで、これらの機
能のうちアイドルストップやスタート・アシストは鉛蓄
電池に高い放電性能を要求する。従来の鉛蓄電池は、こ
の点において非常に優れていると言われていたが、後述
するエネルギー回生では充電状態を低めにするため、電
解液中の硫酸イオンは不足状態となり、特に急速放電時
は極板近傍の硫酸イオンは急激に消費されて放電性能は
著しく低下する。エネルギー回生は、高効率の急速充電
性能を要求するが、鉛蓄電池はその要求に適さないと言
われている。その理由は、高効率の急速充電を行うには
電池の充電状態(SOC)を例えば60〜90%と中途
半端な充電状態(PSOC)にしておく必要があるが、
鉛蓄電池はこの状態で充放電を繰り返すと負極に放電物
質である硫酸鉛の結晶が成長・粗大化し、可逆性が失わ
れたサルフェーションと言われる状態になるからであ
る。特に、回生充電のように短時間に大電流で充電を行
う場合には、僅か100回程度の回生充電と放電の繰り
返しで、即ち、ブレーキを100回踏む操作で、負極の
海綿状鉛の表面に生成した硫酸鉛の影響で負極の分極が
水素発生電位まで増大し、充電効率は急速に低下する事
になる。これらの問題を解決するために、従来、その負
極に導電剤として粒状や繊維状のカーボンを例えば0.
5重量%以上或いはアセチレンブラックを0.4〜7.
5重量%を添加することが提案されている。(特開平6
−349486、特開平7−6767、特開平7−20
1331などの公報参照)。また、同様の目的で添加す
るカーボンを微細な繊維状とし、これを0.01〜10
wt.%添加したり、粉末と組み合わせたりする事も提
案されている。(特開平2−177260、特許第27
29644号、特許第2847761号などの公報参
照)。
2. Description of the Related Art Recently, a lead storage battery for an automobile has been replaced with a conventional 12V battery.
The movement to increase the voltage from 36V to 36V is becoming active. Initially, this was promoted with the aim of responding to the rapid increase in power demand accompanying the electrification of on-vehicle equipment for convenience and cost reduction, and suppressing the wire harness weight. However, since then, environmental measures and low fuel consumption have become of great concern,
With the development of the high efficiency starter generator, 36
Even with V, not only the idle stop function but also energy regeneration during start assist and braking is possible, greatly expanding the category of conventional HEV. As a result, attempts are being made to use inexpensive and maintenance-free sealed lead acid batteries for this purpose. By the way, among these functions, idle stop and start assist require high discharge performance for the lead storage battery. Conventional lead-acid batteries are said to be very good in this respect, but in order to lower the state of charge in the energy regeneration described below, the sulfate ions in the electrolyte become insufficient, especially during rapid discharge. Sulfate ions near the electrode plate are rapidly consumed, and the discharge performance is significantly reduced. Energy regeneration requires high-efficiency rapid charging performance, but lead-acid batteries are said to be unsuitable for that requirement. The reason is that in order to perform high-efficiency quick charging, the state of charge (SOC) of the battery needs to be in a halfway state of charge (PSOC) of, for example, 60 to 90%.
This is because when lead-acid batteries are repeatedly charged and discharged in this state, crystals of lead sulfate, which is a discharging substance, grow and coarsen on the negative electrode, resulting in a state called sulfation in which reversibility is lost. In particular, in the case of charging with a large current in a short time such as regenerative charging, the surface of spongy lead of the negative electrode can be obtained by repeating regenerative charging and discharging only about 100 times, that is, by operating the brake 100 times. The polarization of the negative electrode increases to the hydrogen generation potential due to the influence of the lead sulfate generated in, and the charging efficiency rapidly decreases. In order to solve these problems, conventionally, granular or fibrous carbon was used as a conductive agent in the negative electrode, for example.
5% by weight or more or 0.4 to 7.
It has been proposed to add 5% by weight. (JP-A-6
-349486, JP-A-7-6767, JP-A-7-20
1331). In addition, carbon added for the same purpose is made into a fine fibrous material, and this is 0.01 to 10
wt. % Addition or combination with powder is also proposed. (JP-A-2-177260, Patent No. 27
29644, Japanese Patent No. 2847761 and the like).

【0003】[0003]

【発明が解決しようとする課題】しかし乍ら、上記の公
知技術では、未だ、上記のようなPSOCの使用状態か
ら満足なエネルギー回生特性が得られず、その改善が望
まれていた。本発明は、上記従来の鉛蓄電池の課題を解
消し、PSOC状態での充電特性を大幅に改善し、PS
OC状態からのエネルギー回生特性に優れ、特にHEV
用に鉛蓄電池に適した鉛蓄電池をもたらす負極を開発し
たものである。
However, in the above-mentioned known art, however, satisfactory energy regeneration characteristics cannot be obtained yet from the above-mentioned usage state of PSOC, and improvement thereof has been desired. The present invention solves the above-mentioned problems of the conventional lead-acid battery, significantly improves the charging characteristics in the PSOC state, and
Excellent energy regeneration characteristics from OC state, especially HEV
This is the development of a negative electrode that provides a lead-acid battery suitable for use in lead-acid batteries.

【0004】[0004]

【課題を解決するための手段】本発明は、上記従来の課
題を解消し、回生充電特性の優れた鉛蓄電池用負極を提
供するもので、負極活物質にアセチレンブラックとバリ
ウム化合物を添加して成る鉛蓄電池用負極において、負
極活物質100重量部に対し、平均粒径30nm以下、
比表面積100〜150m2 /g、DBP吸油量150
3 /100g以上であるアセチレンブラックを0.5
〜4重量部添加したことを特徴とする。上記の本発明に
おいて、上記の回生特性の更に向上した鉛蓄電池用負極
を提供するもので、該アセチレンブラックと硫酸バリウ
ムを、該アセチレンブラックと硫酸バリウムの重量比率
が1:1〜1.7で添加したことを特徴とする。
The present invention solves the above-mentioned conventional problems and provides a negative electrode for a lead storage battery having excellent regenerative charging characteristics, which comprises adding acetylene black and a barium compound to the negative electrode active material. In the negative electrode for lead acid battery, the average particle diameter is 30 nm or less with respect to 100 parts by weight of the negative electrode active material,
Specific surface area 100-150 m 2 / g, DBP oil absorption 150
m 3 / 0.5 acetylene black is 100g or more
˜4 parts by weight are added. The present invention provides the negative electrode for a lead storage battery, which is further improved in the above regenerative characteristics, wherein the acetylene black and barium sulfate are in a weight ratio of 1: 1 to 1.7. It is characterized by being added.

【0005】[0005]

【発明の実施の形態】本発明の実施例を以下詳述する。
本発明の鉛蓄電池用負極を製造するに当たり、添加され
るカーボン粉末としてアセチレンブラックに限定する理
由は、カーボンブラックなどの他のカーボン粉末より高
温に対し安定であり、而も製造過程で水素や酸素を取り
込み難く、水素や酸素含有量が低いため、導電性に優れ
ている基本的な特性を有するからである。このアセチレ
ンブラックにつき種々検討したところ、後記に明らかに
するように、アセチレンブラックの平均粒径は、30n
m以下になると海綿状鉛活物質の表面に網目状の導電ネ
ットワークを形成し、PSOC状態でも硫酸鉛の蓄積を
抑制する効果があることが判った。また、一般に、微細
なカーボンブラックは、通常比表面積が大きくなり、そ
れに伴って水素過電圧の低下と水素発生の増大、即ち充
電効率の低下を招くが、特に30nm以下のアセチレン
ブラックはアグリゲート構造が非常に良く発達している
ために比表面積が100〜150m2 /gの範囲におい
て特に水素過電圧がむしろ増加して、充電効率が向上す
ることが判った。また、そのDBP吸油量は200m3
/100g以上であると電解液を保持する効果が非常に
高く、急速な充放電を行っても拡散律速による分極を低
く抑える事ができることが判った。
Embodiments of the present invention will be described in detail below.
In producing the negative electrode for a lead storage battery of the present invention, the reason for limiting the carbon powder to be added to acetylene black is that it is more stable to high temperatures than other carbon powders such as carbon black, and hydrogen and oxygen are produced during the production process. It is because it is difficult to take in hydrogen and the content of hydrogen and oxygen is low, so that it has basic characteristics of excellent conductivity. As a result of various studies on this acetylene black, as will be made clear later, the acetylene black has an average particle size of 30 n.
It has been found that when the m is less than or equal to m, a mesh-shaped conductive network is formed on the surface of the spongy lead active material, and there is an effect of suppressing lead sulfate accumulation even in the PSOC state. Further, in general, fine carbon black usually has a large specific surface area, which causes a decrease in hydrogen overvoltage and an increase in hydrogen generation, that is, a decrease in charging efficiency. However, acetylene black having a particle size of 30 nm or less has an aggregate structure. It has been found that the hydrogen overvoltage is rather increased and the charging efficiency is improved in the specific surface area range of 100 to 150 m 2 / g due to the very good development. Also, its DBP oil absorption is 200 m 3
It was found that the effect of holding the electrolytic solution was very high when the amount was 100 g / 100 g or more, and the polarization due to the diffusion rate control could be suppressed to a low level even when rapid charge / discharge was performed.

【0006】而して、かゝる特定の条件を有するアセチ
レンブラックの負極活物質への添加量は、負極活物質1
00重量部に対し0.5〜4重量部添加することによ
り、下記に詳述するように、回生特性の改善効果を発揮
することが判った。
Thus, the amount of acetylene black having such specific conditions added to the negative electrode active material is the same as that of the negative electrode active material 1.
It was found that the addition of 0.5 to 4 parts by weight relative to 00 parts by weight exerts the effect of improving the regenerative characteristics, as described in detail below.

【0007】また、負極活物質には、アセチレンブラッ
クと共にバリウム化合物を添加併用される。その使用さ
れるバリウム化合物は、硫酸バリウムや炭酸バリウム等
であるが、これらは電解液である硫酸と反応し、硫酸バ
リウムに変化する。そして、硫酸バリウムが有する硫酸
鉛の核化剤として働き、即ち硫酸鉛の粗大化を抑制する
作用にアセチレンブラックが影響する。この場合、該ア
セチレンブラックと硫酸バリウムの添加量の配合割合
が、重量比でアセチレンブラック1対硫酸バリウム1〜
1.7で添加するときは、最良の放電特性と回生特性の
向上をもたらすことが判った。尚、硫酸バリウムとして
は、平均粒径0.7μmのものを使用することが好まし
い。
Further, a barium compound is added and used together with acetylene black to the negative electrode active material. The barium compound used is barium sulfate, barium carbonate, or the like, which reacts with sulfuric acid as an electrolytic solution to change to barium sulfate. And, acetylene black acts as a nucleating agent of lead sulfate contained in barium sulfate, that is, an action of suppressing coarsening of lead sulfate. In this case, the acetylene black and barium sulphate are added at a weight ratio of 1 to 1 acetylene black to 1 barium sulphate.
It was found that the addition of 1.7 results in the best improvement in discharge characteristics and regeneration characteristics. It is preferable to use barium sulfate having an average particle size of 0.7 μm.

【0008】次に、本発明の鉛蓄電池用負極の実施例と
して、その製造例とこれを用いた鉛蓄電池の諸特性を比
較例と共に詳述する。 (1)未化成の負極板の製造:負極活物質として、ボー
ルミル法で製造した酸化鉛(PbO)に、該酸化鉛10
0重量部に対し、下記表1の実施例及び比較例に示すよ
うに、平均粒径、比表面積、DBP吸油量を異にするア
セチレンブラック(C)とその添加量と硫酸バリウム
(BaSO4 )の添加量と添加されるCとBaSO4
配合比率を異にして添加し、次に、リグニンを水溶液と
して加え、続いてイオン交換水を加え乍ら混練して水ペ
ーストを調製し、更に比重1.36の希硫酸を加え乍ら
混練し各種の負極活物質ペーストを調製した。このとき
に使用したイオン交換水の量は酸化鉛100重量部に対
しておよそ10重量部、希硫酸の量は10重量部であっ
た。尚、出来上がったペーストのカップ密度が約135
g/2in3となるようにイオン交換水の量を調製し
た。このように製造したペーストをカルシウム合金から
成る鋳造基板に充填し、40℃、湿度95%の雰囲気で
24時間熟成し、その後乾燥して各種の未化成の負極板
を製造した。 (2)未化成の正極板の製造:酸化鉛100重量部にイ
オン交換水10重量部、続いて比重1.27の希硫酸1
0重量部を加え乍ら混練して正極用ペーストを調製し
た。このペーストのカップ密度は約140g/2in3
であった。このペーストをカルシウム合金から成る鋳造
基板に充填し、40℃、湿度95%の雰囲気で24時間
熟成し、その後乾燥して未化成の正極板を多数製造し
た。 (3)電池組立、電解液の調製の化成:これらの未化成
板に微細なガラス繊維に約10%のシリカ粉末を加えて
成る、20kPa加圧時の厚みが0.8mmのリテーナ
マットセパレータを組み合わせ、COS方式で極板同士
を溶接して極板群とした。これをPP製の電槽に入れ、
ヒートシールによって蓋をした。次に、電槽化成に用い
る比重1.20の電解液を調製した。これに放電状態で
の短絡防止用に硫酸ナトリウムを添加して用いた。この
電解液を電池に入れて40℃の水槽中で理論容量の20
0%過充電して電槽化成を行い、表1に示す実施例及び
比較例の負極を用いた夫々の2Vのシール型鉛蓄電池を
製造した。この電池の電解液比重は1.260であり、
電解液量は極板群の理論空間体積の100%に調製し
た。化成後に行った電池の容量試験で5時間率容量は2
0Ahであった。
Next, as an example of the negative electrode for a lead-acid battery of the present invention, its manufacturing example and various characteristics of the lead-acid battery using the same will be described in detail together with comparative examples. (1) Production of unformed negative electrode plate: As a negative electrode active material, lead oxide (PbO) produced by a ball mill method was added to the lead oxide 10
With respect to 0 parts by weight, as shown in Examples and Comparative Examples in Table 1 below, acetylene black (C) having different average particle size, specific surface area and DBP oil absorption, its addition amount, and barium sulfate (BaSO 4 ) And the mixture ratio of C and BaSO 4 to be added are differently added, then lignin is added as an aqueous solution, and then ion-exchanged water is added and kneaded to prepare a water paste. Various kinds of negative electrode active material pastes were prepared by adding 1.36 diluted sulfuric acid and kneading. The amount of ion-exchanged water used at this time was about 10 parts by weight with respect to 100 parts by weight of lead oxide, and the amount of dilute sulfuric acid was 10 parts by weight. The cup density of the finished paste is about 135.
The amount of ion-exchanged water was adjusted so as to be g / 2 in 3. The paste thus produced was filled in a cast substrate made of a calcium alloy, aged in an atmosphere of 40 ° C. and a humidity of 95% for 24 hours, and then dried to produce various unformed negative electrode plates. (2) Production of unformed positive electrode plate: 100 parts by weight of lead oxide, 10 parts by weight of ion-exchanged water, and subsequently 1 part of dilute sulfuric acid having a specific gravity of 1.27.
0 part by weight was added and kneaded to prepare a positive electrode paste. The cup density of this paste is about 140g / 2in3
Met. This paste was filled in a cast substrate made of a calcium alloy, aged in an atmosphere of 40 ° C. and a humidity of 95% for 24 hours, and then dried to produce a large number of unformed positive electrode plates. (3) Battery assembly, formation of electrolyte solution formation: A retainer mat separator having a thickness of 0.8 mm at a pressure of 20 kPa, which is made by adding about 10% of silica powder to fine glass fibers to these unformed plates. The electrode plates were combined and welded together by the COS method to form an electrode plate group. Put this in a PP battery case,
The lid was capped by heat sealing. Next, an electrolytic solution having a specific gravity of 1.20 used for battery case formation was prepared. Sodium sulfate was added to this for the purpose of preventing a short circuit in a discharged state. Put this electrolyte in a battery and put it in a water bath at 40 ° C to reach the theoretical capacity of 20.
0% overcharge was performed and battery case formation was performed to manufacture 2V sealed lead-acid batteries using the negative electrodes of the examples and comparative examples shown in Table 1. The electrolyte specific gravity of this battery is 1.260,
The amount of electrolytic solution was adjusted to 100% of the theoretical space volume of the electrode plate group. The capacity test of the battery conducted after formation showed that the 5-hour rate capacity was 2
It was 0 Ah.

【0009】放電性能の評価:次に、このように製造し
た上記の実施例及び比較例に示す各種の鉛蓄電池につ
き、25℃、5時間率電流で完全充電した後、5時間率
電流でSOCを70%に調製した。即ち6Ah分の放電
を行った。次に、電池を−15℃で16時間放置した。
その後、300Aで5秒間放電し、5秒目の電圧を測定
した。その放電特性の測定の結果を表1に示した。望ま
しい値は、1.45V以上である。
Evaluation of discharge performance: Next, the lead-acid batteries shown in the above-mentioned Examples and Comparative Examples were completely charged at 25 ° C. for 5 hours and then SOC for 5 hours. Was adjusted to 70%. That is, discharge for 6 Ah was performed. The battery was then left at -15 ° C for 16 hours.
After that, the battery was discharged at 300 A for 5 seconds, and the voltage at the 5th second was measured. The results of the measurement of the discharge characteristics are shown in Table 1. A desirable value is 1.45V or higher.

【0010】また、上記の各電池を、25℃、5時間率
電流で完全充電した後、5時間率電流でSOCを70%
に調製した。即ち6Ah分の放電を行った。次に、電池
温度が40℃となるように雰囲気温度を調製し、60
A、40秒間の定電流放電と40A、50秒間、80
A、5秒間、上限電圧2.33Vの定電流・定電圧充電
の組み合わせを1サイクルとする回生充電繰り返し試験
を行った。そして、80A、5秒間の回生充電時の電池
電圧が2.33Vの上限電圧に到達するまでの回数を測
定した。この試験は、充電電気量と放電電気量が等しい
ため、回生充電に相当する80A、5秒間の充電が完全
に行われないと充電不足となる。即ち、80A充電中に
負極が分極して電池電圧が2.33Vに達すると定電圧
充電に切り替わり、電流が減衰して充電不足となる。そ
の回生充電特性の測定の結果を表1に示した。望ましい
値の目安は500回である。
Also, after fully charging each of the above batteries at a rate current of 25 ° C. for 5 hours, the SOC was 70% at a rate current of 5 hours.
Was prepared. That is, discharge for 6 Ah was performed. Next, the ambient temperature is adjusted so that the battery temperature becomes 40 ° C.
A, constant current discharge for 40 seconds and 40 A, 50 seconds, 80
A: A regenerative charging repeating test was performed in which a combination of constant current / constant voltage charging with an upper limit voltage of 2.33 V was one cycle for 5 seconds. Then, the number of times until the battery voltage during regenerative charging at 80 A for 5 seconds reached the upper limit voltage of 2.33 V was measured. In this test, since the charged electricity amount and the discharged electricity amount are equal to each other, the charge becomes insufficient unless 80 A corresponding to regenerative charge is completely charged for 5 seconds. That is, when the negative electrode is polarized during 80 A charging and the battery voltage reaches 2.33 V, the charging is switched to constant voltage charging, and the current is attenuated to cause insufficient charging. The results of the measurement of the regenerative charging characteristics are shown in Table 1. A guideline of a desirable value is 500 times.

【0011】[0011]

【表1】 [Table 1]

【0012】上記表1から明らかなように、平均粒径3
0nm以下、比表面積100〜150m2 /g、DBP
吸油量200cm3 /100g以上の特定の条件を有す
るアセチレンブラックを負極活物質100重量部に対し
0.5〜4重量部添加して製造した負極を鉛蓄電池に用
いるときは、優れた放電特性とPSOC状態からの回生
特性を有する鉛蓄電池が得られ、この場合、上記の条件
を満たしたアセチレンブラックと硫酸バリウムの配合割
合を重量比で1対1〜1.7の配合で添加することによ
り、優れた放電特性と回生特性を有する鉛蓄電池を確実
に製造することができることが判る。特に、その重量比
1対1〜1.7で特性が良く好ましい。
As is clear from Table 1 above, the average particle size is 3
0 nm or less, specific surface area 100 to 150 m 2 / g, DBP
When using oil absorption of 200 cm 3/100 g or more negative electrode prepared by adding 0.5 to 4 parts by weight with respect to the negative electrode active material 100 parts by weight of acetylene black having a specific condition in a lead-acid battery has a superior discharge characteristics A lead-acid battery having regenerative characteristics from the PSOC state is obtained. In this case, by adding the compounding ratio of acetylene black and barium sulfate satisfying the above conditions in a weight ratio of 1 to 1.7, It can be seen that a lead storage battery having excellent discharge characteristics and regenerative characteristics can be reliably manufactured. Particularly, the weight ratio of 1 to 1 to 1.7 is preferable because of good characteristics.

【0013】[0013]

【発明の効果】このように請求項1に係る発明による負
極を用いるときは、上記従来の鉛蓄電池用負極の課題を
解消し、放電特性及びPSOC状態からの回生特性に優
れた鉛蓄電池用負極をもたらし、また、請求項2に係る
発明により優れた放電特性及び回生特性を確保すること
ができる鉛蓄電池用負極をもたらし、HEV用などに用
い優れた鉛蓄電池を提供することができる。
As described above, when the negative electrode according to the invention according to claim 1 is used, the above problems of the conventional negative electrode for a lead storage battery are solved, and the negative electrode for a lead storage battery is excellent in discharge characteristics and regeneration characteristics from a PSOC state. In addition, the invention according to claim 2 can provide a negative electrode for a lead storage battery capable of ensuring excellent discharge characteristics and regeneration characteristics, and can provide an excellent lead storage battery used for HEV and the like.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 曽我部 幸蔵 福島県いわき市常磐下船尾町杭出作23−6 古河電池株式会社いわき事業所内 (72)発明者 阿部 英俊 福島県いわき市常磐下船尾町杭出作23−6 古河電池株式会社いわき事業所内 Fターム(参考) 5H050 AA02 BA09 CA06 CB15 DA03 DA09 DA10 EA01 EA10 HA00 HA01 HA05 HA07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kozo Sokabe             Fukushima Prefecture Iwaki City Joban Shimo-Funao Pile 23-6               Furukawa Battery Co., Ltd., Iwaki Plant (72) Inventor Hidetoshi Abe             Fukushima Prefecture Iwaki City Joban Shimo-Funao Pile 23-6               Furukawa Battery Co., Ltd., Iwaki Plant F-term (reference) 5H050 AA02 BA09 CA06 CB15 DA03                       DA09 DA10 EA01 EA10 HA00                       HA01 HA05 HA07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質にアセチレンブラックとバリ
ウム化合物を添加して成る鉛蓄電池用負極において、負
極活物質100重量部に対し、平均粒径30nm以下、
比表面積100〜150m2 /g、DBP吸油量150
3 /100g以上であるアセチレンブラックを0.5
〜4重量部添加したことを特徴とする鉛蓄電池用負極。
1. A negative electrode for a lead storage battery, which is obtained by adding acetylene black and a barium compound to a negative electrode active material, and has an average particle diameter of 30 nm or less with respect to 100 parts by weight of the negative electrode active material.
Specific surface area 100-150 m 2 / g, DBP oil absorption 150
m 3 / 0.5 acetylene black is 100g or more
A negative electrode for a lead storage battery, which is characterized by adding 4 parts by weight.
【請求項2】 該アセチレンブラックと硫酸バリウム
を、該アセチレンブラックと該硫酸バリウムの重量比率
が1:1〜1.7で添加したことを特徴とする請求項1
に記載の鉛蓄電池用負極。
2. The acetylene black and barium sulfate are added in a weight ratio of the acetylene black and the barium sulfate of 1: 1 to 1.7.
The negative electrode for lead acid battery according to.
JP2001315036A 2001-10-12 2001-10-12 Negative electrode for lead acid battery Expired - Lifetime JP4053272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001315036A JP4053272B2 (en) 2001-10-12 2001-10-12 Negative electrode for lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001315036A JP4053272B2 (en) 2001-10-12 2001-10-12 Negative electrode for lead acid battery

Publications (2)

Publication Number Publication Date
JP2003123760A true JP2003123760A (en) 2003-04-25
JP4053272B2 JP4053272B2 (en) 2008-02-27

Family

ID=19133261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315036A Expired - Lifetime JP4053272B2 (en) 2001-10-12 2001-10-12 Negative electrode for lead acid battery

Country Status (1)

Country Link
JP (1) JP4053272B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173112A (en) * 2005-12-22 2007-07-05 Ntt Data Ex Techno Corp Anode active material for secondary battery, secondary battery and their manufacturing method
WO2008075514A1 (en) * 2006-12-19 2008-06-26 Ntt Data Ex Techno Corporation Negative-electrode active material for secondary battery
US7462231B2 (en) 2006-04-03 2008-12-09 Seiko Epson Corporation Ink set
US8016931B2 (en) 2007-07-19 2011-09-13 Seiko Epson Corporation Ink set
US8016930B2 (en) 2005-11-16 2011-09-13 Seiko Epson Corporation Magenta ink composition, ink cartridge, and recording system and recorded matter using the same
US8038783B2 (en) 2008-09-10 2011-10-18 Seiko Epson Corporation Ink set, recording method, and recording apparatus
US8092583B2 (en) 2008-08-25 2012-01-10 Seiko Epson Corporation Ink set
US8277551B2 (en) 2009-02-23 2012-10-02 Seiko Epson Corporation Ink set, recording apparatus, and recording method
US8277552B2 (en) 2009-12-04 2012-10-02 Seiko Epson Corporation Ink set, recording apparatus, and recording method
JP2012221833A (en) * 2011-04-12 2012-11-12 Gs Yuasa Corp Lead battery
WO2013114822A1 (en) * 2012-01-31 2013-08-08 パナソニック株式会社 Lead-acid battery
JP2017162602A (en) * 2016-03-08 2017-09-14 日立化成株式会社 Lead-acid battery
JP2017228530A (en) * 2017-06-29 2017-12-28 株式会社Gsユアサ Lead storage battery
US10511016B2 (en) * 2016-11-30 2019-12-17 Global Graphene Group, Inc. Graphene-protected lead acid batteries
JP2020053168A (en) * 2018-09-25 2020-04-02 株式会社Gsユアサ Negative electrode for lead-acid battery and lead-acid battery
JP2022511022A (en) * 2018-12-04 2022-01-28 キャボット コーポレイション Compositions with improved low temperature performance, electrodes, lead acid batteries

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8486186B2 (en) 2005-11-16 2013-07-16 Seiko Epson Corporation Magenta ink composition, ink cartridge, and recording system and recorded matter using the same
US8016930B2 (en) 2005-11-16 2011-09-13 Seiko Epson Corporation Magenta ink composition, ink cartridge, and recording system and recorded matter using the same
JP2007173112A (en) * 2005-12-22 2007-07-05 Ntt Data Ex Techno Corp Anode active material for secondary battery, secondary battery and their manufacturing method
US7462231B2 (en) 2006-04-03 2008-12-09 Seiko Epson Corporation Ink set
WO2008075514A1 (en) * 2006-12-19 2008-06-26 Ntt Data Ex Techno Corporation Negative-electrode active material for secondary battery
US8016931B2 (en) 2007-07-19 2011-09-13 Seiko Epson Corporation Ink set
US8092583B2 (en) 2008-08-25 2012-01-10 Seiko Epson Corporation Ink set
US8172933B2 (en) 2008-08-25 2012-05-08 Seiko Epson Corporation Ink set
US8038783B2 (en) 2008-09-10 2011-10-18 Seiko Epson Corporation Ink set, recording method, and recording apparatus
US8277551B2 (en) 2009-02-23 2012-10-02 Seiko Epson Corporation Ink set, recording apparatus, and recording method
US8277552B2 (en) 2009-12-04 2012-10-02 Seiko Epson Corporation Ink set, recording apparatus, and recording method
JP2012221833A (en) * 2011-04-12 2012-11-12 Gs Yuasa Corp Lead battery
WO2013114822A1 (en) * 2012-01-31 2013-08-08 パナソニック株式会社 Lead-acid battery
CN104067436A (en) * 2012-01-31 2014-09-24 松下电器产业株式会社 Lead-acid battery
JPWO2013114822A1 (en) * 2012-01-31 2015-05-11 パナソニックIpマネジメント株式会社 Lead acid battery
CN104067436B (en) * 2012-01-31 2017-04-05 株式会社杰士汤浅国际 Lead accumulator
JP2017162602A (en) * 2016-03-08 2017-09-14 日立化成株式会社 Lead-acid battery
US10511016B2 (en) * 2016-11-30 2019-12-17 Global Graphene Group, Inc. Graphene-protected lead acid batteries
JP2017228530A (en) * 2017-06-29 2017-12-28 株式会社Gsユアサ Lead storage battery
JP2020053168A (en) * 2018-09-25 2020-04-02 株式会社Gsユアサ Negative electrode for lead-acid battery and lead-acid battery
JP7196497B2 (en) 2018-09-25 2022-12-27 株式会社Gsユアサ Negative electrode for lead-acid battery and lead-acid battery
JP2022511022A (en) * 2018-12-04 2022-01-28 キャボット コーポレイション Compositions with improved low temperature performance, electrodes, lead acid batteries

Also Published As

Publication number Publication date
JP4053272B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
JP4364460B2 (en) Negative electrode for lead acid battery
JP6597842B2 (en) Lead acid battery
WO2011108175A1 (en) Lead storage battery
JP4053272B2 (en) Negative electrode for lead acid battery
US11870096B2 (en) Absorbent glass mat battery
JP4544791B2 (en) Sealed lead acid battery
JP2008153128A (en) Negative electrode active material for secondary battery
EP0809311B1 (en) Negative electrode plate for lead storage battery containing graphite powder
JP2008243493A (en) Lead acid storage battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP2008243489A (en) Lead acid storage battery
US11936032B2 (en) Absorbent glass mat battery
JP5396216B2 (en) Lead acid battery
JP5017746B2 (en) Control valve type lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2006004636A (en) Lead acid storage battery
JP2007035339A (en) Control valve type lead-acid storage battery
JP2021111445A (en) Lead-acid battery
JP2002100347A (en) Lead-acid battery
JP2004055309A (en) Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JP2007213896A (en) Lead-acid storage battery
JP4742424B2 (en) Control valve type lead acid battery
JP2005268061A (en) Lead storage cell
JP4560849B2 (en) Control valve type lead storage battery manufacturing method
JP2021077482A (en) Lead-acid battery and method for manufacturing positive electrode plate for lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4053272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6