JPWO2013001737A1 - 端末装置、基地局装置、送信方法および送信電力設定方法 - Google Patents

端末装置、基地局装置、送信方法および送信電力設定方法 Download PDF

Info

Publication number
JPWO2013001737A1
JPWO2013001737A1 JP2013522723A JP2013522723A JPWO2013001737A1 JP WO2013001737 A1 JPWO2013001737 A1 JP WO2013001737A1 JP 2013522723 A JP2013522723 A JP 2013522723A JP 2013522723 A JP2013522723 A JP 2013522723A JP WO2013001737 A1 JPWO2013001737 A1 JP WO2013001737A1
Authority
JP
Japan
Prior art keywords
srs
transmission
transmission power
request
report
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013522723A
Other languages
English (en)
Other versions
JP5841148B2 (ja
Inventor
星野 正幸
正幸 星野
西尾 昭彦
昭彦 西尾
岩井 敬
敬 岩井
今村 大地
大地 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Corp of America
Original Assignee
Panasonic Intellectual Property Corp of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Corp of America filed Critical Panasonic Intellectual Property Corp of America
Priority to JP2013522723A priority Critical patent/JP5841148B2/ja
Publication of JPWO2013001737A1 publication Critical patent/JPWO2013001737A1/ja
Application granted granted Critical
Publication of JP5841148B2 publication Critical patent/JP5841148B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

送受信ポイントの切替の遅延を抑え、確実に送受信ポイントを切り替えることができる端末装置。この装置において、受信処理部(203)は、A-SRSの送信要求を含む制御情報、および、下りCSIの報告要求を受信し、送信信号形成部(207)は、報告要求に基づいて設定される送信電力でA-SRSを送信する。また、送信信号形成部(207)は、報告要求において複数の基地局との間の各下りCSIの報告が要求される場合、A-SRSを第1の送信電力で送信し、報告要求において単一のセルとの間の下りCSIの報告が要求される場合、A-SRSを第2の送信電力で送信する。第1の送信電力は第2の送信電力よりも大きい。

Description

本発明は、端末装置、基地局装置、送信方法および送信電力設定方法に関する。
3GPP−LTE(3rd Generation Partnership Project Radio Access Network Long Term Evolution、以下、LTEという)では、下りリンクの通信方式としてOFDMA(Orthogonal Frequency Division Multiple Access)が採用され、上りリンクの通信方式としてSC−FDMA(Single Carrier Frequency Division Multiple Access)が採用されている。また、LTEの上りリンクでは、上り受信品質を測定するための参照信号(リファレンス信号)として、Periodic Sounding Reference signal(P-SRS)が用いられる。
LTEでは、全端末共通のSRS送信サブフレーム(以下、「共通SRSサブフレーム」と呼ぶ)が設定される。この共通SRSサブフレームは、セル単位で、所定の周期及びサブフレームオフセットの組合せによって定義される。また、共通SRSサブフレームに関する情報は、セル内の端末に報知される。例えば、周期が10サブフレームでオフセットが3であれば、フレーム(10サブフレームから構成される)内の3サブフレーム目が共通SRSサブフレームに設定される。共通SRSサブフレームでは、セル内の全端末が、そのサブフレームの最後のSC-FDMAシンボルにおいて、データ信号の送信を取り止めるとともに、その期間をSRS(リファレンス信号)の送信リソースとして用いる。
また、各端末に対して個別にSRS送信サブフレームが上位レイヤ(物理レイヤより上位のRRCレイヤ)により設定される(以下、個別SRSサブフレームと呼ぶ)。端末は設定された個別SRSサブフレームにおいてP-SRSを送信する。また、各端末に対して、SRSリソースに関するパラメータ(以下、「SRSリソースパラメータ」と呼ばれることがある)が、設定及び通知される。このSRSリソースに関するパラメータには、SRSの帯域幅、帯域位置(またはSRS帯域開始位置)、Cyclic Shift、Comb(サブキャリアグループの識別情報に相当)などが含まれる。そして、端末は、その通知されたパラメータに従ったリソースを用いてSRSを送信する。また、SRSの周波数ホッピングが設定される場合もある。
また、LTEの上りリンクでは、1本のアンテナポートを備える端末のみがサポートされている。例えば、第iサブフレーム(sub-frame)におけるSRSの送信電力PSRS(i)は、非特許文献1に記載のように、次式(1)に従って求められる。
Figure 2013001737
式(1)において、PCMAX[dBm]は端末の最大送信電力を示し、PSRS_OFFSET[dBm]は端末が送信するPUSCHの送信電力に対するオフセット値(基地局から設定されるパラメータ)を示し、MSRSはP-SRSに割り当てられる周波数リソースブロック数を示し、PO_PUSCH[dBm]はPUSCHの送信電力の初期値(基地局から設定されるパラメータ)を示し、PLは端末が測定したパスロスレベル[dB]を示し、αはパスロス(PL)の補償割合を表す重み係数(基地局から設定されるパラメータ)を示し、f(i)はクローズドループ制御(閉ループ制御)されるTPC(Transmission Power Control)コマンド(制御値。例えば、+3dB,+1dB,0dB,-1dB)の過去の値を含めた第iサブフレームにおける累計値を示す。
同様に、第iサブフレームにおける上り制御チャネル(PUCCH)および上りデータ信号(PUSCH)に対する送信電力PPUCCH(i)およびPPUSCH(i)は、次式(2)、(3)に従ってそれぞれ求められる。
Figure 2013001737
Figure 2013001737
式(2)において、PO_PUCCH[dBm]はPUCCHの送信電力の初期値(基地局から設定されるパラメータ)を示し、h(nCQI,nHARQ)およびΔF_PUCCH(F)はPUCCHのフォーマット種別、ビット数等に応じて設定されるパラメータを示し、g(i)は、式(1)のf(i)と同様に、閉ループ制御されるTPCコマンドの過去の値を含めた第iサブフレームにおける累計値を示す。また、式(3)において、MPUSCH(i)は、第iサブフレームにおいて割り当てられたPUSCHの周波数リソースブロック数を示し、PO_PUSCH(j)[dBm]およびα(j)は、PUSCHの送信電力の初期値、および、パスロス(PL)の補償割合を表す重み係数をそれぞれ示し、準固定割当(j=0)および動的割当(j=1)の種別に応じて個別に基地局から設定されるパラメータである。ΔTF(i)はPUSCHで制御情報を送信する場合に、制御情報量に応じて設定可能なオフセット値を示す。
また、LTEをさらに進めたLTE-Advanced(以下、「LTE-A」という)の上りリンクでは、LTEから導入されているP-SRSに加え、Aperiodic SRS(以下、A-SRSと呼ぶ)が用いられる。このA-SRSの送信タイミングは、トリガ情報(例えば、1ビットの情報)によって制御される。このトリガ情報は、基地局から端末へ物理層の制御チャネル(つまり、PDCCH)によって送信される(例えば、非特許文献2)。すなわち、端末は、トリガ情報(つまり、A-SRSの送信要求)によりA-SRS送信を要求された場合にのみ、A-SRSを送信する。そして、A-SRSの送信タイミングを、トリガ情報が送信されたサブフレームから4サブフレーム後の最初の共通SRSサブフレームとすることが検討されている。ここで、上述の通り、P-SRSは、周期的(periodic)に送信される一方、A-SRSは、例えば、バースト的に上りリンクの送信データが発生したときのみに短期間に集中して、端末に送信させることができる(例えば、図1参照)。
また、LTE-Aにおいては、様々なデータ割当通知のための制御情報フォーマットが存在する。制御情報フォーマットには、下りリンクにおいて、連続する番号のリソースブロック(Virtual RBまたはPhysical RB)を割り当てるDCI format 1A、連続しない番号のRBの割り当て(以下、「非連続帯域割当」という)が可能なDCI format 1、空間多重MIMO送信を割り当てるDCI format 2、2A、2Bおよび2C、ビームフォーミング送信を割り当てる下り割当制御情報のフォーマット(「ビームフォーミング割当下りフォーマット」:DCI format 1B)、マルチユーザMIMO送信を割り当てる下り割当制御情報のフォーマット(「マルチユーザMIMO割当下りフォーマット」:DCI format 1D)等がある。上りリンク割当向けのフォーマットとしては、シングルアンテナポート送信を割り当てるDCI format 0及び上り空間多重MIMO送信を割り当てるDCI format 4がある。DCI format 4は上り空間多重MIMO送信が設定された端末のみに使用される。
また、DCI format 0とDCI format 1Aとは、Paddingによって、同一のビット数を取るようにビット数が調整される。DCI format 0およびDCI format 1Aは、DCI format 0/1Aと呼ばれることもある。ここで、DCI format 1,2,2A,2B,2C,1B,1Dは、端末毎に設定される下り送信モード(非連続帯域割当、空間多重MIMO送信、ビームフォーミング送信、マルチユーザMIMO送信)に依存して使用されるフォーマットであり、端末毎に設定されるフォーマットである。一方、DCI format 0/1Aは、送信モードに依存せず、いずれの送信モードの端末に対しても使用できるフォーマット、つまり、全端末に対して共通に使用されるフォーマットである。また、DCI format 0/1Aが用いられた場合には、デフォルトの送信モードとして1アンテナ送信または送信ダイバーシチが用いられる。
端末は、DCI format 0/1Aと、下りリンク送信モードに依存するDCI formatと、を受信する。また、上り空間多重MIMO送信が設定された端末は、それらに加えて、DCI format 4を受信する。
ここで、A-SRSのトリガ情報の通知に、上りリンクのデータ(PUSCH)割当通知に用いられる制御情報フォーマットであるDCI format 0を用いることが検討されている。DCI format 0には、RB通知フィールド、MCS通知フィールド、HARQ情報通知フィールド、送信電力制御コマンド通知フィールド、端末IDフィールドなどの他に、A-SRSトリガ通知のためのフィールドも追加される。なお、A-SRSとP-SRSとは、両方を併用することもできるし、どちらかのみを使うこともできる。また、SRSリソースに関するパラメータ(送信帯域幅、cyclic shiftなど)は、A-SRSとP-SRSとで独立に設定される。
また、カバーエリアの大きさが異なる複数の基地局を用いたヘテロジーニアスネットワーク(Heterogeneous Network)がある。ヘテロジーニアスネットワークは、大きなカバーエリアをカバーするマクロ基地局(「マクロセル」又は「Macro eNB」と呼ばれることもある)と、小さなカバーエリアをカバーするピコ基地局(「ピコセル」又は「LPN(Low Power Node)」と呼ばれることもある)とを併用するネットワークである。ヘテロジーニアスネットワークにおいて、マクロセルのカバーエリア内に配置されたピコセルに対して、マクロセルと同一の識別番号(セルID)を付与することで、物理層の信号を用いて移動制御(ハンドオーバ)を簡易に実現する方法が検討されている。このようなヘテロジーニアスネットワークの運用に向けて、端末との間の伝搬状況に応じて、複数のセルの中から最適な送受信ポイントを選択する方法が検討されている(例えば、図2及び非特許文献3参照)。送受信ポイント選択の指標として候補になり得る信号には、端末から基地局向けの上りリンクのチャネル品質測定用参照信号(例えば、P-SRS及びA-SRS)がある。
3GPP TS36.213V8.8.0 (Section 5.1), "3GPP TSGRAN E-UTRA Physical layer procedures (Release8)", Sep. 2009 3GPP TSG RAN WG1 meeting, R1-105439, "Views on Signaling for Dynamic Aperiodic SRS", October 2010 3GPP TSG RAN WG1 meeting, R1-111469, Samsung, "Discussions on CSI-RS port selection for non-uniform networks with low-power nodes", May 2011
上述した物理層での移動制御と上り信号の送信電力制御とを単純に組み合わせた場合、以下の課題が発生する。
物理層での移動制御を想定したヘテロジーニアスネットワークでは、同一のセルIDを用いて、マクロセルに所属するマクロ端末(Macro UE)と、ピコセルに所属するピコ端末(LPN UE)とを収容する必要がある。このため、マクロ端末およびピコ端末のリソースを主に周波数領域のリソースで使い分ける(直交させる)ことで、距離減衰が大きく送信電力の大きくなりやすいマクロ端末と、距離減衰が小さく送信電力を小さくできるピコ端末とを、互いに干渉することなく収容できる(図3参照)。例えば、図3では、Macro UEとLPN UEとで周波数領域のリソースを使い分け、複数のLPN UE(LPN1およびLPN2に所属する端末)間で周波数領域のリソースを使い回している。
このとき、ピコ端末(LPN UE)の送信電力を小さくすることで、異なるピコセルに所属するピコ端末間では上り信号が互いに干渉しにくくなる。これにより、複数のピコセル間で周波数領域のリソースを再利用することが可能となる(図3参照)。すなわち、上述した上り信号の送信電力制御により、上り信号の送信電力がピコセル向けに制御されるので、ピコ端末が所属しているピコセルのみに当該ピコ端末からの上り信号が届く状態になる。
一方、ここでは、物理層での移動制御を想定しているため、或るピコセルに所属するピコ端末に対する、他のピコセルまたはマクロセルで得られる回線品質が分からなくなり、最適な送受信ポイントの選択が実現できなくなる課題がある。
この課題を送信電力制御の観点から具体的に説明する。
例えば、図3に示すピコセル(LPN1)に所属する端末が、LPN1のカバーエリアの外に移動する場合について説明する。この場合、送受信ポイントの切替により、当該端末は、マクロセル(Macro eNB)に所属されることが望ましい。
図3に示すLPN1の境界に存在する端末は、所属しているLPN1向けに小さな送信電力で上り信号を送信する。しかしながら、図3に示すLPN1に所属する端末が送信する上り信号の送信電力では、当該上り信号がマクロ基地局(Macro eNB)まで届かない可能性がある。この状況では、マクロセル(Macro eNB)又は他のピコセル(LPN2)は、LPN1に所属する端末が送信するSRSの受信品質を十分に得られないことになり得る。このため、マクロセル(Macro eNB)は、LPN1に所属する端末の通信状況(すなわち、LPN1に所属する端末と、LPN1以外の各セル(送受信ポイント)との間の各受信品質)を把握できず、LPN1に所属する端末の送受信ポイントを切り替えることができない。
また、上り信号に対してとり得るTPCコマンドの制御値は、(+3dB, +1dB, 0dB, -1dB)である。つまり、TPCコマンドにより、上り信号の送信電力に対して狭い幅でのみ制御可能である。このため、図3に示すLPN1に所属する端末の送信電力を増加して、マクロセル又は他のピコセル(LPN2)でのSRSの受信品質を確保するためには、クローズループ制御を何度も繰り返す必要がある。クローズループ制御を繰り返す間、該当の端末が使用するリソースはLPN1に対応するリソースのままである。一方で、端末は、LPN1のカバーエリア外に移動し、LPN2に近づく状況になる。この状況で端末がSRS又は上りデータ信号(PUSCH)を送信すると、当該端末が使用するリソースと同一のリソースを空間的に再利用しているLPN2に対して干渉を及ぼすことになる。すなわち、クローズループ制御を繰り返す間(時間領域において)、端末が所属しているLPN以外の他のLPNに対して干渉を与え続けることになる。
さらに、図3において、送受信ポイントの切替が行われないままLPN1に所属する端末がLPN1のカバーエリアの外に移動すると、LPN1と端末との距離が離れることで、端末からの上り信号の品質劣化が大きくなる。このため、端末では上り信号の再送が繰り返されるので、再送の分だけ、端末が使用するリソースと同一のリソースを空間的に再利用しているLPN2に干渉を与え続けることになる。
このように、移動制御において送受信ポイントの切替が遅延すると、LPN間で再利用しているSRS又はPUSCHのリソースで干渉が生じてしまう。
本発明の目的は、送受信ポイントの切替の遅延を抑え、確実に送受信ポイントを切り替えることができる端末装置、基地局装置、送信方法および送信電力設定方法を提供することを目的とする。
本発明の一態様の端末装置は、サウンディング・リファレンス・シグナル(SRS)の送信要求を含む制御情報、および、下りチャネル情報の報告要求を受信する受信部と、前記報告要求に基づいて設定される送信電力で前記SRSを送信する送信部と、を有し、前記送信部は、前記報告要求において複数の基地局との間の各下りチャネル情報の報告が要求される場合、前記SRSを第1の送信電力で送信し、前記報告要求において単一の基地局との間の下りチャネル情報の報告が要求される場合、前記SRSを第2の送信電力で送信し、前記第1の送信電力は前記第2の送信電力よりも大きい。
本発明の一態様の基地局装置は、サウンディング・リファレンス・シグナル(SRS)の送信要求を含む制御情報、および、下りチャネル情報の報告要求を端末装置へ送信する送信部と、前記報告要求に基づいて設定される送信電力で送信された、前記SRSを受信する受信部と、を有し、前記報告要求において複数の基地局と前記端末装置との間の各下りチャネル情報の報告が要求される場合、前記SRSには第1の送信電力が設定され、前記報告要求において単一の基地局と前記端末装置との間の下りチャネル情報の報告が要求される場合、前記SRSには第2の送信電力が設定され、前記第1の送信電力は前記第2の送信電力よりも大きい。
本発明の一態様の送信方法は、サウンディング・リファレンス・シグナル(SRS)の送信要求、および、下りチャネル情報の報告要求を含む制御情報を受信し、前記報告要求において複数の基地局との間の各下りチャネル情報の報告が要求される場合、前記SRSを第1の送信電力で送信し、前記報告要求において単一の基地局との間の下りチャネル情報の報告が要求される場合、前記SRSを第2の送信電力で送信し、前記第1の送信電力は前記第2の送信電力よりも大きい。
本発明の一態様の送信電力設定方法は、サウンディング・リファレンス・シグナル(SRS)の送信要求を含む制御情報、および、下りチャネル情報の報告要求を端末装置へ送信し、送信した前記報告要求に基づいて設定される送信電力で送信された、前記SRSを受信し、前記報告要求において複数の基地局と前記端末装置との間の各下りチャネル情報の報告が要求される場合、前記SRSには第1の送信電力が設定され、前記報告要求において単一の基地局と前記端末装置との間の下りチャネル情報の報告が要求される場合、前記SRSには第2の送信電力が設定され、前記第1の送信電力は前記第2の送信電力よりも大きい。
本発明によれば、送受信ポイントの切替の遅延を抑え、確実に送受信ポイントを切り替えることができる。
A-SRSの送信タイミングの説明に供する図 ヘテロジーニアスネットワークにおける移動制御の説明に供する図 移動制御および送信電力制御における課題の説明に供する図 本発明の実施の形態1に係る基地局の主要構成図 本発明の実施の形態1に係る端末の主要構成図 本発明の実施の形態1に係る基地局の構成を示すブロック図 本発明の実施の形態1に係る端末の構成を示すブロック図 本発明の実施の形態4に係る送信電力制御の処理を示す図 本発明の実施の形態4に係るその他の送信電力制御の処理を示す図 本発明の実施の形態5に係る送信電力制御の処理を示す図
以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。
[実施の形態1]
[通信システムの概要]
本発明の実施の形態1に係る通信システムは、基地局100と端末200とを有する。基地局100は、LTE−A基地局であり、端末200は、LTE−A端末である。
図4は、本発明の実施の形態1に係る基地局100の主要構成図である。基地局100において、送信処理部104が、サウンディング・リファレンス・シグナル(A-SRS)の送信要求を含む制御情報、および、下りチャネル情報(下りCSI)の報告要求を端末200へ送信し、受信処理部108が、報告要求に基づいて設定される送信電力で送信された、A-SRSを受信する。また、設定部101によって報告要求において複数の基地局(セル)と端末200との間の各下りチャネル情報の報告が要求される場合、A-SRSには第1の送信電力が設定される。また、設定部101によって報告要求において単一の基地局(セル)と端末200との間の下りチャネル情報の報告が要求される場合、A-SRSには第2の送信電力が設定される。ただし、第1の送信電力は第2の送信電力よりも大きい。
図5は、本発明の実施の形態1に係る端末200の主要構成図である。端末200は、送受信ポイントを複数のセル間で切り替えて通信可能な端末である。端末200において、受信処理部203が、サウンディング・リファレンス・シグナル(A-SRS)の送信要求を含む制御情報、および、下りチャネル情報(下りCSI)の報告要求を受信し、送信信号形成部207が、受信処理部203で受信された報告要求に基づいて設定される送信電力でA-SRSを送信する。ここで、送信信号形成部207は、報告要求において複数の基地局(セル)との間の各下りチャネル情報の報告が要求される場合、A-SRSを第1の送信電力で送信し、報告要求において単一の基地局(セル)との間の下りチャネル情報の報告が要求される場合、A-SRSを第2の送信電力で送信する。ただし、第1の送信電力は第2の送信電力よりも大きい。
また、以下では、上りリンクと下りリンクとが周波数分割されるFDDシステムを前提として説明する。
また、以下では、単一の基地局100によって、マクロセルとピコセルとを形成する構成について説明する。しかし、これに限らず、複数の基地局100によりマクロセル、ピコセルをそれぞれ形成し、適切に信号を共有することにより両者を連携して動作させる構成でもよい。
[基地局100の構成]
図6は、本発明の実施の形態1に係る基地局100の構成を示すブロック図である。図6において、基地局100は、設定部101と、符号化・変調部102、103と、送信処理部104と、送信RF部105−1、105−2と、アンテナ106−1、106−2と、受信RF部107−1、107−2と、受信処理部108と、データ受信部109と、SRS受信部110とを有する。
設定部101は、設定対象端末200に対して、A-SRSの送信要求に用いる制御情報フォーマット(DCI format)と、その設定対象端末200がA-SRS送信に用いるリソース(A-SRSリソース)との対応関係を設定(configure)するための「A-SRS送信ルール設定情報」を生成する。A-SRS送信ルール設定情報には、複数の制御情報フォーマット(DCI format)の識別情報と、各制御情報フォーマットの識別情報に対応するA-SRSリソースに関する情報とが含まれている。このA-SRSリソースは、上述の通り、設定対象端末200がA-SRSをマッピングするリソースである。A-SRSリソースに関する情報には、設定対象端末200がA-SRSを送信する周波数帯域(またはSRS帯域の開始RB位置)、帯域幅(またはRB数)、Cyclic shift、送信Comb、アンテナ数、送信回数、周波数ホッピング、Component Carrierなどのパラメータが含まれる。すなわち、複数の制御情報フォーマット(DCI format)の識別情報と、各制御情報フォーマットの識別情報に対応する上記パラメータの組合せとが、A-SRS送信ルール設定情報によって設定対象端末200に対して設定される。
また、設定部101は、指示対象端末200に対して、A-SRSの送信を指示(要求)するトリガ情報(以下、単に「トリガ情報」と呼ばれる)を含む、上り割当制御情報又は下り割当制御情報を生成する。
以上のように設定部101によって生成されたA-SRS送信ルール設定情報は、RRCレイヤの制御情報として、符号化・変調部102、送信処理部104、及び送信RF部105において送信処理がなされた後に、設定対象端末200へ送信される。また、A-SRS送信のトリガ情報を含む制御情報は、レイヤ1,2の制御情報として、符号化・変調部102、送信処理部104、及び送信RF部105において送信処理がなされた後に、設定対象端末200へ送信される。ここでは、トリガ情報は、1ビットで表され、ビット0であればA-SRS送信指示を示し、ビット1であればA-SRS送信なしの指示を示す。
ここで、設定部101は、トリガ情報を含む制御情報として、リソース(RB)割当情報、及び、1つまたは複数のトランスポートブロック(TB)に対するMCS情報を含む、割当制御情報を生成する。割当制御情報には、上りリンクデータを割り当てる上りリソース(例えば、PUSCH(Physical Uplink Shared Channel))に関する割当制御情報、下りリンクデータを割り当てる下りリソース(例えば、PDSCH(Physical Downlink Shared Channel))に関する割当制御情報がある。上りリンクデータを割り当てる割当制御情報としてDCI format 0,4、下りリンクデータを割り当てる割当制御情報としてDCI
format 1A,1,1B,1D,2,2A,2B,2Cなどがある。
設定部101は、A-SRS送信ルール設定情報を符号化・変調部102を介して設定対象端末200へ送信すると共に、受信処理部108へ出力する。また、設定部101は、トリガ情報を含む割当制御情報を符号化・変調部102を介して設定対象端末200へ送信すると共に、送信処理部104へ出力する。また、設定部101は、トリガ情報を含めた割当制御情報のフォーマット(DCIフォーマット)を示す情報を受信処理部108へ出力する。
ここで、設定情報は、上位レイヤ情報として(つまり、RRCシグナリングによって)、基地局100から端末200へ通知される。一方、割当制御情報及びトリガ情報は、PDCCH(Physical Downlink Control Channel)によって、基地局100から端末200へ通知される。すなわち、設定情報は通知間隔が比較的長い(つまり、比較的長い間隔を空けて通知される)のに対して、割当制御情報及びトリガ情報は、通知間隔が短い(つまり、短い間隔で通知される)。
また設定部101は、前述のヘテロジーニアスネットワークにおける物理層での移動制御の対象端末200に対して、下りリンクのチャネル情報の報告(以降、下りCSI報告と記載。または下りCSI feedbackと呼ぶこともある)を、複数の送受信ポイント(複数のセル)と端末との間の各下りリンクのチャネルに対し測定し報告するように通知する。この通知(つまり下りCSIの報告要求)は、例えば上位レイヤ情報として通知される。または、設定部101は、下りCSIの報告の指示(要求)を含む、上り割当制御情報又は下り割当制御情報を生成してもよい。また、下りCSI報告は、SRSと同様、周期的なタイミング、または、トリガ情報に基づいた任意のタイミングで実施することができる。なお、下りCSI報告の要求として、複数のセルと端末200との間の各下りCSIの報告が要求される場合(つまり、物理層で移動制御を行う場合)と、単一のセルと端末200との間の下りCSIの報告が要求される場合(物理層で移動制御を行わない場合)とがある。
符号化・変調部102は、設定部101から受け取る設定情報、トリガ情報及び割当制御情報を符号化及び変調し、得られた変調信号を送信処理部104へ出力する。
符号化・変調部103は、入力される送信データ(データ信号)を符号化及び変調し、得られた変調信号を送信処理部104へ出力する。
送信処理部104は、符号化・変調部102及び符号化・変調部103から受け取る変調信号を、設定部101から受け取る下りリソース割当情報の示すリソースにマッピングすることにより、送信信号を形成する。ここで、送信信号がOFDM信号である場合には、変調信号を、設定部101から受け取る下りリソース割当情報の示すリソースにマッピングし、逆高速フーリエ変換(IFFT)処理を施して時間波形に変換し、CP(Cyclic Prefix)を付加することにより、OFDM信号が形成される。
送信RF部105−1または105−2は、送信処理部104から受け取る送信信号に対して送信無線処理(アップコンバート、ディジタルアナログ(D/A)変換など)を施し、アンテナ106−1または106−2を介して送信する。
受信RF部107−1および107−2は、アンテナ106−1または106−2を介して受信した無線信号に対して受信無線処理(ダウンコンバート、アナログディジタル(A/D)変換など)を施し、得られた受信信号を受信処理部108へ出力する。なお、図6において複数設けた送受信部およびアンテナについて、例えば、送信RF部105−1、受信RF部107−1およびアンテナ106−1をマクロセルの形成に用い、送信RF部105−2、受信RF部107−2およびアンテナ106−2をピコセルの形成に用いるといった運用も可能である。
受信処理部108は、設定部101から受け取る上りリソース割当情報に基づいて上りデータ信号及びACK/NACK情報がマッピングされているリソースを特定し、受信信号から、特定されたリソースにマッピングされている信号成分を抽出する。この際、受信処理部108は、上りリソース割当情報に含まれるTPC制御値に従って、式(3)のf(i)、ひいてはPPUSCH(i)が設定されたものとして、上りデータ信号の同期検波および復調を行う。
また、受信処理部108は、設定部101から受け取るA-SRS送信ルール設定情報、A-SRSのトリガ情報、及びA-SRS送信指示に用いたDCIフォーマットの情報に基づいて、A-SRSがマッピングされているリソースを特定し、受信信号から、特定されたリソースにマッピングされている信号成分を抽出する。具体的には、受信処理部108は、トリガ情報が送信されたサブフレームから4サブフレーム以降で最初の共通SRSサブフレームにおいて、上記特定されたリソースでA-SRSを受信する。
ここで、受信信号が空間多重された(つまり、複数のコードワード(CW)によって送信された)信号である場合には、受信処理部108は、受信信号をCW毎に分離する。また、受信信号がOFDM信号である場合には、受信処理部108は、抽出された信号成分に対してIDFT(Inverse Discrete Fourier Transform)処理を施すことにより、時間領域信号に変換する。
こうして受信処理部108によって抽出された上りデータ信号及びACK/NACK情報は、データ受信部109へ出力され、A-SRSは、SRS受信部110へ出力される。
データ受信部109は、受信処理部108から受け取る信号を復号する。これにより、上りリンクデータ及びACK/NACK情報が得られる。
SRS受信部110は、受信処理部108から受け取るA-SRSに基づいて、各周波数リソースの受信品質を測定し、受信品質情報を出力する。ここで、異なる端末200から送信される複数のA-SRSが直交系列などによって符号多重される場合には、SRS受信部110は、符号多重された複数のA-SRSの分離処理も行う。
[端末200の構成]
図7は、本発明の実施の形態1に係る端末200の構成を示すブロック図である。ここでは、端末200は、LTE−A端末である。
図7において、端末200は、アンテナ201と、受信RF部202と、受信処理部203と、リファレンス信号生成部204と、データ信号生成部205と、送信制御部206と、送信信号形成部207と、送信RF部208とを有する。
受信RF部202は、アンテナ201を介して受信した無線信号に対して受信無線処理(ダウンコンバート、アナログディジタル(A/D)変換など)を施し、得られた受信信号を受信処理部203へ出力する。
受信処理部203は、受信信号に含まれる設定情報、割当制御情報、トリガ情報、及びデータ信号を抽出する。受信処理部203は、設定情報、割当制御情報、及びトリガ情報を送信制御部206へ出力する。また、受信処理部203は、トリガ情報が含まれていたDCIのフォーマット識別情報を送信制御部206へ出力する。また、受信処理部203は、抽出されたデータ信号に対しては誤り検出処理を行い、誤り検出結果に応じたACK/NACK情報をデータ信号生成部205へ出力する。
リファレンス信号生成部204は、送信制御部206から生成指示を受け取ると、リファレンス信号(A-SRS)を生成し、送信信号形成部207へ出力する。
データ信号生成部205は、ACK/NACK情報及び送信データを入力とし、送信制御部206から受け取るMCS情報に基づいてACK/NACK情報及び送信データを符号化及び変調することにより、データ信号を生成する。Non-MIMO送信の場合には、1つのコードワード(CW)でデータ信号が生成され、MIMO送信の場合には、2つのコードワードでデータ信号が生成される。なお、受信信号がOFDM信号の場合には、データ信号生成部205は、CP除去処理、FFT処理も行う。
送信制御部206は、自端末がA-SRSをマッピングする「SRSマッピングリソース」を設定する。具体的には、送信制御部206は、受信処理部203から受け取る設定情報(A-SRS送信ルール設定情報)と、トリガ情報が含まれていたDCIのフォーマット識別情報とに基づいて、SRSマッピングリソースを特定する。
また、送信制御部206は、A-SRSの送信サブフレームとして、トリガ情報を含む割当制御情報が送信されたサブフレームから4サブフレーム後の最初の共通SRSサブフレームを設定する。また、送信制御部206は、トリガ情報を受け取ると、リファレンス信号生成部204へA−SRS生成指示を出力すると共に、上記特定したSRSマッピングリソースに関する情報を送信信号形成部207へ出力する。
また、送信制御部206は、A-SRSのトリガ情報を受信した場合、下りCSIの報告要求に基づいて、A-SRSの送信電力を決定する。A-SRSに対する送信電力の決定方法の詳細については後述する。なお、端末200は、下りCSIの報告要求に従って、下りCSIを基地局100へ報告する(図示せず)。
また、送信制御部206は、受信処理部203から受け取る割当制御情報に基づいて、データ信号をマッピングする「データマッピングリソース」を特定し、データマッピングリソースに関する情報(以下、「データマッピングリソース情報」と呼ばれることがある)を送信信号形成部207へ出力すると共に、割当制御情報に含まれるMCS情報をデータ信号生成部205へ出力する。
送信信号形成部207は、リファレンス信号生成部204から受け取るA-SRSをSRSマッピングリソースにマッピングする。また、送信信号形成部207は、データ信号生成部205から受け取るデータ信号をデータマッピングリソース情報の示すデータマッピングリソースにマッピングする。こうして送信信号が形成される。なお、Non-MIMO送信の場合には、1コードワードのデータ信号が1レイヤに割り当てられ、MIMO送信の場合には、2コードワードのデータ信号が複数のレイヤに割り当てられる。また、送信信号がOFDM信号の場合には、送信信号形成部207は、データ信号をDFT(Discrete Fourier transform)処理した後に、データマッピングリソースにマッピングする。また、形成された送信信号に対してCPが付加される。さらに、送信信号形成部207は、CPが付加された送信信号のうち、データ信号に対しては式(3)に従って送信電力制御を適用する。また、送信信号形成部207は、SRSに対しては、送信制御部206で決定された送信電力制御方法を適用して、送信電力制御後の送信信号を送信RF部208に出力する。
送信RF部208は、送信信号形成部207で形成された送信信号に対して送信無線処理(アップコンバート、ディジタルアナログ(D/A)変換など)を施してアンテナ201を介して送信する。
[基地局100及び端末200の動作]
以上の構成を有する基地局100及び端末200の動作について説明する。ここでは、基地局100が、上りリソース割当制御情報のフォーマットとしてDCI format 0を用いる一方、下りリソース割当制御情報のフォーマットとしてDCI format 1Aを用いる場合について説明する。
基地局100において、設定部101は、設定対象端末200に対して、A-SRS送信ルール設定情報を設定する。A-SRS送信ルール設定情報では、複数の制御情報フォーマット(DCI format)の識別情報と、各制御情報フォーマットの識別情報に対応するA-SRSリソースに関する情報とが対応づけられている。ここでは、複数の制御情報フォーマットとしてDCI format 0及びDCI format 1Aを想定しているので、A-SRS送信ルールは、例えば、DCI format 0に対応付けられている第1のSRSリースと、DCI format 1Aに対応付けられている第2のSRSリソースとでは、リソースを特定するパラメータ群の内、cyclic shiftのみが異なっている。具体的には、第1のSRSリースを規定するSRS resource configuration 1ではcyclic shift 0が設定されているのに対して、第2のSRSリースを規定するSRS resource configuration 2ではcyclic shift 6が設定されている。なお、ここでは、第1のSRSリースと第2のSRSリースとで、cyclic shiftを異ならせているが、これに限定されるものではなく、例えば、Comb番号のみを異ならせても良いし、Cyclic shift及びCombの両方を異ならせても良い。A-SRS送信ルール設定情報は、RRCシグナリングによって、基地局100から端末200へ通知される。例えば、“Sounding RS-UL-Config”メッセージに含められて、A-SRS送信ルール設定情報は通知される。
ここで、A-SRSの使用により適した状況(例えば、上りリンクにおいて大容量のビデオデータを短期間にアップロードするような場合)においても、上りリンクデータに対するTCP−ACK等が下りリンクにおいて発生する。このため、共通SRSリソースの配置周期(例えば10ms)内に、上りリソース割当制御情報及び下りリソース割当制御情報の両方が基地局100から端末200へ送信される可能性が高い。上りリンクの送信データがある場合には、DCI format 0の上りリソース割当制御情報が送信され、下りリンクの送信データがある場合には、DCI format 1Aの下りリソース割当情報が送信される。例えば図1では、便宜上、上りリソース割当制御情報と下りリソース割当情報とが異なるサブフレームで送信されるように図示されているが、上りリソース割当制御情報と下りリソース割当情報とを同じサブフレームで送信することも可能である。
従って、基地局100は、共通SRSリソースの配置周期(例えば10ms)の期間内で、いずれかの割当制御情報(下りリソース割当制御情報又は上りリソース割当制御情報)にトリガ情報を含めて端末200へ送信することにより、その送信タイミング以降で最初の共通SRSサブフレームにおいて、端末200にA-SRSを送信させることができる。
端末200において、送信制御部206は、A-SRS送信ルール設定情報と、トリガ情報が含まれていたDCIのフォーマット識別情報とに基づいて、SRSマッピングリソースを特定する。A-SRS送信ルール設定情報は、基地局100から予め通知され、基地局100と端末200との間で共有される。
さらに、送信制御部206は、基地局100から端末200へ通知された下りCSI報告の指示(要求)に基づいて、A-SRSの送信電力制御方法を特定する。
具体的には、複数の送受信ポイントに対する下りCSI報告を実施するよう通知されていない場合(単一の送受信ポイントに対する下りCSI報告のみ実施するよう通知された場合)には、送信制御部206は、式(1)に従った送信電力制御をそのまま適用する。
一方、複数の送受信ポイントに対する下りCSI報告を実施するよう通知された場合には、送信制御部206は、式(1)に従った送信電力制御に対して次式(4)に示すオフセット値を付与した送信電力制御方法を適用する。すなわち、この場合、送信制御部206は、式(1)に示すPO_PUSCHの代わりに、PO_PUSCHにオフセット値Pboostを付与したP'O_PUSCHを用いる。
Figure 2013001737
このようにして、端末200は、基地局100から通知される下りCSI報告要求において複数のセルと端末200との間の各下りCSIの報告が要求される場合、A-SRSを第1送信電力で送信し、下りCSI報告要求において単一のセルと端末200との間の下りCSIの報告が要求される場合、A-SRSを第2送信電力で送信する。ここで、第1送信電力は、第2送信電力よりも大きい。ここでは、第1送信電力は、第2送信電力を所定値(図4に示すオフセット値Pboost)だけ増加させた電力である。また、第1送信電力は、少なくともA-SRSを、マクロセルをカバーするMacro eNBに送信するために設定された電力であり、第2送信電力は、A-SRSを、端末200の所属するピコセルをカバーするLPNに送信するために設定された電力である。
以上のように本実施の形態によれば、基地局100は、ピコセルに収容されている端末のうち、複数の送受信ポイントに対する下りCSI報告を実施するよう通知した端末200(つまり移動制御の対象端末200)に対してA-SRS送信をトリガする場合に、A-SRSの送信電力として基地局100(マクロセル)の受信アンテナに到達する送信電力を設定できる。一方、基地局100は、ピコセルに収容されている端末のうち、下りCSI報告を複数の送受信ポイントに対し実施するよう通知していない端末200に対して、A-SRS送信をトリガする場合に、A-SRSの送信電力としてピコセルの受信アンテナに到達する送信電力を設定できる。
すなわち、基地局100は、複数の送受信ポイントに対する下りCSI報告を実施するよう通知した端末200であるか否かに応じて、A-SRSの送信電力を柔軟に設定することができる。また、端末200は、自端末向けに通知された下りCSI報告の設定(configuration)に基づいて、自端末が複数の送受信ポイントに対する下りCSI報告実施するよう通知された端末であるか否かを判断して、A-SRSの送信電力を適切に制御することができる。
こうすることで、リファレンス信号送信のトリガ情報に用いるビット数の増加を抑えつつ、リファレンス信号送信における送信電力を柔軟に設定することができる。この結果、移動制御の対象端末200から送信されるA-SRSは、マクロセルの受信アンテナまで到達する。また、移動制御の対象端末200から送信されるA-SRSを少なくともマクロセルに到達させることができれば、当該マクロセル内に配置された他のピコセルにもA-SRSが到達していることが言える。これにより、マクロセル、または、端末が所属するピコセル以外の他のピコセルでは、距離減衰の差異に影響されることなく、チャネル品質を測定できるので、送受信ポイントの切替の遅延を抑え、確実に送受信ポイントを切り替えることができる。また、送受信ポイントの切替が遅延することによるスループット劣化を抑えることができる。
[実施の形態2]
実施の形態2は、下りCSI報告およびDCIのフォーマット識別情報に応じてA-SRSの送信電力制御方法が決定される。
本実施の形態に係る基地局100及び端末200の動作について説明する。ここでは、基地局100が、上りリソース割当制御情報のフォーマットとしてDCI format 0を用いる一方、下りリソース割当制御情報のフォーマットとしてDCI format 1Aを用いる場合について説明する。
複数の送受信ポイントに対する下りCSI報告を実施するよう通知され、かつ、A-SRSのトリガ情報を含むDCIのフォーマット識別情報がDCI format 0を示す場合、送信制御部206は、式(1)に従った送信電力制御をそのまま適用する。
一方、複数の送受信ポイントに対する下りCSI報告を実施するよう通知され、かつ、A-SRSのトリガ情報を含むDCIのフォーマット識別情報がDCI format 1Aを示す場合、送信制御部206は、式(1)に従った送信電力制御に対して式(4)に示すオフセット値を付与した送信電力制御方法を適用する。
このようにして、端末200は、基地局100から通知される下りCSI報告要求において複数のセルと端末200との間の各下りCSIの報告が要求され、かつ、DCI format 1A(下りリンク割当向けフォーマット)のDCIにA-SRSのトリガ情報が含まれる場合、所定値だけ増加させた送信電力(すなわち、A-SRSがマクロセルまで届く送信電力)でA-SRSを送信する。
すなわち、基地局100は、ピコセルに収容されている端末のうち、複数の送受信ポイントに対する下りCSI報告を実施するよう通知した端末200に対してA-SRS送信をトリガする場合に、A-SRSの送信電力として基地局100(マクロセル)の受信アンテナに到達する送信電力を設定できる。つまり、基地局100は、複数の送受信ポイントに対する下りCSI報告を実施するよう通知した端末200に対して、A-SRSのトリガ情報を含める割当制御情報(DCI)のフォーマット(DCI format)を適切に選択する。また、複数の送受信ポイントに対する下りCSI報告を実施するよう通知された端末200は、DCIのフォーマット識別情報がDCI format 1A(下りリンク割当向けフォーマット)である場合に、マクロセルの受信アンテナに到達するようにA-SRSの送信電力を制御する。
こうすることで、実施の形態1と同様、リファレンス信号送信のトリガ情報に用いるビット数の増加を抑えつつ、リファレンス信号送信における送信電力を柔軟に設定することができる。この結果、距離減衰の差異に影響されることなく、マクロセルでチャネル品質を測定できるので、送受信ポイントの切替の遅延を抑え、確実に送受信ポイントを切り替えることができる。また、送受信ポイントの切替が遅延することによるスループット劣化を抑えることができる。
さらに、本実施の形態によれば、下りデータ割当(例えば、DCI format 1A)の際にA-SRSの送信要求(トリガ情報)が含まれるか否かによってA-SRSの送信電力が決定される。これに対して、上りデータ割当(例えば、DCI format 0)の際、基地局100は、ピコセルに収容された端末200に対して、TPCコマンド等を用いて、ピコセルの受信アンテナに最適化した送信電力制御を行うことができる。すなわち、基地局100は、端末200に対して、当該端末200が所属するピコセルにのみに上りデータ信号(PUSCH)が届くように送信電力を制限しつつ、マクロセルの受信アンテナまでA-SRSが届くように送信電力を大きくすることができる。つまり、本実施の形態によれば、上りデータ信号(PUSCH)とA-SRSとに対して個別に送信電力制御を適用することができる。
[実施の形態3]
本実施の形態では、実施の形態2の動作に加え、端末200が所属するピコセルと通信しているか否かに応じてA-SRSの送信電力制御方法が決定される。
本実施の形態に係る基地局100及び端末200の動作について説明する。ここでは、基地局100が、上りリソース割当制御情報のフォーマットとしてDCI format 0を用いる一方、下りリソース割当制御情報のフォーマットとしてDCI format 1Aを用いる場合について説明する。
複数の送受信ポイントに対する下りCSI報告を実施するよう通知され、かつ、DCIのフォーマット識別情報がDCI format 0を示す場合、送信制御部206は、さらに、端末200がピコセルに収容されているか否かに応じて、A-SRSの送信電力制御方法を決定する。
例えば、式(1)および式(3)におけるf(i)の初期値f(0)は、f(0)=ΔPrampup+δmsg2で与えられる。δmsg2の値は、ランダムアクセス手順にて基地局100と端末200とで共有する情報である。基地局100は、マクロセルに収容される端末200に対して、ランダムアクセス手順においてδmsg2の値を大きくすることで、端末200からの上り信号の送信電力を大きくする。一方、基地局100は、ピコセルに収容される端末200に対して、ランダムアクセス手順においてδmsg2の値を小さくすることで、端末200からの上り信号の送信電力を小さく抑える。これにより、マクロセル内の他のピコセルに収容された他の端末に対して、端末200が使用するリソースを再利用することが可能となる。
つまり、端末200は、δmsg2の値が所定の閾値以下の場合には、自端末がマクロセルではなくピコセルに収容されていると判断することができる。
そこで、送信制御部206は、次式(5)に従ってA-SRSの送信電力制御を決定する。
Figure 2013001737
すなわち、送信制御部206は、δmsg2の値が所定の閾値以下の場合(端末200がピコセルに収容されていると判断する場合)、PO_PUSCHにオフセット値Pboostを付与したP'O_PUSCHを用いる。一方、送信制御部206は、δmsg2の値が所定の閾値より大きい場合(端末200がピコセルに収容されていないと判断する場合)、PO_PUSCHをそのまま用いる。
このようにして、端末200は、基地局100から通知される下りCSI報告要求において複数のセルと端末200との間の各下りCSIの報告が要求され、かつ、通常の送信電力(式(1)および式(3))の初期値を設定するためのパラメータ(δmsg2)が予め設定された閾値以下の場合、所定値だけ増加させた送信電力(すなわち、A-SRSがマクロセルまで届く送信電力)でA-SRSを送信する。
これにより、DCI format 1Aの割当制御情報にA-SRSのトリガ情報が含まれている際にA-SRSの送信電力を増加させる動作を、ピコセル(LPN)の周辺に存在する端末200(ピコセルに収容されている端末200)に限定することができる。すなわち、DCI format 1Aの割当制御情報にA-SRSのトリガ情報が含まれる場合でも、端末200は、自端末がマクロセルに収容されていると判断すれば、式(1)と同様の送信電力制御を行う。これにより、DCI format 1Aの割当制御情報が使用される際、常にA-SRSが大きな送信電力で送信されることを防ぐことができ、マクロセルに与える干渉の発生頻度を低く抑えることができる。
また、実施の形態1と同様、リファレンス信号送信のトリガ情報に用いるビット数の増加を抑えつつ、リファレンス信号送信における送信電力を柔軟に設定することができる。この結果、距離減衰の差異に影響されることなく、マクロセルでチャネル品質を測定できるので、送受信ポイントの切替の遅延を抑え、確実に送受信ポイントを切り替えることができる。また、送受信ポイントの切替が遅延することによるスループット劣化を抑えることができる。
なお、本実施の形態では、式(5)に示すように、δmsg2の値が所定の閾値以下であるか否か、つまり、δmsg2の値を2段階に分けた場合について説明したが、これに限定されない。例えば、次式(6)は、δmsg2の値を4段階に分けた場合の例である。
Figure 2013001737
すなわち、式(6)では、δmsg2の値が小さくなるほど、送信電力の増加分をより大きくする。つまり、端末200は、δmsg2の値に応じた送信電力の増加分(Pboost1〜Pboost3)を送信電力制御値に付加することで、マクロセルに向けたA-SRSの送信電力制御値を設定する。これにより、端末200は、自端末がピコセルに収容されているか否かの状況のみならず、式(5)と比較して、マクロセル向けにどれくらいの送信電力が必要かをより細かく制御して、A-SRSを送信することが可能となる。
また、本実施の形態では、端末200がピコセルに収容されているか否か(ピコセルの周辺に存在するか否か)を、δmsg2の値に基づいて判断する場合について説明したが、これに限定されない。例えば、端末200がピコセルに収容されているか否か(ピコセルの周辺に存在するか否か)を、PHR(Power Headroom=端末の送信電力余力の情報)に基づいて判断してもよい。例えば、PHRが所定値以上の場合、端末200がピコセルに収容されている(ピコセルの周辺に存在する)と判断してもよい。
[実施の形態4]
本実施の形態に係る基地局100及び端末200の動作について説明する。ここでは、基地局100が、上りリソース割当制御情報のフォーマットとしてDCI format 0を用いる一方、下りリソース割当制御情報のフォーマットとしてDCI format 1Aを用いる場合について説明する。
基地局100は、共通SRSリソースの配置周期(例えば、10ms)の期間内で、何れかの割当制御情報(下りリソース割当制御情報または上りリソース割当制御情報)にトリガ情報を含めて端末200へ送信する。これにより、トリガ情報の送信タイミング以降で最初の共通SRSサブフレームにおいて、端末200にA-SRSを送信させることができる。
このとき、端末200の送信制御部206は、複数の送受信ポイントに対する下りCSI報告を実施するよう通知され、A-SRSのトリガ情報を含むDCIのフォーマット識別情報がDCI format 0を示す場合、さらに、当該DCIに含まれる上りリソース割当制御情報に対応する上りリンク送信データの送信サブフレームが共通SRSサブフレームと同一であるか否かに応じて、A-SRSの送信電力制御方法を決定する。
具体的には、トリガ情報を含むDCI(DCI format 0)に含まれる上りリソース割当制御情報に対応する上りリンク送信データの送信サブフレームと共通SRSサブフレームとが同一でない場合、送信制御部206は、DCI format 0のDCIに含まれるTPCコマンドに応じて、式(3)に従った送信電力制御を適用する。
一方、トリガ情報を含むDCI(DCI format 0)に含まれる上りリソース割当制御情報に対応する上りリンク送信データの送信サブフレームと共通SRSサブフレームとが同一である場合、送信制御部206は、DCI format 0のDCIに含まれるTPCコマンドに応じて、式(3)に従った送信電力制御を適用するとともに、式(3)に従った送信電力制御に対して式(4)に示すオフセット値を付与した送信電力制御方法を適用する。
例えば、図8において、共通SRSリソースの配置周期(10ms)の期間内に、t_(n-6)およびt_(n-4)のサブフレームで上りリソース割当制御情報(DCI format 0)が送信されている。なお、図8において、t_(n-6)はt_nの6個前のサブフレームを表し、t_(n-4)は、t_nの4個前のサブフレームを表す。
すなわち、図8では、t_(n-6)で送信された上りリソース割当制御情報(DCI)に対応する上りリンク送信データは、t_(n-6)から4サブフレーム後のt_(n-2)で送信される。同様に、t_(n-4)で送信された上りリソース割当制御情報(DCI)に対応する上りリンク送信データは、t_(n-4)から4サブフレーム後のt_nで送信される。つまり、t_(n-4)で送信された上りリソース割当制御情報(DCI)に対応する上りリンク送信データが送信されるサブフレームと、共通SRSサブフレームとは同一である。
よって、図8では、t_(n-4)で送信された上りリソース割当制御情報(DCI)にA-SRSの送信をトリガするトリガ情報が含まれる場合、送信制御部206は、式(3)に示すPO_PUSCHの代わりに、PO_PUSCHにオフセット値Pboostを付与したP'O_PUSCHを用いる。一方、図8では、t_(n-6)で送信された上りリソース割当制御情報(DCI)にA-SRSの送信をトリガするトリガ情報が含まれる場合(図8に示す「それ以外」)、送信制御部206は、式(3)に示すPO_PUSCHをそのまま用いる。
また、基地局100は、ピコセルに収容された端末200に対してピコセルの受信アンテナに到達するようA-SRS送信をトリガする場合、又は、マクロセルの受信アンテナに到達するようA-SRS送信をトリガする場合に、トリガ情報を含める上りリソース割当制御情報のタイミングを適切に選択する。
こうすることによる効果を以下で説明する。
TPC制御における誤差(ターゲット送信電力に対する実際に端末が送信した送信電力の誤差、以下、TPC誤差と標記)の発生状況として、上り信号の送信時間間隔が長いとTPC誤差が大きくなる点が挙げられる。これは、時間が経過すると端末のパワーアンプ(PA)の温度が変化し、PAの増幅特性が時間の経過と伴に変わってしまうためである。このため、上り信号の送信時間間隔が長いほど、TPC誤差が大きくなる。
これに対して、本実施の形態では、端末200は、トリガ情報を含むDCI(DCI format 0)に含まれる上りリソース割当制御情報に対応する上りリンク送信データの送信サブフレームが、共通SRSサブフレームと同一である場合に、A-SRSの送信電力を大きくして送信する。これにより、大きい送信電力で送信されるA-SRSが送信される直前には、上りリンク送信データが必ず存在する。よって、上りリンク送信データと、A-SRSとの送信時間間隔(つまり、PAがoffになる時間)は最小になるので、TPC誤差を小さくできる。
こうすることで、本実施の形態によれば、リファレンス信号送信のトリガ情報に用いるビット数の増加を抑えつつ、マクロセルの受信アンテナに到達するよう送信する際にA-SRSに生じるTPC誤差を小さく抑えて、リファレンス信号送信に用いられる送信電力を柔軟に設定することができる。この結果、距離減衰の差異に影響されることなく、マクロセルでチャネル品質を測定できるので、送受信ポイントの切替の遅延を抑え、確実に送受信ポイントを切り替えることができる。また、送受信ポイントの切替が遅延することによるスループット劣化を抑えることができる。
なお、本実施の形態では、A-SRSの送信電力を増加させる場合でもTPCコマンドの値をそのまま適用して、式(3)におけるf(i)の値を更新する場合について説明したが、これに限らない。例えば、f(i)の値を更新する際、TPCコマンドの値を読み替えてもよい。より詳細には、端末200は、A-SRSのトリガ情報が含まれる上りリソース割当情報に対して、予め通知されたTPCコマンド[-1,0,+1,+3]を所定の整数N倍した[-N,0,+N,+3N]と読み替えて送信電力を設定してもよい。または、端末200は、予め通知された制御値Lを用いて、TPCコマンドの最大値を[-1,0,+1,+L]と読み替えて送信電力を設定してもよい。これにより、本実施の形態と同様、上りデータ送信に用いる送信電力を大きく設定することができ、かつ、A-SRSと上りデータとの送信電力の差を小さくできるので、TPC誤差を小さく抑えることができる。
また、同様に、A-SRSをトリガするDCIが送信されたサブフレームに応じて送信電力制御方法を区別する際、端末200は、さらに、P-SRSの送信タイミングを考慮してもよい。具体的には、端末200は、図9に示すように、P-SRSの送信タイミングと同一のタイミングに対応するA-SRSをトリガされた場合にのみ、上りリンク送信データに対して式(3)に従った送信電力制御を適用するとともに、A-SRSに対して式(4)に示すオフセット値を付与した送信電力制御を適用し、かつ、A-SRSに対してP-SRS用のリソースを使用してもよい。すなわち、端末200は、周期的に送信されるP-SRSと、トリガ情報を受け取ったときにのみ送信されるA-SRSとが同一送信タイミングで送信される場合に、A-SRSをP-SRS用のリソースで、所定値だけ増加した送信電力で送信してもよい。つまり、端末200は、P-SRSを上書きするA-SRSについてのみ送信電力を大きくしてもよい。ここで、P-SRS用のリソースは、マクロセル内で端末間の干渉が生じないように慎重に設計されるリソースである。よって、マクロセルの受信アンテナに到達するようなA-SRSが必要な状況、すなわち他のピコセルに及ぼす干渉を基地局側で予想しにくい状況において、P-SRS用のリソースを用いて、マクロセルの受信アンテナに到達する送信電力でA-SRSが送信されることで、基地局100は、品質のよいチャネル品質測定が可能となる。
[実施の形態5]
本実施の形態に係る基地局100及び端末200の動作について説明する。ここでは、基地局100が、上りリソース割当制御情報のフォーマットとしてDCI format 0を用いる一方、下りリソース割当制御情報のフォーマットとしてDCI format 1Aを用いる場合について説明する。
また、本実施の形態では、上りリソース割当情報には、下りCSI報告のトリガ情報(下りCSIの報告要求)が含まれる。なお、基地局100は、上りリンク送信データの割当無しで、下りCSI報告のみを端末200へ指示することも可能である。
下りCSI報告のみを指示する具体的な方法について説明する。基地局100は、端末200に対してDCI format 0を用いて上りリソース割当制御情報を通知する際、CQI要求ビットを‘1’に設定し、変調方式および符号化率を示すフィールドにてIMCS=29に設定し、かつ、割当リソースブロック数NPRB≦4に設定することで、下りCSI報告のみを指示することができる。なお、CQI要求ビットを1に設定することは、下りCSIの報告を要求することを意味する。また、変調方式および符号化率を示すフィールIMCSを29に設定することは、通常、再送データのうちRedundancy Version(RV) = 1としたリソース割当に対応し、割当リソースブロック数NPRBを4以下にすることは、通常、少ないデータの割当に用いられる。ただし、両者の組み合わせとCQI要求ビットを1に設定することとをあわせることで、上りデータを割り当てずに下りCSI報告のみを指示する動作となる。
または、基地局100は、端末200に対してDCI format 4を用いて上りリソース割当制御情報を通知する際、CQI要求ビットを‘1’に設定し、単一のトランスポートブロック(TB:Transport Block)を使用し、使用するTBに対する変調方式および符号化率を示すフィールドにてIMCS=29に設定し、かつ、割当リソースブロック数NPRB≦4に設定することで、下りCSI報告のみを指示することができる。
本実施の形態において、基地局100は、共通SRSリソースの配置周期(例えば、10ms)の期間内で、何れかの割当制御情報(下りリソース割当制御情報または上りリソース割当制御情報)にトリガ情報を含めて端末200へ送信する。これにより、トリガ情報の送信タイミング以降で最初の共通SRSサブフレームにおいて、端末200にA-SRSを送信させることができる。
このとき、端末200の送信制御部206は、複数の送受信ポイントに対する下りCSI報告を実施するよう通知され、かつ、DCIのフォーマット識別情報がDCI format 0を示す場合、さらに、当該DCIによって、上りリンク送信データの割当無しで、下りCSI報告のみ指示されているか否かに応じて、A-SRSの送信電力制御方法を決定する。
具体的には、DCIによって、上りリンク送信データの割当無しで、下りCSI報告のみ指示されている場合に、当該DCIにA-SRSのトリガ情報が含まれていると、送信制御部206は、下りCSI報告に対して式(3)に従った送信電力制御を適用するとともに、A-SRSに対して、式(3)に従った送信電力制御に対して式(4)に示すオフセット値を付与した送信電力制御方法を適用する(図10参照)。つまり、端末200は、基地局100から通知される下りCSI報告要求において複数のセルと端末200との間の各下りCSIの報告が要求され、かつ、DCI format 0(上りリンク割当向けフォーマット)のDCIにA-SRSのトリガ情報および下りCSIの報告要求のみが含まれる場合、所定値だけ増加させた送信電力(すなわち、A-SRSがマクロセルまで届く送信電力)でA-SRSを送信する。
例えば、DCIに、上りリンク送信データの割当および下りCSI方向の指示が含まれる場合、当該DCIに対応する上りデータ信号のデータサイズ(ビット数)は比較的大きくなる。このため、ビット数が比較的多い上りデータ信号と同一サブフレームでA-SRSを送信するには、A-SRS用のリソースを確保するために、データレートを低下させる等の処理が必要となる。
これに対して、DCIに、上りリンク送信データの割当無しで、下りCSI方向の指示のみが含まれる場合、当該DCIに対応する上りデータ信号のデータサイズ(ビット数)は比較的小さくなる。このため、ビット数が比較的少ない上り信号(下りCSI)と同一サブフレームでA-SRSを送信する場合には、A-SRS用のリソースを確保しても、ビット数が比較的少ない上り信号に対するデータレートを大幅に低下させる等の処理が必要なくなる。よって、端末200から基地局100に対して上り信号およびA-SRSを再送無しで送ることができる可能性が高くなる。これにより、上りリンクのスループットを低減させることなく、基地局100で精度良くチャネル品質測定が可能となる。また、基地局100は、下りCSIの報告と、上りリンクのチャネル品質測定用のA-SRSの送信要求とを同一DCIに含ませることで、上りリンクおよび下りリンクのチャネル品質を同時に得ることができる。
また、実施の形態1と同様、リファレンス信号送信のトリガ情報に用いるビット数の増加を抑えつつ、リファレンス信号送信における送信電力を柔軟に設定することができる。この結果、距離減衰の差異に影響されることなく、マクロセルでチャネル品質を測定できるので、送受信ポイントの切替の遅延を抑え、確実に送受信ポイントを切り替えることができる。また、送受信ポイントの切替が遅延することによるスループット劣化を抑えることができる。
なお、本実施の形態において、上りリンクでマクロセルの受信アンテナに到達するか否かを考慮してA-SRS(つまり、上りリンクのチャネル品質測定用信号)が送信されるのと同様に、下りリンクでも、端末200においてマクロセルに関連付けられたリソースのみに限定したチャネル品質測定を行い、当該リソースについて下りCSI報告を行ってもよい。これにより、上りリンクのみでなく下りリンクの送受信ポイントの切替の遅延を抑え、スループット劣化を抑えることができる。
[他の実施の形態]
(1)上記各実施の形態において、SRSリソースを規定するパラメータには、cyclic shift、comb、RB数(または帯域幅)、RB位置(または周波数上のSRS帯域開始位置)、周波数ホッピングパタン、アンテナ数などが含まれる。ここで、Combとは、シングルキャリア信号を繰り返し送信することにより生じる周波数軸上で櫛の歯状の送信波形(例えば、偶数サブキャリアのみを信号成分に持つような波形)をした、信号における信号パタンのことを示す。例えば、シングルキャリア信号を2回繰り返し送信する場合には、2サブキャリア置きの波形となるため、Comb番号0は、偶数番目のサブキャリアを示し、Comb番号1は、奇数番目のサブキャリアを示す。また、Combは繰り返し数と呼ばれることもある。P-SRSは「Type0 SRS」と呼ばれ、A-SRSは「Type1 SRS」と呼ばれることもある。
(2)上記各実施の形態において、SRS resource configurationの基本構成パラメータとして、帯域開始位置、帯域幅、Cyclic shift、Comb番号としたが、これに限定されるものではなく、これら以外のパラメータを、SRSリソースの基本構成パラメータに含めても良い。
(3)上記各実施の形態では、端末200がA-SRSを共通SRSサブフレームで送信するようにしたが、これに限定されるものではなく、A-SRSを個別SRSサブフレームで送信するようにしても良い。
(4)また、上りリンクおよび下りリンクのDCI formatとして、DCI format 0,1A以外の他のDCI formatが用いられても、上記各実施の形態と同様の効果が得られる。
(5)端末200から送信されるSRSは、基地局100による伝搬路状態の推定、上りリンクのMCS設定、周波数スケジューリング、各アンテナのウェイト(指向性)制御に用いられる以外に、下りリンクのアンテナのウェイト(またはプリコーディング)制御などに用いられてもよい。この場合、異なるDCI formatに対して、上りリンクのMCS設定、周波数スケジューリング、及びアンテナウェイト制御のためのSRSリソースと、下りリンクのアンテナウェイト制御向けのSRSリソースとを設定することにより、通知ビットを増やさずにそれぞれの用途に応じたA-SRSをトリガするとこができる。
(6)上記各実施の形態ではアンテナとして説明したが、本発明はアンテナポート(antenna port)でも同様に適用できる。
アンテナポートとは、1本又は複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。
例えば3GPP LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。
また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
(7)上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアでも実現することも可能である。
また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
2011年6月29日出願の特願2011−144111の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
本発明は、リファレンスシグナルの送信要求に用いるビット数の増加を抑えつつ、リファレンスシグナル送信に用いられる送信電力を柔軟に設定することができるものとして有用である。
100 基地局
101 設定部
102,103 符号化・変調部
104 送信処理部
105,208 送信RF部
106,201 アンテナ
107,202 受信RF部
108,203 受信処理部
109 データ受信部
110 SRS受信部
200 端末
204 リファレンス信号生成部
205 データ信号生成部
206 送信制御部
207 送信信号形成部

Claims (11)

  1. サウンディング・リファレンス・シグナル(SRS)の送信要求を含む制御情報、および、下りチャネル情報の報告要求を受信する受信部と、
    前記報告要求に基づいて設定される送信電力で前記SRSを送信する送信部と、
    を有し、
    前記送信部は、
    前記報告要求において複数の基地局との間の各下りチャネル情報の報告が要求される場合、前記SRSを第1の送信電力で送信し、前記報告要求において単一の基地局との間の下りチャネル情報の報告が要求される場合、前記SRSを第2の送信電力で送信し、
    前記第1の送信電力は前記第2の送信電力よりも大きい、
    端末装置。
  2. 前記受信部は、複数のフォーマットのうちの一つで前記制御情報を受信し、
    前記複数のフォーマットには、上りリンクの割当情報を含む第1のフォーマットと、下りリンクの割当情報を含む第2のフォーマットとが含まれ、
    前記送信部は、前記報告要求において前記複数の基地局との間の各下りチャネル情報の報告が要求され、かつ、前記第2のフォーマットに前記送信要求が含まれる場合、前記SRSを前記第1の送信電力で送信する、
    請求項1記載の端末装置。
  3. 前記送信部は、前記報告要求において前記複数の基地局との間の各下りチャネル情報の報告が要求され、かつ、前記第2の送信電力の初期値を設定するためのパラメータが予め設定された閾値以下の場合、前記SRSを前記第1の送信電力で送信する、
    請求項1記載の端末装置。
  4. 前記受信部は、複数のフォーマットのうちの一つで前記制御情報を受信し、
    前記複数のフォーマットには、上りリンクの割当情報を含む第1のフォーマットと、下りリンクの割当情報を含む第2のフォーマットとが含まれ、
    前記SRSは、前記送信要求の受信から所定間隔以降の最初のSRS送信サブフレームで送信され、
    前記送信部は、前記報告要求において前記複数の基地局との間の各下りチャネル情報の報告が要求され、前記第1のフォーマットに前記送信要求が含まれ、かつ、前記前記第1のフォーマットに含まれる上りリンクの割当情報に対応する上りデータの送信サブフレームが前記SRS送信サブフレームと同一の場合、前記SRSを前記第1の送信電力で送信する、
    請求項1記載の端末装置。
  5. 前記送信部は、前記送信要求を受け取ったときに送信される前記SRSと、所定の周期で送信される他のSRSとが同一のサブフレームで送信される場合、前記SRSを、前記他のSRS用のリソースおよび前記第1の送信電力で送信する、
    請求項4記載の端末装置。
  6. 前記受信部は、複数のフォーマットのうちの一つで前記制御情報を受信し、前記複数のフォーマットには、上りリンクの割当情報を含む第1のフォーマットと、下りリンクの割当情報を含む第2のフォーマットとが含まれ、
    前記送信部は、前記報告要求において前記複数の基地局との間の各下りチャネル情報の報告が要求され、かつ、前記第1のフォーマットに、前記送信要求および前記報告要求のみが含まれる場合、前記SRSを前記第1の送信電力で送信する、
    請求項1記載の端末装置。
  7. 前記第1の送信電力は、前記第2の送信電力を所定値だけ増加させた電力である、
    請求項1記載の端末装置。
  8. 前記複数の基地局には、第1の基地局、および、前記第1の基地局のカバーエリア内に配置された複数の第2の基地局が含まれ、
    前記第1の送信電力は、少なくとも、前記SRSを前記第1の基地局に送信するために設定された電力であり、
    前記第2の送信電力は、前記SRSが、前記複数の第2の基地局のうち前記端末装置が属するセルをカバーする基地局に送信するために設定された電力である、
    請求項1記載の端末装置。
  9. サウンディング・リファレンス・シグナル(SRS)の送信要求を含む制御情報、および、下りチャネル情報の報告要求を端末装置へ送信する送信部と、
    前記報告要求に基づいて設定される送信電力で送信された、前記SRSを受信する受信部と、
    を有し、
    前記報告要求において複数の基地局と前記端末装置との間の各下りチャネル情報の報告が要求される場合、前記SRSには第1の送信電力が設定され、前記報告要求において単一の基地局と前記端末装置との間の下りチャネル情報の報告が要求される場合、前記SRSには第2の送信電力が設定され、
    前記第1の送信電力は前記第2の送信電力よりも大きい、
    基地局装置。
  10. サウンディング・リファレンス・シグナル(SRS)の送信要求、および、下りチャネル情報の報告要求を含む制御情報を受信し、
    前記報告要求において複数の基地局との間の各下りチャネル情報の報告が要求される場合、前記SRSを第1の送信電力で送信し、前記報告要求において単一の基地局との間の下りチャネル情報の報告が要求される場合、前記SRSを第2の送信電力で送信し、
    前記第1の送信電力は前記第2の送信電力よりも大きい、
    送信方法。
  11. サウンディング・リファレンス・シグナル(SRS)の送信要求を含む制御情報、および、下りチャネル情報の報告要求を端末装置へ送信し、
    送信した前記報告要求に基づいて設定される送信電力で送信された、前記SRSを受信し、
    前記報告要求において複数の基地局と前記端末装置との間の各下りチャネル情報の報告が要求される場合、前記SRSには第1の送信電力が設定され、前記報告要求において単一の基地局と前記端末装置との間の下りチャネル情報の報告が要求される場合、前記SRSには第2の送信電力が設定され、
    前記第1の送信電力は前記第2の送信電力よりも大きい、
    送信電力設定方法。
JP2013522723A 2011-06-29 2012-06-15 端末装置、基地局装置、送信方法および送信電力設定方法 Expired - Fee Related JP5841148B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013522723A JP5841148B2 (ja) 2011-06-29 2012-06-15 端末装置、基地局装置、送信方法および送信電力設定方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011144111 2011-06-29
JP2011144111 2011-06-29
JP2013522723A JP5841148B2 (ja) 2011-06-29 2012-06-15 端末装置、基地局装置、送信方法および送信電力設定方法
PCT/JP2012/003926 WO2013001737A1 (ja) 2011-06-29 2012-06-15 端末装置、基地局装置、送信方法および送信電力設定方法

Publications (2)

Publication Number Publication Date
JPWO2013001737A1 true JPWO2013001737A1 (ja) 2015-02-23
JP5841148B2 JP5841148B2 (ja) 2016-01-13

Family

ID=47423669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013522723A Expired - Fee Related JP5841148B2 (ja) 2011-06-29 2012-06-15 端末装置、基地局装置、送信方法および送信電力設定方法

Country Status (4)

Country Link
US (1) US9426755B2 (ja)
JP (1) JP5841148B2 (ja)
CN (1) CN103621156B (ja)
WO (1) WO2013001737A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9008677B2 (en) * 2011-06-08 2015-04-14 Qualcomm Incorporated Communication devices for multiple group communications
WO2014157939A1 (ko) * 2013-03-26 2014-10-02 엘지전자 주식회사 다중 셀 기반 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
KR102322507B1 (ko) * 2013-08-17 2021-11-05 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호의 전송 전력 제어 방법 및 이를 위한 장치
KR101931948B1 (ko) 2014-04-08 2018-12-24 엘지전자 주식회사 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 상향링크 제어 정보 송신 방법 및 이를 위한 장치
US10790949B2 (en) 2014-06-20 2020-09-29 Qualcomm Incorporated SRS in dual connectivity
US10547426B2 (en) * 2016-03-14 2020-01-28 Samsung Electronics Co., Ltd. Transmission of sounding reference signals in communication systems with carrier aggregation
US11025319B2 (en) * 2016-05-10 2021-06-01 Lg Electronics Inc. Method for transmitting/receiving data signal between base station and terminal in wireless communication system and apparatus supporting same
US10757687B2 (en) * 2016-05-12 2020-08-25 Qualcomm Incorporated Techniques for communicating feedback in low latency wireless communications
JP2018023040A (ja) * 2016-08-04 2018-02-08 富士通株式会社 基地局、無線通信システムおよび基地局の動作方法
CN107801188B (zh) * 2016-08-30 2021-07-06 上海诺基亚贝尔股份有限公司 异构网络中形成虚拟小区的方法、宏基站和传输点设备
WO2018084626A1 (ko) 2016-11-03 2018-05-11 삼성전자 주식회사 빔포밍 시스템에서 단말의 송신 전력 제어 방법 및 장치
KR20180049781A (ko) * 2016-11-03 2018-05-11 삼성전자주식회사 빔포밍 시스템에서 단말의 송신 전력 제어 방법 및 장치
US10771211B2 (en) * 2017-03-28 2020-09-08 Samsung Electronics Co., Ltd. Method and apparatus for channel state information (CSI) acquisition with DL and UL reference signals
WO2018202014A1 (en) * 2017-05-05 2018-11-08 Huawei Technologies Co., Ltd. Method of power control for uplink transmission
US10904843B2 (en) * 2017-05-15 2021-01-26 Qualcomm Incorporated Techniques and apparatuses for handling power state transitions of a beamforming apparatus
US10462755B2 (en) * 2017-06-16 2019-10-29 Qualcomm Incorporated Techniques and apparatuses for power headroom reporting in new radio
US10581749B2 (en) * 2017-07-13 2020-03-03 Nicira, Inc. Automatic discovery of maximum transmission unit size for a software defined network
CN110945799B (zh) * 2017-09-29 2023-11-28 Lg电子株式会社 用于在无线通信***中报告信道状态信息的方法及其装置
WO2019069236A1 (en) * 2017-10-02 2019-04-11 Telefonaktiebolaget Lm Ericsson (Publ) EFFICIENT METHODS OF SRS SIGNAL RESOURCE INDICATION
US11166267B2 (en) 2018-08-17 2021-11-02 Qualcomm Incorporated DCI triggered SRS enhancements
CN111836306B (zh) * 2020-07-15 2022-11-29 中国联合网络通信集团有限公司 功率协调方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099283A1 (ja) * 2010-02-10 2011-08-18 パナソニック株式会社 無線通信端末装置、無線通信基地局装置及び無線通信方法
JP2012147134A (ja) * 2011-01-07 2012-08-02 Ntt Docomo Inc 無線基地局装置、ユーザ端末及び上りリンク制御信号のシグナリング方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867203B2 (en) * 2008-07-11 2018-01-09 Qualcomm Incorporated Synchronous TDM-based communication in dominant interference scenarios
US8938247B2 (en) * 2009-04-23 2015-01-20 Qualcomm Incorporated Sounding reference signal for coordinated multi-point operation
US8489100B2 (en) * 2010-04-13 2013-07-16 Qualcomm Incorporated Uplink power control in long term evolution networks
US20120282970A1 (en) * 2011-05-03 2012-11-08 Renesas Mobile Corporation Uplink transmission power control mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099283A1 (ja) * 2010-02-10 2011-08-18 パナソニック株式会社 無線通信端末装置、無線通信基地局装置及び無線通信方法
JP2012147134A (ja) * 2011-01-07 2012-08-02 Ntt Docomo Inc 無線基地局装置、ユーザ端末及び上りリンク制御信号のシグナリング方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015044209; Samsung: 'Simultaneous SRS transmissions in more than one CC[online]' 3GPP TSG-RAN WG1#65 R1-111455 , 201105, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
JPN6015044211; Pantech: 'Remaining issues on Aperiodic SRS triggering[online]' 3GPP TSG-RAN WG1#65 R1-111646 , 201105, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *

Also Published As

Publication number Publication date
US9426755B2 (en) 2016-08-23
CN103621156B (zh) 2017-05-17
JP5841148B2 (ja) 2016-01-13
WO2013001737A1 (ja) 2013-01-03
CN103621156A (zh) 2014-03-05
US20140105110A1 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP5841148B2 (ja) 端末装置、基地局装置、送信方法および送信電力設定方法
US11129113B2 (en) Terminal apparatus, base station and communication method
US10200890B2 (en) Methods for aperiodic CSI report triggering for flexible subframes in LTE TDD eIMTA systems with dynamic UL-DL reconfiguration
JP6396507B2 (ja) 端末、基地局、送信電力制御方法及び送信電力設定方法
KR101876884B1 (ko) 전기통신시스템에서 채널 상태 정보를 보고하기 위한 방법 및 배열
TWI523547B (zh) 無線通訊系統中細胞間干擾協調技術
US20170245219A1 (en) Wireless communication terminal device, wireless communication method and integrated circuit for controlling transmission power of sounding reference signal (srs)
JP6300105B2 (ja) 無線通信端末装置、無線通信基地局装置及びcsi生成方法
WO2017130967A2 (ja) 基地局装置、端末装置および通信方法
US10979984B2 (en) Terminal and communication method
US9668222B2 (en) Method and base station for link adaptation of PDCCH in a radio communication system
JPWO2014050584A1 (ja) 端末装置、通信方法および集積回路
JP6693741B2 (ja) 端末装置、通信方法および集積回路
WO2013118567A1 (en) Communication system
US11082931B2 (en) Terminal and radio communication method using multiple waveforms
WO2016021713A1 (ja) 基地局装置、端末装置および方法
US11949426B2 (en) Configurable analog-to-digital conversion parameters
WO2017130966A1 (ja) 基地局装置、端末装置および通信方法
AU2017427495A1 (en) User terminal and radio communication method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151112

R150 Certificate of patent or registration of utility model

Ref document number: 5841148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees