JPWO2011108120A1 - 燃焼圧力制御装置 - Google Patents

燃焼圧力制御装置 Download PDF

Info

Publication number
JPWO2011108120A1
JPWO2011108120A1 JP2012502955A JP2012502955A JPWO2011108120A1 JP WO2011108120 A1 JPWO2011108120 A1 JP WO2011108120A1 JP 2012502955 A JP2012502955 A JP 2012502955A JP 2012502955 A JP2012502955 A JP 2012502955A JP WO2011108120 A1 JPWO2011108120 A1 JP WO2011108120A1
Authority
JP
Japan
Prior art keywords
piston
pressure
sealing member
fluid sealing
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012502955A
Other languages
English (en)
Other versions
JP5273290B2 (ja
Inventor
芦澤 剛
剛 芦澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2011108120A1 publication Critical patent/JPWO2011108120A1/ja
Application granted granted Critical
Publication of JP5273290B2 publication Critical patent/JP5273290B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/044Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of an adjustable piston length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/36Engines with parts of combustion- or working-chamber walls resiliently yielding under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1527Digital data processing dependent on pinking with means allowing burning of two or more fuels, e.g. super or normal, premium or regular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/36Modified dwell of piston in TDC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

内燃機関の燃焼圧力制御装置は、圧縮性流体が内部に充填され、ピストン3に配置されている流体封入部材63と、流体封入部材63の内部の圧縮性流体の温度を調整するための冷媒の流路75とを備える。燃焼室の圧力が予め定められた圧力に到達すると、流体封入部材63が縮むことにより燃焼室の容積が増加する。燃焼圧力制御装置は、流路75に冷媒を流して圧縮性流体の温度を調整し、流体ばねの内部の圧力を調整するように形成されている。

Description

本発明は、燃焼圧力制御装置に関する。
内燃機関は、燃焼室に燃料および空気が供給されて、燃焼室にて燃料が燃焼することにより駆動力を出力する。燃焼室において燃料を燃焼させるときには、空気と燃料との混合気を圧縮した状態になる。内燃機関の圧縮比は、出力および燃料消費量に影響を与えることが知られている。圧縮比を高くすることにより出力トルクを大きくしたり、燃料消費量を少なくしたりすることができる。
特開2000−230439号公報には、燃焼室に圧力調整弁を介して通じる副室を設け、圧力調整弁は、弁体と弁体に接続されて燃焼室側に付勢された弁棒とを有する自着火式の内燃機関が開示されている。この自着火式の内燃機関は、過早着火等により燃焼圧が所定の許容圧値を超えた場合に、弾性体の圧力に抗して圧力調整弁を押し上げて副室に圧力を逃すことが開示されている。この公報には、過早着火等が生じる圧力よりも大きな圧力で圧力調整弁が動くことが開示されている。
特表2006−522895号公報においては、ピストンと連接ロッドとの間において、連接ロッドをピストンクラウンと逆方向に付勢するように作用する円板スプリングが組み込まれたピストンが開示されている。また、ピストンクラウンが連接ロッドに関連して軸上に移動することが開示されている。このピストンにおいては、ピストンが上死点を超過すると円板スプリングに蓄積されたエネルギーが放出されて、出力トルクの生成につながることが開示されている。
国際公開第96/34190号パンフレットにおいては、シールリングを有するクラウンを含む上側部分と、ピストンピンの保持部を有する下側部分とを備え、上側部分および下側部分が、機械ばねにより弾性的に接続されているピストンを配置する内燃機関が開示されている。機械ばねは、クラウンの上壁とスカートの内側に取り付けられることが開示されている。
特表2009−507171号公報においては、組み立て式の液体冷却されるピストンであって、上側部分と下側部分とを有しており、上側部分と下側部分とが半径方向の外側のリング状の載置部と、半径方向の内側のリング状の載置部と介して結合されるピストンが開示されている。このピストンでは、外側の載置部と内側の載置部との間に外側の冷却通路が形成されており、内側の載置部の半径方向内側には内側の冷却通路が形成されている。これらの冷却通路に冷却オイルが流されることにより、ピストンが冷却されることが開示されている。
特開2000−230439号公報 特表2006−522895号公報 国際公開第96/34190号パンフレット 特開2009−507171号公報
火花点火式の内燃機関においては、燃焼室において燃料と空気の混合気が点火装置で着火されることにより、混合気が燃焼するとともにピストンが押し下げされる。このときに圧縮比を高くすることにより熱効率が向上する。ところが、圧縮比を高くすると異常燃焼が発生する場合がある。例えば、圧縮比が高くなることにより自着火現象が生じる場合がある。
異常燃焼の発生を防止するために、点火時期を遅らせることができる。しかしながら、点火時期を遅らせることにより、出力トルクが小さくなったり、燃料消費が悪化したりする。また、点火時期を遅らせることにより、排気ガスの温度が高くなる。このため、排気浄化装置の構成部品に高質な材料が必要になったり、排気ガスを冷却する装置が必要になったりする場合があった。更に、排気ガスの温度を下げるために、燃焼室で燃焼を行なうときの空燃比を理論空燃比未満にする場合がある。すなわち、燃焼時の空燃比をリッチにする場合がある。しかしながら、排気浄化装置として三元触媒が配置されている場合には、排気ガスの空燃比が理論空燃比から逸脱すると浄化能力が小さくなってしまい、排気ガスを十分に浄化することができなくなるという問題があった。
上記の特開2000−230439号公報に開示されている内燃機関においては、燃焼室に通じる空間をシリンダヘッドに形成して、この空間に機械ばねが配置されている。しかしながら、シリンダヘッドに機械ばねを配置した場合には、機械ばねを大きくすることができずに、十分な押圧力を得ることができない虞があった。
上記の特表2006−522895号公報、または国際公開第96/34190号パンフレットには、ピストンに機械ばねが配置されている内燃機関が開示されている。しかしながら、ピストンに配置された機械ばねは、変形できる量が不十分であり、十分なストローク量を確保できない虞がある。そのため、筒内圧力制御が困難であった。
本発明は、異常燃焼の発生を抑制する内燃機関の燃焼圧力制御装置を提供することを目的とする。
本発明の燃焼圧力制御装置は、燃料が燃焼室にて燃焼することによりピストンが往復運動する内燃機関の燃焼圧力制御装置であって、圧縮性流体が内部に充填され、ピストンに配置されている流体ばねと、流体ばねの内部の圧縮性流体の温度を調整するばね温度調整装置とを備える。燃焼圧力制御装置は、燃焼室の圧力が予め定められた圧力に到達すると、燃焼室の圧力変化を駆動源にして流体ばねが縮むことにより燃焼室の容積が増加するように形成されている。燃焼圧力制御装置は、ばね温度調整装置にて圧縮性流体の温度を調整し、流体ばねの内部の圧力を調整する。
上記発明においては、ばね温度調整装置は、ピストンの内部において流体ばねの周りに冷媒が流れる流路と、流路に冷媒を供給する冷媒供給装置とを含み、冷媒供給装置は、冷媒の温度を調整する冷媒温度調整器および冷媒の流量を調整する冷媒流量調整器のうち少なくとも一方を含み、冷媒の温度および冷媒の流量のうち少なくとも一方を調整して、流体ばねの周りの部材の温度を変化させることにより、流体ばねの内部の圧力を調整することが好ましい。
上記発明においては、冷媒供給装置は、流体ばねと燃焼室との間に冷媒を流す第1の流路を含むことができる。
上記発明においては、冷媒供給装置は、流体ばねの周りにおいて燃焼室に向かう側と反対側に冷媒を流す第2の流路を含み、流体ばねの内部の圧力を上昇させる場合には、第1の流路を通る冷媒の温度および冷媒の流量のうち少なくとも一方を調整し、流体ばねの内部の圧力を下降させる場合には、第2の流路を通る冷媒の温度および冷媒の流量のうち少なくとも一方を調整することが好ましい。
上記発明においては、ピストンは、流体ばねが伸びる動作を予め定められた位置で停止させる係止部と、流体ばねが伸びるときの速度を低下させる速度低下装置とを含むことが好ましい。
上記発明においては、ピストンは、往復運動を伝達する連接棒に接続されているピストン本体と、ピストンの冠面を有する覆い部材とを含み、流体ばねは、ピストン本体の燃焼室に向かう側の表面に配置されており、覆い部材は、流体ばねを覆うように形成され、流体ばねの伸縮とともにピストン本体に対して摺動することが好ましい。
本発明によれば、異常燃焼の発生を抑制する内燃機関の燃焼圧力制御装置を提供することができる。
実施の形態1における内燃機関の概略図である。 実施の形態1における第1のピストンの破断斜視図である。 実施の形態1のピストンを備える内燃機関において、燃焼室の圧力と流体ばねの縮み量とを説明する図である。 比較例における点火時期と出力トルクとの関係を説明するグラフである。 比較例におけるクランク角度と燃焼室の圧力との関係を説明するグラフである。 比較例における負荷と燃焼室の最大圧力との関係を説明するグラフである。 実施の形態1のピストンを備える内燃機関において、燃焼室の圧力が制御圧力に到達したときのグラフの拡大図である。 実施の形態1における内燃機関および比較例の内燃機関の点火時期を説明するグラフである。 実施の形態1における第2のピストンの破断斜視図である。 実施の形態1における第3のピストンの破断斜視図である。 実施の形態1における第4のピストンの破断斜視図である。 実施の形態1における第5のピストンの破断斜視図である。 実施の形態1における第6のピストンの破断斜視図である。 実施の形態1における第7のピストンの破断斜視図である。 実施の形態1における第8のピストンの破断斜視図である。 実施の形態1における第8のピストンの流体封入部材の蛇腹部の拡大概略断面図である。 実施の形態1における第8のピストンの流体封入部材と比較例の流体封入部材との概略断面図である。 実施の形態1における第9のピストンの破断斜視図である。 実施の形態1における第10のピストンの破断斜視図である。 実施の形態2における第1のピストンの破断斜視図である。 実施の形態2における第1のピストンのピストン本体の概略断面図である。 実施の形態2の第1のピストンを備える機関本体の概略断面図である。 実施の形態2の第1のピストンを備える内燃機関の潤滑油供給装置の系統図である。 実施の形態2における流体ばねの内部の圧力を検出する圧力検出装置の模式図である。 比較例における内燃機関の回転数とノッキング余裕点火時期との関係を説明するグラフである。 実施の形態2における内燃機関の回転数と制御圧力の関係を説明するグラフである。 比較例における燃料に含まれるアルコール濃度と遅角補正量との関係を説明するグラフである。 実施の形態2におけるアルコール濃度と制御圧力との関係を説明するグラフである。 実施の形態2における第1のピストンを備える他の機関本体の概略断面図である。 実施の形態2における第2のピストンと連接棒との拡大概略断面図である。 実施の形態2における第2のピストンを備える内燃機関の潤滑油供給装置の系統図である。 実施の形態2における第3のピストンと連接棒との概略断面図である。 実施の形態2における第3のピストンのピストン本体の概略断面図である。 実施の形態2における第4のピストンの破断斜視図である。 実施の形態2における第5のピストンの破断斜視図である。 実施の形態2における第6のピストンの拡大破断斜視図である。 実施の形態2における第7のピストンの拡大破断斜視図である。 実施の形態3における第1のピストンの破断斜視図である。 実施の形態3における第1のピストンの流体封入部材の入口部に取り付けられる方向制御弁の概略図である。 実施の形態3における第2のピストンの概略断面図である。 実施の形態3における第3のピストンの概略断面図である。 実施の形態3における流体封入部材の出口部に取り付けられる方向制御弁の概略図である。 実施の形態4におけるピストンの概略断面図である。 実施の形態4におけるピストンの速度低下装置の部分の拡大概略断面図である。
実施の形態1
図1から図19を参照して、実施の形態1における内燃機関の燃焼圧力制御装置について説明する。本実施の形態においては、車両に配置されている内燃機関を例に取り上げて説明する。
図1は、本実施の形態における内燃機関の概略図である。本実施の形態における内燃機関は、火花点火式である。内燃機関は、機関本体1を備える。機関本体1は、シリンダブロック2とシリンダヘッド4とを含む。シリンダブロック2の内部には、ピストン3が配置されている。ピストン3は、シリンダブロック2の内部で往復運動する。本発明においては、ピストンが圧縮上死点に達したときにピストンの冠面とシリンダヘッドとに囲まれる空間および、任意の位置にあるピストンの冠面とシリンダヘッドとに囲まれる気筒内の空間を燃焼室と称する。燃焼室5はそれぞれの気筒ごとに形成される。ピストン3は、連接棒としてのコネクティングロッド51に接続されている。コネクティングロッド51は、ピストンピン81を介してピストン3に接続されている。燃焼室5には、機関吸気通路および機関排気通路が接続されている。機関吸気通路は、燃焼室5に空気または燃料と空気との混合気を供給するための通路である。機関排気通路は、燃焼室5における燃料の燃焼により生じた排気ガスを排出するための通路である。
シリンダヘッド4には、吸気ポート7および排気ポート9が形成されている。吸気弁6は吸気ポート7の端部に配置され、燃焼室5に連通する機関吸気通路を開閉可能に形成されている。排気弁8は、排気ポート9の端部に配置され、燃焼室5に連通する機関排気通路を開閉可能に形成されている。シリンダヘッド4には、点火装置としての点火プラグ10が固定されている。点火プラグ10は、燃焼室5にて燃料を点火するように形成されている。
本実施の形態における内燃機関は、燃焼室5に燃料を供給するための燃料噴射弁11を備える。本実施の形態における燃料噴射弁11は、吸気ポート7に燃料を噴射するように配置されている。燃料噴射弁11は、この形態に限られず、燃焼室5に燃料を供給できるように配置されていれば構わない。たとえば、燃料噴射弁は、燃焼室に直接的に燃料を噴射するように配置されていても構わない。
燃料噴射弁11は、電子制御式の吐出量可変な燃料ポンプ29を介して燃料タンク28に接続されている。燃料タンク28内に貯蔵されている燃料は、燃料ポンプ29によって燃料噴射弁11に供給される。燃料を供給する流路の途中には、燃料の性状を検出するための燃料性状検出装置として、燃料性状センサ177が配置されている。たとえば、アルコールを含む燃料を使用する内燃機関では、燃料性状センサ177としてアルコール濃度センサが配置される。燃料性状検出装置は、燃料タンクに配置されていても構わない。
各気筒の吸気ポート7は、対応する吸気枝管13を介してサージタンク14に連結されている。サージタンク14は、吸気ダクト15およびエアフローメータ16を介してエアクリーナ(図示せず)に連結されている。吸気ダクト15には、吸入空気量を検出するエアフローメータ16が配置されている。吸気ダクト15の内部には、ステップモータ17によって駆動されるスロットル弁18が配置されている。一方、各気筒の排気ポート9は、対応する排気枝管19に連結されている。排気枝管19は、触媒コンバータ21に連結されている。本実施の形態における触媒コンバータ21は、三元触媒20を含む。触媒コンバータ21は、排気管22に接続されている。機関排気通路には、排気ガスの温度を検出するための温度センサ178が配置されている。
本実施の形態における機関本体1は、排気ガス再循環(EGR)を行うための再循環通路を有する。本実施の形態においては、再循環通路としてEGRガス導管26が配置されている。EGRガス導管26は、排気枝管19とサージタンク14とを互いに連結している。EGRガス導管26には、EGR制御弁27が配置されている。EGR制御弁27は、再循環する排気ガスの流量が調整可能に形成されている。機関吸気通路、燃焼室、または機関排気通路に供給された排気ガスの空気および燃料(炭化水素)の比を排気ガスの空燃比(A/F)と称すると、触媒コンバータ21の上流側の機関排気通路内には、排気ガスの空燃比を検出するための空燃比センサ179が配置されている。
本実施の形態における内燃機関は、電子制御ユニット31を備える。本実施の形態における電子制御ユニット31は、デジタルコンピュータからなる。電子制御ユニット31は、双方向バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36および出力ポート37を含む。
エアフローメータ16は、燃焼室5に吸入される吸入空気量に比例した出力電圧を発生する。この出力電圧は、対応するAD変換器38を介して入力ポート36に入力される。アクセルペダル40には、負荷センサ41が接続されている。負荷センサ41は、アクセルペダル40の踏込量に比例した出力電圧を発生する。この出力電圧は、対応するAD変換器38を介して入力ポート36に入力される。また、クランク角センサ42は、クランクシャフトが、例えば30°回転する毎に出力パルスを発生し、この出力パルスは入力ポート36に入力される。クランク角センサ42の出力により、機関本体1の回転数を検出することができる。更に、電子制御ユニット31には、燃料性状センサ177、温度センサ178および空燃比センサ179等のセンサの信号が入力されている。
電子制御ユニット31の出力ポート37は、それぞれの対応する駆動回路39を介して燃料噴射弁11および点火プラグ10に接続されている。本実施の形態における電子制御ユニット31は、燃料噴射制御や点火制御を行うように形成されている。すなわち、燃料を噴射する時期および燃料の噴射量が電子制御ユニット31により制御される。更に点火プラグ10の点火時期が電子制御ユニット31により制御されている。また、出力ポート37は、対応する駆動回路39を介して、スロットル弁18を駆動するステップモータ17、燃料ポンプ29およびEGR制御弁27に接続されている。これらの機器は、電子制御ユニット31により制御されている。
図2に、本実施の形態における第1のピストンの破断斜視図を示す。本実施の形態における内燃機関は、燃料が燃焼したときの燃焼室の圧力、すなわち筒内圧力を制御する燃焼圧力制御装置を備える。本実施の形態における燃焼圧力制御装置は、ピストン3を含む。
本実施の形態における第1のピストン3は、ピストン本体61を備える。ピストン本体61は、筒状に形成されている。ピストン本体61は、ピストン3の往復運動を伝達するコネクティングロッド51に接続される。ピストン本体61は、コネクティングロッド51に支持されている。ピストン本体61は、ピストンピン81を挿入するための穴部61aを有する。
本実施の形態におけるピストン3は、ピストン本体61の燃焼室5に向かう側の表面に配置されている流体ばねを含む。本実施の形態における流体ばねは、流体封入部材63を含む。流体封入部材63は、内部に圧縮性流体が封入できるように形成されている。流体封入部材63の内部には、加圧された流体が封入される。本実施の形態においては、異常燃焼が発現する燃焼室の圧力よりも小さな燃焼室の圧力で、流体封入部材63が縮み始めるように空気が封入されている。流体封入部材63は、外形が円柱状に形成されている。流体封入部材63は、側面となる部分に変形部としての蛇腹部63aを有する。流体封入部材63は、蛇腹部63aが変形することにより、矢印201に示す方向に伸縮可能に形成されている。
本実施の形態におけるピストン3は、覆い部材62を含む。覆い部材62は、流体封入部材63を覆うように形成されている。覆い部材62は、燃焼室5の隔壁を構成する天板62aを有する。天板62aの外側の表面は、ピストン3の冠面を構成する。覆い部材62は、筒状に形成されている。覆い部材62の側面には、溝部62bが形成されている。溝部62bには、ピストンリングが配置される。例えば、それぞれの溝部62bには、燃焼ガスが漏れることを抑制するコンプレッションリングおよび燃焼室5の壁面の余分な潤滑油を除去するオイルリングが配置される。
流体封入部材63は、覆い部材62の内部に配置されている。覆い部材62は、ピストン本体61に嵌合するように形成されている。覆い部材62は、ピストン本体61に対して、矢印201に示す方向に相対移動するように形成されている。覆い部材62は、ピストン本体61の上部において摺動するように形成されている。
覆い部材62は、ストッパー部として機能する係止部62eを有する。本実施の形態における係止部62eは、ピストン本体61に向かって突出している。係止部62eは、ピストン本体61に形成された窪み部61fの内部に配置されている。流体封入部材63が伸びるときに、係止部62eが窪み部61fの壁面に接触することにより、流体封入部材63を予め定められた伸び量で停止させることができる。また、係止部62eは、覆い部材62がピストン本体61から抜けることを防止できる。
本実施の形態における燃焼圧力制御装置は、燃焼サイクルの圧縮行程から膨張行程にかけて燃焼室5の圧力による押圧力が、流体ばねの内部の圧力による反力より大きくなったときに流体封入部材63が縮む。覆い部材62が、ピストン本体61に対して燃焼室5に向かう側と反対側に向かって摺動する。この結果、燃焼室5の容積が増加して、燃焼室5の圧力上昇を抑制することができる。この後に、燃焼室5の圧力による押圧力が、流体ばねの内部の圧力による反力よりも小さくなった場合には、流体封入部材が伸びて元の大きさに戻る。
本実施の形態における燃焼圧力制御装置は、燃焼室5の圧力が制御圧力に到達したときに、燃焼室5の圧力変化を駆動源として流体封入部材63の容積が変化する。流体封入部材63は、燃焼室5の圧力が変化することにより伸縮する。本発明における制御圧力は、流体ばねの容積が変化し始めるときの燃焼室の圧力である。流体封入部材63の内部には、制御圧力に対応した圧力の流体が封入される。燃焼室5の圧力が制御圧力になったときに、流体封入部材63が縮みはじめる。本実施の形態における燃焼圧力制御装置は、燃焼室5の圧力が異常燃焼の発生圧力以上にならないように制御圧力を定めている。
本発明における異常燃焼は、たとえば、点火装置により混合気が点火し、点火した点から順次燃焼が伝搬する状態以外の燃焼を含む。異常燃焼は、たとえば、ノッキング現象、デトネーション現象およびプレイグニッション現象を含む。ノッキング現象は、スパークノック現象を含む。スパークノック現象は、点火装置において点火し、点火装置を中心に火炎が広がっているときに、点火装置から遠い位置にある未燃燃料を含む混合気が自着火する現象である。点火装置から遠い位置にある混合気は、点火装置の近傍の燃焼ガスにより圧縮されて高温高圧になって自着火する。混合気が自着火するときに衝撃波が発生する。
デトネーション現象は、高温高圧の混合気の中を衝撃波が通過することにより、混合気が着火する現象である。この衝撃波は、たとえば、スパークノック現象によって発生する。
プレイグニッション現象は、早期着火現象とも言われる。プレイグニッション現象は、点火プラグの先端の金属または燃焼室内に堆積するカーボンスラッジ等が加熱されて、所定の温度以上を維持した状態になり、この部分を火種として点火時期の前に燃料が着火して燃焼する現象である。
図3に、本実施の形態の内燃機関における燃焼室の圧力のグラフを示す。横軸がクランク角度であり、縦軸が燃焼室の圧力および流体ばねの縮み量である。図3には、燃焼サイクルのうち圧縮行程および膨張行程のグラフが示されている。流体ばねを構成する流体封入部材63の縮み量は、係止部62eにより流体封入部材63の伸びる動作が停止しているときの値が零である。本実施の形態における燃焼圧力制御装置は、燃焼サイクルの圧縮行程から膨張行程の期間中に、燃焼室5の圧力が制御圧力に到達した場合に、流体封入部材63が縮む。覆い部材62がピストン本体61に対して移動する。燃焼室5の容積が増加し、圧力上昇が抑制される。
図2および図3を参照して、圧縮行程ではピストン3が上昇して、燃焼室5の圧力が上昇する。ここで、流体封入部材63には制御圧力に対応した圧力の流体が封入されているために、燃焼室5の圧力が制御圧力になるまでは、流体封入部材63の縮み量が零である。図3に示す例では、クランク角度が0°(TDC)より僅か後に点火される。点火されることにより燃焼室5の圧力が急激に上昇する。燃焼室5の圧力が制御圧力に達したときに、流体封入部材63が縮み始める。覆い部材62がピストン本体61に対して移動し始める。混合気の燃焼が進むと、流体封入部材63の縮み量が大きくなる。このために、燃焼室5の圧力の上昇が抑制される。図3に示す例では、燃焼室5の圧力がほぼ一定に保たれる。
燃焼室5において、更に燃料の燃焼が進むと、流体封入部材63の縮み量は最大になった後に小さくなる。流体封入部材63の内部の圧力が元の圧力に向かって減少する。燃焼室5の圧力が制御圧力になったときに、流体封入部材63の縮み量が零に戻る。燃焼室5の圧力が制御圧力未満になった場合には、クランク角度の進行とともに燃焼室5の圧力が減少する。
このように、本実施の形態における燃焼圧力制御装置は、燃焼室5の圧力が制御圧力に到達したときに燃焼室の圧力上昇を抑制し、燃焼室の圧力が異常燃焼の発生する圧力以上にならないように制御する。
図4に、比較例の内燃機関における点火時期と出力トルクとの関係を説明するグラフを示す。比較例の内燃機関は、流体ばねを有していない。すなわち、比較例の内燃機関は、本実施の形態における流体封入部材63を有しておらず、覆い部材とピストン本体とが一体化されている。図4のグラフは、所定の状態で比較例の内燃機関を運転しているときのグラフである。横軸は、点火するときのクランク角度(点火時期)を示している。
混合気に点火する時期によって内燃機関の性能が変化することが分かる。内燃機関は、出力トルクが最大になる点火時期(θmax)を有する。出力トルクが最大になる点火時期は、エンジン回転数、スロットル開度、空燃比、圧縮比などにより変化する。出力トルクが最大になる点火時期で点火することにより、燃焼室の圧力が高くなり熱効率が最良になる。また、出力トルクが大きくなり、燃料消費量を少なくすることができる。また、排出される二酸化炭素を減らすことができる。
ところが、点火時期を早くするとノッキング現象などの異常燃焼が発生する。特に高負荷になると、異常燃焼の発生する領域が大きくなる。比較例の内燃機関においては、異常燃焼を回避するために、出力トルクが最大になる点火時期(θmax)よりも遅らせて点火している。このように、異常燃焼が発生する領域を避けた点火時期を選定している。
図5に、比較例の内燃機関の燃焼室の圧力のグラフを示す。実線は、燃料の供給を停止(フュエルカット)して、かつスロットル弁の開度が全開(WOT)のときの燃焼室の圧力を示している。このときの燃焼室の圧力は、クランク角度が0°のとき、すなわち圧縮上死点において最大になる。この圧力は、燃料を供給しないときの燃焼室の最大圧力になる。
内燃機関においては、点火時期に依存して、燃焼室の圧力が変動する。破線で示されているグラフは、出力トルクが最大になる点火時期で点火したときのグラフである。破線は、異常燃焼が発生しないと仮定した場合のグラフを示している。図5に示す例においては、クランク角度が0°(TDC)よりもやや後の時期に点火を行なっている。出力トルクが最大になる点火時期で点火した場合においては、燃焼室の圧力が高くなる。しかしながら、実際の内燃機関では、燃焼室の最大圧力(Pmax)が異常燃焼の発生する圧力よりも大きくなるために、点火時期を遅角させている。一点鎖線は、点火時期を遅角させたときのグラフである。点火時期を遅角させた場合には、出力トルクが最大になる点火時期で点火した場合よりも燃焼室の最大圧力が小さくなる。
図3を参照して、破線は、比較例の内燃機関において出力トルクが最大になる点火時期(θmax)で点火した場合のグラフを示している。前述のとおり、この点火時期で点火した場合には、異常燃焼が発生する。
これに対して、本実施の形態における内燃機関は、燃焼室の最大圧力を異常燃焼の発生圧力未満で燃焼を行なうことができる。点火時期を早くしても異常燃焼の発生を抑制することができる。特に、圧縮比が高いエンジンにおいても異常燃焼を抑制することができる。このため、図5に示す点火時期を遅らせた比較例の内燃機関に比較して、熱効率が改善され、出力トルクを大きくすることができる。または、燃料消費量を少なくすることができる。
図3を参照して、本実施の形態の内燃機関においては、熱効率が最も良くなる点火時期に点火している。本実施の形態の内燃機関は、比較例の内燃機関の出力トルクが最大になる点火時期にて点火することも可能である。しかしながら、本実施の形態における内燃機関は、点火時期を比較例における内燃機関の出力トルクが最大になる点火時期よりも早くしている。この構成により、より熱効率を改善することができ、より出力トルクを大きくすることができる。このように、本実施の形態における内燃機関は、異常燃焼を回避しながら熱効率が最も良くなる時期に点火することができる。
本実施の形態においては、流体封入部材63の内部の封入圧力は、制御圧力よりも高くなる。制御圧力としては、燃料の供給を停止した場合における燃焼室の最大圧力より大きくすることができる。すなわち図5に示す実線のグラフの燃焼室の最大圧力より大きく設定することができる。また、制御圧力は、異常燃焼が発生する圧力未満に設定することができる。
比較例の内燃機関は、点火時期を遅角するために排気ガスの温度が高くなる。または、熱効率が低いために排気ガスの温度が高くなる。比較例の内燃機関においては、排気ガスの温度を下げるために、燃焼時の空燃比を理論空燃比より小さくする場合がある。ところが、排気浄化装置としての三元触媒は、排気ガスの空燃比が理論空燃比の近傍の場合に高い浄化能力を示す。三元触媒は、理論空燃比から外れると、浄化性能が極端に小さくなってしまう。このため、燃焼時の空燃比を理論空燃比よりも小さくすると、排気ガスの浄化能力が低下し、排気ガスに含まれる未燃燃料が多くなってしまう。また、比較例の内燃機関は、排気ガスの温度が高くなるために、排気浄化装置の耐熱性が要求されて高質の材料が必要になったり、排気ガスを冷却するための装置や排気ガスを冷却するための新たな構造が必要になったりする場合がある。
これに対して、本実施の形態における内燃機関は、熱効率が高いために排気ガスの温度が高くなることを回避することができる。本実施の形態における内燃機関は、排気ガスの温度を下げるために燃焼時の空燃比を小さくする必要性が小さく、排気浄化装置が三元触媒を含む場合に浄化性能を維持することができる。更に、排気ガスの温度が高くなることを回避できるために、排気浄化装置の部材の耐熱性の要求が低くなる。または、排気ガスの冷却を行なうための装置等を新たに追加しなくても装置を形成することができる。
また、図3を参照して、一般的に熱効率を向上させるために内燃機関の圧縮比を上昇させる場合には、燃焼室の最大圧力Pmaxが大きくなる。このために、内燃機関を構成する部材の強度を大きくする必要がある。しかしながら、本実施の形態における内燃機関は、燃焼室の最大圧力が大きくなることを回避できて、構成部材が大型になることを回避できる。たとえば、コネクティングロッドの径が大きくなることを回避できる。また、構成部材同士の摩擦が大きくなることを回避できて、燃料消費率の悪化を抑制することができる。
さらに、燃焼室の最大圧力が高い場合においては、燃焼室の径を大きくすることが困難であるという問題がある。燃焼室の径が大きくなると、それに伴ってピストンの支持部分等の構成部材の強度を大きくする必要が生じる。しかしながら、本実施の形態においては、燃焼室の最大圧力を低く維持できるために、構成部材の要求強度を低く抑えることができる。このため、燃焼室の径を容易に大きくすることができる。
次に、本実施の形態の内燃機関の燃焼圧力制御装置における制御圧力について説明する。
図6は、比較例における内燃機関の負荷と、燃焼室における最大圧力との関係を示すグラフである。内燃機関の負荷は、燃焼室における燃料の噴射量に対応する。異常燃焼が発生しない場合には、破線で示したように、負荷が増加するに従って燃焼室の最大圧力が増加する。所定の負荷よりも大きくなると異常燃焼が発生する。異常燃焼が発生するときの燃焼室の最大圧力は、負荷に依らずにほぼ一定であることが分かる。
本実施の形態の内燃機関においては、燃焼室の圧力が異常燃焼を発生する圧力に到達しないように制御圧力を設けている。制御圧力としては、燃料が燃焼したときの燃焼室の最大圧力が異常燃焼の発生圧力よりも小さくなる範囲のうち、大きな圧力であることが好ましい。制御圧力を異常燃焼が発生する圧力の近傍まで高くすることが好ましい。この構成により、異常燃焼を抑制しながら熱効率を大きくすることができる。
図7に、本実施の形態における内燃機関の燃焼室の圧力の他のグラフを示す。図2および図7を参照して、本実施の形態の内燃機関は、燃焼室の圧力が制御圧力に到達することにより、覆い部材62がピストン本体61に対して移動する。このときに、流体封入部材63の内部の圧力が上昇する場合がある。このため、燃焼室5内の圧力が、流体封入部材63の内部の圧力上昇に伴って上昇する場合がある。燃焼室5の圧力のグラフは、上側に凸の形状になる。したがって、制御圧力を設定する場合には、燃焼室5の圧力が異常燃焼の発生圧力に到達しないように、流体封入部材63の内部の圧力の上昇分を見込んで低く設定することが好ましい。
次に、本実施の形態の内燃機関の点火時期について説明する。
図8に、本実施の形態および比較例における燃焼室の圧力のグラフを示す。実線は、本実施の形態の内燃機関において出力トルクが最大になる時期に点火したときのグラフを示す。一点鎖線は、比較例の内燃機関において点火時期を遅角させた場合のグラフを示す。
本実施の形態における内燃機関は、前述したように、内燃機関の熱効率が最大となる点火時期θmaxを選定することが好ましい。しかしながら、この点火時期での燃焼室の圧力は高くなる。たとえば、本実施の形態の点火時期における燃焼室の圧力は、比較例の点火時期における燃焼室の圧力よりも大きくなる。このために、内燃機関によっては、火花が飛ばせずに失火してしまう場合がある。特に、本実施の形態の内燃機関では、クランク角度が0°(TDC)の近傍において点火を行なっている。クランク角度が0°の近傍では、燃焼室の圧力が高いために火花が飛びにくい状態になっている。すなわち、空気密度が高いために放電が生じにくい状態になっている。
図1を参照して、燃焼室5において失火すると、未燃燃料が機関排気通路を通って排気浄化装置に流入する。本実施の形態においては、未燃燃料が排気ポート9を通って三元触媒20に流入する。この場合には、三元触媒20に流入する未燃燃料が多くなり、大気中に放出される排気ガスの性状が悪化する場合がある。または、三元触媒20において、未燃燃料が燃焼して三元触媒20が過温になる場合がある。
図8を参照して、このような失火する虞のある内燃機関では、点火時期を進角させることができる。すなわち、点火時期を早くすることができる。たとえば、点火時期を出力トルクが最大になる点火時期よりも更に進角させることができる。点火時期を早くすることにより、燃焼室の圧力が低い時に点火することができて失火を抑制することができる。
図1および図2を参照して、本実施の形態における燃焼圧力制御装置は、ピストンに流体ばねが配置されている。この構成により、燃焼室の周りに流体ばねを配置するときに、燃焼室に対向する流体ばねの面積を大きくすることができる。流体ばねが縮んで燃焼室の容積が変化するときの変化量を大きくすることができる。たとえば、流体ばねを、燃焼室の頂面に配置する場合には、燃焼室の頂面に吸気弁や点火装置等が配置されているために、燃焼室に対向する面積が小さくなってしまう。これに対して、本実施の形態においては、燃焼室に対向する面積を大きくすることができるために、燃焼室の容積の変化量を大きくすることができる。または、流体ばねの移動量を小さくすることができて、応答性に優れた燃焼圧力制御装置を提供することができる。
本実施の形態における第1のピストンの流体封入部材63は、側面となる部分に変形部としての蛇腹部63aが形成されている。この構成により、流体封入部材63が変形するときに、蛇腹部63aを優先的に変形させることができる。蛇腹部63a以外の部分が変形して、劣化したり破損したりすることを抑制できる。変形部としては、蛇腹状に限られず、他の部分に比べて容易に変形する形状を採用することができる。または、変形部は、他の部分に比べて容易に変形する材質にて形成することができる。
本実施の形態における第1のピストンは、流体封入部材63を覆うように形成されている覆い部材62を含む。この構成を採用することにより、燃焼室5の圧力が流体封入部材63の側方から(流体封入部材の径方向から)印加されることを抑制できる。流体封入部材63が側方から圧縮されて変形することを抑制できる。また、覆い部材62を採用することにより、燃焼室5の燃焼ガスが流体封入部材63に直接的に接触することを回避できる。燃焼室5の燃焼ガスの熱が流体封入部材63の内部の流体に伝達されることを抑制できる。流体封入部材63の内部の流体温度が上昇して、制御圧力が変化することを抑制できる。
図9に、本実施の形態における第2のピストンの破断斜視図を示す。本実施の形態における第2のピストン3は、流体封入部材63と燃焼室5との間に配置されている断熱部材64を含む。第2のピストンにおいては、流体封入部材63と覆い部材62の天板62aとの間に断熱部材64が配置されている。覆い部材62は、流体封入部材63および断熱部材64を覆うように形成されている。覆い部材62は、断熱部材64を介して流体封入部材63を押圧する。断熱部材64は、円板状に形成されている。本実施の形態における断熱部材64は、内部が空洞になるように形成されている。内部の空洞には、空気が封入されている。
流体封入部材63と燃焼室5との間に断熱部材64を配置することにより、燃焼室5の高温の燃焼ガスの熱が流体封入部材63に伝達されることを抑制できる。燃焼室5の燃焼ガスの熱により、流体封入部材63の内部の流体の温度が上昇することを抑制できる。覆い部材62が移動し始める制御圧力が上昇することを抑制できる。
本実施の形態における断熱部材64は、内部に空洞が形成され、空洞に空気が充填されている。断熱部材の内部に空気のような熱伝導率の低い物質を配置することにより、優れた断熱性能を発揮することができる。断熱部材64の内部に充填する物質としては、空気の他に、熱伝導率の小さな気体が封入されていても構わない。または、断熱部材の空洞に、大気圧よりも低い圧力の気体を充填したり、または、空洞を真空にしたりすることができる。または、空洞に液体が充填されていても構わない。または、断熱部材64は、セラミック部材や発泡材等の熱伝導率の小さな物質を含んでいても構わない。
本実施の形態においては、覆い部材62の内部に断熱部材64が配置されているが、この形態に限られず、断熱部材64は、流体ばねと燃焼室との間に配置することができる。例えば、断熱部材64は、覆い部材62の天板62aの外側の表面に固定されていても構わない。
図10に、本実施の形態における第3のピストンの破断斜視図を示す。本実施の形態における第3のピストン3は、流体封入部材63の内部に連通している補助シリンダ65を備える。流体ばねは、流体封入部材63および補助シリンダ65を含む。本実施の形態における補助シリンダ65は、円環状に形成されている。流体封入部材63の内部には、オイル91が封入されている。補助シリンダ65は、連通路を介して流体封入部材63の内部に連通している。補助シリンダ65は、容器66と、容器66の内部に配置されている移動部材67を有する。移動部材67は、オイル91の漏れを防止しながら、矢印201に示す方向に移動可能に形成されている。
移動部材67は、容器66の内部を2つの空間に分割している。一方の空間には、オイル91が充填されている。他方の空間には、流体封入部材68が配置されている。流体封入部材68は、円環状に形成されている。流体封入部材68の側面は、蛇腹状に形成されている。流体封入部材68は、伸縮可能に形成されている。流体封入部材68は、燃焼室の圧力が制御圧力に到達したときに縮み始めるように、加圧された流体が封入されている。本実施の形態においては、空気が封入されている。
第3のピストンにおいては、燃焼室5の圧力が制御圧力に到達したときに、移動部材67が油圧により押圧されて流体封入部材68が縮む。オイル91が流体封入部材63から補助シリンダ65に流入する。覆い部材62がピストン本体61に対して移動するために、燃焼室5の圧力上昇を抑制することができる。このように、流体ばねが油圧シリンダを含んでいても構わない。
図11に、本実施の形態における第4のピストンの破断斜視図を示す。第4のピストン3における流体ばねは、流体封入部材63と流体封入部材69とを含む。流体封入部材69は、蛇腹部69aを有し、伸縮可能に形成されている。流体封入部材63の内部および流体封入部材69の内部には、加圧された気体が封入されている。
覆い部材62は、天板62aに接続されている連結部62cを有する。連結部62cは、例えば棒状に形成されている。連結部62cは、流体封入部材69を貫通している。覆い部材62は、連結部62cに接続されている隔壁部62dを有する。本実施の形態における隔壁部62dは、円板状に形成されている。隔壁部62dの面積が最大となる面積最大面は、天板62aの表面とほぼ平行になるように配置されている。隔壁部62dは、流体封入部材63と流体封入部材69との間に配置されている。第4のピストンのピストン本体61は、収納室61dを有する。収納室61dには、流体封入部材63、覆い部材62の隔壁部62d、および流体封入部材69が、この順に積層されている。
本実施の形態の第4のピストンにおいては、流体封入部材63の内部の流体の温度が上昇したときには、流体封入部材69の内部の流体の温度も上昇する。このため、流体封入部材63の内部の温度変化に起因して、流体封入部材63が縮み始めるときの制御圧力が変化してしまうことを抑制することができる。
第4のピストンにおいては、2つの流体封入部材を備える。このように、流体ばねは、2つ以上の流体封入部材を含んでいても構わない。複数の流体封入部材を配置する場合には、たとえば、流体封入部材63の体積と流体封入部材69の体積とが異なるように形成することができる。すなわち、複数の流体封入部材に関する体積割合を変更することができる。また、それぞれの流体封入部材に封入する流体の種類が互いに異なっていても構わない。
図12に、本実施の形態における第5のピストンの破断斜視図を示す。前述のピストンにおいては、流体封入部材が覆い部材に覆われていた。本実施の形態の第5のピストンは、流体ばねの一部が燃焼室に露出するように形成されている。第5のピストン3のピストン本体71は、ピストンピン81が挿入される穴部71aを有する。ピストン本体71は、ピストンリングまたはオイルリングが配置される溝部71dを有する。
ピストン本体71は、燃焼室に接触する部分に形成されている凹部71bを有する。流体ばねを構成する流体封入部材63は、凹部71bに配置されている。ピストン本体71は、上部が開口している。ピストン本体71は、上端部において外周から中央に向かって張り出す張出し部71cを有する。張出し部71cは、流体封入部材63が凹部71bから飛び出すことを防止している。張出し部71cは、流体封入部材63が伸びる動作を予め定められた位置で停止させる係止部として機能する。流体封入部材63は、頂面部63bを有する。頂面部63bの一部分が燃焼室5に露出している。流体封入部材63の内部には、制御圧力に対応する封入圧力で気体が封入されている。
第5のピストンの流体封入部材63は、矢印202に示す方向に伸縮する。第5のピストンの流体封入部材63は、燃焼ガスに接触する。第5のピストンの流体封入部材63は、例えば、チタンやインコネル(登録商標)650などの耐熱性を有する材料により形成することができる。
本実施の形態の第5のピストンにおいては、燃焼室5の圧力が直接的に流体封入部材63に伝達される。燃焼室5の圧力が制御圧力まで到達すると、流体封入部材63が縮む。第5のピストンにおいても、燃焼室5の圧力が制御圧力以上になることを抑制できる。また、燃焼室5の圧力が異常燃焼の発生圧力に到達することを抑制できる。
第5のピストンの流体封入部材63は、燃焼室5に接触する頂面部63bが変形しないように形成されていることが好ましい。例えば、頂面部63bは、板厚を十分に厚く作ったり、硬質の材質で形成したりすることが好ましい。この構成により、燃焼室5の壁面が凹凸になるのを抑制することができる。燃焼室5において、表面積(S)の容積(V)に対する比(S/V)が大きくなることを抑制できる。すなわち、S/V比の悪化を防止することができる。S/V比を小さく維持することができて、熱エネルギーの損失を小さくすることができる。
または、ピストン本体71の凹部71bの壁面と、流体封入部材63との間の隙間の容積(クレビス容積)が大きくなることを抑制できる。凹部71bの壁面と、流体封入部材63との間の隙間が大きくなると、未燃燃料がこの隙間に侵入して燃焼せずに蓄積する場合がある。クレビス容積が大きくなることを抑制することにより、未燃燃料の蓄積を抑制することができる。
流体封入部材63は、頂面部63bおよび底面部63dの剛性を、側面部の剛性よりも大きくすることが好ましい。この構成により、側面部を優先的に変形させることができる。頂面部63bおよび底面部63dが変形して破損することを抑制できる。本実施の形態においては、側面部に蛇腹部63aが形成されている。
図13に、本実施の形態における第6のピストンの破断斜視図を示す。第6のピストン3においては、流体封入部材63の内部に支持部材72,73が配置されている。支持部材72は側壁部72aを有する。支持部材73は側壁部73aを有する。支持部材72,73は、側壁部72a,73a同士が互いに対向するように配置されている。
支持部材72は、流体封入部材63の頂面部63bに固定されている。支持部材73は、流体封入部材63の底面部63dに固定されている。それぞれの支持部材72,73は、流体封入部材63の内部の形状に沿って形成されている。側壁部72aおよび側壁部73aは、互いに嵌合するように形成されている。側壁部72aおよび側壁部73aは、互いに摺動可能に形成されている。流体封入部材63の内部には、オイル91が配置されている。このように、ガスばねの内部に、ガスばねの伸縮方向に摺動する支持部材が配置されている。
燃焼室5の圧力が上昇して、流体封入部材63が縮んだときに、蛇腹部63aと凹部71bの壁面との間に燃焼ガスが侵入する場合がある。矢印209に示すように、蛇腹部63aに対して中央に向かう力が印加される。この結果、流体封入部材63が中央に向かって変形してしまう場合がある。本実施の形態の第6のピストンにおいては、支持部材72,73の側壁部72a,73aは、流体封入部材63の蛇腹部63aを内側から支持する。支持部材72,73は、流体封入部材63の変形を抑制することができる。更に、支持部材72,73のそれぞれを、頂面部63bおよび底面部63dに固定することにより、流体封入部材63が伸縮する時に、頂面部63bおよび底面部63dが変形することを抑制できる。
オイル91は、ピストン3の往復運動に伴って流体封入部材63の内部で飛散する。オイル91は、支持部材72と支持部材73との摺動する部分に供給される。流体封入部材63の内部にオイル91を配置することにより、支持部材72,73を滑らかに摺動させることができる。または、摺動により支持部材72と支持部材73とが焼き付いてしまうことを抑制できる。なお、第6のピストンにおいては、流体封入部材63が完全に密閉されているためにオイルの充填を行なわずに継続して使用することができる。
図14に、本実施の形態における第7のピストンの破断斜視図を示す。第7のピストンにおける流体封入部材63は、燃焼室5に向かう頂面部63bが曲面状に形成されている。頂面部63bは、中央部分が凹むように形成されている。本実施の形態における第7のピストンにおいては、頂面部63bが球面状に形成されている。流体封入部材63は、矢印202に示す方向に伸縮する。
流体封入部材63の頂面部63bを中央部分が凹むように曲面状に形成することにより、燃焼室5おけるS/V比を小さくすることができる。すなわち、表面の容積に対する比を小さくすることができて、熱損失を小さくすることができる。さらに、頂面部63bは、球面状に形成することが好ましい。この構成により、S/V比をより小さくすることができる。
図15に、本実施の形態における第8のピストンの破断斜視図を示す。第8のピストンの流体封入部材63は、平面形状が円環状に形成されている。すなわち、流体封入部材63は、平面視したときにドーナッツの形状を有する。流体封入部材63は、頂面部63bが曲面状に形成されている。流体封入部材63は、外側の端部に形成されている蛇腹部63aと、内側の端部に形成されている蛇腹部63cとを有する。ピストン本体71は、内側の蛇腹部63cに対応するように形成されている張出し部71cを有する。
流体封入部材の一部を燃焼室5に対して露出させるピストンにおいては、流体封入部材63が縮んだときに、頂面部63bの中央部分が底面部63dに接触する場合がある。特に、頂面部63bを曲面状に形成した流体封入部材63においては、頂面部63bの最も凹んだ部分が底面部63dに接触する場合がある。このため、頂面部63bや底面部63dが劣化したり破損したりする場合がある。流体封入部材63を円環状に形成して、内側の端部に変形部としての蛇腹部63cを形成することにより、頂面部63bが底面部63dに接触することを抑制できる。このため、流体封入部材63の劣化や破損を抑制することができる。
図16に、本実施の形態の第8のピストンにおける流体封入部材の外側の蛇腹部および内側の蛇腹部の拡大概略断面図を示す。流体封入部材63を円環状に形成する場合には、内側の蛇腹部63cのばね定数は、外側の蛇腹部63aのばね定数よりも小さいことが好ましい。内側の変形部が外側の変形部よりも小さな押圧力で変形することが好ましい。本実施の形態においては、内側の蛇腹部63cと外側の蛇腹部63aとは、同じ材質で形成されている。内側の蛇腹部63cの幅Wiは、外側の蛇腹部63aの幅Woよりも大きくなるように形成されている。
図17に、本実施の形態における第8のピストンの流体封入部材が縮んだときの模式断面図を示す。第8のピストンの流体封入部材63が縮んだときの断面が実線で示されている。比較例の流体封入部材63’が縮んだときの断面が破線で示されている。比較例の流体封入部材63は、内側の蛇腹部63c’のばね定数と外側の蛇腹部63a’のばね定数とがほぼ同じになっている。第8のピストンの流体封入部材63と比較例の流体封入部材63’とを比較したときに、第8のピストンの流体封入部材63の頂面部63bは、比較例の頂面部63b’よりも半球形状に近いことが分かる。
円環状の流体封入部材63において、内側の蛇腹部63cのばね定数を、外側の蛇腹部63aのばね定数よりも小さくすることにより、流体封入部材63の内側の部分を外側の部分よりも大きく変形させることができる。流体封入部材63が変形したときに、頂面部63bを球形状に近づけることができる。この結果、燃焼室におけるS/V比を小さくすることができて熱損失を小さくすることができる。ばね定数は、形状を変更する他に、材質や厚さを変更することにより変化させることができる。
本実施の形態の第8のピストンにおいては、流体封入部材63の伸びる動作が停止しているときに、頂面部63bが曲面状になるように形成されているが、この形態に限られず、頂面部63bを平面状に形成しても構わない。
図18に、本実施の形態における第9のピストンの破断斜視図を示す。第9のピストンの流体封入部材63は、平面形状が円環状に形成されている。頂面部63bは、平面状に形成されている。また、流体封入部材63が縮む前の内側の蛇腹部63cの高さと外側の蛇腹部63aの高さとは、ほぼ同じになっている。シリンダ本体71は、内側の蛇腹部63cに対応して形成されている張出し部71cを有する。第9のピストンにおいても、頂面部63bが底面部63dに接触することを抑制できる。
本実施の形態の第9のピストンにおいては、内側の蛇腹部63cのばね定数を、外側の蛇腹部63aのばね定数よりも小さく形成している。このため、流体封入部材63が縮んだときに、内側の蛇腹部63cが外側の蛇腹部63aよりも大きく縮む。このため、流体封入部材63が縮んだときに頂面部63bの形状を球形状に近づけることができる。燃焼室におけるS/V比を小さくすることができる。
図19に、本実施の形態における第10のピストンの破断斜視図を示す。第10のピストン3においては、流体封入部材63と燃焼室5との間に、介在部材64aが配置されている。介在部材64aは、円板状に形成されている。介在部材64aは、ピストン本体71の凹部71bに配置されている。介在部材64aは、張出し部71cに接触することよりピストン本体から飛び出さないように形成されている。本実施の形態における介在部材64aは、流体封入部材63が伸縮している期間においても、変形しないような硬質な材質で形成されている。流体封入部材63の表面に介在部材64aを配置することにより、流体封入部材63の頂面部63bの変形を抑制しながら、流体封入部材63を伸縮させることができる。
本実施の形態の第10のピストンにおける介在部材64aは、断熱部材として機能する。図19に示す例においては、介在部材64aの内部に空洞が形成されており、空洞に空気が充填されている。本実施の形態における第2のピストンと同様に、流体封入部材63と燃焼室5との間に断熱部材を配置することにより、流体封入部材63の内部の流体の温度が上昇して、流体封止部材が縮み始める制御圧力が上昇することを抑制できる。
本実施の形態においては、制御圧力を異常燃焼が発生する圧力未満にしているが、この形態に限られず、制御圧力を異常燃焼が発生する圧力以上にしても構わない。たとえば、制御圧力を異常燃焼が発生する圧力に設定しても構わない。この構成により、異常燃焼が発生したときに異常燃焼の拡大を抑制することができる。
本実施の形態においては、流体封入部材に封入する流体として、気体を例に取り上げて説明をしているが、この形態に限られず、流体封入部材の内部に封入する流体は、液体を含んでいても構わない。例えば、流体封入部材の内部に封入する流体は、液体と気体との混合物であっても構わない。流体封入部材の内部には圧縮性の流体が含まれていれば構わない。
また、本実施の形態における流体ばねは、蛇腹部を有する流体封入部材を含むが、この形態に限られず、流体ばねは圧縮性流体を含み、所望の圧力にて伸縮可能に形成されていれば構わない。たとえば、流体ばねは、流体封入部材を有さずに、ピストン本体と覆い部材とにより形成される空間に気体が封入されていても構わない。
実施の形態2
図20から図37を参照して、実施の形態2における燃焼圧力制御装置について説明する。本実施の形態における燃焼圧力制御装置は、ピストンに配置されている流体ばねの内部の圧力を調整するために、流体ばねの内部の流体温度を調整するばね温度調整装置を備える。
図20に、本実施の形態における第1のピストンの破断斜視図を示す。本実施の形態におけるばね温度調整装置は、ピストン3の内部において流体ばねの周りに冷媒が流れる流路75を含む。本実施の形態においては、冷媒として機関本体の潤滑油が用いられている。本実施の形態の第1のピストン3においては、ピストン本体61に流路75が形成されている。流路75は、流体封入部材63の底面部63dに沿って形成されている。
本実施の形態におけるピストン本体61は、外壁部61eを有する。外壁部61eは、流体封入部材63の側面部を取り囲むように形成されている。外壁部61eの内部には、流路75が延びている。流路75は、流体封入部材63の側面に沿って形成されている。
流体封入部材63と、覆い部材62の天板62aとの間には、介在部材74が配置されている。本実施の形態における介在部材74は、円板状に形成されている。介在部材74は、外壁部61eの内面に嵌るように形成されている。介在部材74は、流体封入部材63を押圧できるように形成されている。覆い部材62は介在部材74を介して、流体封入部材63を押圧する。
図21に、本実施の形態における第1のピストンの概略断面図を示す。図21は、図20におけるA−A線に関する断面図である。図20および図21を参照して、流路75は、平面視したときの形状が円形になるように形成されている。流路75は、入口部75aと出口部75bと有する。入口部75aおよび出口部75bは、ピストン本体61の内側の空間から流路75に向かう連通路を構成する。本実施の形態における入口部75aおよび出口部75bは、ピストンピン81を避けた位置に形成されている。入口部75aおよび出口部75bは、流路75の外周部に配置されている。
図22に、本実施の形態における第1のピストンを備える機関本体の概略断面図を示す。本実施の形態におけるばね温度調整装置は、ピストン3に形成されている流路75に冷媒を供給する冷媒供給装置を含む。冷媒供給装置は、ノズル76を有する。図21および図22を参照して、ノズル76は、ピストン3およびコネクティングロッド51の動きを妨げる位置を避けて配置されている。ノズル76は、ピストン3から離れて配置されている。ノズル76の出口は、流路75の入口部75aに向けられている。ノズル76は、潤滑油92を直線状に噴出できるように形成されている。潤滑油92が噴出される方向は、ピストン3が往復運動する方向とほぼ平行になっている。潤滑油92がピストン3の往復運動する方向とほぼ平行に噴出されることにより、ピストン3の往復運動を妨げずにピストン3に潤滑油92を供給することができる。
図20から図22を参照して、ノズル76から潤滑油92が噴出されることにより、潤滑油92は、矢印203に示すように入口部75aを通って流路75に流入する。潤滑油92は、矢印205に示すように流路75を流れる。潤滑油92は、矢印204に示すように、流路75の出口部75bから流出する。
図23に、本実施の形態における内燃機関の潤滑油供給装置の系統図を示す。本実施の形態における内燃機関は、機関本体1に配置されている構成部品に潤滑油を供給する潤滑油供給装置を備える。本実施の形態においては、潤滑油供給装置の一部が、ピストンの内部に冷媒を供給する冷媒供給装置として機能する。
潤滑油供給装置は、貯留部材としてのオイルパン77を備える。オイルパン77には、潤滑油92が貯留されている(図22参照)。潤滑油供給装置は、オイルポンプ152を備える。オイルポンプ152が駆動することにより、機関本体1の構成部品に潤滑油が供給される。各構成部品の隙間から漏れ出る潤滑油は、重力の作用により、オイルパン77に落下する。オイルポンプ152とオイルパン77との間には、オイルストレーナ151が配置されている。オイルストレーナ151は、大きな異物を除去する。
オイルポンプ152の出口には、潤滑油をオイルパン77に戻す戻り流路が接続されている。戻り流路には、リリーフバルブ153が配置されている。リリーフバルブ153は、オイルポンプ152の出口圧力が許容値を超えたときに、潤滑油をオイルパン77に戻すように形成されている。
オイルポンプ152の出口は、オイルクーラ154およびオイルフィルタ155を介してメインオイルホール156に接続されている。オイルクーラ154は、潤滑油を冷却する。オイルフィルタ155は、潤滑油に含まれる異物を除去する。メインオイルホール156では、一時的に潤滑油が貯留される。メインオイルホール156に貯留される潤滑油は、分岐流路を通って、それぞれの構成部品に供給される。
本実施の形態における冷媒供給装置は、ピストン3の内部の流路75を流れる潤滑油の流量を調整する冷媒流量調整器157を含む。冷媒流量調整器157は、例えば、流量調整弁を有する。また、冷媒流量調整器157は、ノズル76から高圧の潤滑油を噴射するために、潤滑油の圧力を増大させる補助オイルポンプを含んでいても構わない。
本実施の形態における冷媒供給装置は、ピストンの内部を流れる潤滑油の温度を調整する冷媒温度調整器158を備える。冷媒温度調整器158は、例えば、冷却器および加熱器のうち少なくとも一方を含む。冷媒温度調整器158により、冷媒としての潤滑油の温度を調整することができる。
冷媒流量調整器157および冷媒温度調整器158のそれぞれは、電子制御ユニット31により制御されている。冷媒流量調整器157および冷媒温度調整器158は、いずれが上流側に配置されていても構わない。冷媒供給装置は、冷媒流量調整器157および冷媒温度調整器158のうち、少なくとも一方を備えていれば構わない。冷媒温度調整器158の出口は、ノズル76に接続されている。ノズル76から噴射された潤滑油は、ピストン3の入口部75aに流入する。潤滑油がピストン3の内部を通ることにより、流体封入部材63の周りの部材の温度を変化させることができる。この結果、流体封入部材63の内部の温度を調整することができる。潤滑油は、ピストン3の内部を通って、出口部75bから流出する。ピストン3から流出した潤滑油は、オイルパン77に戻される。
本実施の形態における冷媒供給装置は、潤滑油供給装置に含まれているが、この形態に限られず、機関本体に潤滑油を供給する潤滑油供給装置とは別に、ピストンに冷媒を供給する冷媒供給装置が配置されていても構わない。
図24に、本実施の形態におけるピストンの流体ばねの内部の圧力を検出する圧力検出装置の模式図を示す。本実施の形態における燃焼圧力制御装置は、流体ばねの内部の圧力を検出できるように形成されている。圧力検出装置は、流体封入部材63に配置されている圧力センサ141を備える。圧力検出装置は、ピストン3の内部に配置されている増幅発振機144を備える。増幅発振機144は、圧力センサ141に接続されている。増幅発振機144は、圧力センサ141の信号を増幅するとともに、アンテナ145を介して圧力信号を含む電波を発振する。
増幅発振機144には、電気を供給するための蓄電器143および発電機142が接続されている。蓄電器143は、電気を溜めることができるように形成されている。蓄電器143は、例えば、充電および放電が可能なキャパシタを含む。発電機142は、例えば、ピストン3の運動を利用して発電できるように形成されている。発電機142は、例えば、コイルとコイルの内部を自在に往復運動する磁石と含む。この発電機142は、ピストン3の往復運動に伴って、コイルの内部を磁石が往復運動することにより発電が行なわれる。
圧力検出装置は、シリンダブロック2に固定されている受信機147を含む。受信機147は、アンテナ146を含む。受信機147は、ピストン3およびコネクティングロッド51の動作を妨害しない位置に配置されている。受信機147は、たとえば、クランクケース79に配置されている。受信機147は、電子制御ユニット31に接続されている。
流体封入部材63の内部の圧力は、圧力センサ141にて検出される。圧力信号は、増幅発振機144にて増幅された後に、アンテナ145から発振される。受信機147のアンテナ146にて、圧力信号を受信する。受信機147が受信した圧力信号は、電子制御ユニット31に入力される。このように、本実施の形態においては、運転中の流体封入部材63の内部の圧力を検出できる。
本実施の形態の内燃機関は、圧力検出装置により流体ばねの内部の流体の圧力を検出し、ばね温度調整装置により流体ばねの内部の圧力を調整することができる。たとえば、流体ばねの内部の圧力が所望の範囲から逸脱している場合に、流体ばねの内部の圧力を所望の範囲内の圧力に戻すことができる。
図20から図23を参照して、例えば、流体封入部材63の内部の圧力が上昇して、制御圧力が所望の範囲よりも高くなった場合においては、ノズル76から供給する潤滑油の流量を増加させることにより、流路75の周りの除熱を促進することができる。流路75に供給する潤滑油の流量を増加することにより、流体封入部材63の周りが冷却され、流体封入部材63の内部の流体の温度が低下する。この結果、流体封入部材63の内部の圧力を下げることができる。図23を参照して、ピストン3に供給する潤滑油の流量は、冷媒流量調整器157により調整することができる。
または、流体封入部材63の内部の圧力が所望の範囲よりも高くなった場合においては、ピストン3に供給する潤滑油の温度を下げる制御を行なうことができる。流路75に供給する潤滑油の温度を下げることにより、流体封入部材63の周りが冷却され、流体封入部材63の内部の流体温度が低下する。この結果、流体封入部材63の内部の圧力を下げることができる。図23を参照して、潤滑油の温度は、冷媒温度調整器158により調整することができる。
流体封入部材63の内部の圧力が所望の範囲未満になった場合には、流体封入部材63の内部の流体の温度を上昇させる制御を行なうことができる。この場合には、流路75に供給する潤滑油の流量を小さくすることにより、流体封入部材63の内部の圧力を上昇させることができる。または、流路75に供給する潤滑油の温度を上昇させることにより、流体封入部材63の内部の圧力を上昇させることができる。
このように、本実施の形態における燃焼圧力制御装置は、流体ばねの内部に配置されている圧縮性流体の温度を調整することにより、流体ばねの内部の圧力を調整することができる。すなわち、制御圧力を調整することができる。または、燃焼室の最大圧力を調整することができる。例えば、運転状態に関わらずに制御圧力がほぼ一定で運転を行なう内燃機関の場合に、予め定められた圧力範囲内から制御圧力が逸脱したときには、ばね温度調整装置により流体ばねの内部の温度を調整して、制御圧力を予め定められた圧力の範囲内に戻すことができる。
本実施の形態における第1のピストンを備える燃焼圧力制御装置においては、ピストンに供給する冷媒の流量または冷媒の温度を変化させる冷媒供給装置により、流体ばねの内部の流体の圧力を調整しているが、この形態に限られず、ばね温度調整装置は、流体ばねの内部に充填されている流体の温度を調整できるように形成されていれば構わない。たとえば、ばね温度調整装置は、流体封入部材に空気を吹き付けて、流体封入部材を冷却する装置を含んでいても構わない。
ところで、本実施の形態における燃焼圧力制御装置は、内燃機関の運転状態を検出する運転状態検出装置を備える。本実施の形態における燃焼圧力制御装置は、検出した内燃機関の運転状態に基づいて制御圧力を変更できるように形成されている。任意の時刻における運転状態に基づいて、流体封入部材63内部の圧力を変更する。この場合には、ばね温度調整装置により、流体封入部材63内部の圧力を調整することができる。
ここで、制御圧力を変更するための内燃機関の運転状態について、機関回転数を例に取り上げて説明する。図1を参照して、運転状態検出装置は、機関回転数を検出するためのクランク角センサ42を含む。
図25に、比較例の内燃機関の回転数と、ノッキング余裕点火時期との関係を説明するグラフを示す。比較例の内燃機関は、ピストンに流体ばねを有していない内燃機関である。ノッキング余裕点火時期は、以下の式で表すことができる。
(ノッキング余裕点火時期)=(ノッキングが発生する点火時期)−(出力トルクが最大になる点火時期)
ノッキング余裕点火時期は、その値が小さいほど異常燃焼が発生し易くなる。それぞれの内燃機関の回転数により、ノッキングの発生しやすさが異なる。このため、本実施の形態の燃焼圧力制御装置においては、内燃機関の回転数に基づいて制御圧力を変更する。内燃機関は、概して、内燃機関の回転数が高くなると燃焼期間が短くなるために、異常燃焼が発生しにくくなる。
図26に、本実施の形態における燃焼圧力制御装置の内燃機関の回転数に対する制御圧力のグラフを示す。内燃機関の回転数が高くなるほど制御圧力を高く設定している。図1を参照して、本実施の形態においては、内燃機関の回転数を関数にした制御圧力の値を、予め電子制御ユニット31のROM34に記憶させておく。電子制御ユニット31は、クランク角センサ42により内燃機関の回転数を検出し、回転数に応じた制御圧力を選定する。電子制御ユニット31は、流体封入部材63内部の圧力が、選定された制御圧力に対応する封入圧力になるようにばね温度調整装置を制御する。
また、本実施の形態における運転状態検出装置は、燃焼室に供給される燃料の性状を検出する燃料性状検出装置を備える。検出した燃料の性状に基づいて、制御圧力を変更する。内燃機関の燃料にアルコールが含まれる場合がある。本実施の形態においては、燃料の性状としてアルコール濃度を検出する内燃機関を例に取り上げて説明する。この内燃機関の運転時の特性は、アルコール濃度に依存する。
図27に、比較例の内燃機関における燃料に含まれるアルコール濃度と、遅角補正量との関係を説明するグラフを示す。比較例の内燃機関は、異常燃焼が生じる場合に点火時期を遅角させている。図27の横軸は、燃料に含まれるアルコール濃度を示し、縦軸は、異常燃焼が生じないように点火時期を遅角させるときの遅角補正量を示す。燃料に含まれるアルコール濃度が高くなるほど、遅角補正量が小さくなっている。このように、内燃機関は、アルコール濃度が高くなるほど異常燃焼が発生しにくくなる。このため、本実施の形態における燃焼圧力制御装置においては、燃料に含まれるアルコール濃度に基づいて制御圧力を変更する。
図28に、本実施の形態における燃焼圧力制御装置のアルコール濃度に対する制御圧力のグラフを示す。アルコール濃度が高くなるほど、制御圧力を高く設定している。本実施の形態における燃料性状検出装置は、燃料に含まれるアルコール濃度を検出するアルコール濃度センサを含む。図1を参照して、本実施の形態における内燃機関は、燃料供給流路に燃料性状センサ177としてアルコール濃度センサが配置されている。アルコール濃度を関数にした制御圧力の値を、予め電子制御ユニット31のROM34に記憶させておく。電子制御ユニット31は、燃料に含まれるアルコール濃度を検出し、アルコール濃度に応じた制御圧力を選定する。電子制御ユニット31は、流体封入部材63内部の圧力が、選定された制御圧力に対応する封入圧力になるようにばね温度調整装置を制御する。
内燃機関の運転状態としては、内燃機関の回転数および燃焼室に供給される燃料の性状の他に、吸気温度、内燃機関の冷却水温度、点火する直前における燃焼室の温度等を例示することができる。これらの温度が低いほど、制御圧力を高く設定することができる。たとえば、内燃機関は、点火する時の混合気の温度が低いほど異常燃焼が生じにくい。更に、内燃機関の圧縮比が可変の場合には、圧縮比が低いほど点火する時の温度が低くなる。このため、圧縮比が低いほど、制御圧力を高くすることができる。
また、内燃機関は、新たに吸入する空気または再循環ガス等の作動ガスが燃料に対して多くなるほど、異常燃焼が生じにくい。このため、内燃機関の運転状態としては、吸気空気量、再循環ガス流量、燃焼時の空燃比を例示することができる。作動ガスが燃料に対して多くなるほど、制御圧力を高くすることができる。
また、燃料の性状としては、アルコール濃度の他に、ガソリンのオクタン価等の耐ノッキング性を示す指標を例示することができる。たとえば、オクタン価が高い燃料等の異常燃焼が生じにくい燃料が燃焼室に供給されたことを検出して、制御圧力を高くすることができる。
このように、内燃機関の運転状態に応じて制御圧力を変更することにより、異常燃焼の発生を抑制しながら、燃焼室の最大圧力を大きくすることができる。運転状態に応じて異常燃焼の発生を抑制しながら、出力トルクを大きくしたり、燃料消費量を抑制したりすることができる。
流体封入部材の内部の圧力を検出する圧力検出装置は、圧力センサに限られず、任意の装置により、流体封入部材の内部の圧力を検出することができる。例えば、圧力センサの代わりに、温度センサを取り付けることができる。流体封入部材の内部の温度を検出することにより、流体封入部材の内部の圧力を推定しても構わない。または、運転状態や運転時に検出される検出値等により、流体封入部材の内部の圧力を推定しても構わない。
図29に、本実施の形態における第1のピストンを備える他の機関本体の概略断面図を示す。本実施の形態における他の機関本体のばね温度調整装置は、冷媒供給装置を含み、冷媒供給装置は、気体と液体との混合物をピストンに供給するように形成されている。
本実施の形態における他の機関本体の冷媒供給装置は、液体としての潤滑油を供給するオイル用ノズル76aと、空気を供給する空気用ノズル76bとを含む。オイル用ノズル76aの噴出口と、空気用ノズル76bの噴出口とは、互いに隣接して配置されている。オイル用ノズル76aは、潤滑油を供給する装置に接続されている。空気用ノズル76bは、たとえば、圧縮機に接続され、圧縮空気を噴出することができるように形成されている。本実施の形態においては、潤滑油を供給する装置と空気を供給する装置とを、独立して制御できるように形成されている。オイル用ノズル76aから潤滑油を噴出し、空気用ノズル76bから空気を噴出することにより、ピストン3の内部の流路75に、冷媒として液体と気体との混合物を供給することができる。
気体と液体の混合物を含む冷媒を供給する冷媒供給装置の場合には、気体と液体との割合を変更することにより、流体封入部材63の温度を変化させることができる。液体の熱容量は、概して気体の熱容量よりも大きいために、例えば、気体に対する液体の割合を大きくすることにより、冷却能力を高くすることができる。この結果、流体封入部材63の内部の圧力を下げることができる。または、連続的に冷媒を供給し、流体封入部材63の内部の流体温度がほぼ一定になっているときに、気体の割合を増加させることにより、流体封入部材63の内部の圧力を上昇させることができる。このように、気体と液体との割合を変更することにより、流体封入部材63内部の圧力を調整することができる。
本実施の形態の第1のピストンにおいては、入口部および出口部がそれぞれ1個ずつ形成されているが、この形態に限られず、入口部および出口部が複数形成されていても構わない。また、冷媒として液体および気体を供給する場合には、液体の入口部および気体の入口部が形成されていても構わない。
上記の冷媒供給装置は、ピストンから離れたノズルから潤滑油を噴出することにより、ピストンの内部に潤滑油を供給しているが、この形態に限られず、冷媒供給装置は、ピストンの内部に冷媒を供給する任意の構成を採用することができる。
図30に、本実施の形態における第2のピストンの概略断面図を示す。図30は、ピストンピンが挿入されている方向に、ピストンを切断したときの概略断面図である。本実施の形態における第2のピストン3に冷媒を供給する冷媒供給装置は、クランクシャフトの内部の流路およびコネクティングロッドの内部の流路を通って、冷媒をピストンに供給する。
ピストン本体61は、内部に冷媒を流すための流路75を有する。ピストン本体61は、流路75の入口部75aに接続されている流路82aを有する。流路82aは、ピストン本体61の内部を通って、ピストン本体61とコネクティングロッド51との接触部分まで延びている。また、ピストン本体61は、流路75の出口部75bに接続されている流路82bを有する。流路82bは、ピストン本体61の内部を通って、ピストン本体61とコネクティングロッド51との接触部分まで延びている。
コネクティングロッド51の内部には、冷媒としての潤滑油を供給するための流路83aが形成されている。流路83aは、ピストン本体61とコネクティングロッド51との接触部分において、ピストン本体61の流路82aに連通している。また、コネクティングロッド51の内部には、潤滑油を戻すための流路83bが形成されている。流路83bは、ピストン本体61とコネクティングロッド51との接触部分において、ピストン本体61の流路82bに連通している。流路83bは、例えばクランクケース79に潤滑油を放出するように形成されている。流路83bは、オイルパン77に潤滑油を戻すように形成されている。
図31に、本実施の形態における第2のピストンを備える内燃機関の潤滑油供給装置の系統図を示す。オイルパン77に貯留する潤滑油は、オイルポンプ152が駆動することにより、メインオイルホール156に供給される。潤滑油は冷媒流量調整器157および冷媒温度調整器158を通って、クランクシャフト78に供給される。たとえば、潤滑油は、クランクシャフトベアリングからクランクシャフト78の内部の流路に供給される。クランクシャフト78の内部を通る潤滑油は、クランクシャフト78とコネクティングロッド51との接続部分を介して、コネクティングロッド51の内部の流路83aに供給される。
図30および図31を参照して、コネクティングロッド51の流路83aを流れる潤滑油は、ピストン本体61に形成されている流路82aに流入する。流路82aに流入した潤滑油は、矢印203に示すように、流路75に流入する。潤滑油が流路75を通ることにより、流体封入部材63の周りの部材の温度を変化させることができる。この結果、流体封入部材63の内部の温度を調整することができる。流路75から流出する潤滑油は、矢印204に示すように、ピストン本体61に形成されている流路82bを通る。この後に、潤滑油は、コネクティングロッド51に形成されている流路83bを通ってオイルパンに戻される。
このように、冷媒供給装置は、コネクティングロッド等の構成部品の内部を通ってピストンの内部に冷媒を供給するように形成することができる。また、本実施の形態においては、冷媒として機関本体の潤滑油を採用しているが、この形態に限られず、任意の流体を冷媒として採用することができる。例えば、冷媒としては、機関本体の潤滑油以外の油、水、空気、機関冷却水などを用いても構わない。または、気化潜熱の大きなアルコール水やガソリン類を用いても構わない。
図30を参照して、冷媒として機関本体の潤滑油以外の流体を用いる場合には、コネクティングロッド51の内部に、冷媒を供給する流路83aおよび戻りの流路83bを形成して、冷媒を回収することが好ましい。戻りの流路83bは、クランクシャフト78等を通って冷媒の回収装置に接続されていることが好ましい。すなわち、機関本体の構成部品の内部に形成されている流路を通ってピストンに冷媒を供給し、機関本体の構成部品の内部に形成されている戻りの流路を通って冷媒を回収することが好ましい。
図32に、本実施の形態における第3のピストンの概略断面図を示す。図32は、ピストンピンの延びる方向に切断したときの概略断面図である。第3のピストン3においては、流体封入部材63の周りに形成されている流路が分割されている。すなわち、第3のピストンは、ピストン本体61に形成されている複数の流路75を有する。図32に示す例においては、3つの流路75が形成されている。ピストン本体61は、それぞれの流路75同士の間に形成されている流路隔壁部61bを有する。
図33に、本実施の形態における第3のピストンの他の概略断面図を示す。図33は、図32におけるB−B線に関する断面図である。本実施の形態の第3のピストンにおいては、ピストンを平面視したときの中央部分を通る流路75と、側方部分を通る2つの流路75とを備える。それぞれの流路75には、冷媒の入口部75aおよび出口部75bが形成されている。冷媒は、矢印205に示すように、入口部75aから流入して出口部75bから流出する。
第3のピストンを備える内燃機関は、それぞれの流路75に対して、独立して潤滑油を供給できるように形成されている。潤滑油を噴出するノズル76により、ピストンに潤滑油を供給する場合には、それぞれの流路75の入口部75aに潤滑油を供給できるように、複数のノズル76が配置されている。第3のピストンを備える内燃機関においては、3つのノズル76により、それぞれの流路75に潤滑油を供給することができる。それぞれの流路75において、潤滑油が入口部75aから出口部75bに向かって流れることにより、流体封入部材63の周りの部材の温度を変化させることができる。流体封入部材63の内部の温度の調整を行なうことができる。
本実施の形態の第3のピストンにおいては、独立した冷媒の流路が複数形成されている。この構成を採用することにより、要求される流体封入部材63の内部の圧力に応じて、冷媒を流す流路を選定することができる。例えば、流体封入部材63の内部の圧力を低下させるために、流体封入部材63の内部の温度を下げる場合には、冷媒を供給する流路75の数を増加させることができる。冷媒を流す流路75の数を増加させることにより、流体封入部材63を冷却する能力を向上させることができる。たとえば、冷媒を流す流路75の数を1つから3つに変更することができる。
また、ピストン3に蓄積される熱は、ピストンリングを介して放出される。このため、ピストンは、平面視したときの中央部の温度が、周辺部の温度よりも高くなる。ピストンに複数の流路を形成する場合には、平面視したときの中央部を通る流路の冷媒の温度や流量を調整することにより、効果的に流入封入部材の内部の圧力を調整することができる。たとえば、平面視したときの中央部を通る流路の冷媒の流量を増加して、冷却能力を向上させることにより、短時間で流体封入部材の内部の圧力を下げることができる。
図33に示す例においては、3つの流路75のうち中央の流路75がピストン3を平面視したときの中央部を通っている。たとえば、中央の流路75の流量を調整することにより、流体封入部材63の内部の圧力を短時間で調整することができる。このように、ピストンにおいて、温度が比較的高くなる高温部位を通る流路に供給する冷媒の流量や冷媒の温度を調整することにより、効果的に流体封入部材の内部の圧力を調整することができる。または、冷媒が液体と気体との混合物の場合には、高温部位を通る流路に供給する冷媒の液体割合を調整することにより、流体封入部材の圧力を効果的に調整することができる。
また、ピストンの内部に流路を複数形成する場合には、流体封入部材と流路とが対向する面積が大きな流路を通る冷媒の温度または流量を調整することにより、流体封入部材の内部の圧力を短時間で調整することができる。たとえば、流体封入部材を複数の流路に投影したときに、投影面積の大きな流路と、投影面積の小さな供給流路とに分類する。投影面積の大きな流路に供給する冷媒の温度または流量を調整することにより、流体封入部材の内部の圧力を効果的に調整することができる。または、冷媒として気体と液体との混合物を供給する場合には、流体封入部材の投影面積の大きな流路において、液体の割合を調整することにより、効果的に流体封入部材の内部の圧力を調整することができる。
図32および図33に示す例においては、それぞれの流路の隔壁が直線状になるように3つの流路が形成されているが、この形態に限られず、任意の形状で流路を形成することができる。また、任意の数の流路を形成することができる。
図34に、本実施の形態における第4のピストンの破断斜視図を示す。第4のピストンを備える内燃機関は、流体封入部材63の内部の流体の温度を調整するばね温度調整装置を備える。ばね温度調整装置は、流体封入部材63と燃焼室5との間に冷媒を流すための流路を含む。
本実施の形態における第4のピストンは、流路構成部材84を含む。本実施の形態における流路構成部材84は、円板状に形成されている。流路構成部材84は、流体封入部材63の表面に配置されている。流路構成部材84は、内部に流路となる空洞が形成されている。流路構成部材84は、冷媒が流入する入口部84aと冷媒が流出する出口部84bとを有する。
ピストン本体61は、外壁部61eを有する。流体封入部材63は、外壁部61eの内側に配置されている。外壁部61eには、冷媒が流入する流路82aおよび冷媒が流出する流路82bが形成されている。外壁部61eの上部には、外壁部61eの内面において流路82aが開口する開口部を有する。外壁部61eの上部には、外壁部61cの内面において流路82bが開口する開口部を有する。
流路構成部材84は、外壁部61eの内面に嵌合するように形成されている。流路構成部材84は、外壁部61eに囲まれる凹部の内部で往復移動するように形成されている。
覆い部材62は、流路構成部材84および流体封入部材63を覆うように形成されている。覆い部材62は、燃焼室5の圧力により押圧される。覆い部材62は、流路構成部材84を介して、流体封入部材63を押圧する。
流路構成部材84の入口部84aは、流路82aに接続するように形成されている。流路構成部材84の出口部84bは、流路82bに接続するように形成されている。本実施の形態において、流路82aの開口部は、流体封入部材63が伸縮したときに、入口部84aが開口部の領域内にて移動するように形成されている。また、流路82bの開口部は、流体封入部材63が伸縮したときに、出口部84bが開口部の領域内にて移動するように形成されている。本実施の形態の第4のピストンにおいては、運転の期間中において、流体封入部材63が伸縮しながら、流路構成部材84に冷媒を流すことができる。冷媒が流路構成部材84の内部を流れることにより、流路構成部材84の温度を変化させることができる。また、流体封入部材63の内部の温度を調整することができる。
流路構成部材84に供給する冷媒としては、機関本体の潤滑油92を採用することができる。潤滑油92は、矢印206に示すように、ピストン本体61に形成された流路82aに供給される。潤滑油92は、流路82aを通って流路構成部材84に流入する。流路構成部材84から流出する潤滑油92は、矢印207に示すように、ピストン本体61に形成された流路82bを通ってオイルパン77に戻される。
本実施の形態の第4のピストンにおいても、流路構成部材84の内部を流れる冷媒の流量および温度のうち少なくとも一方を調整することにより、流体封入部材63の内部の温度を調整することができる。流体封入部材63の内部の圧力を調整することができる。また、第4のピストンにおいては、燃焼室と流体ばねとの間に流路を形成することができて、流路構成部材84を断熱部材として用いることができる。
ところで、第4のピストンにおいては、流路構成部材84の内部の流路の冷媒の流量を減少させることにより、流路構成部材84の内部における流体の乱れが小さくなる。冷媒と流路構成部材84との熱伝達が悪化する。このため、燃焼室の燃焼ガスから流体封入部材63に到達する熱量を小さくすることができる。この結果、流体封入部材63の内部の流体の温度を下げることができる。
第4のピストンにおいては、流路構成部材84に供給する潤滑油の流量を減らすことにより、流体封入部材63の内部の圧力を下げることができる。または、流路構成部材84に供給する潤滑油の流量を増加することにより、流体封入部材63の内部の圧力を上昇させることができる。
流路構成部材84に供給する冷媒の温度を調整する場合には、たとえば、冷媒の温度を下げることにより、流体封入部材63の内部の温度を下げることができる。流体封入部材63の内部の圧力を下げることができる。
冷媒として、気体と液体との混合物を供給する場合には、気体および液体の割合を調整することにより、流体封入部材63の内部の圧力を調整することができる。液体は、概して気体よりも熱伝達率が大きい。このために、例えば、液体の割合を減らして気体の割合を増やすことにより、熱伝達を悪化させることができる。この結果、流体封入部材63の内部の温度を下げることができる。流体封入部材63の内部の圧力を下げることができる。
本実施の形態における第4のピストンにおいては、本実施の形態の第3のピストンと同様に、複数の流路を流路構成部材84の内部に形成することができる。例えば、流路構成部材84の内部に、隔壁を形成して複数の流路を形成することができる。ピストン本体61の外壁部61eに複数の流路を形成して、流路構成部材84のそれぞれの流路に冷媒を独立して供給することができる。
流路構成部材84に複数の流路を形成した場合に、流体封入部材63の内部の圧力を調整する場合には、冷媒を流している流路の数を変更することができる。例えば、複数の流路において冷媒を供給している流路の数を減らすことにより、流体封入部材63の内部の圧力を低下させることができる。
または、高温部位を通る冷媒の流量を調整することにより、流体ばねの内部の圧力を効果的に調整することができる。たとえば、ピストンの高温部位を通る流路の冷媒の流量を減らすことにより、流体封入部材63の内部の圧力を下げることができる。冷媒として液体および液体の混合物が供給されている場合には、高温部位を通る流路に供給する冷媒の液体割合を調整することにより、流体ばねの内部の圧力を効果的に調整することができる。たとえば、高温部位を通る流路に供給する冷媒の液体割合を減らすことにより、流体封入部材63の内部の圧力を短時間で低下させることができる。
または、それぞれの流体封入部材63の流路と流路構成部材84とが対向している面積の大きな流路の冷媒の流量を調整することにより、流体ばねの内部の圧力を効果的に調整することができる。たとえば、流体封入部材63に対向している面積の大きな流路の冷媒の流量を減らすことにより、流体封入部材63の内部の圧力を短時間で下げることができる。または、冷媒として気体と液体との混合物が供給されている場合には、流体封入部材63に対向している面積の大きな流路を流れる冷媒において、液体割合を調整することにより、流体ばねの内部の圧力を効果的に調整することができる。たとえば、流体封入部材63に対向している面積の大きな流路を流れる冷媒の液体割合を減らすことにより、流体封入部材63の内部の圧力を短時間で低下させることができる。
図35に、本実施の形態における第5のピストンの破断斜視図を示す。本実施の形態の第5のピストンにおいては、流体ばねを構成する流体封入部材63と燃焼室5との間に冷媒を流すための流路が形成されている。さらに、流体封入部材63において燃焼室5に向かう側と反対側に冷媒を流すための流路75が形成されている。第5のピストンにおいては、本実施の形態の第1のピストンにおける冷媒を流す流路と、本実施の形態の第4のピストンにおける冷媒を流す流路とが形成されている。
流路構成部材84の内部を流体が通る流路は、第1の流路として機能する。また、ピストン本体61の内部に形成されている流路75は、第2の流路として機能する。第5のピストンを備える燃焼圧力制御装置は、第1の流路および第2の流路のそれぞれに、冷媒を供給する冷媒供給装置を備える。例えば、流路構成部材84の内部に潤滑油を供給するための第1のノズルと、流路75に潤滑油を供給するための第2のノズルと備える。本実施の形態の第5のピストンにおいては、それぞれの流路を流れる冷媒の流量や冷媒の温度を独立して調整できるように形成されている。それぞれのノズルから噴出する潤滑油の流量および温度のうち少なくとも一方を調整することにより、流体封入部材63の内部の圧力を調整することができる。
ここで、本実施の形態において、流体封入部材63の内部の圧力を上昇させるときには、流路構成部材84の内部の流路における熱伝達量を増加させることが好ましい。例えば、流路構成部材84に供給している潤滑油の流量を増加させる。流路構成部材84に供給している冷媒が液体と気体とを含む場合には、液体割合を増やすことが好ましい。この場合には、流路75に供給する潤滑油の流量および温度は、変化させなくても構わない。
流路構成部材84は、燃焼室5における燃焼ガスの熱が流体封入部材63に伝達することを妨げる機能を有する。このため、流路構成部材84を流れる冷媒の流量や温度を調整する場合には、流体封入部材63の内部の温度を下げる時間は長くなる一方で、流体封入部材63の内部の温度を上げる時間は短くなる。流路構成部材84における断熱機能を低下させることにより、短時間で流体封入部材63の内部の圧力を上昇させることができる。
一方で、流体封入部材63の内部の圧力を下降させる場合には、流体封入部材63の燃焼室5とは反対側に形成されている流路75の冷媒の除熱量を増加させることが好ましい。例えば、流路75を流れる潤滑油の流量を多くする。流路75に供給している冷媒が液体と気体とを含む場合には、液体割合を増やすことが好ましい。この場合には、流路構成部材84に供給する冷媒の流量および温度は、変化させなくても構わない。
流路75は、流体封入部材63の内部の流体を冷却する機能に優れる。このため、流路75を流れる冷媒の流量や温度を調整する場合には、流体封入部材63の内部の温度を上げる時間は長くなる一方で、流体封入部材63の内部の温度を下げる時間は短くなる。このために、流体封入部材63の内部の流体の圧力を下げる場合には、流路75の除熱能力を向上させることにより、短時間で流体封入部材63の内部の圧力を下降させることができる。
次に、流体封入部材の内部の圧力を検出する圧力検出装置が配置されておらずに、流体封入部材の内部の温度に応じて冷媒の流量を調整できる燃焼圧力制御装置について説明する。
図36に、本実施の形態における第6のピストンの拡大破断斜視図を示す。第6のピストン3は、流体封入部材63の内部の圧力、すなわち制御圧力が運転期間に亘ってほぼ一定の内燃機関に好適である。第6のピストンは、流体封入部材63の内部に、シリンダ85を備える。シリンダ85は、流体封入部材63の底面部63dに固定されている。
シリンダ85は、内部に移動部材85aを有する。移動部材85aは、板状に形成されている。移動部材85aは、矢印208に示す方向に移動するように配置されている。シリンダ85の内部において、移動部材85aにより区切られる空間のうち、流路75の入口部75aに向かう側の一方の空間にはワックス93が充填されている。シリンダ85の内部の他方の空間には、移動部材85aを付勢する付勢部材85bが配置されている。ワックス93は、温度が上昇することにより膨張するように形成されている。付勢部材85bは、移動部材85aを流路75の入口部75aに向かって付勢するように形成されている。
移動部材85aは、閉止部材86に接続されている。閉止部材86は、棒状に形成されている。閉止部材86は、流路75の入口部75aに向かって延びるように配置されている。閉止部材86は、先端部が入口部75aに接触したときに、入口部75aを閉止するように形成されている。閉止部材86は、入口部75aに向かって付勢されている。閉止部材86は、入口部75aの開閉弁として機能する。
本実施の形態の第6のピストンにおいては、流体封入部材63の内部の温度が弁開放温度未満の場合には、閉止部材86が流路75の入口部75aを閉止する。すなわち、冷媒の流入が阻止される。流体封入部材63の内部の温度が上昇すると、ワックス93が膨張する。流体封入部材63の内部の温度が弁開放温度以上になると、ワックス93の膨張により、移動部材85aが付勢部材85bの付勢力に反して移動する。弁機構の弁開放温度は、流体封入部材63の内部の圧力に基づいて設定することができる。たとえば、制御圧力に対応する流体封入部材63の封入圧力に基づいて設定することができる。
図36に示す例においては、移動部材85aが上側に移動する。閉止部材86は、移動部材85aと共に移動する。この結果、流路75の入口部75aが開放される。流路75の入口部75aが開放されることにより、流路75に冷媒が流入する。流路75に冷媒が流れることにより、流体封入部材63の内部が冷却され、流体封入部材63の内部の圧力を下げることができる。流体封入部材63の内部の温度が下がるとワックス93の体積が小さくなる。流体封入部材63の内部の温度が弁開放温度未満になった場合には、入口部75aが閉止部材86により閉止される。
本実施の形態の第6のピストンにおいては、流体封入部材63の内部の温度に依存して、冷媒が流れる流路の開閉を行なう弁機構が機械的に駆動される。流体封入部材63の内部の圧力が上昇すると流路が開放され、冷媒が流れることにより圧力が低下する。この構成を採用することにより、簡易な構成で、流体ばねの内部の圧力を所望の範囲内に維持することができる。
冷媒を供給する流路が複数形成されている場合には、それぞれの流路に対して、温度に依存して開閉が可能な弁機構を配置することができる。それぞれの流路に供給する冷媒の流量を調整できるように形成することができる。または、流路の入口において、気体が流入する入口部と液体が流入する入口部とが独立して形成されている場合には、それぞれの入口部に対して、温度に依存して開閉が可能な弁機構を配置することができる。この構成により、流路に流入する気体と液体との割合を調整することができる。
図37に、本実施の形態における第7のピストンの拡大破断斜視図を示す。第7のピストンは、流路75の入口部75aを開閉する弁機構を備える。第7のピストンの弁機構は、バイメタル部材87を含む。本実施の形態におけるバイメタル部材87は、板状に形成されている。バイメタル部材87は、熱膨張率が互いに異なる2枚の金属の板状部材を含む。バイメタル部材87は、固定台88に固定されている。固定台88は、流体封入部材63の底面部63dに固定されている。
バイメタル部材87の先端部には、閉止部材86が接続されている。バイメタル部材87は、矢印208に示すように、流体封入部材63の内部の温度に依存して先端部が上下方向に移動するように形成されている。バイメタル部材87は、流体封入部材63の内部の温度が上昇して、弁開放温度以上になったときに、閉止部材86を移動させるように形成されている。閉止部材86が移動することにより入口部75aが開放される。バイメタル部材87は、流体封入部材63の内部の温度が下降すると元の形状に戻る。流体封入部材63の内部の温度が弁開放温度未満になったときに、閉止部材86が入口部75aを閉止する。
本実施の形態におけるバイメタル部材87は、流体封入部材63の内部の圧力が予め定められた圧力範囲よりも大きくなった場合に、閉止部材86を持ち上げている。このように、流体封入部材の内部の温度に依存して駆動される弁機構は、バイメタル部材を含んでいても構わない。
本実施の形態の第6のピストンの弁機構および第7のピストンの弁機構は、流体封入部材63を冷却する流路75の入口部75aが開閉可能に形成されているが、この形態に限られず、出口部75bが開閉可能に形成されていても構わない。または、弁機構は、流路75の途中を遮断するように形成されていても構わない。更に、弁機構は、弁の開度を変化させることにより流路75の冷媒の流量を調整可能に形成されていても構わない。
本実施の形態における第6のピストンと第7のピストンにおいては、流体封入部材63において燃焼室に向かう側と反対側に流路が形成されているが、この形態に限られず、流体封入部材63において燃焼室に向かう側に流路が形成されているピストンにおいても、流体封入部材の内部の温度に依存して開閉可能な弁機構を配置することができる。
本実施の形態においては、ピストン本体61と覆い部材62とを備えるピストンを例に取り上げて説明したが、この形態に限られず、覆い部材を有しておらず、ピストン本体にピストンリングの溝部が形成されているピストン(図12〜図19参照)にも、本実施の形態のばね温度調整装置などを適用することができる。燃焼室と流体ばねとの間に冷媒を流す流路を形成する場合には、たとえば、流体封入部材63と燃焼室5との間に介在部材64aを配置して(図19参照)、介在部材64aの内部に流路を形成することができる。
その他の構成、作用および効果については、実施の形態1と同様であるので、ここでは説明を繰り返さない。
実施の形態3
図38から図42を参照して、実施の形態3における燃焼圧力制御装置について説明する。本実施の形態における燃焼圧力制御装置は、ピストンに配置されている流体ばねの内部に空気を供給する空気充填装置を含む。また、燃焼圧力制御装置は、所定の圧力よりも大きくなると流体ばねの内部から空気を逃す空気排出装置を含む。
図38に、本実施の形態における第1のピストンの破断斜視図を示す。本実施の形態における第1のピストン3は、流体封入部材63と、流体封入部材63を覆うように形成されている覆い部材62とを含む。空気充填装置は、方向制御弁100を含む。空気排出装置は、逆止弁101を含む。
方向制御弁100は、燃焼室5と流体封入部材63との間に配置されている。本実施の形態における方向制御弁100は、覆い部材62の天板62aの内部に配置されている。逆止弁101は、流体封入部材63とクランクケース79との間に配置されている。本実施の形態における逆止弁101は、ピストン本体61の内部に配置されている。
図39に、本実施の形態の第1のピストンに配置されている方向制御弁の模式図を示す。方向制御弁100は、一方の流路が燃焼室5に接続され、他方の流路が流体封入部材63の内部に接続されている。方向制御弁100と燃焼室5とを連通する流路の途中には、逆止弁99が配置されている。逆止弁99は、方向制御弁100から燃焼室5に向かって空気が流入することを防止するように配置されている。逆止弁99は、微小の圧力差で開放するように形成されている。
方向制御弁100は、筐体102を備える。筐体102の内部には、連通部材104と遮断部材105とが配置されている。連通部材104は、方向制御弁100に流入する流路と流出する流路とを連通させる流路を有する。遮断部材105は、流路を遮断する。連通部材104と遮断部材105とは、筐体102の内部で移動可能に形成されている。連通部材104と遮断部材105とは、互いに隣接して配置されている。連通部材104および遮断部材105は、付勢部材103によって矢印210に示す向きに押圧されている。付勢部材103は、流体封入部材63の内部の圧力が予め定められた圧力になったときに、連通部材104および遮断部材105が付勢力に反して移動するように形成されている。
方向制御弁100は、付勢部材103の付勢力により、燃焼室5に通じる流路および流体封入部材63の内部に通じる流路が、連通部材104に接続される。燃焼室5の圧力が、流体封入部材63の内部の圧力よりも高くなっている場合には、燃焼室5から流体封入部材63の内部に気体が供給される。流体封入部材63の内部の圧力を上昇させることができる。
流体封入部材63の内部の圧力が上昇して、予め定められた圧力以上になった場合には、破線106に示すように、流体封入部材63の内部の圧力により、遮断部材105が押圧される。連通部材104および遮断部材105は、付勢部材103の付勢力に逆らって矢印210の向きと反対向きに移動する。燃焼室5に通じる流路と流体封入部材63の内部に通じる流路には、遮断部材105が接続される。この結果、流体封入部材63の内部は、燃焼室5と遮断される。
このように、方向制御弁100は、流体封入部材63の内部の圧力が予め定められた圧力よりも低い場合には、燃焼室5における燃焼ガスの圧力を利用して、流体封入部材63の内部の圧力を予め定められた圧力まで上昇させることができる。この場合の予め定められた圧力は、たとえば、制御圧力に対応する流体封入部材63の封入圧力を採用することができる。
図38を参照して、本実施の形態における第1のピストンは、流体封入部材63の内部とクランクケース79とを連通する流路を有する。この流路の途中には逆止弁101が配置されている。逆止弁101は、流体封入部材63の内部の圧力が予め定められた圧力よりも高くなった場合に、気体を流通させるように形成されている。流体封入部材63の内部の圧力が予め定められた圧力よりも高くなった場合には、クランクケースに気体を放出することにより、予め定められた圧力まで低下させることができる。
このように、第1のピストンにおいては、流体封入部材63の内部の圧力が所望の圧力範囲よりも低い時には空気が充填され、流体封入部材63の内部の圧力が所望の圧力範囲よりも高い時には空気が放出される。内燃機関の運転状態や周りの温度等に関わらずに、流体封入部材63の内部の圧力を所望の圧力範囲内に維持することができる。
図40に、本実施の形態における第2のピストンおよびコネクティングロッドの概略断面図を示す。第2のピストンにおける空気充填装置は、流体封入部材63の内部に空気を供給する空気ポンプを備える。
本実施の形態における第2のピストンの空気ポンプは、シリンダ118を備える。シリンダ118は、ピストン本体61の裏面に形成されている壁部61cを含む。壁部61cは、コネクティングロッド51が配置されている領域の周りを取り囲むように形成されている。シリンダ118は、移動部材113を含む。移動部材113は、壁部61cの内側に嵌合するように形成されている。本実施の形態における移動部材113は、円板状に形成されている。移動部材113は、付勢部材114によりコネクティングロッド51に向かう側に付勢されている。
第2のピストンに接続されているコネクティングロッド51は、突出部51aを有する。突出部51aは、コネクティングロッド51の小端部51cに形成されている。突出部51aは、コネクティングロッド51が揺動することにより、移動部材113を繰り返して押圧できるように形成されている。
移動部材113の内部には、移動部材113およびピストン本体61に囲まれる空間とクランクケース79とを連通する流路が形成されている。この流路には、逆止弁110が配置されている。逆止弁110は、移動部材113およびピストン本体61に囲まれる空間からクランクケース79に空気が流れることを防止するように配置されている。逆止弁110は、微小の圧力差で開放するように形成されている。
ピストン本体61の上部には、流体封入部材63の内部と移動部材113およびピストン本体61により囲まれる空間とを連通する流路が形成されている。この流路には、逆止弁111が配置されている。逆止弁111は、流体封入部材63の内部から移動部材113とピストン本体61とにより囲まれる空間に空気が流れることを防止する。逆止弁111は、微小の圧力差で開放するように形成されている。また、第2のピストンには、流体封入部材63の内部の圧力が予め定められた圧力よりも大きくなったときに、クランクケースに空気を逃す逆止弁101がピストン本体61に配置されている。
内燃機関が駆動してピストン3が往復運動することにより、コネクティングロッド51は、矢印213に示すように揺動する。コネクティングロッド51の突出部51aは、矢印211に示すように、横方向に往復運動する。移動部材113は、突出部51aに押圧されることにより、矢印212に示すように往復運動を行なう。移動部材113が流体封入部材63に向かって移動するときには、逆止弁111が開く。流体封入部材63の内部に空気が供給される。移動部材113が流体封入部材63から遠ざかる向きに移動するときには逆止弁110が開く。移動部材113とピストン本体61とに囲まれる空間に空気が流入する。流体封入部材63の内部の圧力が予め定められた圧力よりも高くなった場合には、逆止弁101が開いて、圧力を降下させることができる。
本実施の形態の第2のピストンにおいては、ピストン本体61とコネクティングロッド51との間に、空気ポンプが配置されている。第2のピストンにおいては、空気ポンプがコネクティングロッド51の揺動する動きを駆動源として、流体封入部材63の内部に空気を供給する。
図41に、本実施の形態における第3のピストンの概略断面図を示す。第3のピストンにおいても、空気充填装置が空気ポンプを備える。第3のピストンにおける空気ポンプは、シリンダ118を備える。シリンダ118は、容器115を含む。容器115の内部には、移動部材113が配置されている。移動部材113は、付勢部材114によりコネクティングロッド51に向かう向きに付勢されている。移動部材113の内部には、空気の逆流を防止するための逆止弁110が配置されている。移動部材113は、断面形状がT字形に形成されている。シリンダ118は、パイプ116を介して流体封入部材63の内部に接続されている。シリンダ118と流体封入部材63の内部とを接続する流路には、逆流を防止するための逆止弁111が配置されている。
シリンダ118は、コネクティングロッド51の側方に配置されている。コネクティングロッド51は、棒状に形成された棒状部51bを有する。シリンダ118は、移動部材113に接続されているローラ117を含む。ローラ117は、回転可能に支持されている。ローラ117は、コネクティングロッド51の棒状部51bに接触するように配置されている。
内燃機関が作動することにより、棒状部51bは、矢印213に示すように揺動する。移動部材113は、棒状部51bの揺動により押圧される。移動部材113は、矢印212に示すように、容器115の内部を往復運動する。移動部材113が付勢部材114の付勢力に反して移動する場合には、シリンダ118により空気が圧縮される。圧縮された空気は、パイプ116および逆止弁111を通って、流体封入部材63の内部に充填される。移動部材113がコネクティングロッド51に向かって移動するときには、逆止弁110が開いて、シリンダ118の内部に空気が流入する。
本実施の形態の第3のピストンにおいては、空気ポンプがコネクティングロッド51の揺動する動きを駆動源として、流体封入部材63の内部に空気を供給することができる。流体封入部材63の内部の圧力が予め定められた圧力範囲よりも高くなった場合には、逆止弁101が開いてクランクケース79の内部に空気を逃すことができる。
本実施の形態の第2のピストンおよび第3のピストンにおいても、内燃機関の運転状態や周りの温度等に関わらずに、流体封入部材63の内部の圧力を所望の圧力範囲内に維持することができる。
上述の本実施の形態のピストンは、流体封入部材63の内部の圧力が予め定められた圧力よりも高くなった場合に、逆止弁101が開いて空気を逃すように形成されているが、この形態に限られず、逆止弁101の代わりに開閉の制御が可能な弁が配置されていても構わない。たとえば、油圧により開閉が可能な方向制御弁が配置されていても構わない。
図42に、本実施の形態における流体封入部材から空気を逃すための方向制御弁の模式図を示す。方向制御弁109は、空気排出装置として機能する。方向制御弁109は、本実施の形態の第1のピストン、第2のピストンまたは第3のピストンに配置されている逆止弁101の代わりに配置することができる。方向制御弁109に接続される一方の流路は流体封入部材63の内部に接続され、他方の流路はクランクケース79に接続されている。
方向制御弁109は、流路を連通させる連通部材104と流路を遮断する遮断部材105とを含む。連通部材104と遮断部材105とは筐体102の内部に配置されている。付勢部材103は、矢印210に示す向きに遮断部材105を押圧している。付勢部材103の付勢力により、流体封入部材63に通じる流路とクランクケース79に通じる流路とに遮断部材105が接続される。この場合には、流路が遮断される。
方向制御弁109は、油圧により制御されている。方向制御弁109には、破線107に示すように、オイルを供給するオイル供給流路が接続されている。所定の油圧のオイルを方向制御弁109に供給することにより、付勢部材103の付勢力に反して連通部材104および遮断部材105が移動する。この結果、流体封入部材63に通じる流路とクランクケース79に通じる流路とに連通部材104が接続され、流路が開放される。方向制御弁109に供給されたオイルは、破線108に示すように、たとえば、ドレーンとして排出される。ドレーンとして排出されたオイルは、例えばオイルパン77に捕集される。
方向制御弁109の制御を行うオイルは、機関本体の構成部品の内部を通って供給することができる。例えば、制御を行うためのオイルは、クランクシャフトの内部に形成された流路、コネクティングロッドの内部に形成された流路、およびピストン本体の内部に形成された流路を通って供給することができる。
方向制御弁109を採用することにより、任意の時期に方向制御弁の開閉を行うことができる。例えば、所望の時期に流体封入部材63の内部の空気をクランクケース79に逃すことができる。このため、流体封入部材63の内部の圧力を任意に調整することができる。流体封入部材63の内部の圧力が所望の圧力範囲よりも高くなっている場合には、方向制御弁109に高圧のオイルを供給することにより、流体封入部材63の内部の圧力を下降させることができる。
本実施の形態においては、ピストン本体61と覆い部材62とを備えるピストンを例に取り上げて説明したが、この形態に限られず、覆い部材を有しておらず、ピストン本体にピストンリングの溝部が形成されているピストン(図12〜図19参照)にも、本実施の形態の空気充填装置および空気排出装置等を適用することができる。流体封入部材と燃焼室との間に方向制御弁を配置する場合には、たとえば、流体封入部材65と燃焼室5との間に介在部材64aを配置して(図19参照)、介在部材64aの内部に方向制御弁を配置することができる。
その他の構成、作用および効果については、実施の形態1または2と同様であるので、ここでは説明を繰り返さない。
実施の形態4
図43および図44を参照して、実施の形態4における燃焼圧力制御装置について説明する。本実施の形態における燃焼圧力制御装置は、流体ばねが伸びる速度を低下させる速度低下装置を備える。
図43に、本実施の形態におけるピストンの概略断面図を示す。本実施の形態におけるピストン3は、ピストン本体61と覆い部材62とを含む。流体封入部材63の側方に、速度低下装置が配置されている。本実施の形態における速度低下装置は、シリンダ120を含む。シリンダ120は、覆い部材62の内部に配置されている。
図44に、本実施の形態におけるピストンの速度低下装置の拡大概略断面図を示す。シリンダ120は、容器121を備える。容器121は、覆い部材62に固定されている。容器121は、覆い部材62と共に移動する。容器121の内部には、オイル94が充填されている。容器121の内部には、移動部材122が配置されている。移動部材122は、容器121の内部を往復運動するように形成されている。移動部材122は、容器121の内部を2つの空間に分割するように形成されている。容器121の内部には、第1オイル室121aおよび第2オイル室121bが形成されている。
移動部材122は、連接部材126を介してピストン本体61に固定されている。移動部材122には、第1オイル室121aと第2オイル室121bとを接続する2つの流路が形成されている。一方の流路には逆止弁123が配置されている。逆止弁123は、第2オイル室121bから第1オイル室121aにオイルが流れることを防止する。他方の流路には、逆止弁124が配置されている。逆止弁124は、第1オイル室121aから第2オイル室121bにオイルが流れることを防止するように配置されている。逆止弁124が配置されている他方の流路には、流量を制限するオリフィス125が配置されている。
ところで、流体封入部材63が縮むときには、燃焼ガスの圧力上昇を短時間で抑制できるように、高速で縮むことが好ましい。一方で、流体封入部材63が伸びるときには、係止部の作用により、流体封入部材63の伸びの動作が停止する。図43を参照して、流体封入部材63が伸びるときには、覆い部材62の係止部62eがピストン本体61の窪み部61fの壁面に接触することにより、流体封入部材63の伸びの動作を停止させることができる。このときに、係止部62eと窪み部61fの壁面とが衝突するために、騒音や振動が生じる場合がある。このために、流体封入部材63が伸びるときには、低速で伸びることが好ましい。
図44を参照して、本実施の形態のピストンにおいては、燃焼室の圧力が制御圧力以上になった場合には、流体封入部材63が縮むことにより、矢印214に示すように、覆い部材62がピストン本体1に向かって移動する。オイル94は、逆止弁123を通って第1オイル室121aから第2オイル室121bに流れる。この場合には、流体封入部材63が高速で縮む。
これに対して、流体封入部材63が伸びるときには、矢印215に示すように、覆い部材62がピストン本体1から離れる向きに移動する。容器121の内部のオイル94は、逆止弁124を通って、第2オイル室121bから第1オイル室121aに流れる。このときに、オイル94は、オリフィス125を通る。このために、覆い部材62の移動速度を制限することができる。流体封入部材63の伸びる動作を停止させる係止部62eが、高速で窪み部61fの壁面に衝突することを抑制することができる。この結果、騒音や振動を抑制することができる。
または、係止部62eにより流体封入部材63の伸びる動作が停止したときに、覆い部材62が跳ね返る場合がある。覆い部材62が跳ね返ることにより、燃焼室5の容積が一時的に変化し、燃焼サイクルに悪影響を与える場合がある。流体封入部材63が伸びるときの速度を低速にすることにより、このような跳ね返りを抑制することができる。または、跳ね返りのときに生じる騒音や振動を抑制することができる。
本実施の形態における速度低下装置は、内部にオイルが充填されたピストンを含むが、速度低下装置は、この実施の形態に限られず、流体封入部材が伸びる速度を抑制する任意の装置を採用することができる。また、流体封入部材の伸びを予め定められた伸び量で停止させる係止部としては、上記の形態に限られず、所定の位置で覆い部材の移動を停止させる任意の装置を採用することができる。
本実施の形態においては、ピストン本体61と覆い部材62とを備えるピストンを例に取り上げて説明したが、この形態に限られず、覆い部材を有しておらず、ピストン本体にピストンリングの溝部が形成されているピストン(図12〜図19参照)にも、本実施の形態の速度低下装置等を適用することができる。たとえば、ピストン本体にピストンリングの溝部が形成されているピストンにおいて、本実施の形態の速度低下装置を流体封入部材63の内部に配置することができる。この場合には、シリンダ120を流体封入部材63の頂面部63bに固定することができる。
その他の構成、作用および効果については、実施の形態1から3のいずれかと同様であるので、ここでは説明を繰り返さない。
上記の実施の形態は、適宜組み合わせることができる。上述のそれぞれの図において、同一または相当する部分には同一の符号を付している。なお、上記の実施の形態は例示であり発明を限定するものではない。また、実施の形態においては、請求の範囲に含まれる変更が意図されている。
3 ピストン
61 ピストン本体
62 覆い部材
63 流体封入部材
63a,63c 蛇腹部
64 断熱部材
64a 介在部材
65 補助シリンダ
68,69 流体封入部材
69a 蛇腹部
71 ピストン本体
75 流路
76 ノズル
84 流路構成部材
99 逆止弁
157 冷媒流量調整器
158 冷媒温度調整器

Claims (6)

  1. 燃料が燃焼室にて燃焼することによりピストンが往復運動する内燃機関の燃焼圧力制御装置であって、
    圧縮性流体が内部に充填され、ピストンに配置されている流体ばねと、
    流体ばねの内部の圧縮性流体の温度を調整するばね温度調整装置とを備え、
    燃焼室の圧力が予め定められた圧力に到達すると、燃焼室の圧力変化を駆動源にして流体ばねが縮むことにより燃焼室の容積が増加するように形成されており、
    ばね温度調整装置にて圧縮性流体の温度を調整し、流体ばねの内部の圧力を調整することを特徴とする、燃焼圧力制御装置。
  2. ばね温度調整装置は、ピストンの内部において流体ばねの周りに冷媒が流れる流路と、流路に冷媒を供給する冷媒供給装置とを含み、
    冷媒供給装置は、冷媒の温度を調整する冷媒温度調整器および冷媒の流量を調整する冷媒流量調整器のうち少なくとも一方を含み、
    冷媒の温度および冷媒の流量のうち少なくとも一方を調整して、流体ばねの周りの部材の温度を変化させることにより、流体ばねの内部の圧力を調整することを特徴とする、請求項1に記載の燃焼圧力制御装置。
  3. 冷媒供給装置は、流体ばねと燃焼室との間に冷媒を流す第1の流路を含むことを特徴とする、請求項2に記載の燃焼圧力制御装置。
  4. 冷媒供給装置は、流体ばねの周りにおいて燃焼室に向かう側と反対側に冷媒を流す第2の流路を含み、
    流体ばねの内部の圧力を上昇させる場合には、第1の流路を通る冷媒の温度および冷媒の流量のうち少なくとも一方を調整し、
    流体ばねの内部の圧力を下降させる場合には、第2の流路を通る冷媒の温度および冷媒の流量のうち少なくとも一方を調整することを特徴とする、請求項3に記載の燃焼圧力制御装置。
  5. ピストンは、流体ばねが伸びる動作を予め定められた位置で停止させる係止部と、
    流体ばねが伸びるときの速度を低下させる速度低下装置とを含むことを特徴とする、請求項1に記載の燃焼圧力制御装置。
  6. ピストンは、往復運動を伝達する連接棒に接続されているピストン本体と、ピストンの冠面を有する覆い部材とを含み、
    流体ばねは、ピストン本体の燃焼室に向かう側の表面に配置されており、
    覆い部材は、流体ばねを覆うように形成され、流体ばねの伸縮とともにピストン本体に対して摺動することを特徴とする、請求項1に記載の燃焼圧力制御装置。
JP2012502955A 2010-03-02 2010-03-02 燃焼圧力制御装置 Expired - Fee Related JP5273290B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053730 WO2011108120A1 (ja) 2010-03-02 2010-03-02 燃焼圧力制御装置

Publications (2)

Publication Number Publication Date
JPWO2011108120A1 true JPWO2011108120A1 (ja) 2013-06-20
JP5273290B2 JP5273290B2 (ja) 2013-08-28

Family

ID=44541804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012502955A Expired - Fee Related JP5273290B2 (ja) 2010-03-02 2010-03-02 燃焼圧力制御装置

Country Status (5)

Country Link
US (1) US20120227705A1 (ja)
EP (1) EP2543849A1 (ja)
JP (1) JP5273290B2 (ja)
CN (1) CN102782285A (ja)
WO (1) WO2011108120A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2001674C2 (nl) * 2008-06-12 2009-12-15 Henri Peteri Beheer Bv Warmwatertoestel en werkwijze voor het toevoeren van warm water.
JP2012145021A (ja) * 2011-01-11 2012-08-02 Mitsubishi Heavy Ind Ltd エンジンの冷却装置
DE102012017217A1 (de) * 2012-08-31 2014-05-15 Mahle International Gmbh Kolben für einen Verbrennungsmotor
US9284876B2 (en) * 2013-03-07 2016-03-15 Ford Global Technologies, Llc System and method for cooling engine pistons
US9745893B2 (en) 2015-04-22 2017-08-29 Ford Global Technologies, Llc Hoop spring in a pressure reactive piston
RU2586222C1 (ru) * 2015-05-29 2016-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Брянский государственный технический университет" Двигатель внутреннего сгорания с изменяемым объемом камеры сжатия
US9856790B2 (en) * 2015-08-10 2018-01-02 Hyundai Motor Company Variable compression ratio apparatus
US10323580B2 (en) * 2015-11-11 2019-06-18 Tenneco Inc. Isobaric piston assembly
FR3043720B1 (fr) * 2015-11-17 2019-11-08 MCE 5 Development Moteur a rapport volumetrique variable
FR3043740B1 (fr) * 2015-11-17 2018-01-05 MCE 5 Development Bielle pour moteur a rapport volumetrique variable
CN105508046B (zh) * 2016-01-20 2017-12-15 吉林大学 一种可变压缩比活塞
GB201615056D0 (en) * 2016-09-05 2016-10-19 Otegui Van Leeuw Jon Flat member for clearance volume control
JP6954090B2 (ja) * 2017-12-19 2021-10-27 株式会社Ihi 圧縮端圧力制御装置及びエンジンシステム
EP3767089B1 (en) 2018-03-16 2023-05-03 Ihi Corporation Engine
CN109611234B (zh) * 2018-11-21 2020-10-30 苏州市信睦知识产权服务有限公司 一种节能环保摩托发动机
RU2723911C1 (ru) * 2019-08-09 2020-06-18 федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет" Способ электродинамических испытаний силовых трансформаторов
JP7316247B2 (ja) * 2020-03-31 2023-07-27 日立Astemo株式会社 内燃機関制御装置

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1825163A (en) * 1926-08-02 1931-09-29 Schweter Erich Device for altering the clearance space in piston machines
US2170266A (en) * 1937-06-12 1939-08-22 Arthur J Schossberger Piston for internal combustion engines
US2446348A (en) * 1946-03-21 1948-08-03 Philip S Webster Piston
GB762074A (en) * 1952-06-10 1956-11-21 British Internal Combust Eng Improvements in or relating to internal combustion engines and pistons therefor
US3038458A (en) * 1959-10-09 1962-06-12 British Internal Combust Eng Internal combustion engines and pistons therefor
US3161112A (en) * 1963-06-26 1964-12-15 Continental Aviat & Eng Corp Speed compensated variable compression ratio piston and valve
US3303831A (en) * 1964-09-02 1967-02-14 Clarence A Sherman Variable compression ratio piston and valve
FR1429327A (fr) * 1964-12-29 1966-02-25 Hispano Suiza Sa Perfectionnements apportés aux pistons pour moteurs à combustion interne
US3311096A (en) * 1965-07-07 1967-03-28 Continental Aviat & Eng Corp Variable compression ratio piston and valve
US3450111A (en) * 1967-10-24 1969-06-17 Continental Aviat & Eng Corp Variable compression ratio piston assembly
US3450112A (en) * 1967-11-13 1969-06-17 Continental Aviat & Eng Corp Variable compression ratio piston including surge accumulation means
US3656412A (en) * 1969-07-28 1972-04-18 Cummins Engine Co Inc Variable compression ratio piston
US3667433A (en) * 1970-06-01 1972-06-06 Teledyne Ind Variable compression ratio piston including oil filter means
US3704695A (en) * 1970-07-02 1972-12-05 Teledyne Ind Valve construction for variable compression ratio piston
US4031868A (en) * 1975-09-10 1977-06-28 Teledyne Industries, Inc. Variable compression ratio piston
US4016841A (en) * 1975-09-10 1977-04-12 Teledyne Industries, Inc. Variable compression ratio piston
US4079707A (en) * 1976-07-19 1978-03-21 Teledyne Industries, Inc. Variable compression ratio piston
US4469055A (en) * 1980-06-23 1984-09-04 Caswell Dwight A Controlled variable compression ratio piston for an internal combustion engine
US4377967A (en) * 1981-03-27 1983-03-29 Mack Trucks, Inc. Two-piece piston assembly
CA1183781A (en) * 1981-06-02 1985-03-12 Ronald M. Amm Stratified charge variable compression ratio engine
JPS59128949A (ja) * 1983-01-12 1984-07-25 Yanmar Diesel Engine Co Ltd 可変圧縮型ピストン
DE3807244C1 (ja) * 1988-03-05 1989-03-23 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
US5476074A (en) * 1994-06-27 1995-12-19 Ford Motor Company Variable compression height piston for internal combustion engine
AU5160496A (en) 1995-04-25 1996-11-18 Ovidiu Petru Popadiuc Method of operating an internal combustion engine during combustion process
US5769042A (en) * 1995-04-26 1998-06-23 Popadiuc; Ovidiu Petru Method of operating an internal combustion engine during a combustion process
KR100240723B1 (ko) * 1996-12-07 2000-01-15 정몽규 자동차용 엔진의 피스톤
US5755192A (en) * 1997-01-16 1998-05-26 Ford Global Technologies, Inc. Variable compression ratio piston
JPH11107792A (ja) * 1997-09-30 1999-04-20 Hino Motors Ltd 予混合圧縮着火式エンジン
CN2360623Y (zh) * 1998-11-24 2000-01-26 刘学芬 发动机蓄能活塞
JP2000230439A (ja) 1999-02-09 2000-08-22 Tokyo Gas Co Ltd 予混合圧縮自着火機関及びその運転方法
JP2001193510A (ja) * 2000-01-07 2001-07-17 Osaka Gas Co Ltd ピストン及びそれを備えたエンジン
GB0007726D0 (en) * 2000-03-31 2000-05-17 Galvin George F Piston
DE10060558A1 (de) * 2000-11-29 2002-06-13 Bosch Gmbh Robert Druckspeicher und Verfahren zum Herstellen eines Druckspeichers
GB0308524D0 (en) 2003-04-12 2003-05-21 Galvin George F Piston
US7318397B2 (en) * 2004-04-02 2008-01-15 Combustion Electromagnetics Inc. High efficiency high power internal combustion engine operating in a high compression conversion exchange cycle
CN2718232Y (zh) * 2004-06-24 2005-08-17 武汉理工大学 内燃机弹性活塞
DE102005042003A1 (de) 2005-09-05 2007-03-08 Mahle International Gmbh Gebauter, flüssigkeitsgekühlter Kolben
US7637241B2 (en) * 2007-10-29 2009-12-29 Ford Global Technologies Pressure reactive piston for reciprocating internal combustion engine
US8807109B2 (en) * 2009-11-06 2014-08-19 Federal-Mogul Corporation Steel piston with cooling gallery and method of construction thereof
US8839749B2 (en) * 2011-06-07 2014-09-23 Mahle Koenig Kommanditgesellschaft Gmbh & Co. Kg Piston having a hollow cooling space defined in a mantle wall
US8622042B2 (en) * 2011-09-06 2014-01-07 Mahle Koenig Kommanditgesellschaft Gmbh & Co. Kg Bearing connection, engine cylinder, and engine with the bearing connection

Also Published As

Publication number Publication date
US20120227705A1 (en) 2012-09-13
CN102782285A (zh) 2012-11-14
WO2011108120A1 (ja) 2011-09-09
JP5273290B2 (ja) 2013-08-28
EP2543849A1 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5273290B2 (ja) 燃焼圧力制御装置
JP5223970B2 (ja) 燃焼圧力制御装置
JP5338976B2 (ja) 内燃機関
US7318397B2 (en) High efficiency high power internal combustion engine operating in a high compression conversion exchange cycle
JP5105009B2 (ja) 内燃機関
EP2097629A1 (en) Pre-chamber arrangement for a piston engine
US10273927B2 (en) Controlling variable compression ratio with a pressure-reactive piston
JP5170340B2 (ja) 燃焼圧力制御装置
JP5527119B2 (ja) 内燃機関
JP2012097656A (ja) 内燃機関
JP5115663B1 (ja) 内燃機関
JP2011163317A (ja) 内燃機関
JP5083470B2 (ja) 内燃機関
KR100999623B1 (ko) 가변 압축비 장치 및 이를 이용한 엔진
US11994057B1 (en) Pre-chamber ignition device with variable volume capability for internal combustion engines
WO2012164754A1 (ja) 内燃機関
KR101305821B1 (ko) 가변 압축비 엔진
JP2013136996A (ja) 火花点火内燃機関
JP2013144936A (ja) 火花点火内燃機関
JP5537323B2 (ja) エンジン
JP2019157847A (ja) エンジン
JP2012097692A (ja) 内燃機関

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

LAPS Cancellation because of no payment of annual fees