JPWO2011052257A1 - 液晶表示素子 - Google Patents

液晶表示素子 Download PDF

Info

Publication number
JPWO2011052257A1
JPWO2011052257A1 JP2011538276A JP2011538276A JPWO2011052257A1 JP WO2011052257 A1 JPWO2011052257 A1 JP WO2011052257A1 JP 2011538276 A JP2011538276 A JP 2011538276A JP 2011538276 A JP2011538276 A JP 2011538276A JP WO2011052257 A1 JPWO2011052257 A1 JP WO2011052257A1
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment film
display element
crystal display
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011538276A
Other languages
English (en)
Inventor
松本 俊寛
俊寛 松本
村田 充弘
充弘 村田
貴子 小出
貴子 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2011052257A1 publication Critical patent/JPWO2011052257A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、信頼性及び光学特性を充分に向上することが可能となり、また低電圧駆動が可能となる液晶表示素子を提供する。本発明の液晶表示素子は、一対の基板と、該一対の基板間に封止された液晶層とを含む液晶表示素子であって、上記液晶層は、正の誘電率異方性を有する液晶分子を含有し、上記一対の基板の少なくとも一方は、一対の櫛型電極を有し、上記一対の基板の少なくとも一方は、液晶層と接する側の面の表示領域に垂直配向膜を有し、上記垂直配向膜は、無機材料で形成された無機配向膜である液晶表示素子である。

Description

本発明は、液晶表示素子に関する。より詳しくは、電圧を印加して液晶層内の液晶分子を横方向にベンド状配向させることにより液晶層を透過する光を制御する表示方式に好適な液晶表示素子に関するものである。
液晶表示素子(以下、LCDと略記する。)は、薄型、軽量、低消費電力を特徴とした表示デバイスであり、携帯電話、PDA、カーナビゲーション、パソコンモニター、テレビ、更には、駅構内の案内板、屋外掲示板等のインフォメーションディスプレイ等、多くの用途に採用されてきている。
現行のLCDは、電界印加により液晶分子の配列を制御し、液晶層を透過する光の偏光状態を変え、偏光板を通過する光の量を調節することによって表示を行っている。LCDの表示性能は、電圧を印加した時の液晶分子の配列状態と、印加電界の大きさ及び方向により影響を受ける。LCDの表示モードは、電圧が印加されていない時の液晶分子の配列状態と、印加電界の方向とによって各種のものが存在し、例えば、電圧無印加時の液晶配向が基板に水平である縦電界方式の液晶表示素子として、TN(Twisted Nematic)モード、OCB(Optically Compensated Bend)モード等があり、それぞれ、高透過率、高速応答性等の特性を満足することができる。また電圧無印加時の液晶配向が基板に垂直である縦電界方式の液晶表示素子としては、MVA(Multi−Domain Vertical Alignment)モードがあり、電圧無印加時の液晶配向が基板に垂直である横電界方式の液晶表示素子としては、TBA(Transverse Bend Alignment)モードがあり、高コントラストの特性を満足することができる。更に、電圧無印加時の液晶配向が基板に水平である横電界方式の液晶表示素子としては、IPS(In−plane Switching)モードがあり、広視野角の特性に特に優れるものである。しかしながら、広視野角、高コントラスト及び高速応答の全ての特性を満足するものはなく、これらの特性を満足するために様々な工夫がなされている。
例えば、一対の基板間に、負の誘電率異方性を有する液晶を挟持してなる液晶装置であって、該一対の基板の少なくとも一方の基板には、画素電極と、該画素電極上に形成され前記液晶を配向規制する無機配向膜とを備え、前記無機配向膜は、互いに反対となる方位から前記基板上に斜方蒸着をすることにより形成された第1の斜方蒸着膜及び第2の斜方蒸着膜により構成される液晶装置(例えば、特許文献1参照。)が開示されている。また、一対の基板のうちの少なくとも一方の基板に設けられた配向膜が、多孔質構造を有する無機膜によって構成されるとともに、当該無機膜の液晶層側の表面に形成された複数の凸部と、を有し、平面視において前記凸部が長軸と短軸とを有する形状である液晶装置(例えば、特許文献2参照。)が開示されている。更に、配向膜と液晶層との界面における液晶分子と前記配向膜表面とのねじれ結合の強さを表す外挿長が、一対の基板間ギャップの10%以上であるアクティブマトリクス型液晶表示装置(例えば、特許文献3参照。)が開示されている。そして、TBAモードの液晶表示装置等(例えば、特許文献4〜10参照。)が開示されている。
特開2008−225032号公報 特開2008−191264号公報 特開2005−189889号公報 特開昭57−618号公報 特開平10−186351号公報 特開平10−333171号公報 特開平11−24068号公報 特開2000−275682号公報 特開2002−55357号公報 特開2001−159759号公報
しかしながら、上述した液晶装置等においては、配向膜の誘電率を規定することについては何ら示唆がなかった。更に、液晶装置等の低電圧化効果・高速応答効果についても、何ら開示がなされていなかった。
更に、上述した負の誘電率異方性を有する液晶と無機配向膜とを組み合わせた液晶装置においては、スループット(生産率)をより充分なものとし、液晶分子の傾斜方向の制御をより容易にすることが望まれるところであった。
本発明は、上記現状に鑑みてなされたものであり、信頼性及び光学特性を充分に向上することが可能となり、また低電圧駆動が可能となる液晶表示素子を提供することを目的とするものである。
以下、TBAモードを例にして、本発明に至った経緯について説明するが、本発明はTBAモードに限定されるものではない。
本発明者らは、高コントラストを得ることができる液晶表示素子において、駆動電圧を低減させることについて種々検討したところ、初期配向は垂直配向であり、電界印加時に非電極部の中央に向かって液晶分子が倒れ込む表示方式であるTBAモードでの液晶分子の電圧印加時の動きに着目した。
TBAモードの液晶表示素子においては、MVAモードやTNモードにおいて採用される程度の電圧で液晶を駆動する場合、液晶の誘電率異方性Δε(以下、単にΔεともいう。)が20程度(MVAモードの場合−3程度、TNモードの場合5程度)の材料を用いなければ駆動できない。一般的にΔεを大きくするほど、材料としての信頼性が低下したり、光学特性が低下するおそれがある。
TBAモードにおける、一般的な有機配向膜(誘電率εが3、膜厚1000Å)を用いた場合の2V、3V、4V印加時の各液晶の誘電率異方性Δε対透過率のデータを図7に示す。
所望の透過率をなるべく小さいΔεを持つ液晶を使って得るためには、高い電圧をかけなければならない。その傾向は、液晶のΔεがある程度大きい範囲(立ち上がり電圧である2V付近では、Δεが10以上程度)で顕著になる。
このように駆動電圧が高くなる理由は、以下の通りである。TBAモードでは非電極部の液晶によって透過率が決まるので、非電極部をなるべく大きくとる。したがって、電極部間が広くなっている。例えば、通常、MVAモード又はTNモードであれば電極間距離(すなわち、セル厚)は3〜4μmであるところ、TBAモードでは例えば8μm程度となるため、閾値電圧が高くなる。また、TBAモードでは片側基板に形成された一対の櫛型電極間の液晶分子を駆動する為、前記櫛型基板と対する側の基板に近づくにつれて電界が弱くなり、これに伴い液晶分子は動き難くなる(不感体領域が存在)。これにより、閾値電圧が高くなる。
そして、本発明者らは鋭意検討を行った結果、配向膜の誘電率を高くして液晶に印加される電界を充分に大きなものとすること、及び、基板の液晶層との界面での極角方向の束縛力(アンカリングエネルギー)を小さくすることが、液晶のΔεを充分に小さくして信頼性及び光学特性を向上し、かつ駆動電圧を低減化することに有効であることを見いだした。
更に本発明者らは、TBAモード等において信頼性及び光学特性を充分に向上し、かつ駆動電圧を低減化させる具体的な方法について種々の検討を行った結果、基板が有する垂直配向膜を無機材料で形成された無機配向膜とすることで、液晶に印加される電界を充分に大きなものとし、液晶のΔεを充分に小さくするとともに、液晶層との界面における基板の極角方向のアンカリングエネルギーを効果的に低減させることができ、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、一対の基板と、該一対の基板間に封止された液晶層とを含む液晶表示素子であって、上記液晶層は、正の誘電率異方性を有する液晶分子を含有し、上記一対の基板の少なくとも一方は、一対の櫛型電極を有し、上記一対の基板の少なくとも一方は、液晶層と接する側の面の表示領域に垂直配向膜を有し、上記垂直配向膜は、無機材料で形成された無機配向膜である液晶表示素子である。
以下、本発明の液晶表示素子について詳述する。
本発明の液晶表示素子は、一対の基板と、上記一対の基板間に封止された液晶層とを含む液晶表示素子である。上記液晶層には、一定の電圧の印加によって配向性が制御される液晶分子が充填されている。上記一対の基板の一方又は双方に配線、電極、半導体素子等を設けることで、液晶層内に電圧を印加し、液晶分子の配向性を制御することができる。
本発明の液晶表示素子において、上記液晶分子は、正の誘電率異方性を有する液晶分子(ネマチック液晶分子)を用いる。これにより、液晶層への電圧の印加によって液晶分子は電界の向きに沿って配向することになり、液晶分子群は、例えば、アーチ状を描くことになるため、自己補償効果を有し広視野角を得ることができる。
上記液晶分子の誘電率異方性Δεは、10以上であることが好ましい。これにより、本発明の効果を更に顕著に発揮することが可能となる。より好ましくは、15以上である。上限値としては、25以下であることが好ましい。
本発明の液晶表示素子において、上記一対の基板の少なくとも一方は、一対の櫛型電極を有する。上記櫛型電極は、櫛の柄となる部分と、柄から平面的に突出した櫛歯を有する限り、その全体構成は特に限定されない。上記一対の櫛型電極は、例えば、一方の櫛型電極を、絵素単位で設けられかつ信号電圧が印加される絵素電極とし、他方の櫛型電極を、一定電圧に維持された共通電圧が印加される共通電極とすることで、絵素電極に供給される画像信号に応じて、絵素ごとに電界(例えば、横電界)を形成することができる。
なお、上記一対の櫛型電極の電極間距離は、例えば、7〜9μmであることが好ましい。
上記一対の基板の少なくとも一方は、液晶層と接する側の面に垂直配向膜を有し、該垂直配向膜は、無機材料で形成された無機配向膜である。上記無機配向膜は、電圧無印加時に上記液晶分子を上記一対の基板の少なくとも一方の基板面に対して実質的に垂直に配向させるものであることが好ましい。言い換えれば、上記無機配向膜は、電圧無印加時に表面に近接する液晶分子の傾斜を、基板面と平行な方向を0°としたときに極角方向に略90°(90°±0〜4°)で規定する無機配向膜であることが好ましい。該配向は、無機配向膜の材料に起因するものであっても、無機配向膜の構造に起因するものであってもよい。
また上記無機配向膜は、基板面法線方向からみたときに、表示領域全面に設けられていることが好ましい。
本発明の液晶表示素子の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。
本発明の液晶表示素子における好ましい形態について以下に詳しく説明する。
本発明の液晶表示素子の好ましい形態の一つとして、上記無機材料においては、誘電率が4以上、6以下である形態が挙げられる。これにより、液晶に印加される電界を充分に大きなものとすることができる。これにより、誘電率異方性Δεが小さな液晶を採用して材料としての信頼性及び光学特性を充分に向上させたり、閾値電圧を低電圧としても、所望の透過率を達成することができる(図7、及び、図7を部分的に拡大した図8を参照)。また、シリコン系の無機材料は、通常誘電率が6以下であり、このように無機材料がシリコンを含有する形態もまた本発明の好適な形態の一つである。なお、図7及び図8においては、透過率100%を1としたときの透過率比を「透過率」として示している。
上記無機配向膜は、SiO結合を有する材料で構成されていることが好ましい。SiO結合を有する材料を用いることで液晶分子に対するアンカリングエネルギーを下げることができる。
本発明の液晶表示素子の好ましい形態の一つとして、上記無機配向膜は、上記一対の櫛型電極を有する基板のみに設けられている形態が挙げられる。これにより、液晶分子の応答性が特に優れたものとなる。
本発明の液晶表示素子の好ましい形態の一つとして、上記無機配向膜は、印刷法、スピンコーティング法又はインクジェット法で形成されたものである形態が挙げられる。本発明の液晶表示素子においては、これにより液晶表示素子を容易に作製することができ、スループットを充分に向上させることができる。上記印刷法、スピンコーティング法又はインクジェット法により、液晶分子を電圧無印加時に垂直配向させる無機配向膜を得ることができる。
上述した各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
本発明によれば、初期配向を垂直配向とした液晶表示素子において、誘電異方性Δεが小さな液晶を採用して材料としての信頼性及び光学特性を充分に向上させることが可能であり、また、低電圧駆動を行うことが可能である。
本発明に係る実施形態1の液晶表示素子の斜視模式図である。 本発明に係る実施形態1の液晶表示素子の断面模式図である。 液晶の誘電率異方性Δεを10にしたときの、実施例1、2及び比較例1のTBAモードのセルの電圧−透過率特性を表したグラフである。 液晶の誘電率異方性Δεを15にしたときの、実施例1、2及び比較例1のTBAモードのセルの電圧−透過率特性を表したグラフである。 液晶の誘電率異方性Δεを20にしたときの、実施例1、2及び比較例1のTBAモードのセルの電圧−透過率特性を表したグラフである。 液晶の誘電率異方性Δεを25にしたときの、実施例1、2及び比較例1のTBAモードのセルの電圧−透過率特性を表したグラフである。 TBAモードのセルに用いた各液晶の誘電率異方性−透過率特性を表したグラフである。 図7のグラフを部分的に拡大したグラフである。 実施形態2の液晶表示素子の構成を示す断面模式図である。
以下に実施形態を掲げ、本発明について更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
(実施形態1)
図1は、本発明に係る実施形態1の液晶表示素子の斜視模式図である。
図2は、本発明に係る実施形態1の液晶表示素子の断面模式図である。
図1、図2に示すように、本発明に係る実施形態1の液晶表示素子は、アレイ基板101、ガラス基板102に対向する対向基板111、及び、アレイ基板101と対向基板111とに狭持される液晶層121で構成される。アレイ基板101は、横電界を発生する一対の櫛型電極103を有し、垂直配向基を含む配向膜Bを積層したガラス基板102を主体とする。対向基板111は、カラーフィルタ(CF)113及び垂直配向基を含む配向膜Aを積層したガラス基板112を主体とする。
一対の櫛型電極103のそれぞれは、絵素電極と共通電極であり、基本構成として櫛歯を含んでいる。絵素電極の櫛歯と共通電極の櫛歯とは、互いに平行であり、間隔を空けて互いが交互に噛み合わさっている。絵素電極は、表示領域を構成する絵素単位ごとに配置される電極であり、画像信号が供給される。一方、共通電極は、絵素の境界に関わらず全体が導通している電極であり、共通信号が供給される。
一対の櫛型電極103に所定電圧が印加されると、液晶層内にアーチ状の電界が発生する。そして、ポジ型ネマチック液晶分子(正の誘電異方性を有するネマチック液晶)122は、印加電界に沿って横向きにベンド状配向する。また、電極形成部及び電極間中央部においては、垂直配向が維持され、非電極部に位置する液晶分子が透過に寄与する。
本発明に係る実施形態1の液晶表示素子は、電圧無印加状態で基板面に対して垂直に配向させたポジ型ネマチック液晶(正の誘電異方性を有するネマチック液晶)を含む液晶層121に対して、横方向(基板面方向)の電界を印加し、液晶層内の液晶分子を横方向のベンド状配向に転移させるTBAモードの液晶表示素子である。
なお、各透明基板102、112の液晶層121と逆側の面上には、それぞれ偏光板107、108が配置されている。また、本実施形態の液晶表示素子は、アレイ基板101と対向基板111との間に、液晶層厚(セルギャップ)を規定する樹脂ビーズ状スペーサー、及び、液晶層121を封止するためのシール部材を有する。
(実施例1、2及び比較例1)
下記表1に示されるように、一般的に有機物の誘電率はほぼ3以下であり、無機物の誘電率はほぼ4以上である。なお、εγは、比誘電率を表す。
Figure 2011052257
液晶の誘電率異方性Δεが10、15、20、25に対し、配向膜A及び配向膜Bの誘電率εが有機物相当の3、無機物相当の4、6としたとき(それぞれ、比較例1、実施例1、2)の、TBAモードにおける電圧対透過率(配向膜膜厚1000Å)をそれぞれ図3〜6に示した。
図3は、液晶の誘電率異方性Δεを10にしたときの、実施例1、2及び比較例1のTBAモードのセルの電圧−透過率特性を表したグラフである。
図4は、液晶の誘電率異方性Δεを15にしたときの、実施例1、2及び比較例1のTBAモードのセルの電圧−透過率特性を表したグラフである。
図5は、液晶の誘電率異方性Δεを20にしたときの、実施例1、2及び比較例1のTBAモードのセルの電圧−透過率特性を表したグラフである。
図6は、液晶の誘電率異方性Δεを25にしたときの、実施例1、2及び比較例1のTBAモードのセルの電圧−透過率特性を表したグラフである。
なお、図3〜6に示したΔεは、液晶の誘電率異方性を示す。また、εは、垂直配向膜の誘電率を示す。
図3〜6より、誘電率εの高い配向膜の方が低電圧で高透過率を達成していることが分かる。
まとめると、以下のことがいえる。
(1)同じΔεの液晶であれば配向膜のεが大きいほうが低電圧での立ち上がり、又は、高透過率を達成することができる。したがって、液晶表示素子を低電圧で駆動させることが可能である。(2)ある電圧値である透過率を達成したい場合、配向膜のεが大きいほうが低いΔε値で到達することができる。したがって、よりΔεが低い液晶を採用することができ、その結果、液晶表示素子における信頼性向上、光学特性向上が可能である。
なお、実施例1、2及び比較例1と同様に、一般的なMVA(垂直配向)モードの物性値(液晶のΔε=−3、膜厚1000Åのときの配向膜のεを3、4、6の3種類)における結果、及び、一般的なTBAモードでの物性値(液晶のΔε=20、膜厚1000Åのときの配向膜のεを3、4、6の3種類)における結果を下記表2、表3に示す。
Figure 2011052257
Figure 2011052257
表2及び表3の結果から、このように配向膜のεを大きくするほど透過率は高くなるが、その効果は液晶のΔεが大きなTBAモードの方が優れており、TBAモードにおいて本発明が顕著な効果を発揮することが明らかである。
(実施例3〜5及び比較例2)
実施例3〜5における無機配向膜14は、SiO結合(SiOx(x=1〜3))及び垂直配向基Yを有する配向膜である。例えば、下記化学式(1)で示される化学構造を含む無機配向膜を用いることが好ましい。下記化学式(1)は、主鎖であるオルガノシロキサン骨格の側鎖末端に垂直配向基−Yを有する。なお、下記化学式(1)は、アルコキシシランモノマーを重縮合して得られるものであることを示している。
Figure 2011052257
(式中、l及びmは、括弧内の繰り返し構造の数を表し、正の整数である。)
Yは、例えば、長鎖アルキル基、長鎖含フッ素アルキル基、シロキサン鎖等が好適なものとして挙げられる。中でも、下記化学式(2)〜(8)のいずれか一つで示されるものであることが特に好ましい。
Figure 2011052257
(式中、Xは、ハロゲン原子を表す。好ましくは、フッ素原子である。)
なお、液晶配向材料としては、例えば、特開平9−230354号公報に記載の液晶配向処理剤、国際公開第2003/042752号パンフレットに記載の液晶配向処理剤、国際公開第2005/052028号パンフレットに記載の垂直配向用液晶配向処理剤、国際公開第2006/070819号パンフレットに記載の垂直配向用液晶配向剤、特開2006−30961号公報に記載の垂直液晶配向剤等を用いることが可能である。
以下に、実施例3の液晶表示素子を実際に作製し、従来の液晶表示素子と対比して評価を行った結果について説明する。具体的に以下のようにして、実施例3の液晶表示素子を作製した。
まず、ITO(Indium Tin Oxide:インジウム酸化スズ)製等の透明電極の一対の櫛型電極を表面上に備える、アレイ基板側のガラス基板を用意し、該ガラス基板上及び一対の櫛型電極上に、上記化学式(1)で示される化学構造を有する垂直配向膜用無機溶液を、焼成後1000Åになる条件でスピンコート法にて塗布し、その後、該溶液塗布後の基板を200℃にて約1時間焼成し、無機配向膜を形成した。なお、一対の櫛型電極が有する櫛歯の幅は4.0μm、櫛歯同士の間隔は8.0μmとした(ライン/スペース=4.0μm/8.0μm)。
次に、同様の工程により、対向基板側のガラス基板上にも無機配向膜を成膜した。その後、アレイ基板上に、所望のセル厚(d)となる直径の樹脂ビーズ状スペーサーを散布等で配置し、一方、対向基板上にエポキシ系シール樹脂を印刷し、これらを貼り合わせ、180℃で2時間、上記シール樹脂を硬化させて液晶セルを作製した。
その後、ポジ型ネマチック液晶(正の誘電異方性を有するネマチック液晶)を真空注入法にて液晶セル内に封入し、続いて各ガラス基板の、液晶層と逆側の面上に偏光板を貼り合わせ、液晶表示素子(実施例3)を作製した。上記一対の基板間に封入した。ポジ型ネマチック液晶(正の誘電異方性を有するネマチック液晶)のΔnは電圧印加時、dΔnが概ねλ/2となる値であり、Δεは22であった。
そして最後に、実施例3の液晶表示素子の電圧−透過率特性を大塚電子株式会社製液晶評価装置LCD−5200を用いて測定した。
また、垂直配向膜の材料として上述した垂直配向膜用無機溶液の代わりに、SiO結合を有さない有機配向膜SE−1211(日産化学工業(株)製)を用いて垂直配向膜Aを形成したり(実施例4)、垂直配向膜Bを形成したり(実施例5)、垂直配向膜A及び垂直配向膜Bを形成した(比較例1)以外は、実施例3と同様の方法により、液晶表示素子を作製し、同様に電圧−透過率特性を測定した。(1)0V→6.5Vの電圧印加時の結果を下記表4に示す。(2)6.5V→0Vの電圧印加時の結果を下記表5に示す。また、(1)と(2)との合計について、表6に示す。
Figure 2011052257
Figure 2011052257
Figure 2011052257
(1)0V→6.5Vの電圧印加時は、櫛歯電極側(垂直配向膜B)に無機配向膜を用いると、無機配向膜は有機配向膜よりもアンカリングが弱いために、応答が速くなる(表4)。
(2)6.5V→0Vの電圧印加時は、一般的には弱アンカリングの場合は応答が遅くなるが、本モードにおいては、ベンド状配向が内部応力により垂直配向に戻るので、弱アンカリングの影響による応答の遅れはほとんどない(表5)。
(1)と(2)との合計の応答で見ても、櫛歯電極側(垂直配向膜B)に無機配向膜を用いた場合の方が応答が速いことが分かる(表6)。
この結果から、無機配向膜が、一対の櫛型電極を有する基板に設けられているものとすること、特に、一対の櫛型電極を有する基板のみに設けられているものとすることにより、アンカリングエネルギーを減少させることができ、その結果、閾値電圧の低減効果が得られることが分かった。
上述の例では、無機配向膜としてSiO結合及び垂直配向基Yを含む無機配向膜を挙げたが、これに限定されず、例えばAlOx、SiOx、TiOx、SiC等の他の無機配向膜を用いることも可能である。また、本実施形態において無機配向膜は、これら無機誘電体の積層膜であってもよく、適宜組み合わせることが可能である。更に、無機配向膜中にAl(アルミニウム)、Ga(ガリウム)、In(インジウム)、Si(シリコン)、Ge(ゲルマニウム)、Sn(スズ)、Ti(チタン)、Zr(ジルコニウム)、Hf(ハフニウム)を含有させてもよく、これにより、よりアンカリングエネルギーを減らすことができる。
本実施形態の液晶表示素子は、更に駆動回路、バックライト(照明装置)等を備えつけることで、携帯電話、PDA、カーナビゲーション、パソコンモニター、テレビ、駅構内の案内板、屋外掲示板等のインフォメーションディスプレイ等として用いることができる。
(実施形態2)
本実施形態の液晶表示素子は、以下の点で実施形態1と異なる。
すなわち、本実施形態の液晶表示素子は、対向基板側に対向電極を有する。具体的には、図9に示すように、ガラス基板112の液晶層121側の主面上には、対向電極61、誘電体層(絶縁層)62及び垂直配向膜Aがこの順に積層されている。なお、対向電極61とガラス基板112の間には、カラーフィルタ113や、ブラックマトリクス(BM)等が設けられてもよい。
対向電極61は、ITO、IZO等の透明導電膜から形成される。対向電極61及び誘電体層62はそれぞれ、少なくとも全表示領域を覆うように切れ目なく形成されている。対向電極61には、各絵素に共通の所定の電位が印加される。
誘電体層62は、透明な絶縁材料から形成される。具体的には、窒化シリコン等の無機絶縁膜、アクリル樹脂等の有機絶縁膜等から形成される。
他方、ガラス基板102には、実施形態1と同様に、絵素電極20及び共通電極30を含む櫛型電極と、垂直配向膜Bとが設けられている。また、2枚の基板102、112の外主面上には偏光板107、108が配設されている。
黒表示時以外、絵素電極20と、共通電極30及び対向電極61との間には異なる電圧が印加される。共通電極30及び対向電極61は、接地されてもよいし、共通電極30及び対向電極61には、同じ大きさかつ極性の電圧が印加されてもよいし、互いに異なる大きさかつ極性の電圧が印加されてもよい。
実施形態2の液晶表示素子によっても、実施形態1と同様に、信頼性及び光学特性を充分に向上することが可能となり、また低電圧駆動が可能となる。また、対向電極61を形成することにより、応答速度を向上することができる。
また、無機配向膜の緻密性は、非常に高いことから、垂直配向膜Aとして無機配向膜を用いることによって、カラーフィルタ113や誘電体層62から、液晶層121へと不純物が溶出するのを防ぐことが可能となる。すなわち、垂直配向膜Aをバリアー層として機能させることができる。
なお、実施形態2においても実施形態1と同様に低電圧駆動、高速応答化の効果を確認した。
上述した実施形態における各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
なお、本願は、2010年1月15日に出願された日本国特許出願2010−006692号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
20:絵素電極
30:共通電極
61:対向電極
62:誘電体層
101:アレイ基板
102,112:ガラス基板
103:櫛型電極
107,108:偏光板
111:対向基板
113:カラーフィルタ
121:液晶層
122:印加電界に沿ってベンド状配向する液晶分子
123:電界の印加方位
A,B:垂直配向膜

Claims (4)

  1. 一対の基板と、該一対の基板間に封止された液晶層とを含む液晶表示素子であって、
    該液晶層は、正の誘電率異方性を有する液晶分子を含有し、
    該一対の基板の少なくとも一方は、一対の櫛型電極を有し、
    該一対の基板の少なくとも一方は、液晶層と接する側の面の表示領域に垂直配向膜を有し、
    該垂直配向膜は、無機材料で形成された無機配向膜である
    ことを特徴とする液晶表示素子。
  2. 前記無機材料は、誘電率が4以上、6以下であることを特徴とする請求項1に記載の液晶表示素子。
  3. 前記無機配向膜は、前記一対の櫛型電極を有する基板のみに設けられていることを特徴とする請求項1又は2に記載の液晶表示素子。
  4. 前記無機配向膜は、印刷法、スピンコーティング法又はインクジェット法で形成されたものであることを特徴とする請求項1〜3のいずれかに記載の液晶表示素子。
JP2011538276A 2009-10-30 2010-05-28 液晶表示素子 Pending JPWO2011052257A1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009250395 2009-10-30
JP2009250395 2009-10-30
JP2010006692 2010-01-15
JP2010006692 2010-01-15
PCT/JP2010/059128 WO2011052257A1 (ja) 2009-10-30 2010-05-28 液晶表示素子

Publications (1)

Publication Number Publication Date
JPWO2011052257A1 true JPWO2011052257A1 (ja) 2013-03-14

Family

ID=43921688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011538276A Pending JPWO2011052257A1 (ja) 2009-10-30 2010-05-28 液晶表示素子

Country Status (7)

Country Link
US (1) US20120176575A1 (ja)
EP (1) EP2495610A4 (ja)
JP (1) JPWO2011052257A1 (ja)
CN (1) CN102472926A (ja)
BR (1) BR112012010185A2 (ja)
RU (1) RU2012122206A (ja)
WO (1) WO2011052257A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491316C1 (ru) * 2011-12-30 2013-08-27 Государственное образовательное учреждение высшего профессионального образования Московский государственный областной университет Способ изготовления жидкокристаллической ячейки
KR20140046818A (ko) * 2012-10-11 2014-04-21 삼성디스플레이 주식회사 표시 패널 및 이를 포함하는 표시 장치
JP2014153605A (ja) * 2013-02-12 2014-08-25 Japan Display Inc 液晶表示装置
US10317733B2 (en) * 2016-10-26 2019-06-11 Omnivision Technologies, Inc. Method to make LCOS oxide alignment layer by offset print
TWI724808B (zh) * 2020-03-02 2021-04-11 友達光電股份有限公司 顯示裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101972A (ja) * 2005-10-06 2007-04-19 Seiko Epson Corp 液晶装置及び電子機器
JP2008233713A (ja) * 2007-03-23 2008-10-02 Sony Corp 液晶表示装置および電子機器
WO2009154258A1 (ja) * 2008-06-18 2009-12-23 シャープ株式会社 液晶パネルおよび液晶表示装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597367B2 (ja) 1981-04-27 1984-02-17 シャープ株式会社 電界効果型液晶表示装置
JPH09230354A (ja) 1996-02-21 1997-09-05 Sagami Chem Res Center ポリアミド系液晶配向処理剤
JP4007373B2 (ja) 1996-05-08 2007-11-14 株式会社日立製作所 アクティブマトリクス型液晶表示装置
JPH10186351A (ja) 1996-12-24 1998-07-14 Hitachi Ltd 液晶表示装置
KR100254856B1 (ko) 1997-05-30 2000-05-01 김영환 액정 표시 소자
CN1186682C (zh) 1997-05-30 2005-01-26 三星电子株式会社 液晶显示器
JP4201942B2 (ja) 1999-12-02 2008-12-24 シャープ株式会社 液晶表示装置
JP2000275682A (ja) 1999-03-26 2000-10-06 Seiko Epson Corp 液晶装置およびそれを用いた電子機器
JP2002055357A (ja) 2000-08-09 2002-02-20 Casio Comput Co Ltd 液晶表示素子
TWI284147B (en) 2001-11-15 2007-07-21 Nissan Chemical Ind Ltd Liquid crystal aligning agent for vertical alignment, alignment layer for liquid crystal, and liquid crystal displays made by using the same
SE0303041D0 (sv) * 2003-06-23 2003-11-18 Ecsibeo Ab A liquid crystal device and a method for manufacturing thereof
TW200527081A (en) 2003-11-26 2005-08-16 Nissan Chemical Ind Ltd Liquid crystal alignment treating agent for vertical alignment and liquid crystal display
JP4260752B2 (ja) * 2004-01-15 2009-04-30 シャープ株式会社 表示素子および表示装置
JP4645823B2 (ja) 2004-06-18 2011-03-09 Jsr株式会社 垂直液晶配向剤、および垂直液晶表示素子
KR101235412B1 (ko) 2004-12-28 2013-02-20 닛산 가가쿠 고교 가부시키 가이샤 수직 배향용 액정 배향제, 액정 배향막 및 그것을 이용한 액정 표시 소자
JP2006251700A (ja) * 2005-03-14 2006-09-21 Seiko Epson Corp 無機配向膜、無機配向膜の形成方法、電子デバイス用基板、液晶パネルおよび電子機器
KR101186249B1 (ko) * 2005-11-02 2012-09-27 엘지디스플레이 주식회사 횡전계 방식의 액정 표시 장치
JP4897341B2 (ja) * 2006-04-28 2012-03-14 富士フイルム株式会社 液晶表示装置
JP4605110B2 (ja) * 2006-07-11 2011-01-05 セイコーエプソン株式会社 液晶装置、及びそれを備えた画像表示装置
JP2008191264A (ja) 2007-02-01 2008-08-21 Seiko Epson Corp 液晶装置、配向膜の製造方法、液晶装置の製造方法
JP2008225032A (ja) 2007-03-13 2008-09-25 Seiko Epson Corp 液晶装置、液晶装置の製造方法、電子機器
JP4836141B2 (ja) * 2007-04-09 2011-12-14 独立行政法人産業技術総合研究所 液晶表示素子及び液晶表示装置
JP2010006692A (ja) 2008-05-30 2010-01-14 Ohara Inc 光学ガラス、光学素子及び精密プレス成形用プリフォーム
WO2009154021A1 (ja) * 2008-06-18 2009-12-23 シャープ株式会社 液晶パネルおよび液晶表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101972A (ja) * 2005-10-06 2007-04-19 Seiko Epson Corp 液晶装置及び電子機器
JP2008233713A (ja) * 2007-03-23 2008-10-02 Sony Corp 液晶表示装置および電子機器
WO2009154258A1 (ja) * 2008-06-18 2009-12-23 シャープ株式会社 液晶パネルおよび液晶表示装置

Also Published As

Publication number Publication date
BR112012010185A2 (pt) 2016-04-19
EP2495610A1 (en) 2012-09-05
US20120176575A1 (en) 2012-07-12
WO2011052257A1 (ja) 2011-05-05
EP2495610A4 (en) 2013-04-17
RU2012122206A (ru) 2013-12-10
CN102472926A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
KR101353809B1 (ko) 제어가능한 시야각을 가지는 액정 디스플레이 장치 및 그 구동 방법
JP3543351B2 (ja) アクティブマトリクス型液晶表示装置
WO2010137217A1 (ja) 液晶パネルおよび液晶表示装置
US6344889B1 (en) Liquid crystal display and method of manufacturing the same
JP5728587B2 (ja) 液晶駆動方法及び液晶表示装置
JP5898307B2 (ja) 液晶駆動方法及び液晶表示装置
TWI345663B (en) Liquid crystal display panel
WO2011052257A1 (ja) 液晶表示素子
KR20090094632A (ko) 액정 조성물 및 이를 이용한 액정 표시 장치
WO2013058157A1 (ja) 液晶表示パネル及び液晶表示装置
US20130258222A1 (en) Liquid Crystal Display Device
JP5335907B2 (ja) 液晶パネルおよびその製造方法並びに液晶表示装置
WO2012017931A1 (ja) 液晶パネルおよび液晶表示装置
TW201423206A (zh) 液晶顯示面板
KR101148400B1 (ko) Ips 모드 액정표시소자
US8115898B2 (en) Liquid crystal display
WO2011013396A1 (ja) 液晶表示素子
WO2010137213A1 (ja) 液晶表示素子、及び、液晶表示装置
JP4453041B2 (ja) 液晶表示素子および液晶表示装置
WO2012011443A1 (ja) 液晶パネルおよび液晶表示装置
TWI420206B (zh) 電極結構、顯示面板及顯示器
US9280022B2 (en) Liquid crystal display device
JP2007041429A (ja) 液晶表示装置
JP5374930B2 (ja) 液晶材料、液晶表示素子及び液晶表示装置
US9341872B2 (en) Liquid crystal display device with controllable viewing angle and driving method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130827