JPWO2011033798A1 - X線撮影装置、x線画像システム及びx線画像生成方法 - Google Patents

X線撮影装置、x線画像システム及びx線画像生成方法 Download PDF

Info

Publication number
JPWO2011033798A1
JPWO2011033798A1 JP2011531805A JP2011531805A JPWO2011033798A1 JP WO2011033798 A1 JPWO2011033798 A1 JP WO2011033798A1 JP 2011531805 A JP2011531805 A JP 2011531805A JP 2011531805 A JP2011531805 A JP 2011531805A JP WO2011033798 A1 JPWO2011033798 A1 JP WO2011033798A1
Authority
JP
Japan
Prior art keywords
ray
grating
slit
imaging apparatus
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011531805A
Other languages
English (en)
Inventor
淳子 清原
淳子 清原
千穂 巻渕
千穂 巻渕
木戸 一博
一博 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Publication of JPWO2011033798A1 publication Critical patent/JPWO2011033798A1/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0487Motor-assisted positioning
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
    • G21K2207/005Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

タルボ・ロー干渉計を用いた縦型のX線撮影装置を実用化することを目的とし、X線撮影装置1は、X線源11と、マルチスリット12、第1格子14及び第2格子15と、駆動部12aと、被写体台13と、X線検出器16と、を備え、X線源11、マルチスリット12、被写体台13、第1格子14、第2格子15、X線検出器16がこの順に配置され、駆動部12aによりマルチスリット12をX線の照射方向と直交する方向に移動し、マルチスリット12が一定周期間隔で移動する毎に、X線源11により照射されたX線に応じてX線検出器16が画像信号を読み取る処理を繰り返し、一定周期間隔のモアレ画像を複数得る。

Description

本発明は、X線撮影装置、X線画像システム及びX線画像生成方法に関する。
診断に用いられる医療用のX線画像のほとんどは、吸収コントラスト法による画像である。吸収コントラスト法は、X線が被写体を透過したときのX線強度の減衰の差によりコントラストを形成する。一方、X線の吸収ではなく、X線の位相変化によってコントラストを得る位相コントラスト法が提案されている。例えば、拡大撮影時のX線の屈折を利用したエッジ強調によって視認性の高いX線画像を得る位相コントラスト撮影が行われている(例えば、特許文献1、2参照)。
吸収コントラスト法は骨等のX線吸収が大きい被写体の撮影に有効である。これに対し、位相コントラスト法はX線吸収差が小さく、吸収コントラスト法によっては画像として現れにくい***の組織や関節軟骨、関節周辺の軟部組織をも画像化することが可能であり、X線画像診断への適用が期待されている。
位相コントラスト撮影の1つとして、タルボ効果を利用するタルボ干渉計も検討されている(例えば、特許文献3〜5)。タルボ効果とは、一定の周期でスリットが設けられた第1格子を、干渉性の光が透過すると、光の進行方向に一定周期でその格子像を結ぶ現象をいう。この格子像は自己像と呼ばれ、タルボ干渉計は自己像を結ぶ位置に第2格子を配置し、この第2格子をわずかにずらすことで生じる干渉縞(モアレ)を測定する。第2格子の前に物体を配置するとモアレが乱れることから、タルボ干渉計によりX線撮影を行うのであれば、第1格子の前に被写体を配置して干渉性X線を照射し、得られたモアレの画像を演算することによって被写体の再構成画像を得ることが可能である。
特開2007−268033号公報 特開2008−18060号公報 特開昭58−16216号公報 国際公開第2004/058070号パンフレット 特開2007−203063号公報
実用化を考慮すると、X線源と第1格子間にマルチスリットを設置し、X線の照射線量を増大させるタルボ・ロー干渉計が期待される。
タルボ・ロー干渉計を、例えばリウマチ診断のためのX線撮影に用いる場合、X線撮影装置を天井から床への重力方向にX線を照射する縦型とすることが好ましい。縦型であれば、リウマチが発症しやすい手等を撮影しやすく、またX線撮影装置の省設置面積化をはかることができる。
縞走査法により再構成画像を作成する場合、従来のタルボ・ロー干渉計であれば、第1格子又は第2格子を移動しながら(両格子を相対移動させながら)、両格子の相対位置に応じた縞の位相の異なるモアレ画像(以後、一定周期間隔のモアレ画像と呼ぶ)が複数撮影される。装置の省設置面積化の為に、X線撮影装置を縦型とする場合、第1格子及び/または第2格子は被写体より床側に配置されるため、その移動のための駆動系も被写体よりも床側、つまり患者の足下近傍に配置されることになる。このような構成の場合、患者が駆動系のハウジングに接触して、衝撃や振動を与えることが考えられる。患者が車椅子を使用している場合はさらに足下が狭くなり、このような振動の問題が生じやすい。振動が生じると、高精度な移動制御ができないことが懸念されるため、振動の影響が無くなるまで撮影を待機しなければならない。また、足下のハウジングに接しないように患者を配置しなければならず、患者が被写体台に手等を差し入れる方向を制限することになる。或いは、被写体台から離れた場所から、比較的高齢者の患者に手等を差しのばしてもらうことになり、患者に負担をかけ好ましくない。
このような不具合が想定されることから、タルボ・ロー干渉計を用いたX線撮影装置を縦型として実用化することは困難であると考えられていた。
本発明の課題は、タルボ・ロー干渉計を応用した新規なX線画像生成方法及びX線撮影装置、特に縦型のX線撮影装置を提供することである。
請求項1に記載の発明によれば、
X線を照射するX線源と、
複数のスリットを有するマルチスリット、第1格子及び第2格子と、
前記マルチスリットを移動させる駆動部と、
被写体台と、
照射されたX線に応じて電気信号を生成する変換素子が2次元状に配置され、当該変換素子により生成された電気信号を画像信号として読み取るX線検出器と、を備え、
前記駆動部によりマルチスリットを前記X線の照射方向と直交する方向に、前記第1格子及び第2格子に対して相対移動し、マルチスリットが一定周期間隔で移動する毎に、前記X線源により照射されたX線に応じて前記X線検出器が画像信号を読み取る処理を繰り返し、一定周期間隔のモアレ画像を複数得ることを特徴とするX線撮影装置が提供される。
請求項2に記載の発明によれば、
前記X線源、前記マルチスリット、前記被写体台、前記第1格子、前記第2格子、前記X線検出器がこの順に配置されていることを特徴とする請求項1に記載のX線撮影装置が提供される。
請求項3に記載の発明によれば、
前記第1格子及び前記第2格子は同一の保持部に保持され、X線の照射方向における前記第1格子及び前記第2格子の位置関係が固定されていることを特徴とする請求項2に記載のX線撮影装置が提供される。
請求項4に記載の発明によれば、
前記マルチスリットは、前記保持部に前記第1格子及び前記第2格子と一体的に保持され、前記第1格子及び前記第2格子とのX線の照射方向における位置関係が固定されていることを特徴とする請求項3に記載のX線撮影装置が提供される。
請求項5に記載の発明によれば、
前記X線検出器は、前記保持部に前記第1格子及び前記第2格子と一体的に保持され、前記第1格子及び前記第2格子とのX線の照射方向における位置関係が固定されていることを特徴とする請求項3又は4に記載のX線撮影装置が提供される。
請求項6に記載の発明によれば、
前記被写体台は、前記保持部に前記第1格子及び前記第2格子と一体的に保持され、前記第1格子及び前記第2格子とのX線の照射方向における位置関係が固定されていることを特徴とする請求項3〜5の何れか一項に記載のX線撮影装置が提供される。
請求項7に記載の発明によれば、
前記被写体台は、前記マルチスリットとは別の保持部に保持されていることを特徴とする請求項1〜5の何れか一項に記載のX線撮影装置が提供される。
請求項8に記載の発明によれば、
前記駆動部により一定周期毎にマルチスリットの移動と停止を繰り返し、マルチスリットが停止する毎に、前記X線源により照射されたX線に応じて、前記X線検出器が画像信号を読み取る処理を繰り返すことを特徴とする請求項1〜7の何れか一項に記載のX線撮影装置が提供される。
請求項9に記載の発明によれば、
前記駆動部によりマルチスリットを連続的に移動し、一定周期毎に前記X線源により照射されたX線に応じて、前記X線検出器が画像信号を読み取る処理を繰り返すことを特徴とする請求項1〜7の何れか一項に記載のX線撮影装置が提供される。
請求項10に記載の発明によれば、
請求項1〜9の何れか一項に記載のX線撮影装置と、
前記X線撮影装置によって得られたモアレ画像を処理し、被写体の再構成画像を作成する画像処理装置と、
を備えることを特徴とするX線画像システムが提供される。
請求項11に記載の発明によれば、
X線を照射するX線源と、
複数のスリットを有するマルチスリット、第1格子及び第2格子と、
前記マルチスリットを移動させる駆動部と、
被写体台と、
照射されたX線に応じて電気信号を生成する変換素子が2次元状に配置され、当該変換素子により生成された電気信号を画像信号として読み取るX線検出器と、を備え、
前記駆動部によりマルチスリットを前記X線の照射方向と直交する方向に、前記第1格子及び第2格子に対して相対移動し、マルチスリットが一定周期間隔で移動する毎に、前記X線源により照射されたX線に応じて前記X線検出器が画像信号を読み取る処理を繰り返し一定周期間隔のモアレ画像を複数得て、当該複数のモアレ画像に基づき被写体の再構成画像を生成することを特徴とするX線画像生成方法が提供される。
請求項12に記載の発明によれば、
前記X線源、前記マルチスリット、前記被写体台、前記第1格子、前記第2格子、前記X線検出器がこの順に配置されているX線撮影装置を用いることを特徴とする請求項11に記載のX線画像生成方法が提供される。
本発明の撮影装置によれば、タルボ・ロー干渉計を用いたX線撮影装置において、被写体台近傍の検出系構造部を、第1格子及び第2格子の相対的位置を変化させるための移動用駆動系を設けることなく、第1格子、第2格子及びX線検出器の配置のみとすることができる。このようなコンパクト化によって、基本的に患者がX線撮影装置の被写体台近傍の検出系構造部に接触し難い構成とすることができる。仮に、患者の接触によりX線撮影装置に振動が伝わるような場合があっても、被写体台近傍の検出系構造部を堅牢に構成することができるので、共振等の発生を防ぎ、振動自体の伝搬を阻止することができる。よって、振動が収束するまで撮影を待機したり、高精度な位置調整が必要なマルチスリット、第1格子、第2格子の位置関係が振動によって変動したりすることを防ぐことができる。特に、X線撮影装置を縦型に構成した場合には、装置の省設置面積化をはかると共に、患者の被写体台への接近方向を制限しないので、撮影の自由度を向上させることができる。
従って、高画質な位相コントラスト撮影が可能であり、実際の使用に耐久できる実用的な縦型のX線撮影装置を提供することができる。
また、本発明の画像生成方法によれば、従来型タルボ・ロー干渉計よりも、高精度な被写体再構成画像が得られ、或いは、相対位置移動用に必須な駆動系(駆動源、減速伝達系を含む)の精度(特に、起動及び停止特性)を緩和可能となり、装置設計の自由度を増すと共に構成部品のコストダウンをはかることができる。
本実施の形態に係るX線撮影装置の側面図である。 マルチスリットの平面図である。 本体部の機能的構成を示すブロック図である。 タルボ干渉計の原理を説明する図である。 X線撮影装置によるX線撮影時の処理を示すフローチャートである。 5ステップの撮影により得られるモアレ画像を示す図である。 各ステップのモアレ画像の注目画素のX線相対強度を示すグラフである。 コントローラによる処理を示すフローチャートである。 横型のX線撮影装置の側面図である。 (a)被写体を配置し、マルチスリットを移動して撮影された各ステップのモアレ画像である。(b)被写体を配置せずに、マルチスリットを移動して撮影された各ステップのモアレ画像である。(c)(a)のモアレ画像を用いて作成された再構成画像である。 (a)被写体を配置し、第2格子を移動して撮影された各ステップのモアレ画像である。(b)被写体を配置せずに、第2格子を移動して撮影された各ステップのモアレ画像である。(c)(a)のモアレ画像を用いて作成された再構成画像である。 被写体台を第1格子及び第2格子の保持部と別の保持部に保持した場合のX線撮影装置を示す側面図である。 図12に示すX線撮影装置の上面図である。 シャッターの一例を示す図である。 X線撮影にシャッターを用いる場合のX線源、シャッター、X線検出器、マルチスリットの駆動部のそれぞれの動作タイミングを示すタイミングチャートである。 他の実施形態に係るX線撮影装置を示す図である。 図15に示すX線撮影装置により行われる通常のX線撮影の様子を示す図である。 他の実施形態に係るX線撮影装置を示す図である。
本発明者等は鋭意検討を行った結果、第1格子の第2格子に対する相対移動、又は第2格子の第1格子に対する相対移動により複数枚のモアレ画像を生成する機能と、マルチスリットによりX線の照射線量を増大させる機能という、従来のタルボ・ロー干渉計の概念にとらわれず、第1の格子及び第2の格子の位置は固定(相対移動無し)とし、マルチスリットを当該第1及び第2の格子に対し、相対移動させる構成によっても、従来のタルボ・ロー干渉計と同様のモアレ画像が得られることを見出した。これにより、従来のタルボ・ロー干渉計に於ける課題、特に縦型に配置した際に想定される課題を解消することができ、タルボ・ロー干渉計を用いた縦型のX線撮影装置を実用化することが可能となる。
以下、図面を参照して本発明の実施の形態について説明する。
図1は本実施形態に係るX線画像システムを示す。X線画像システムは、X線撮影装置1とコントローラ5を備える。X線撮影装置1はタルボ・ロー干渉計によるX線撮影を行い、コントローラ5は当該X線撮影により得られたモアレ画像を用いて被写体の再構成画像を作成する。
X線撮影装置1は、図1に示すように、X線源11、マルチスリット12、被写体台13、第1格子14、第2格子15、X線検出器16、保持部17、本体部18を備える。
X線撮影装置1は縦型であり、X線源11、マルチスリット12、被写体台13、第1格子14、第2格子15、X線検出器16は、この順序に重力方向であるz方向に配置される。X線源11の焦点とマルチスリット12間の距離をd1(mm)、X線源11の焦点とX線検出器16間の距離をd2(mm)、マルチスリット12と第1格子14間の距離をd3(mm)、第1格子14と第2格子15間の距離をd4(mm)で表す。
距離d1は好ましくは5〜500(mm)であり、さらに好ましくは5〜300(mm)である。
距離d2は、一般的に撮影室の高さは3(m)程度又はそれ以下であることから、少なくとも3000(mm)以下であることが好ましい。なかでも、距離d2は400〜5000(mm)が好ましく、さらに好ましくは500〜2000(mm)である。
X線源11の焦点と第1格子14間の距離(d1+d3)は、好ましくは300〜5000(mm)であり、さらに好ましくは400〜1800(mm)である。
X線源11の焦点と第2格子15間の距離(d1+d3+d4)は、好ましくは400〜5000(mm)であり、さらに好ましくは500〜2000(mm)である。
それぞれの距離は、X線源11から照射されるX線の波長から、第2格子15上に第1格子14による格子像(自己像)が重なる最適な距離を算出し、設定すればよい。
X線源11、マルチスリット12、被写体台13、第1格子14、第2格子15、X線検出器16は、同一の保持部17に一体的に保持され、z方向における位置関係が固定されている。保持部17はC型のアーム状に形成され、本体部18に設けられた駆動部18aによりz方向に移動可能に本体部18に取り付けられている。
X線源11は、緩衝部材17aを介して保持されている。緩衝部材17aは、衝撃や振動を吸収できる材料であれば何れの材料を用いてもよいが、例えばエラストマー等が挙げられる。X線源11はX線の照射によって発熱するため、X線源11側の緩衝部材17aは加えて断熱素材であることが好ましい。
X線源11はX線管を備え、当該X線管によりX線を発生させて重力方向(z方向)にX線を照射する。X線管としては、例えば医療現場で広く一般に用いられているクーリッジX線管や回転陽極X線管を用いることができる。陽極としては、タングステンやモリブデンを用いることができる。
X線の焦点径は、0.03〜3(mm)が好ましく、さらに好ましくは0.1〜1(mm)である。
マルチスリット12は回折格子であり、図2に示すようにx方向に複数のスリットが所定間隔で設けられている。マルチスリット12はシリコンやガラスといったX線の吸収率が低い材質の基板上に、タングステン、鉛、金といったX線の遮蔽力が大きい、つまりX線の吸収率が高い材質により形成される。例えば、フォトリソグラフィーによりレジスト層がスリット状にマスクされ、UVが照射されてスリットのパターンがレジスト層に転写される。露光によって当該パターンと同じ形状のスリット構造が得られ、電鋳法によりスリット構造間に金属が埋め込まれて、マルチスリット12が形成される。
マルチスリット12のスリット周期は1〜60(μm)である。スリット周期は、図2に示すように隣接するスリット間の距離を1周期とする。スリットの幅(x方向の長さ)はスリット周期の1〜60(%)の長さであり、さらに好ましくは10〜40(%)である。スリットの高さ(z方向の長さ)は1〜500(μm)であり、好ましくは1〜150(μm)である。
マルチスリット12のスリット周期をw(μm)、第1格子14のスリット周期をw(μm)とすると、スリット周期wは下記式により求めることができる。
=w・(d3+d4)/d4
当該式を満たすように周期wを決定することにより、マルチスリット12及び第1格子14の各スリットを通過したX線により形成される自己像が、それぞれ第2格子15上で重なり合い、いわばピントが合った状態とすることができる。
図1に示すように、マルチスリット12に隣接して、マルチスリット12をz方向と直交するx方向(スリット配列方向)に移動させる駆動部12aが設けられる。駆動部12aとしては、駆動用モータ、及び、例えばウォーム減速機等の比較的大きな減速比の駆動機構(駆動伝達機構)を単体で又は組合せて用いることができる。
第1格子14は、マルチスリット12と同様にx方向に複数のスリットが設けられた回折格子である。第1格子14は、マルチスリット12と同様にUVを用いたフォトリソグラフィーによって形成することもできるし、いわゆるICP法によりシリコン基板に微細細線で深掘加工を行い、シリコンのみで格子構造を形成することとしてもよい。第1格子14のスリット周期は1〜20(μm)である。スリットの幅はスリット周期の20〜70(%)であり、好ましくは35〜60(%)である。スリットの高さは1〜100(μm)である。
第1格子14として位相型を用いる場合、スリットの高さ(z方向の長さ)はスリット周期を形成する2種の素材、つまりX線透過部とX線遮蔽部の素材による位相差(X線の位相差)がπ/8〜15×π/8となる高さとする。好ましくは、π/4〜3×π/4となる高さである。第1格子14として吸収型を用いる場合、スリットの高さはX線遮蔽部によりX線が十分吸収される高さとする。
第1格子14が位相型である場合、第1格子14と第2格子15間の距離d4は、次の条件をほぼ満たすことが必要である。
d4=(m+(1/2))・w /λ
なお、mは整数であり、λはX線の波長である。
第2格子15は、マルチスリット12と同様にx方向に複数のスリットが設けられた回折格子である。第2格子15もフォトリソグラフィーにより形成することができる。第2格子15のスリット周期は1〜20(μm)である。スリットの幅はスリット周期の30〜70(%)であり、好ましくは35〜60(%)である。スリットの高さは1〜100(μm)である。
本実施例では第1格子14及び第2格子15は、それぞれの格子面がz方向に対し垂直(x−y平面内で平行)であり、第1格子のスリット配列方向と第2格子のスリット配列方向とは、x−y平面内で所定角度だけ傾けて配置されているが、両者を平行な配置としても良い。
上記マルチスリット12、第1格子14、第2格子15は、例えば下記のように構成することができる。
X線源11のX線管の焦点径;300(μm)、管電圧:40(kVp)、付加フィルタ:アルミ1.6(mm)
X線源11の焦点からマルチスリット12までの距離d1:240(mm)
マルチスリット12から第1格子14までの距離d3:1110(mm)
マルチスリット12から第2格子15までの距離d3+d4:1370(mm)
マルチスリット12のサイズ:10(mm四方)、スリット周期:22.8(μm)
第1格子14のサイズ:50(mm四方)、スリット周期:4.3(μm)
第2格子15のサイズ:50(mm四方)、スリット周期:5.3(μm)
X線検出器16は、照射されたX線に応じて電気信号を生成する変換素子が2次元状に配置され、当該変換素子により生成された電気信号を画像信号として読み取る。
X線検出器16の画素サイズは10〜300(μm)であり、さらに好ましくは50〜200(μm)である。
X線検出器16は第2格子15に当接するように保持部17に位置を固定することが好ましい。第2格子15とX線検出器16間の距離が大きくなるほど、X線検出器16により得られるモアレ画像がボケるからである。
X線検出器16としては、FPD(Flat Panel Detector)を用いることができる。FPDには、X線をシンチレータを介して光電変換素子により電気信号に変換する間接変換型、X線を直接的に電気信号に変換する直接変換型があるが、何れを用いてもよい。
間接変換型は、CsIやGdあるいはGdS等のシンチレータプレートの下に、光電変換素子がTFT(薄膜トランジスタ)とともに2次元状に配置されて各画素を構成する。X線検出器16に入射したX線がシンチレータプレートに吸収されると、シンチレータプレートが発光する。この発光した光により、各光電変換素子に電荷が蓄積され、蓄積された電荷は画像信号として読み出される。
直接変換型は、アモルファスセレンの熱蒸着により、100〜1000(μm)の膜厚のアモルファスセレン膜がガラス上に形成され、2次元状に配置されたTFTのアレイ上にアモルファスセレン膜と電極が蒸着される。アモルファスセレン膜がX線を吸収するとき、電子正孔対の形で物質内にキャリアが遊離され、電極間の電圧信号がTFTにより読み取られる。
なお、CCD(Charge Coupled Device)、X線カメラ等の撮影手段をX線検出器16として用いてもよい。
X線撮影時のFPDによる一連の処理を説明する。
まずFPDはリセットを行い、前回の撮影(読取)以降に残存する不要な電荷を取り除く。その後、X線の照射が開始するタイミングで電荷の蓄積が行われ、X線の照射が終了するタイミングで蓄積された電荷が画像信号として読み取られる。なお、リセットの直後や画像信号の読み取り後に、蓄積されている電荷の電圧値を検出するダーク読み取りを行い、当該電圧値を補正値としてX線照射後に蓄積された電荷の電圧値から補正値を差し引いた電圧値を画像信号として出力してもよい。これにより、画像信号に対しいわゆるオフセット補正を行うことができる。
本体部18は、図3に示すように、制御部181、操作部182、表示部183、通信部184、記憶部185を備えて構成されている。
制御部181は、CPU(Central Processing Unit)やRAM(Random Access Memory)等から構成され、記憶部185に記憶されているプログラムとの協働により、各種処理を実行する。例えば、制御部181はコントローラ5から入力される撮影条件の設定情報に従って、X線源11からのX線照射のタイミングやX線検出器16による画像信号の読取タイミング等を制御する。
操作部182は曝射スイッチや撮影条件等の入力操作に用いるキー群の他、表示部183のディスプレイと一体に構成されたタッチパネルを備え、これらの操作に応じた操作信号を生成して制御部181に出力する。
表示部183は制御部181の表示制御に従って、ディスプレイに操作画面やX線撮影装置1の動作状況等を表示する。
通信部184は通信インターフェイスを備え、ネットワーク上のコントローラ5と通信する。例えば、通信部184はX線検出器16によって読み取られ、記憶部185に記憶されたモアレ画像をコントローラ5に送信する。
記憶部185は、制御部181により実行されるプログラム、プログラムの実行に必要なデータを記憶している。また、記憶部185はX線検出器16によって得られたモアレ画像を記憶する。
コントローラ5は、オペレータによる操作に従ってX線撮影装置1の撮影動作を制御し、X線撮影装置1により得られたモアレ画像を用いて被写体の再構成画像を作成する。本実施形態では被写体の再構成画像を作成する画像処理装置としてコントローラ5を用いた例を説明するが、X線画像に様々な画像処理を施す専用の画像処理装置をX線撮影装置1と接続し、当該画像処理装置により再構成画像の作成を行うこととしてもよい。
上記X線撮影装置1のタルボ・ロー干渉計によるX線撮影方法を説明する。
図4に示すように、X線源11から照射されたX線が第1格子14を透過すると、透過したX線がz方向に一定の間隔で像を結ぶ。この像を自己像といい、自己像が形成される現象をタルボ効果という。自己像を結ぶ位置に第2格子15が平行に配置され、当該第2格子15はその格子方向が第1格子14の格子方向と平行な位置からわずかに傾けられているので、第2格子15を透過したX線によりモアレ画像Mが得られる。X線源11と第1格子14間に被写体Hが存在すると、被写体HによってX線の位相がずれるため、図4に示すようにモアレ画像M上の干渉縞は被写体Hの辺縁を境界に乱れる(歪む)。この干渉縞の乱れ(歪み)を、モアレ画像Mを処理することによって検出し、被写体像を画像化することができる。これがタルボ干渉計の原理である。
X線撮影装置1では、X線源11と第1格子14との間のX線源11に近い位置に、マルチスリット12が配置され、タルボ・ロー干渉計によるX線撮影が行われる。タルボ干渉計はX線源11が理想的な点線源であることを前提としているが、実際の撮影にはある程度焦点径が大きい焦点が用いられるため、マルチスリット12によってあたかも点線源が複数連なってX線が照射されているかのように多光源化する。これがタルボ・ロー干渉計によるX線撮影法であり、焦点径がある程度大きい場合にも、タルボ干渉計と同様のタルボ効果を得ることができる。
従来のタルボ・ロー干渉計では、マルチスリット12は上述のように多光源化と照射線量の増大を目的に用いられ、縞走査法によりモアレ画像を得るため、第1格子14又は第2格子15を相対移動させていた。しかし、本実施形態では、第1格子14又は第2格子15を相対移動させるのではなく、第1格子14及び第2格子15の位置は固定したまま、第1格子14及び第2格子15に対してマルチスリットを移動させることで一定周期間隔のモアレ画像を複数得る。
図5は、X線撮影装置1によるX線撮影の流れを示すフローチャートである。
X線撮影には上述のタルボ・ロー干渉計によるX線撮影方法が用いられ、被写体像の再構成には縞走査法が用いられる。X線撮影装置1ではマルチスリット12が等間隔毎に複数ステップ移動され、ステップ毎に撮影が行われて、各ステップのモアレ画像が得られる。
ステップ数は2〜20、さらに好ましくは3〜10である。視認性の高い再構成画像を短時間で得るという観点からすれば、5ステップが好ましい(参照文献(1)K.Hibino, B.F.Oreb and D.I.Farrant, Phase shifting for nonsinusoidal wave forms with phase−shift errors, J.Opt.Soc.Am.A, Vol.12, 761−768(1995)、参照文献(2)A.Momose, W.Yashiro, Y. Takeda, Y.Suzuki and T.Hattori, Phase Tomography by X−ray Talbot Interferometetry for biological imaging, Jpn. J. Appl. Phys., Vol.45, 5254−5262(2006))。
図5に示すように、オペレータにより曝射スイッチがON操作されると(ステップS1;Y)、駆動部12aによりマルチスリット12が移動され、複数ステップの撮影が実行され、モアレ画像が生成される(ステップS2)。
まず、マルチスリット12が停止した状態でX線源11によるX線の照射が開始される。X線検出器16ではリセット後、X線照射のタイミングに合わせて電荷が蓄積され、X線の照射停止のタイミングに合わせて蓄積された電荷が画像信号として読み取られる。これが1ステップ分の撮影である。1ステップ分の撮影が終了するタイミングでマルチスリット12の移動が開始され、所定量移動すると停止され、次のステップの撮影が行われる。このようにして、マルチスリット12の移動と停止が所定のステップ数分だけ繰り返され、マルチスリット12が停止したときにX線の照射と画像信号の読み取りが行われる。読み取られた画像信号はモアレ画像として本体部18に出力される。
例えば、マルチスリット12のスリット周期を22.8(μm)とし、5ステップの撮影を10秒で行うとする。マルチスリット12がそのスリット周期の1/5に該当する4.56(μm)移動し停止する毎に撮影が行われる。撮影時間でいえば曝射スイッチON後、2、4、6、8、10秒後にそれぞれ撮影が行われる。
従来のように第2格子15(又は第1格子)を移動させる場合、第2格子15のスリット周期は比較的小さく、各ステップの移動量も小さくなるが、マルチスリット12のスリット周期は第2格子15よりも比較的大きく、各ステップの移動量も大きい。例えば、スリット周期5.3(μm)の第2格子15のステップ毎の移動量は1.06(μm)であるのに対し、スリット周期22.8(μm)のマルチスリット12の移動量は4.56(μm)と約4倍の大きさである。同一の駆動伝達系(駆動源、減速伝達系を含む)を使用し、各ステップの撮影に際し、駆動部12aの起動と停止を繰り返して撮影を行った場合、移動用のパルスモータ(駆動源)の制御量(駆動パルス数)に対応した実際の移動量に占める、起動時及び停止時の駆動部12aのバックラッシュ等の影響による移動量誤差の割合は、本実施形態のようにマルチスリット12を移動させる方式の方が小さくなる。これは、後述するサインカーブに沿ったモアレ画像を得やすく、起動及び停止を繰り返しても高精細な再構成画像が得られることを示している。或いは、従来方式による画像でも充分診断に適合する場合には、モータ(駆動源)を含む駆動伝達系全体の精度(特に、起動特性及び停止特性)を緩和し、駆動伝達系を構成する部品のコストダウンが可能であることを示している。
各ステップの撮影が終了すると、本体部18からコントローラ5に、各ステップのモアレ画像が送信される(ステップS3)。本体部18からコントローラ5に対しては各ステップの撮影が終了する毎に1枚ずつ送信することとしてもよいし、各ステップの撮影が終了し、全てのモアレ画像が得られた後、まとめて送信することとしてもよい。
図8は、モアレ画像を受信した後のコントローラ5の処理の流れを示すフローチャートである。
図8に示すように、まずモアレ画像の解析が行われ(ステップS11)、再構成画像の作成に使用できるか否かが判断される(ステップS12)。理想的な送り精度によりマルチスリット12を一定の送り量で移動できた場合、図6に示すように、5ステップの撮影でマルチスリット12のスリット周期1周期分のモアレ画像5枚が得られる。各ステップのモアレ画像は0.2周期という一定周期間隔毎に縞走査をした結果であるので、各モアレ画像の任意の1画素に注目すると、その信号値を正規化して得られるX線相対強度は、図7に示すようにサインカーブを描く。よって、コントローラ5は得られた各ステップのモアレ画像のある画素に注目してX線相対強度を求める。各モアレ画像から求められたX線相対強度が、図7に示すようなサインカーブを形成すれば、一定周期間隔のモアレ画像が得られているので、再構成画像の作成に使用できると判断することができる。
なお、上記サインカーブ形状は、マルチスリット開口幅、位相格子の周期、及び位相格子の格子間距離に依存し、また、放射光のようなコヒーレント光の場合には三角波形状となるが、マルチスリット効果によりX線が準コヒーレント光として作用する為、サインカーブを描くものとなる。
各ステップのモアレ画像の中にサインカーブを形成できないモアレ画像がある場合、再構成画像の作成に使用できないと判断され(ステップS12;N)、撮影のタイミングを変更して再撮影するよう指示する制御情報がコントローラ5からX線撮影装置1に送信される(ステップS13)。例えば、図7に示すように、3ステップ目は本来0.4周期のところ、周期がずれて0.35周期のモアレ画像が得られた場合であれば、駆動部12aの送り精度の低下が原因(例えば、パルスモータの駆動パルスへのノイズ重畳等)と考えられる。よって、0.05周期分だけ撮影のタイミングを早めて3ステップ目のみ再撮影を行うよう指示すればよい。或いは、5ステップ全てについて再撮影し、3ステップ目のみ0.05周期分の撮影時間を早めるように指示してもよい。5ステップ全てのモアレ画像が所定量ずつサインカーブからずれている場合、駆動部12aの起動から停止までの駆動パルス数を増やすか、或いは減らすように指示してもよい。
X線撮影装置1では、当該制御情報に従って撮影のタイミングが調整され、図5に示すX線撮影の処理が再度実行される。
一方、再構成画像の作成にモアレ画像を使用できると判断された場合(ステップS12;Y)、コントローラ5によってモアレ画像が処理され、被写体の再構成画像が作成される(ステップS14)。具体的には、5枚のモアレ画像の各画素についてステップ毎の強度変化(信号値の変化)が算出され、当該強度変化より微分位相が算出される。必要であれば、位相接続(位相アンラップ)が行われ、ステップ全体の位相が求められる。当該位相からz方向における光路差(屈折率差に起因する光路差)が算出され、被写体の形状を表す再構成画像が作成される(上記参照文献(1)、(2))。作成された再構成画像はコントローラ5に表示されるので、オペレータは当該再構成画像を確認することができる。
〈撮影実験〉
撮影実験により、第1格子14又は第2格子15ではなく、マルチスリット12を移動させた場合にも同様なモアレ画像及び再構成画像が得られることを検証した。
図9に、撮影実験に用いた横型のX線撮影装置を示す。
X線源21、マルチスリット12、被写体台13、第1格子14、第2格子15及びX線検出器16を、横方向(y方向)に配置した横型のX線撮影装置3の試作機を作製し、当該試作機を撮影実験に用いた。X線源21には、市販品のX線管のモリブデンをタングステンに改造したX線管を使用した。
この試作機においてマルチスリット12をx方向に移動させて撮影を行い、モアレ画像を得て被写体の再構成画像を作成した。次に、同じ試作機において第2格子15をx方向移動させて撮影を行い、同様に再構成画像を作成した。
撮影条件は以下の通りである。マルチスリット12、第2格子15の何れを移動させた場合も同じ撮影条件を用いた。
X線管の焦点径;300(μm)、管電圧;40kV、付加フィルタ;アルミ1.6(mm)、中心エネルギー28(keV)
X線検出器;Condor486(Fairchild Imaging社製)、画素サイズ;15(μm)
X線源11の焦点からマルチスリットまでの距離d1: 34(mm)
マルチスリットから第1格子までの距離d3 :1110(mm)
マルチスリットから第2格子までの距離d3+d4 :1370(mm)
マルチスリットのサイズ:5(mm四方)、スリット周期:22.8(μm)
第1格子のサイズ:50(mm四方)、スリット周期:4.3(μm)
第2格子のサイズ:50(mm四方)、スリット周期:5.3(μm)
図10(a)〜図10(c)は、マルチスリットを移動させて得られた画像を示している。図10(a)は被写体(サンプル)を配置して撮影された1〜5ステップのモアレ画像、図10(b)は被写体を配置せずに撮影された1〜5ステップのモアレ画像である。図10(c)は、図10(a)の各ステップのモアレ画像から作成された再構成画像を示す。
一方、図11(a)〜図11(c)は第2格子を移動させて得られた画像を示している。
図11(a)は被写体を配置して撮影された1〜5ステップのモアレ画像、図11(b)は被写体を配置せずに撮影された1〜5ステップのモアレ画像、図11(c)は図11(a)の各ステップのモアレ画像から作成された再構成画像である。
図10(a)と図11(a)、図10(b)と図11(b)、図10(c)と図11(c)をそれぞれ比較して分かるように、マルチスリットを移動させた場合も、第2格子を移動させた場合と比べて個々の画像自体の画質が劣化することもなく、更に、各画像の位相(周期)関係が維持され易いので、同等以上の再構成画像を得ることができる。
撮影実験は横型のX線撮影装置で行ったが、第1格子又は第2格子ではなくマルチスリットを移動させても同じ画像が得られること自体は、X線撮影装置が縦型でも横型でも変わらない。従来は複数枚のモアレ画像を得るためにマルチスリットを移動させる概念が無く、第1格子又は第2格子を移動させる構成に拘束されていた。本発明者等はマルチスリットを移動させる構成でも同様のモアレ画像及び再構成画像が得られることを見出し、患者が接近する被写体台近傍周辺部から精密移動部を取り除くことで撮影への悪影響を排除し、これを縦型に配置したX線撮影装置に適用することでタルボ・ロー干渉計を実用化することが可能となった。
以上のように、本実施形態によれば、X線撮影装置1は、X線源11、マルチスリット12、被写体台13、第1格子14、第2格子15、X線検出器16がこの順に重力方向に配置された縦型であり、マルチスリット12をx方向に移動させる駆動部を備える。マルチスリット12が一定周期間隔で移動する毎に、X線源11により照射されたX線に応じてX線検出器16が画像信号の読み取る処理を繰り返し、一定周期間隔のモアレ画像を複数得る。
縦型のX線撮影装置1において、第2格子15(又は第1格子14)ではなくマルチスリット12を移動する構成とすることにより、被写体より床側に配置される第2格子15付近に第2格子15を移動させるための駆動部を設けるスペースが不要となる。一方、駆動部12aが配置されるマルチスリット12はX線源11近くに配置されるので、患者の足下付近を、駆動系を設けることなく第1格子14、第2格子15、X線検出器16のみの配置とすることができ、患者が接触し難い構成とすることができる。駆動系が無い被写体より下部を堅牢に構成することができるので、仮に患者の接触によりX線撮影装置1に振動が伝わるような場合があっても、共振等の発生を防ぎ、振動自体の伝搬を阻止することができる。よって、振動が収束するまで撮影を待機したり、マルチスリット12、第1格子14及び第2格子15の位置関係が変動したりすることを防止することができる。さらに、患者の被写体台への接近方向を制限しないので、撮影の自由度を向上させることができる。従って、高画質な位相コントラスト撮影が可能であり、実際の使用に耐久できる実用的な縦型X線撮影装置1を提供することができる。
また、マルチスリット12は、保持部17に第1格子14及び第2格子15と一体的に保持され、第1格子14及び第2格子15とのX線の照射方向における位置関係が固定されている。これにより、X線撮影装置1の輸送時や設置時に生じた衝撃や振動によるX線の照射方向における関連部品の相対位置関係を維持することができる。相対位置関係を維持することにより、タルボ・ロー干渉計によるX線撮影によって高画質なモアレ画像を得ることができ、モアレ画像から作成される被写体の再構成画像の再現性を向上させることができる。
また、X線検出器16は、保持部17に第1格子14及び第2格子15と一体的に保持され、第1格子14及び第2格子15とのX線の照射方向における位置関係が固定されている。これにより、X線検出器16と第1格子14及び第2格子15との位置関係を維持することができる。一般的に、X線撮影装置1の出荷時には第2格子15により形成されるモアレ画像がボケない位置にX線検出器16が調整配置されるため、この位置関係を維持することにより、位置関係の変動によるモアレ画像のボケを防止することができる。
なお、上記実施形態は本発明の好適な一例であり、これに限定されない。
例えば、上記実施形態では、X線源11、マルチスリット12、被写体台13、第1格子14、第2格子15、X線検出器16をこの順に配置(以下、第1の配置と呼ぶ)したが、X線源11、マルチスリット12、第1格子14、被写体台13、第2格子15、X線検出器16の配置(以下、第2の配置と呼ぶ)としても、第1格子14及び第2格子15は固定のまま、マルチスリット12の移動により、再構成画像を得ることが可能である。
第2の配置においては、被写体の厚み分だけ、被写体中心と第1格子14は離れることになり、上記の実施形態に比べ感度の点でやや劣ることになるが、一方で、被写体への被曝線量低減を考慮すると、当該配置の方が第1格子14でのX線吸収分だけX線を有効に活用していることになる。
また、被写***置での実効的な空間分解能は、X線の焦点径、検出器の空間分解能、被写体の拡大率、被写体の厚さ等に依存するが、上記実施例に於ける検出器の空間分解能が120μm(ガウスの半値幅)以下の場合には、第1の配置よりも第2の配置の方が実効的な空間分解能は小さくなる。
感度、空間分解能、及び、第1格子14でのX線吸収量等を考慮して、第1格子14、被写体台13の配置順をきめることが好ましい。
また、X線検出器16として、バッテリを内蔵し、無線により画像信号を本体部18に出力するケーブルレスのカセッテタイプFPDを用いてもよい。カセッテタイプFPDによれば、本体部18に接続するケーブル類を排除することができ、X線検出器16周辺の更なる小スペース化を図ることができる。小スペース化によって被写体の足下を広く構成し、より患者が接触し難い構成とすることができる。
また、被写体台13は患者との接触により振動を伝えやすい。よって、被写体台13を高精度な位置関係が求められるマルチスリット、第1格子14、第2格子15等が含まれる保持部17と切り離し、別の保持部に保持することとしてもよい。図12は被写体台13を別の保持部13bにより保持したときの側面図、図13は上面図である。このように被写体台13を第1格子14、第2格子15等から離間させて別体構成とすることにより、マルチスリット12、第1格子14、第2格子15の位置関係に及ぶ影響をできるだけ減らし、当該位置関係の維持を図ることができる。
被写体台13を別体構成とした場合、図12及び図13に示すように、被写体台13をz方向に移動させる駆動部13aを保持部13bに設ける。これにより、被写体の高さに合わせて、被写体台13の位置を調整することができる。被写体台13には患者の体重等の負荷がかかるが、被写体台13を保持部17と別体とすることにより、昇降する保持部17にかかる負荷を除去することができる。負荷に耐えるために保持部17を強化する必要がなく、コストを低減することができる。
また、上記実施形態では、各ステップの撮影毎にマルチスリット12の移動と停止を繰り返す例を説明した。しかし、駆動部12aの構成によっては、移動と停止を繰り返すことにより制御量と実際の移動量との誤差が累積拡大し、一定間隔毎のモアレ画像が得難いことが想定される場合には、連続的にマルチスリット12を移動させながら複数回の撮影を行う連続撮影方式が好ましい。曝射スイッチがONされると、マルチスリット12の移動を開始し、起動時の不安定移動領域を越え、安定移動領域に達した後、更に、マルチスリットを連続的に移動させて、所定量(例えば4.56(μm))移動する毎にX線のパルス照射と画像信号の読み取りを繰り返す。
連続撮影方式におけるX線源11にはパルス照射可能なX線管を用いることが好ましい。
また、X線検出器16としては、対応できるフレームレート(単位時間あたり撮影可能な回数)が大きく、動画撮影が可能なFPDが好ましい。数百m秒〜数秒の間に5回以上の撮影を行うことを想定すると、少なくとも10フレーム/秒のフレームレートが必要であり、好ましくは20フレーム/秒以上のフレームレートである。
なお、撮影においてX線検出器16は各ステップの撮影毎にオフセット補正を行うことが可能である。各ステップの撮影間隔が短く、オフセット補正を行う余裕が無い場合は、最初のステップの撮影時のみダーク読み取りを行い、オフセット補正値を得て、当該補正値を後のステップの撮影にも適用してもよい。或いは、一連の撮影終了後にダーク読み取りを行ってオフセット補正値を得て、当該補正値を各撮影に共通に使用することとしてもよい。
連続撮影方式の場合、各ステップの前後でさらに予備撮影を行うこととしてもよい。
駆動部12aが理想的な送り精度によりマルチスリット12を一定の送り量、つまり一定の移動速度で移動できた場合、図7に示すように各ステップのモアレ画像によりサインカーブを形成することができる。しかし、経年変化や駆動部12aのバックラッシュ、起動時の慣性影響等によって送り量にずれが生じると、一定周期間隔のモアレ画像が得られない。例えば、図7に示すように、3ステップのモアレ画像は本来0.4周期に該当するが、3ステップのときの駆動部12aの送り量がずれると、0.4周期前後のモアレ画像が得られる。
このように各ステップのモアレ画像の周期がばらつくと、正確な位相が計算できず、再構成画像において被写体像を正確に再現できない。そこで、例えば撮影時間が2、4、6、8、10秒の各ステップの撮影に、各撮影時間±0.1秒の撮影時間で撮影を行う予備撮影を加えて合計15回の撮影を行う。これにより、1ステップでは1.9秒、2.0秒、2.1秒の各撮影時間のモアレ画像が得られる等、各ステップにつきそれぞれ3枚のモアレ画像が得られるので、そのうちX線相対強度のサインカーブに最も近いモアレ画像を選択して用いる。これにより、駆動部12aの送り量に誤差が生じたとしても、再構成画像の再現性の向上を図ることができる。
予備撮影する調整時間として上記に挙げた±0.1秒は例示であり、調整時間はテスト撮影によって適宜決定すればよい。例えば、X線撮影装置1の設置時に、各ステップの撮影の前後で、±0.1秒、±0.2秒等、予備撮影時の調整時間を変えてテスト撮影を行い、最もサインカーブに一致しやすい調整時間を求めることとしてもよい。これにより、駆動部12aの機器特性によって必要な調整時間が異なる場合にも対応することができる。
連続撮影方式におけるX線源11のX線管がパルス照射に対応していない場合、図12に示すようにX線源11のX線照射口の付近にシャッター22を設けてもよい。シャッター22として、カメラ等に一般的に用いられるシャッター機構を用いてもよいが、図14に例示する構成とし、照射野絞りの機能も備えることとしてもよい。
図14に示すシャッター22は、円盤状のX線遮蔽部221に開口部222が設けられて構成されている。回転軸223を介してX線遮蔽部221が回転し、X線源11のX線照射範囲にX線遮蔽部221が位置する間は、シャッター22は閉状態となる。X線源11のX線照射範囲に開口部222が一致する間は、シャッター22が開状態となり、開口部222を介してX線が照射される。このように、シャッター22の開閉によってパルス照射と同様のX線照射を行うことができる。開口部222は絞りとしても機能し、開口部222の大きさを調整することによりX線の照射野を調整することができる。
シャッター22の回転速度は、5ステップの撮影間隔に合わせてシャッター22が開閉されるように調整される。図15は、5ステップの連続撮影時のX線源11、シャッター22、X線検出器16、駆動部12aのタイミングチャートを示す。図15に示すように、曝射スイッチがONされると、駆動部12aによりマルチスリット12の移動が開始され、所定時間後にX線源11によるX線照射が開始される。X線照射の開始と同時にシャッター22が開かれ、X線検出器16による電荷蓄積が行われる。所定時間後、シャッター22が閉じられると、そのタイミングに合わせてX線検出器16により蓄積された電荷が画像信号として読み取られる。このように、X線照射の開始後、シャッター22の開閉に合わせてX線検出器16による画像信号の蓄積と読み取りが5ステップ分繰り返される。5ステップを終えたタイミングで、X線源11によるX線照射が停止され、シャッター22の回転停止によりシャッター22の開閉動作も停止される。また、X線検出器16による電荷の蓄積及び読み取りが停止される。
〈他の実施形態〉
上記実施形態に係るX線撮影装置1は、タルボ・ロー干渉計によるX線撮影専用の構成を有する。しかし、医療施設によっては、通常のX線撮影用にX線源が予め施設の天井部分に取り付けられていたり、被写体台が床に固定されていたりする場合がある。ここへX線撮影装置1を導入すれば、備え付けのX線撮影機器を有効利用できない。以下、他の実施形態として、既存のX線撮影機器を利用して通常のX線撮影と、タルボ・ロー干渉計によるX線撮影の両方が可能なX線撮影装置の例を示す。
図16は他の実施形態に係るX線撮影装置2を示す側面図である。X線撮影装置2において、X線撮影装置1と同一の構成部には同一の符号を付している。図16に示すように、X線撮影装置2は、X線源21、被写体台13及びX線検出器16が別体構成とされている。保持部17にはマルチスリット12と第1格子14及び第2格子15が保持され、X線の照射方向(z方向)にその位置関係が固定されている。本体部18の下部には車輪が設けられており、本体部18及び保持部17の位置を自在に移動させることが可能である。
X線源21、被写体台13、X線検出器16は、医療施設に予め備え付けられたX線撮影機器である。X線源21はz方向に移動可能に天井部分に設置されている。被写体台13及びX線検出器16は床に固定された保持部13b、16bにそれぞれ保持されている。保持部13b、16bにはそれぞれ駆動部13a、16aが設けられており、駆動部13a、16aにより被写体台13及びX線検出器16をz方向に移動させることができる。
X線撮影装置2において、マルチスリット12、第1格子14、第2格子15は、例えば次のように構成することができる。
X線源21のX線管の焦点径:600(μm)、管電圧:40(kVp)、付加フィルタ:アルミ1.6(mm)の条件下において、
X線源21の焦点からマルチスリット12までの距離d1:240(mm)
マルチスリット12から第1格子14までの距離d3:1690(mm)
マルチスリット12から第2格子15までの距離d3+d4:1990(mm)
マルチスリット12のサイズ:10(mm四方)、スリット周期:30(μm)
第1格子14のサイズ:50(mm四方)、スリット周期:4.5(μm)
第2格子15のサイズ:50(mm四方)、スリット周期:5.3(μm)
タルボ・ロー干渉計によるX線撮影を行う場合、図16に示すように、まず被写体の高さ位置に合わせて被写体台13が移動される。次に、被写体台13から離間するようにX線検出器16が移動されると、その間に第1格子14及び第2格子15が配置されるように、本体部18が移動され、位置が固定される。その後、被写体台13と第1格子14が近接するように保持部17の位置が移動される。さらに、第2格子15とX線検出器16が近接するように、X線検出器16の位置が移動され、X線源21がマルチスリット12に近接するように、X線源21が移動される。
一方、通常のX線撮影を行う場合、図17に示すように、本体部18が移動されて、被写体台13とX線検出器16間から保持部17が取り外される。通常のX線撮影とは吸収コントラスト法による撮影であり、被写体とX線検出器16が密着した位置に配置される密着撮影である。保持部17の除去後、被写体の高さ位置に合わせて被写体台13が移動され、X線検出器16は被写体台13に密着するように移動される。
なお、図18に示すX線撮影装置3のように、撮影対象が手指等の場合、高齢の患者であっても、手指を上下方向に所定の範囲は動かすことが出来ることに鑑み、被写体台13の位置を固定し、椅子型の昇降台19を設けて患者の位置を移動できる構成としてもよい。この構成によれば、X線源21や被写体台13、X線検出器16の位置を調整する手間が省け、保持部17に昇降するための駆動系を設ける必要も無い。また、昇降台19を上下に移動させてできるだけ患者の体が被写体台13に接する領域を大きくすることにより、被写体を安定させることができる。例えば、患者が被写体である手を被写体台13に載置した後、手だけでなく腕部分も被写体台13に接するように昇降台19を下げる。腕部分も載置させることで被写体台13上の被写体(手部分)を安定させ、撮影時にぶれないように図ることができる。なお、X線撮影装置3において、X線検出器16は保持部17に保持することとしてもよい。
このように、既存のX線源21、被写体台13、X線検出器16を用いてX線撮影装置2、3を構成することも可能である。本実施形態の場合には、マルチスリット(移動用駆動系含む)を既存の管球側(コリメータ含む)に取付け、マルチスリットとは別ユニットとして、第1格子、第2格子、及びX線検出器を構成し、設置時に、当該格子ユニットの位置を管球+マルチスリット側に対して位置調整することも可能である。この場合、一体型の大きな装置の場合、輸送時の困難性があるが、各ユニットに分別することで個々のユニットが小型化となり、輸送性が大幅に向上する。
なお、X線撮影装置の特性、特に管球特性によっては、再構成画像の作成に用いる一連のモアレ画像(上記実施例では5ステップの撮影による5枚のモアレ画像)の各撮影間隔が数十秒〜数分に及ぶことも想定される。この場合には、輝尽性蛍光体シートを内蔵したCRカセッテを用いた撮影も可能である。技師等の撮影者は、次の撮影が可能になるまでの間に、CRカセッテを交換し、撮影済のカセッテを読取装置に装填し、読取られた画像データをコントローラ5に送信する構成とすることができる。
1 X線撮影装置
11、21 X線源
12 マルチスリット
12a 駆動部
13 被写体台
14 第1格子
15 第2格子
16 X線検出器
17 保持部
17a 緩衝部材
18 本体部
5 コントローラ
2、3 X線撮影装置(他の実施形態)
13b 保持部
16b 保持部
22 シャッター
222 開口部

Claims (12)

  1. X線を照射するX線源と、
    複数のスリットを有するマルチスリット、第1格子及び第2格子と、
    前記マルチスリットを移動させる駆動部と、
    被写体台と、
    照射されたX線に応じて電気信号を生成する変換素子が2次元状に配置され、当該変換素子により生成された電気信号を画像信号として読み取るX線検出器と、を備え、
    前記駆動部によりマルチスリットを前記X線の照射方向と直交する方向に、前記第1格子及び第2格子に対して相対移動し、マルチスリットが一定周期間隔で移動する毎に、前記X線源により照射されたX線に応じて前記X線検出器が画像信号を読み取る処理を繰り返し、一定周期間隔のモアレ画像を複数得ることを特徴とするX線撮影装置。
  2. 前記X線源、前記マルチスリット、前記被写体台、前記第1格子、前記第2格子、前記X線検出器がこの順に配置されていることを特徴とする請求項1に記載のX線撮影装置。
  3. 前記第1格子及び前記第2格子は同一の保持部に保持され、X線の照射方向における前記第1格子及び前記第2格子の位置関係が固定されていることを特徴とする請求項2に記載のX線撮影装置。
  4. 前記マルチスリットは、前記保持部に前記第1格子及び前記第2格子と一体的に保持され、前記第1格子及び前記第2格子とのX線の照射方向における位置関係が固定されていることを特徴とする請求項3に記載のX線撮影装置。
  5. 前記X線検出器は、前記保持部に前記第1格子及び前記第2格子と一体的に保持され、前記第1格子及び前記第2格子とのX線の照射方向における位置関係が固定されていることを特徴とする請求項3又は4に記載のX線撮影装置。
  6. 前記被写体台は、前記保持部に前記第1格子及び前記第2格子と一体的に保持され、前記第1格子及び前記第2格子とのX線の照射方向における位置関係が固定されていることを特徴とする請求項3〜5の何れか一項に記載のX線撮影装置。
  7. 前記被写体台は、前記マルチスリットとは別の保持部に保持されていることを特徴とする請求項1〜5の何れか一項に記載のX線撮影装置。
  8. 前記駆動部により一定周期毎にマルチスリットの移動と停止を繰り返し、マルチスリットが停止する毎に、前記X線源により照射されたX線に応じて、前記X線検出器が画像信号を読み取る処理を繰り返すことを特徴とする請求項1〜7の何れか一項に記載のX線撮影装置。
  9. 前記駆動部によりマルチスリットを連続的に移動し、一定周期毎に前記X線源により照射されたX線に応じて、前記X線検出器が画像信号を読み取る処理を繰り返すことを特徴とする請求項1〜7の何れか一項に記載のX線撮影装置。
  10. 請求項1〜9の何れか一項に記載のX線撮影装置と、
    前記X線撮影装置によって得られたモアレ画像を処理し、被写体の再構成画像を作成する画像処理装置と、
    を備えることを特徴とするX線画像システム。
  11. X線を照射するX線源と、
    複数のスリットを有するマルチスリット、第1格子及び第2格子と、
    前記マルチスリットを移動させる駆動部と、
    被写体台と、
    照射されたX線に応じて電気信号を生成する変換素子が2次元状に配置され、当該変換素子により生成された電気信号を画像信号として読み取るX線検出器と、を備え、
    前記駆動部によりマルチスリットを前記X線の照射方向と直交する方向に、前記第1格子及び第2格子に対して相対移動し、マルチスリットが一定周期間隔で移動する毎に、前記X線源により照射されたX線に応じて前記X線検出器が画像信号を読み取る処理を繰り返し一定周期間隔のモアレ画像を複数得て、当該複数のモアレ画像に基づき被写体の再構成画像を生成することを特徴とするX線画像生成方法。
  12. 前記X線源、前記マルチスリット、前記被写体台、前記第1格子、前記第2格子、前記X線検出器がこの順に配置されているX線撮影装置を用いることを特徴とする請求項11に記載のX線画像生成方法。
JP2011531805A 2009-09-16 2010-03-10 X線撮影装置、x線画像システム及びx線画像生成方法 Pending JPWO2011033798A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009214483 2009-09-16
JP2009214483 2009-09-16
PCT/JP2010/053978 WO2011033798A1 (ja) 2009-09-16 2010-03-10 X線撮影装置、x線画像システム及びx線画像生成方法

Publications (1)

Publication Number Publication Date
JPWO2011033798A1 true JPWO2011033798A1 (ja) 2013-02-07

Family

ID=43758412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011531805A Pending JPWO2011033798A1 (ja) 2009-09-16 2010-03-10 X線撮影装置、x線画像システム及びx線画像生成方法

Country Status (4)

Country Link
US (1) US9025725B2 (ja)
EP (1) EP2478842A4 (ja)
JP (1) JPWO2011033798A1 (ja)
WO (1) WO2011033798A1 (ja)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102685A1 (ja) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. 放射線画像撮影装置及び放射線画像撮影システム
CN102656644B (zh) * 2009-12-10 2016-11-16 皇家飞利浦电子股份有限公司 具有即时相位步进的非平行光栅装置、x射线***及使用
CN102221565B (zh) * 2010-04-19 2013-06-12 清华大学 X射线源光栅步进成像***与成像方法
JP5343065B2 (ja) * 2010-12-07 2013-11-13 富士フイルム株式会社 放射線撮影システム
JP6053282B2 (ja) * 2011-12-28 2016-12-27 キヤノン株式会社 撮影制御装置、放射線撮影システム及び撮影制御方法
JP6197790B2 (ja) 2012-06-11 2017-09-20 コニカミノルタ株式会社 医用画像システム及び医用画像処理装置
JP6079204B2 (ja) 2012-12-18 2017-02-15 コニカミノルタ株式会社 医用画像システム
WO2014167901A1 (ja) 2013-04-08 2014-10-16 コニカミノルタ株式会社 診断提供用医用画像システム及び一般撮影用の診断提供用医用画像システムにタルボ撮影装置系を導入する方法
DE102013214388B4 (de) * 2013-07-23 2023-04-20 Siemens Healthcare Gmbh Medizinisches Instrument zur Verwendung mit einer Phasenkontrastbildgebung und Röntgenaufnahmesystem mit Phasenkontrastbildgebung
US10085701B2 (en) 2013-07-30 2018-10-02 Konica Minolta, Inc. Medical image system and joint cartilage state score determination method
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US20150117599A1 (en) 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
WO2015066333A1 (en) * 2013-10-31 2015-05-07 Sigray, Inc. X-ray interferometric imaging system
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
JP6291812B2 (ja) 2013-11-29 2018-03-14 コニカミノルタ株式会社 医療用画像撮影システム
JP6187298B2 (ja) * 2014-02-14 2017-08-30 コニカミノルタ株式会社 X線撮影システム及び画像処理方法
JP6245045B2 (ja) 2014-04-08 2017-12-13 コニカミノルタ株式会社 診断提供用医用画像システム
JP6330467B2 (ja) 2014-05-13 2018-05-30 コニカミノルタ株式会社 等価ファントム、および等価ファントムを用いたx線タルボ撮影装置の品質評価方法
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
JP6369206B2 (ja) * 2014-08-06 2018-08-08 コニカミノルタ株式会社 X線撮影システム及び画像処理装置
JP2016050891A (ja) * 2014-09-01 2016-04-11 キヤノン株式会社 X線撮像装置
JP6413685B2 (ja) * 2014-11-18 2018-10-31 コニカミノルタ株式会社 X線撮影システム
JP6451400B2 (ja) * 2015-02-26 2019-01-16 コニカミノルタ株式会社 画像処理システム及び画像処理装置
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
DE102016201095A1 (de) * 2016-01-26 2017-07-27 Siemens Healthcare Gmbh Verfahren und Röntgenvorrichtung zur interferometrischen Röntgenuntersuchung
JP6613988B2 (ja) * 2016-03-30 2019-12-04 コニカミノルタ株式会社 放射線撮影システム
WO2017216354A1 (en) * 2016-06-16 2017-12-21 Koninklijke Philips N.V. Apparatus for x-ray imaging an object
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
WO2018175570A1 (en) 2017-03-22 2018-09-27 Sigray, Inc. Method of performing x-ray spectroscopy and x-ray absorption spectrometer system
US11162908B2 (en) * 2017-04-07 2021-11-02 Konica Minolta, Inc. Quality inspection method
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
CN112424591B (zh) 2018-06-04 2024-05-24 斯格瑞公司 波长色散x射线光谱仪
GB2591630B (en) 2018-07-26 2023-05-24 Sigray Inc High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
CN112638261A (zh) 2018-09-04 2021-04-09 斯格瑞公司 利用滤波的x射线荧光的***和方法
CN112823280A (zh) 2018-09-07 2021-05-18 斯格瑞公司 用于深度可选x射线分析的***和方法
JP7182749B2 (ja) 2019-09-03 2022-12-02 シグレイ、インコーポレイテッド コンピュータ断層撮影蛍光x線撮像のためのシステムおよび方法
US11175243B1 (en) 2020-02-06 2021-11-16 Sigray, Inc. X-ray dark-field in-line inspection for semiconductor samples
US11217357B2 (en) 2020-02-10 2022-01-04 Sigray, Inc. X-ray mirror optics with multiple hyperboloidal/hyperbolic surface profiles
CN115667896B (zh) 2020-05-18 2024-06-21 斯格瑞公司 使用晶体分析器和多个检测元件的x射线吸收光谱的***和方法
WO2022061347A1 (en) 2020-09-17 2022-03-24 Sigray, Inc. System and method using x-rays for depth-resolving metrology and analysis
WO2022126071A1 (en) 2020-12-07 2022-06-16 Sigray, Inc. High throughput 3d x-ray imaging system using a transmission x-ray source
WO2023177981A1 (en) 2022-03-15 2023-09-21 Sigray, Inc. System and method for compact laminography utilizing microfocus transmission x-ray source and variable magnification x-ray detector
US20230341340A1 (en) * 2022-04-20 2023-10-26 Arion Diagnostics, Inc. Diffractive analyzer of patient tissue
US11885755B2 (en) 2022-05-02 2024-01-30 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203066A (ja) * 2006-02-01 2007-08-16 Siemens Ag X線装置の焦点‐検出器装置のx線光学透過格子
JP2007203063A (ja) * 2006-02-01 2007-08-16 Siemens Ag X線装置の焦点‐検出器システム
WO2008102685A1 (ja) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. 放射線画像撮影装置及び放射線画像撮影システム
JP2008200360A (ja) * 2007-02-21 2008-09-04 Konica Minolta Medical & Graphic Inc X線撮影システム
JP2008200359A (ja) * 2007-02-21 2008-09-04 Konica Minolta Medical & Graphic Inc X線撮影システム
JP2009150875A (ja) * 2007-11-15 2009-07-09 Csem Centre Suisse D'electronique & De Microtechnique Sa 干渉計デバイス及び干渉法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816216A (ja) 1981-07-22 1983-01-29 Canon Inc タルボ干渉計
WO2004058070A1 (ja) 2002-12-26 2004-07-15 Atsushi Momose X線撮像装置および撮像方法
EP1731099A1 (en) * 2005-06-06 2006-12-13 Paul Scherrer Institut Interferometer for quantitative phase contrast imaging and tomography with an incoherent polychromatic x-ray source
JP2007020306A (ja) 2005-07-07 2007-01-25 Toshiba Corp 電力変換装置又は無効電力補償装置による電力系統の交流電圧制御方法
JP2007026803A (ja) 2005-07-14 2007-02-01 Toshiba Corp 燃料電池用カートリッジ及び燃料電池
JP2007268033A (ja) 2006-03-31 2007-10-18 Konica Minolta Medical & Graphic Inc X線撮影システム及びx線撮影方法
JP2008018060A (ja) 2006-07-13 2008-01-31 Konica Minolta Medical & Graphic Inc 診断情報生成システム、診断情報生成方法及び診断情報表示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203066A (ja) * 2006-02-01 2007-08-16 Siemens Ag X線装置の焦点‐検出器装置のx線光学透過格子
JP2007203063A (ja) * 2006-02-01 2007-08-16 Siemens Ag X線装置の焦点‐検出器システム
WO2008102685A1 (ja) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. 放射線画像撮影装置及び放射線画像撮影システム
JP2008200360A (ja) * 2007-02-21 2008-09-04 Konica Minolta Medical & Graphic Inc X線撮影システム
JP2008200359A (ja) * 2007-02-21 2008-09-04 Konica Minolta Medical & Graphic Inc X線撮影システム
JP2009150875A (ja) * 2007-11-15 2009-07-09 Csem Centre Suisse D'electronique & De Microtechnique Sa 干渉計デバイス及び干渉法

Also Published As

Publication number Publication date
WO2011033798A1 (ja) 2011-03-24
EP2478842A1 (en) 2012-07-25
US20120224670A1 (en) 2012-09-06
EP2478842A4 (en) 2013-10-23
US9025725B2 (en) 2015-05-05

Similar Documents

Publication Publication Date Title
WO2011033798A1 (ja) X線撮影装置、x線画像システム及びx線画像生成方法
JP2011045655A (ja) X線撮影装置
JP2011218147A (ja) 放射線撮影システム
JP2012024339A (ja) 放射線画像撮影システム及びコリメータユニット
JP2012095865A (ja) 放射線撮影装置、放射線撮影システム
WO2013084658A1 (ja) 放射線撮影装置
JP5708652B2 (ja) X線撮影システム
JP6613988B2 (ja) 放射線撮影システム
JP5831614B2 (ja) X線撮影システム
WO2012169426A1 (ja) 放射線撮影システム
WO2012169427A1 (ja) 放射線撮影システム
WO2012057278A1 (ja) 放射線撮影システム及び放射線撮影方法
WO2012070661A1 (ja) 放射線画像検出装置、放射線撮影装置、及び放射線撮影システム
JP6451400B2 (ja) 画像処理システム及び画像処理装置
JP2012065840A (ja) X線撮影装置及びx線画像システム
JP2014079518A (ja) X線撮影装置及びモアレ画像生成方法
WO2013047011A1 (ja) 放射線画像検出器及びその製造方法、並びに放射線画像検出器を用いた放射線撮影システム
JP2015043931A (ja) 医用画像処理装置及び位相画像生成方法
JP2012120650A (ja) 放射線撮影システム及び放射線位相コントラスト画像生成方法
JP2012115621A (ja) 放射線画像検出装置、放射線撮影装置、放射線撮影システム
WO2012057046A1 (ja) 放射線撮影装置及び放射線撮影システム
WO2012147749A1 (ja) 放射線撮影システム及び放射線撮影方法
JP2012228361A (ja) 放射線撮影装置
WO2013084657A1 (ja) 放射線撮影装置
WO2013084659A1 (ja) 放射線撮影装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150818