JPWO2010007945A1 - 照明光学系、露光装置、及び露光方法 - Google Patents

照明光学系、露光装置、及び露光方法 Download PDF

Info

Publication number
JPWO2010007945A1
JPWO2010007945A1 JP2010520846A JP2010520846A JPWO2010007945A1 JP WO2010007945 A1 JPWO2010007945 A1 JP WO2010007945A1 JP 2010520846 A JP2010520846 A JP 2010520846A JP 2010520846 A JP2010520846 A JP 2010520846A JP WO2010007945 A1 JPWO2010007945 A1 JP WO2010007945A1
Authority
JP
Japan
Prior art keywords
optical system
illumination
light
distribution
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010520846A
Other languages
English (en)
Other versions
JP5223921B2 (ja
Inventor
白石 雅之
雅之 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010520846A priority Critical patent/JP5223921B2/ja
Publication of JPWO2010007945A1 publication Critical patent/JPWO2010007945A1/ja
Application granted granted Critical
Publication of JP5223921B2 publication Critical patent/JP5223921B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70083Non-homogeneous intensity distribution in the mask plane

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

光源からの光束を第1フライアイ光学系(22)に入射させ、第1フライアイ光学系(22)を構成する複数のミラー素子(22a)からの光束を第2フライアイ光学系(23)及びコンデンサ光学系を介して照明領域(27R)に照射する照明光学系(ILS)において、複数のミラー素子(22a)の反射面は、それぞれ一方向の幅がそれに直交する方向の幅よりも狭く、ミラー素子(22a)の一方向の反射率分布が台形状となっている。照明領域の強度分布を一様でない分布に設定するととともに、照明領域内の各点をほぼ同じ開き角の分布の光束で照明することができる。

Description

本発明は、例えばオプティカルインテグレータからの光束で被照射面を照射する照明光学系、この照明光学系を備えた露光装置、露光方法及びこの露光装置を用いるデバイス製造方法に関する。
例えば半導体デバイス等を製造する際に、レチクル(又はフォトマスク等)に形成されたパターンをレジストが塗布されたウエハ(又はガラスプレート等)上に転写露光するために、レチクルとウエハとを投影光学系に対して同期して移動してウエハを露光するスキャニングステッパ等の走査型の投影露光装置(走査型露光装置)が使用されている。また、露光光を短波長化して解像度を高めるために、最近では露光光源としてKrFエキシマレーザ(波長248nm)又はArFエキシマレーザ(波長193nm)等のレーザ光源が使用されている。さらに、露光光として波長が100nm程度以下の極端紫外光(Extreme Ultraviolet Light:以下、EUV光という)を用いる露光装置も開発されている。これらのレーザ光源及びEUV光の光源はいずれもパルス光源である。
走査型露光装置において露光光としてパルス光を使用する場合には、パルス光毎の強度むら、又はステージの走査速度のジッター(時間変動)等に起因して、走査露光後のウエハ上の各点における積算露光量のむら(走査強度むら)が発生する。この走査強度むらを低減させるための一つの手法が、照明光学系からの光束でレチクル上の照明領域を走査方向に台形状の強度分布で照明することである。このために従来より、レチクルのパターン面又はその共役面から僅かに離れた位置にブラインドを設置する技術、オプティカルインテグレータ中の複数の素子が形成する照明領域を走査方向にずらす技術(例えば、米国特許第7,006,595号参照)、その複数の素子の光束の出射方向を走査方向にずらす技術(例えば、特開平10−92730号公報参照)、及びその複数の素子の焦点距離又は開口の大きさを異ならせる技術(例えば、特開平10−189431号公報参照)が知られている。
一般に照明光学系によって照明領域上の各点を同じ照明条件で、即ち同じ開き角の分布(開口数)の光束で照明するためには、それらの各点に対してそれぞれ照明光学系の開口絞りの開口内の全部の領域(以下、照明σという。)からの光束を照射する必要がある。しかしながら、照明領域の強度分布を走査方向に台形状にするための従来の技術ではいずれも、強度分布が傾斜している領域には、照明σ内の一部の領域からの光束のみが照射されるという照明σの欠けが生じ、その領域の像の結像特性が劣化するという問題があった。
なお、走査露光による平均化効果によってそのような結像特性の劣化の影響は軽減されるが、特にEUV露光装置等で走査強度むらをさらに抑制するために、照明領域内の強度分布が傾斜している領域の割合を高めると、必要な結像特性が得られなくなる恐れがある。
本発明の態様は、このような事情に鑑み、照明領域の強度分布を一様でない分布に設定できるとともに、照明領域内の各点をほぼ同じ照明条件で(同じ開き角の分布の光束で)照明できる照明光学系、露光装置及び露光方法、並びにこの露光装置を用いるデバイス製造技術を提供することを目的とする。
本発明の第1の態様に従えば、光源からの光束を被照射面に照射する照明光学系であって、前記光源からの光束が入射して、そこから光束を出射する複数の光学素子を有するインテグレータを備え、前記複数の光学素子の前記光束の入射面は、それぞれ一方向の幅がそれに直交する方向の幅よりも狭く、前記光学素子の前記一方向の透過率分布が一様でない照明光学系が提供される。
本発明の第2の態様に従えば、パターンの一部の像を物体上に投影しつつ、所定の走査方向に前記パターン及び前記物体を同期して移動する露光装置であって、光源からの光束が入射し、そこから光束を射出する複数の光学素子を含むインテグレータを有し、複数の光学素子からの光束で第1面を照射する照明光学系と、前記第1面に配置されるパターンの像を第2面に配置される物体上に投影する投影光学系とを備え、前記光学素子の前記走査方向に対応する方向の透過率分布が一様でない露光装置が提供される。
本発明の第3の態様に従えば、パターンの像を物体上に投影することで前記物体を露光する露光方法であって、所定方向に透過率が徐々に低下する透過率低下部を有する複数の光学素子が配列された光学系を用意し、光源からの光束を上記光学系の複数の光学素子に入射して、各光学素子からの光を第1面に照射することと、前記第1面に配置されるパターンの像を第2面に配置される物体上に投影しつつ、前記所定の方向と対応する走査方向に前記パターン及び前記物体を同期して移動することを含む露光方法が提供される。
本発明の第4の態様に従えば、本発明の露光装置または露光方法を用いて物体を露光することと、その露光された物体を処理することを含むデバイス製造方法が提供される。
本発明の照明光学系によれば、複数の光学素子からの光束が重ねて照射される照明領域の強度分布は、その光学素子の短手方向に対応する方向で一様でなくなるとともに、その照明領域内の各点はほぼ同じ開き角の分布の光束で照明される。
本発明の露光装置及び露光方法によれば、複数の光学素子からの光束が重ねて照射される照明領域の強度分布は、走査方向に一様でなくなるとともに、その照明領域内の各点はほぼ同じ開き角の分布の光束で照明される。
本発明の実施形態の一例の露光装置の概略構成を示す断面図である。 (A)は図1中の第1フライアイ光学系22を示す図、(B)は図1中の第2フライアイ光学系23を示す図である。 図1中の照明光学系及びレチクルを示す図である。 (A)は第1実施例のミラー素子22aの反射面を示す拡大図、(B)は図4(A)のIVB−IVB線に沿う断面図、(C)は図4(A)のミラー素子22aの表面粗さ分布を示す図、(D)はミラー素子22aの反射率分布を示す図である。 (A)は第2実施例のミラー素子22aの反射面を示す拡大図、(B)は図5(A)のVB−VB線に沿う断面図、(C)は図5(A)のミラー素子22aの吸収層の厚さ分布を示す図、(D)はミラー素子22aの反射率分布を示す図である。 (A)は台形状の強度分布の複数のパルス光で露光するときのウエハ上の露光量の変化を示す図、(B)は図6(A)に対応するウエハ上の積算露光量を示す図、(C)は矩形状の強度分布の複数のパルス光で露光するときのウエハ上の露光量の変化を示す図、(D)は図6(C)に対応するウエハ上の積算露光量を示す図である。 実施形態の変形例の照明光学系及びレチクルを示す図である。 (A)は本発明の実施形態の他の例の照明光学系の要部を示す図、(B)は図8(A)のレンズ素子51aを示す拡大図である。 実施形態の露光方法の概要を示すフローチャートである。 半導体デバイスの製造工程の一例を示すフローチャートである。 (A)は第1比較例の照明光学系の要部を示す図、(B)は照明σの欠けの一例を示す図、(C)は照明σの欠けがない状態を示す図、(D)は照明σの欠けの他の例を示す図である。 (A)は第2比較例の照明光を示す図、(B)は照明σの欠けの一例を示す図、(C)は照明σの欠けがない状態を示す図、(D)は照明σの欠けの他の例を示す図である。
本発明の照明光学系、露光装置及び露光方法の実施形態の一例につき図1〜図6を参照して説明する。
図1は、本実施形態の露光用の照明光EL(露光光)として波長が100nm程度以下で3〜50nm程度の範囲内で例えば11nm又は13nm等のEUV光を用いる露光装置(EUV露光装置)100の全体構成を概略的に示す断面図である。図1において、露光装置100は、照明光ELをパルス発生するレーザプラズマ光源10と、照明光ELでレチクルR(マスク)のパターン面(ここでは下面)上の照明領域27Rを照明する照明光学系ILSと、レチクルRを移動するレチクルステージRSTと、レチクルRの照明領域27R内のパターンの像をレジスト(感光材料)が塗布されたウエハW(感光基板)上に投影する投影光学系POとを備えている。さらに、露光装置100は、ウエハWを移動するウエハステージWSTと、装置全体の動作を統括的に制御するコンピュータを含む主制御系31等とを備えている。
本実施形態では、照明光ELとしてEUV光が使用されているため、照明光学系ILS及び投影光学系POは、特定のフィルタ等(不図示)を除いて複数の反射光学部材より構成され、レチクルRも反射型である。その反射光学部材は、例えば、石英(又は高耐熱性の金属等)よりなる部材の表面を所定の曲面又は平面に高精度に加工した後、その表面にモリブデン(Mo)とシリコン(Si)との多層膜(EUV光の反射膜)を形成して反射面としたものである。なお、その多層膜は、ルテニウム(Ru)、ロジウム(Rh)等の物質と、Si、ベリリウム(Be)、4ホウ化炭素(B4C)等の物質とを組み合わせた他の多層膜でもよい。また、レチクルRは例えば石英の基板の表面に多層膜を形成して反射面とした後、その反射面に、タンタル(Ta)、ニッケル(Ni)、又はクロム(Cr)等のEUV光を吸収する材料よりなる吸収層によって転写用のパターンを形成したものである。
また、EUV光の気体による吸収を防止するため、露光装置100はほぼ全体として箱状の真空チャンバ1内に収容され、真空チャンバ1内の空間を排気管32Aa,32Ba等を介して真空排気するための大型の真空ポンプ32A,32B等が備えられている。さらに、真空チャンバ1内で照明光ELの光路上の真空度をより高めるために複数のサブチャンバ(不図示)も設けられている。一例として、真空チャンバ1内の気圧は10-5Pa程度、真空チャンバ1内で投影光学系POを収納するサブチャンバ(不図示)内の気圧は10-5〜10-6Pa程度である。
以下、図1において、ウエハステージWSTが載置される面(真空チャンバ1の底面)の法線方向にZ軸を取り、Z軸に垂直な平面内で図1の紙面に垂直にX軸を、図1の紙面に平行にY軸を取って説明する。本実施形態では、レチクルR上での照明光ELの照明領域27Rは、X方向(非走査方向)に細長い円弧状であり、露光時にレチクルR及びウエハWは投影光学系POに対してY方向(走査方向)に同期して走査される。
先ず、レーザプラズマ光源10は、高出力のレーザ光源(不図示)と、このレーザ光源から真空チャンバ1の窓部材15を介して供給されるレーザ光を集光する集光レンズ12と、キセノン等のターゲットガスを噴出するノズル14と、回転楕円面状の反射面を持つ集光ミラー13とを備えた、ガスジェットクラスタ方式の光源である。レーザプラズマ光源10から例えば数kHzの周波数でパルス発光された照明光ELは、集光ミラー13の第2焦点に集光する。その第2焦点に集光した照明光ELは、凹面ミラー(コリメータ光学系)21を介してほぼ平行光束となり、第1フライアイ光学系22に入射し、第1フライアイ光学系22で反射された照明光ELは第2フライアイ光学系23に入射する。この一対のフライアイ光学系22及び23からオプティカルインテグレータが構成されている。また、レーザプラズマ光源10からの照明光は、第1フライアイ光学系22をケーラー照明している。
一例として、第1フライアイ光学系22は、図2(A)に示すように、二次元的に配列された照明領域と相似な円弧状の外形を有する多数のミラー素子22aより構成されている。第2フライアイ光学系23は、第1フライアイ光学系22の多数のミラー素子22aに対応して、図2(B)に示すように、二次元的に配列された矩形状(又はほぼ正方形状)の外形を有する多数のミラー素子23aより構成されている。フライアイ光学系22,23の各ミラー素子の形状及び配置等については、例えば米国特許第6,452,661号明細書にも開示されている。
図1において、第1フライアイ光学系22の各ミラー素子の反射面はレチクルRのパターン面とほぼ共役であり、第2フライアイ光学系23の反射面の近傍(オプティカルインテグレータの射出面の近傍)には、所定形状を有する実質的な面光源(多数の微小な二次光源の集合)が形成される。即ち、その実質的な面光源が形成される面は、照明光学系ILSの瞳面であり、この瞳面又はこの近傍の位置に開口絞りASが配置されている。開口絞りASは、種々の形状の開口を有する複数の開口絞りを代表的に表しており、主制御系31の制御のもとで、開口絞りASを交換することによって、照明条件を通常照明、輪帯照明、2極照明、又は4極照明等に切り換えることができる。
開口絞りASを通過した照明光ELは、曲面ミラー24に入射し、曲面ミラー24で反射された照明光ELは、凹面ミラー25で反射された後、レチクルRのパターン面の円弧状の照明領域27Rを下方から斜めに均一な照度分布で照明する。曲面ミラー24と凹面ミラー25とからコンデンサ光学系が構成されている。コンデンサ光学系によって、第1フライアイ光学系22の多数のミラー素子の反射光又は開口絞りAS内の面光源からの光が照明領域27Rを重畳的に照明する。凹面ミラー21、フライアイ光学系22,23、開口絞りAS、曲面ミラー24、及び凹面ミラー25を含んで照明光学系ILSが構成されている。この場合、レーザプラズマ光源10からの照明光ELは、第1フライアイ光学系22、ひいてはレチクルRのパターン面をケーラー照明している。なお、図1の例では、曲面ミラー24は凸面ミラーであるが、曲面ミラー24を凹面ミラーより構成し、その分だけ凹面ミラー25の曲率を小さくするようにしてもよい。
次に、レチクルRは、レチクルステージRSTの底面に静電チャックRHを介して吸着保持されている。レチクルステージRSTは、レーザ干渉計(不図示)の計測値及び主制御系31の制御情報に基づいて、真空チャンバ1の外面のXY平面に平行なガイド面に沿って、例えば磁気浮上型2次元リニアアクチュエータよりなる駆動系(不図示)によってY方向に所定ストロークで駆動されるとともに、X方向及びθz方向(Z軸回りの回転方向)等にも微小量駆動される。レチクルRは、真空チャンバ1の上面の開口を通して真空チャンバ1で囲まれた空間内に設置されている。レチクルステージRSTを真空チャンバ1側に覆うようにパーティション8が設けられ、パーティション8内は不図示の真空ポンプによって大気圧と真空チャンバ1内の気圧との間の気圧に維持されている。
レチクルRの照明領域27Rで反射された照明光ELが、物体面(第1面)のパターンの縮小像を像面(第2面)に形成する投影光学系POに向かう。投影光学系POは、一例として、6枚のミラーM1〜M6を不図示の鏡筒で保持することによって構成され、物体面(レチクルRのパターン面)側に非テレセントリックで、像面(ウエハWの表面)側にテレセントリックの反射系であり、投影倍率は1/4倍等の縮小倍率である。レチクルRの照明領域27Rで反射された照明光ELが、投影光学系POを介してウエハW上の露光領域27W(照明領域27Rと共役な領域)に、レチクルRのパターンの一部の縮小像を形成する。
投影光学系POにおいて、レチクルRからの照明光ELは、ミラーM1で上方(+Z方向)に反射され、続いてミラーM2で下方に反射された後、ミラーM3で上方に反射され、ミラーM4で下方に反射される。次にミラーM5で上方に反射された照明光ELは、ミラーM6で下方に反射されて、ウエハW上にレチクルRのパターンの一部の像を形成する。一例として、ミラーM1,M2,M4,M6は凹面鏡であり、他のミラーM3,M5は凸面鏡である。
一方、ウエハWは、静電チャックWHを介してウエハステージWST上に吸着保持されている。ウエハステージWSTは、XY平面に沿って配置されたガイド面上に配置されている。ウエハステージWSTは、レーザ干渉計(不図示)の計測値及び主制御系31の制御情報に基づいて、例えば磁気浮上型2次元リニアアクチュエータよりなる駆動系(不図示)によってX方向及びY方向に所定ストロ−クで駆動され、必要に応じて、Z軸の周りの回転方向等にも駆動される。
ウエハステージWST上のウエハWの近傍には、例えばX方向に配列された複数の光電センサを含む照射量モニタ29が設置され、照射モニタ29の検出信号が主制御系31に供給されている。ウエハステージWSTを駆動して露光領域27Wに照射量モニタ29の受光面を移動することによって、露光領域27W(照明領域27R)のX方向の各計測位置毎の照明光ELの強度(又はパルスエネルギー)を計測できる。一例として、この計測結果に基づいて、主制御系31はウエハW上の各点で走査露光後の積算露光量が許容範囲内に収まるように、レーザプラズマ光源10の発振周波数及びパルスエネルギー、並びに/又はレチクルステージRST(及びウエハステージWST)の走査速度等を制御する。
露光の際には、ウエハW上のレジストから生じるガスが投影光学系POのミラーM1〜M6に悪影響を与えないように、ウエハWはパーティション7の内部に配置される。パーティション7には照明光ELを通過させる開口が形成され、パーティション7内の空間は、主制御系31の制御のもとで真空ポンプ(不図示)により真空排気されている。
ウエハW上の1つのダイ(ショット領域)を露光するときには、照明光ELが照明光学系ILSによりレチクルRの照明領域27Rに照射され、レチクルRとウエハWとは投影光学系POに対して投影光学系POの縮小倍率に従った所定の速度比でY方向に同期して移動する(同期走査される)。このようにして、レチクルパターンはウエハW上の一つのダイに露光される。その後、ウエハステージWSTを駆動してウエハWをX方向、Y方向にステップ移動した後、ウエハW上の次のダイに対してレチクルRのパターンが走査露光される。このようにステップ・アンド・スキャン方式でウエハW上の複数のダイに対して順次レチクルRのパターンが露光される。
次に、本実施形態の照明光学系ILS中のフライアイ光学系22及び23(オプティカルインテグレータ)の構成及び作用につき詳細に説明する。
図3は、図1中の照明光学系ILSを示す図である。なお、図3においては、フライアイ光学系22及び23をそれぞれ構成する多数のミラー素子22a及び23aのうちで、レチクルRのパターン面上のY方向(走査方向)に対応する方向に配列された一列中の複数のミラー素子22a及び23aを拡大して代表的に表している。図3において、第1フライアイ光学系22を構成する多数のミラー素子22aの反射面はレチクルRのパターン面とほぼ共役であり、各ミラー素子22aの反射面上でレチクルRのパターン面上のY方向に対応する方向をy方向とする。各ミラー素子22aの反射面はy方向の幅がmy1で、一例として回転楕円面等の凹の非球面である。各ミラー素子22aの反射面は、後述するような加工が施されており、それにより照明光ELに対するy方向の反射率分布rm(y)は、y方向の中央部で一定の反射率を示す水平部HSと、y方向の両側で反射率が水平部より徐々に直線的に低下することを示す傾斜部ISを有する台形のパターンで表わされる。この台形パターンにおいて、水平部HSと二つの傾斜部ISからなる全体の幅がmy1で、両側の傾斜部ISの幅をそれぞれmy2とする。
ミラー素子22aの反射面はy方向に直交する方向を長手方向とする円弧状であり、ミラー素子22aのy方向に直交する方向(より正確には円弧状のエッジに沿った方向)の反射率はほぼ一様(一定)である(図4(A)参照)。ミラー素子22aの反射率は、水平部HSで最大となり、最大値の1/2となる位置のy方向の幅(my1−my2)に対して、傾斜部ISの幅の合計(2×my2)は、例えば5〜30%程度である。この場合、全体の幅my1に対して片側の傾斜部ISの幅my2は、2.4〜13%程度である。
また、第2フライアイ光学系23を構成する多数のミラー素子23aの反射面は一例として平面であり、ミラー素子23aの反射率分布は一様(全面でほぼ同じ値)である。なお、各ミラー素子23aの反射面の法線方向は互いに異なっていてもよい。第1フライアイ光学系22の各ミラー素子22aからの反射光は、それぞれ第2フライアイ光学系23の対応する1つ又は複数のミラー素子23a上に集光して反射される。そして、各ミラー素子22aの焦点距離をf1、曲面ミラー24及び凹面ミラー25よりなるコンデンサ光学系の焦点距離をf2(>>f1)とすると、第2フライアイ光学系23で反射されて開口絞りASを通過した照明光ELは、レチクルRの照明領域27R上に各ミラー素子22aの反射面(反射率分布に対応する強度分布)をf2/f1倍に拡大した像を重ねて形成する。
即ち、図3に代表的に示すように、第1フライアイ光学系22の+y方向の端部、中央部、及び−y方向の端部のミラー素子22a等からの反射光EL1,EL2,EL3がそれぞれ点線、実線、及び1点鎖線で示すように、照明領域27R上にミラー素子22aの反射面の拡大像を重ねて形成する。この結果、開口絞りASの開口がどのような形状であっても、照明領域27Rにおける照明光ELのY方向の強度分布IL(Y)は、各ミラー素子22aの反射率分布rm(y)と相似の分布を示す。なお、本願において、反射率分布、透過率分布、または強度分布などのような光の分布を述べる場合には、適宜、そのような分布のパターンを意味するものとする。また、用語「透過率」及び「透過率分布」は、一般には光を透過する割合及びその分布を意味するが、本願における光学素子は光透過素子のみならず光反射素子も含んでいるので、用語「透過率」及び「透過率分布」は透過型素子については透過率及びその分布を、光反射素子に対しては反射率及びその分布を意味するものとして使用するものとする。強度分布IL(Y)(の台形パターン)は全体の幅をRY1、両側の傾斜部の幅をそれぞれRY2とすると、傾斜部の幅RY2と全体の幅RY1との比の値は、以下のように反射率分布rm(y)の傾斜部の幅my2と全体の幅my1との比の値と同じである。
RY2/RY1=my2/my1 …(1)
また、図1の投影光学系POの投影倍率を例えば1/4とすると、照明領域27Rの強度分布IL(Y)をY方向に1/4に縮小した強度分布が、ウエハW上の露光領域27WのY方向の台形状の(パターンの)強度分布となる。
この場合、ウエハWが静止しており、その上を露光領域27WがY方向に目標とする相対速度で移動するものとすると、ウエハW上の照明光ELのパルス発光毎の露光量EWは、図6(A)に示すように、次第にY方向にシフトする台形状のパターンを示すパルス光の強度分布41A〜41Gで表される。これに応じて、走査露光後のウエハW上のY方向の各点の積算露光量AEWは、図6(B)の直線43で示すように平坦となる。また、ウエハステージWSTの走査速度のジッター等によって、例えば図6(A)のパルス光41Fの相対位置が位置42にずれたとしても、図6(B)の積算露光量AEWのむら(走査強度むら)は点線43Aで示すように小さく抑制される。これは、各パルス光の強度分布が傾斜部を有するために、パルス光がY方向にシフトしても、それに応じた強度変化(Y方向のシフト量×傾斜部の傾き)は傾斜部の傾きで緩和されるからである。図6(A)では、理解を容易にするために、強度分布41A〜41Gを縦軸そってずらして表示している。なお、各パルス光の強度(強度分布41A〜41Gの最大値(水平部の高さ))は、設定上は、いずれも同一である。
これに対して、ウエハW上の露光領域27WのY方向の強度分布が矩形状である場合には、ウエハW上の照明光ELのパルス発光毎の露光量EWは、図6(C)の矩形状の強度分布44A〜44Gで表される。この場合、強度分布44A〜44Gを有するパルス光相対位置の誤差がないときには、走査露光後のウエハW上のY方向の積算露光量AEWは、図6(D)の直線46で示すように平坦となる。しかしながら、例えば図6(C)の強度分布44Fを有するパルス光の相対位置が位置45にずれると、図6(D)の走査強度むらは点線46Aで示すように大きくなる。同様に、照明光ELのパルスエネルギーのばらつきがある場合にも、露光領域27Wの強度分布が矩形状であるときには、走査強度むらが大きくなる。
このような走査強度むらを低減するためには、露光領域27W(照明領域27R)の強度分布の傾斜部の幅の割合を広くすればよいが、単にその傾斜部の幅を広くすると、照明光学系ILS及び投影光学系POを大型化する必要があるとともに、パルス発光毎の露光量が低下する。従って、その傾斜部の幅は、例えば走査強度むらを許容範囲内に抑制した上でできるだけ狭く設定される。
一例として、照明光EL(EUV光)の発光周波数が数kHzで、露光領域27Wの強度が最大値の1/2になる位置でのY方向の幅(スリット幅)が1.5〜2mm程度の場合、走査強度むらを0.1%程度に抑制しようとすると、強度分布の傾斜部の必要な幅は片側で数100μm程度となる。従って、両側の傾斜部の必要な幅の和は、そのスリット幅に対して10〜20%程度となる。この場合、露光領域27WのY方向の強度分布は、図3の照明領域27RのY方向の強度分布IL(Y)、ひいては第1フライアイ光学系22の各ミラー素子22aの反射率分布rm(y)と相似である。従って、各ミラー素子22aの反射率が最大値の1/2となる位置の幅(my1−my2)に対して、反射率の傾斜部の幅の合計(2×my2)は10〜20%程度に設定することが好ましい。
また、本実施形態では、図3に示すように、レチクルRの照明領域27Rの全面の各点において、それぞれ開口絞りASの開口内の全部の領域(有効な面光源)(照明σ)から射出された開き角の分布が同じ光束が照射されている。即ち、照明領域27Rの例えば−Y方向の端部、中央部、及び+Y方向の端部に照射される照明光ELa,ELb,ELcはいずれも開口絞りASの開口の全面からの光束であり、照明条件は同じである。従って、照明領域27R内の全面のパターンが図1の投影光学系POによって良好な結像特性(解像度等)でウエハW上に投影される。なお、例えば輪帯照明を行う場合には、開口絞りASの開口(照明σ)は輪帯状となり、照明領域27Rの全面にそれぞれその輪帯状の照明σからの光束、即ち開き角の分布が円錐面状の光束が照射される。この場合でも、第1フライアイ光学系22の全部のミラー素子22aの反射率分布が台形状であるため、照明領域27Rの強度分布は台形状であり、走査強度むらは抑制される。
次に、図3の第1フライアイ光学系22のミラー素子22aの反射率分布rm(y)を得るための第1実施例につき図4(A)〜(D)を参照して説明する。
図4(A)は、図3のミラー素子22aの反射面を示す拡大図、図4(B)は図4(A)のIVB−IVB線に沿う断面図、図4(C)は図4(A)のIVB−IVB線に沿う反射面の表面粗さ分布rfn(y)を示す図、図4(D)は図4(A)のIVB−IVB線に沿う反射率分布rm(y)を示す図である。図4(A)に示すように、ミラー素子22aの反射面は照明領域27Rと相似な円弧状であり、非走査方向と対応する方向に細長く延在する。より詳細には、レチクルR上のY方向(走査方向)に対応するミラー素子22aのy方向(短手方向)の幅は、それに直交する長手方向(レチクルR上のX方向に対応する方向)の長さに対して例えば1/10程度以下に狭く設定されている。ミラー素子22aの反射面の形状は、レチクルR上の必要な照明領域27Rの形状に基づいて設定される。
また、ミラー素子22aの反射面には、y方向の両端部から図3の幅my2で規定される反射率調整領域36A及び36Bが設定され、反射率調整領域(透過率低下部)36A及び36Bの反射率が端部(外側)に向かって減少している。一方、反射面の中央部36Cは、反射率が一定である。
図4(B)に示すように、ミラー素子22aの基本構造は、例えば石英(又は高耐熱性の金属等)よりなる部材の表面を所定の曲面に高精度に加工した後、その表面にEUV光を反射する多層膜35、例えば、モリブデンとシリコンとの多層膜を形成したものである。さらに本実施形態では、その反射率調整領域36A及び36B内の多層膜35の表面粗さ分布rfn(y)を、図4(C)に示すように端部に向かって次第に連続的に(又は段階的に)大きくしている。このような表面粗さ分布を得るには、ミラー素子22aの多層膜35の表面に例えばイオンビーム又は電子ビームを集束させて照射し、必要な表面粗さに応じてその照射時間を調整すればよい。
この場合、表面粗さをαとすると、反射率r(α)は、次のようにデバイ・ワラー(Debye-Waller)の式に従って指数関数的に減少する。なお、k,cは比例係数である。
r(α)=k・exp(−c・α2) …(2)
従って、その反射率r(α)が図4(D)の台形状の反射率分布rm(y)となるように、ミラー素子22aの多層膜35の表面粗さαは図4(C)の表面粗さ分布rfn(y)で示すようにy方向の端部に向かって大きく設定されている。このように表面粗さ分布を制御することによって、ミラー素子22aの反射率分布を容易に目標とする台形状の分布に設定できる。
次に、図3の第1フライアイ光学系22のミラー素子22aの反射率分布rm(y)を得るための第2実施例につき図5(A)〜(D)を参照して説明する。
図5(A)は、図3のミラー素子22aの反射面を示す拡大図、図5(B)は図5(A)のVB−VB線に沿う断面図、図5(C)は図5(A)のVB−VB線に沿う反射面の吸収層の厚さ分布abs(y)を示す図、図5(D)は図5(A)のVB−VB線に沿う反射率分布rm(y)を示す図である。
図5(B)に示すように、ミラー素子22aの多層膜35(反射面)上の反射率調整領域36A及び36Bには、外側に向かって次第に連続的(又は段階的)に膜厚が増大するEUV光の吸収層37A,37Bが付加されている。吸収層37A,37Bは、例えばタンタル(Ta)、ニッケル(Ni)、又はクロム(Cr)等のEUV光を吸収する材料から形成されている。この場合、吸収層37A,37Bが厚い部分ほど反射率が低下するため、吸収層の厚さ分布abs(y)は、図5(D)の台形状の反射率分布rm(y)が得られるように、図5(C)のように設定されている。そのような吸収層37A,37Bの材料は、レチクルRの反射面に回路パターンを形成する際に使用される材料と同じであるため、レチクルRの製造工程とほぼ同じ製造工程を用いて、ミラー素子22aの反射率分布を容易に目標とする台形状の分布に設定できる。
本実施形態の効果は以下の通りである。
(1)本実施形態の照明光学系ILSは、レーザプラズマ光源10からの照明光ELをフライアイ光学系22,23からなるオプティカルインテグレータに入射させ、このオプティカルインテグレータを構成する複数のミラー素子22aからの光束をレチクルR上の照明領域27Rに照射する照明光学系において、ミラー素子22aの照明光ELの入射面は、それぞれy方向(短手方向)の幅がそれに直交する方向の幅よりも狭く設定され、ミラー素子22aのy方向の反射率分布(広義の透過率分布)が一様でない分布、即ち本実施形態では台形状の分布に設定されている。
従って、照明領域27Rの形状は走査露光に適した細長い形状になる。また、照明領域27Rには複数のミラー素子22aからの光束が重ねて照射され、照明領域27Rの強度分布はy方向に対応するY方向(走査方向)で台形状となるため、走査露光後の走査強度むらが低減される。特に、従来のようにレチクルのパターン面(またはその共役面)の近傍に設置したブラインドによって、照明領域27Rに照射される照明光の強度分布を台形状にする必要はない。それゆえ、照明領域27R内の各点は、開口絞りASの開口内の全部の領域(照明σ)からの光束によってほぼ同じ開き角の分布の光束で(同じ照明条件で)照明される。従って、照明領域27Rの全面のパターンの像を良好な結像特性でウエハW上に形成できる。
(2)また、本実施形態の露光装置100は、本実施形態の照明光学系ILSと、照明光学系ILSによって照明され、物体面に配置されるレチクルRのパターンの像を像面に配置されるウエハWの表面に投影する投影光学系POとを備え、そのパターンの一部の像を投影光学系POを介してウエハW上に投影しつつ、照明光学系ILSのミラー素子22aのy方向に対応するY方向(走査方向)にレチクルR及びウエハWを同期して移動している。
この露光装置100によれば、レチクルRの照明領域27Rの強度分布を走査方向に台形状にして、かつ照明領域27Rの全面を同じ照明条件で照明できるため、走査強度むらを低減できるとともに、走査露光後にウエハW上に高精度にレチクルRのパターンの像を露光できる。
(3)また、本実施形態の露光装置100は、レーザプラズマ光源10からの照明光ELをフライアイ光学系22,23からなるオプティカルインテグレータに入射させ、このオプティカルインテグレータを構成する複数のミラー素子22aからの光束をレチクルRのパターン面の照明領域27Rに照射する照明光学系ILSと、そのパターンの像をウエハWの表面(第2面)に投影する投影光学系POとを備え、そのパターンの一部の像を投影光学系POを介してウエハW上に投影しつつ、照明領域27Rの短手方向であるY方向(走査方向)にレチクルR及びウエハWを同期して移動する露光装置であって、ミラー素子22aのY方向に対応するy方向の透過率分布が一様でない、即ち本実施形態では台形状であるものである。
この露光装置によれば、照明領域27Rの強度分布を走査方向に台形状にして、かつ照明領域27Rの全面を同じ照明条件で照明できるため、走査強度むらを低減できるとともに、走査露光後にウエハW上に高精度にレチクルRのパターンの像を露光できる。従来の技術のように露光装置にブラインドを設ける必要はなく、オプティカルインテグレータの素子が形成する照明領域や素子からの光束の射出方向を調整する必要はなくなるために、露光装置の構造をシンプルにすることができる。
次に、本実施形態に対する比較例につき図11及び図12を参照して説明する。
図11(A)は、ブラインド(視野絞り)を用いた第1比較例の照明光学系を示す図である。図3に対応する部分に同一又は類似の符号を付した図11(A)において、図3の第1フライアイ光学系22の代わりに、反射率分布が全面で一様な多数のミラー素子22Daよりなる第1フライアイ光学系22Dが設置されている。さらに、レチクルRのパターン面の近傍に、照明領域27Rに照射される照明光ELのY方向の両端部を僅かに遮光するブラインド26A及び26Bが設置され、ブラインド26A及び26Bのデフォーカスしたエッジ部によって照明領域27RのY方向の強度分布IL(Y)を台形状に設定している。
この第1比較例では、照明領域27Rの中央部(例えば位置RB)に照射される照明光ELは、図11(C)に示すように、開口絞りASの開口内の全部の領域(照明σ)からの光束、即ちその開口内の第2フライアイ光学系23の全部のミラー素子23aからの光束である。しかしながら、照明領域27Rの−Y方向の端部の領域(例えば位置RA)に照射される照明光ELは、図11(B)に示すように、照明σ内で−Y方向に対応する方向の領域からの光束が欠けた光束である。一方、照明領域27Rの+Y方向の端部の領域(例えば位置RC)に照射される照明光ELは、図11(D)に示すように、照明σ内で+Y方向に対応する方向の領域からの光束が欠けた光束である。従って、照明領域27Rの強度分布が傾斜した領域では照明σの欠けが生じるため、その領域の像の結像特性が劣化する。
図12(A)は、複数のミラー素子からの光束を走査方向にシフトさせた第2比較例の照明光学系の要部を示す図である。図12(A)の第2比較例は、図11(A)の第2フライアイ光学系23を構成する多数のミラー素子23aからの反射光の角度をY方向に対応する方向に次第に広げるとともに、ブラインド26A,26Bを省いたものである。この場合、例えば図11(A)の第1フライアイ光学系22Dの一方の端部、中央部、及び他方の端部のミラー素子22Daからの照明光EL1,EL2,及びEL3は、図12(A)に示すように、照明領域27Rの−Y方向、中央部、及び+Y方向の領域にシフトして照射されるため、台形状の強度分布IL(Y)が設定される。
この第2比較例では、照明領域27Rの中央部(例えば位置RB)に照射される照明光ELは、図12(C)に示すように、開口絞りAS(図11(A))の開口(照明σ)内の第2フライアイ光学系23のミラー素子23aからの光束である。しかしながら、照明領域27Rの+Y方向の端部の領域(例えば位置RC)に照射される照明光ELは、図12(B)に示すように、照明σ内の−Y方向に対応する方向の領域からの光束が欠けた光束である。このように照明領域27Rの強度分布が傾斜した領域では照明σの欠けが生じるため、その領域の像の結像特性が劣化する。
なお、図11(A)において、第2フライアイ光学系23のミラー素子23aからの反射光の方向をランダムに変えても台形状の強度分布を得ることができる。しかしながら、この場合には、図12(A)の照明領域27Rの+Y方向の端部の領域(例えば位置RC)に照射される照明光ELは、図12(D)に示すように、照明σ内の一部の領域からの光束である。従って、照明σの欠けが生じるため、その領域の像の結像特性が劣化する。
このような第1比較例及び第2比較例に対して、上記の本発明の実施形態によれば、照明領域27Rの全面で照明σの欠けが生じないため、照明領域27Rの全面で良好な結像特性が得られる。
次に、本発明の実施形態の変形例につき図7を参照して説明する。図3に対応する部分に同一又は類似の符号を付した図7の照明光学系ILSにおいて、図3の第1フライアイ光学系22の代わりに、レチクルRのY方向(走査方向)に対応するy方向の反射率分布rm(y)が、片側のみが傾斜した台形状に設定された多数のミラー素子22Aaよりなる第1フライアイ光学系22Aが設置されている。即ち、y方向の幅my1のミラー素子22Aaの反射率分布rm(y)は、−y方向の端部で0から最大値に急激に上昇し、+y方向の端部が幅my2で次第に最大値から0に減少している。この場合、幅(my1−my2)に対して、傾斜部の幅my2は、例えば2.5〜15%程度であり、好ましくは5〜10%程度である。
また、レチクルRのパターン面の近傍に、照明領域27Rに照射される照明光の−Y方向の端部を遮光するブラインド(視野絞り)26Aが設置されている。さらに、ブラインド26AのY方向の位置を微調整する駆動機構(不図示)が設けられている。これ以外の構成は図3の実施形態と同様である。
この図7の変形例によれば、照明領域27Rの+Y方向の端部の強度分布は、ミラー素子22Aaの反射率分布に応じて傾斜し、照明領域27Rの−Y方向の端部の強度分布は、ブラインド26Aのデフォーカスしたエッジ部の像によって傾斜する。従って、照明領域27RのY方向(走査方向)の強度分布IL(Y)は台形状となる。この変形例においては、照明領域27Rの中央部(例えば位置Rb)及び+Y方向の端部(例えば位置Rc)では、照明σの欠けは生じない。一方、照明領域27Rの−Y方向の端部(例えば位置Ra)では、ブラインド26Aで遮光されているため、照明σの欠けが生じる。しかしながら、この照明σの欠けの影響は、図11(A)の比較例のように照明光の両側にブラインド26A,26Bを設ける場合に比べて1/2であるため、走査露光による平均化効果によって、走査露光後にウエハ上で比較的良好な結像特性が得られる。
さらに、この変形例では、ブラインド26AのY方向の位置を調整することによって、強度分布IL(Y)の強度が最大値の1/2となる位置のY方向の幅(レチクル上のスリット幅)RYhを調整できる。これによって、ウエハ上の積算露光量を制御するためのパラメータを増加できる。
次に、本発明の実施形態の他の例につき図8を参照して説明する。この実施形態は透過照明を行う照明光学系に本発明を適用したものである。
図8(A)は、この実施形態の照明光学系の要部を示す。図8(A)において、不図示のArFエキシマレーザ光源からパルス発光された波長193nmの照明光ELFは、ビーム成形光学系(不図示)によって断面形状が拡大された平行光束に変換された後、断面形状が細長い矩形の微小な多数のレンズ素子51aを2次元的に配列してなるフライアイレンズ51(オプティカルインテグレータ)に入射する。フライアイレンズ51の射出面の近傍に開口形状が可変の開口絞り52が配置されている。フライアイレンズ51から射出されて開口絞り52を通過した照明光ELFは、コンデンサレンズ系53を介してレチクル54のパターン面の照明領域55を均一な照度分布で照明する。照明領域55内のパターンは屈折系又は反射屈折系よりなる投影光学系(不図示)を介してウエハ(不図示)上に投影される。一例として、フライアイレンズ51の射出面はコンデンサレンズ系53の前側焦点面の近傍に配置され、照明領域55はコンデンサレンズ系53の後側焦点面に配置されている。
この場合にも、露光時にレチクル54は、照明領域55の短手方向であるY方向に走査され、これに同期してウエハも対応する方向に走査される。また、レチクル54のパターン面とフライアイレンズ51の入射面とはほぼ共役であり、フライアイレンズ51の射出面がこの照明光学系の瞳面であり、この近傍に開口絞り52が設置されている。
Y方向に対応するフライアイレンズ51の入射面上での方向をy方向とすると、各レンズ素子51aの入射面のy方向の透過率分布(狭義の透過率分布)tf(y)は、図3のミラー素子22aの反射率分布rm(y)と同様の台形状である。
図8(B)は、図8(A)のレンズ素子51aの入射面を示す拡大図である。図8(B)において、レンズ素子51aの断面形状は照明領域55と相似なy方向に直交する方向に細長い矩形である。また、レンズ素子51aの入射面のy方向の両端部に所定幅で設けられた透過率調整領域(透過率低下部)56A,56Bにおいては、透過率が次第に端部に向かって低下している。一方、レンズ素子51aの入射面の中央部56cは透過率が一定である。このような透過率分布を形成する方法としては、レンズ素子51aの透過率調整領域56A,56Bにおける表面粗さを端部側に次第に大きくする方法、又は照明光ELFを遮光するクロム等の物質よりなる微小なパターンを透過率分布に対応する密度で蒸着等で被着する方法等がある。
この実施形態によれば、図8(A)において、フライアイレンズ51の各レンズ素子51aの入射面はそれぞれレチクル54のパターン面と共役であり、開口絞り52内のフライアイレンズ51の各レンズ素子51aの入射面の像が照明領域55に重ねて形成される。従って、照明領域55のY方向の強度分布IL(Y)もレンズ素子51aの透過率分布tf(y)と相似な台形状になるため、走査強度むらが低減される。さらに、照明領域55の各点において、開口絞り52の開口内の全部の領域からの照明光が照射されるため、照明領域55の全面が同じ照明条件で照明され、その全面の像が良好な結像特性でウエハ上に露光される。
上記実施形態で説明した露光方法について、図9のフローチャートを参照して、簡単に説明する。上記実施形態では、照明光学系の一部として、走査方向と対応する所定方向に透過率(狭義の反射率または透過率)が徐々に低下する透過率調整領域(透過率低下部)を有する複数の光学素子が配列されたフライアイ光学系を用意する(ステップS1)。光源からの光束を上記光学系の複数の光学素子に入射して、各光学素子からの光を光学系を介してレチクルRのパターン面(第1面)に導く(ステップS2)。これにより、レチクルRのパターン面が複数の光学素子により同じ開口数の光束で照明されて照明領域が形成される。また、照明領域内に存在するパターンの像が投影光学系PLの像面(第2面)に配置されるウエハW(物体)上に投影される。この際、ウエハ上には、照明領域と共役な露光領域が形成される。この状態で、照明領域及び露光領域に対して前記走査方向にレチクルR及びウエハWを同期して移動することで、パターンの像がウエハW上のショットエリアに連続的に転写される(ステップS3)。次のショットエリアで露光が行なわれるためにウエハのステップ移動が行われる(ステップS4)。そして、ステップS5で露光が終了するまで、ステップS2〜S4が繰り返される。
なお、上記の図3の実施形態では、ミラー素子22aの反射面の像(1次像)が照明領域27Rに形成されている。しかしながら、照明光学系ILS中の曲面ミラー24及び凹面ミラー25(コンデンサ光学系)の代わりに、途中で一回又は複数回、ミラー素子22aの反射面の像(レチクルRのパターン面の共役面)を形成する中間結像光学系等を使用してもよい。同様に、図8(A)の実施形態でもコンデンサレンズ系53の代わりに中間結像を行う光学系を使用してもよい。
なお、上述の図1の実施形態では、露光光源としてガスジェットクラスタ方式のレーザプラズマ光源が使用されていたが、これに限定されず、例えば、錫などをターゲットとして用いるドロプレット方式のレーザプラズマ光源でもよい。また、上述の実施形態では、EUV光源としてレーザプラズマ光源を用いるものとしたが、これに限らず、SOR(Synchrotron Orbital Radiation)リング、ベータトロン光源、ディスチャージド光源(放電励起プラズマ光源、回転型放電励起プラズマ光源など)、X線レーザなどのいずれを用いても良い。
また、図1の実施形態では、露光ビームとしてEUV光を用い、6枚のミラーのみから成るオール反射の投影光学系を用いる場合について説明したが、これは一例である。例えば、特開平11−345761号公報に開示されるような4枚等のミラーのみから成る投影光学系を備えた露光装置は勿論、光源に波長100〜160nmのVUV光源、例えばAr2 レーザ(波長126nm)を用い、4〜8枚等のミラーを有する投影光学系を備えた露光装置などにも本発明を適用することができる。
また、上記実施形態では、反射素子やレンズ素子に透過率調整領域を設けて、図3、図4(D)、図8に示すような光強度分布において透過率が走査方向に対応する方向の端部で直線的に低下する傾斜部が生じるようにしていた。しかし、傾斜部では透過率は非直線的に低下してもよい。
上記実施形態では、照明光学系が露光装置に組み込まれた例を示したが、実施形態で説明したような照明光学系は、露光装置以外においても、照明光学系からの光束が物体を相対的に走査する用途に有効である。例えば、照明光で物体を走査する検査装置や計測装置に使用し得る。
また、上記の実施形態の露光装置及び露光方法を用いて半導体デバイス等の電子デバイス(又はマイクロデバイス)を製造する場合、電子デバイスは、図10に示すように、電子デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたマスク(レチクル)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造してレジストを塗布するステップ223、前述した実施形態の露光装置(EUV露光装置等)により、または図9で説明した露光方法によりマスクのパターンを基板(感応基板)に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。
言い換えると、このデバイスの製造方法は、上記の実施形態の露光装置または露光方法を用いて基板(ウエハ)を露光することと、露光された基板を処理すること(ステップ224)とを含んでいる。この際に、上記の実施形態の露光装置及び露光方法によれば、走査強度むらが減少し、かつ基板上で良好な結像特性が得られるため、高機能のデバイスを高精度に製造できる。本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
本発明は、半導体デバイス製造用の露光装置または露光方法への適用に限定されることなく、例えば、液晶デバイス、プラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置および露光方法(リソグラフィ方法)にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光装置または露光方法にも適用することができる。
本願明細書に掲げた種々の米国特許及び米国特許出願公開については、それらの開示を援用して本文の一部とする。
また、本発明によれば、照明光により物体が走査される場合に、照明光の強度ムラにより生じる走査強度をムラを低下することができる。従って、本発明の照明光学系を基板の露光に用いることで、優れた結像特性で所定パターンで物体を露光することができ、液晶表示素子やマイクロマシンなどに使用される高密度で複雑な回路パターンを有するデバイスを精確で且つ高いスループットで生産することができる。
また、上述の実施形態の露光装置は、複数の光学素子から構成される照明光学系、投影光学系を露光装置本体に組み込み光学調整をして、多数の機械部品からなるレチクルステージやウエハステージを露光装置本体に取り付けて配線や配管を接続し、総合調整(電気調整、動作確認等)をすることにより製造することができる。
同様に、照明光学系も特許請求の範囲の記載に対応する部材を組み込み光学調整を行うことによって製造できる。さらに、その露光装置及び照明光学系の製造は温度及びクリーン度等が管理されたクリーンルームで行うことが望ましい。
なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。また、明細書、特許請求の範囲、図面、及び要約を含む2008年7月14日付け提出の日本国特願2008−182444の全ての開示内容は、そっくりそのまま引用して本願に組み込まれている。
ILS…照明光学系、R…レチクル、PO…投影光学系、W…ウエハ、1…真空チャンバ、10…レーザプラズマ光源、22…第1フライアイ光学系、22a…ミラー素子、23…第2フライアイ光学系、23a…ミラー素子、24…曲面ミラー、25…凹面ミラー、26A…ブラインド、27R…照明領域、35…多層膜、36A,36B…反射率調整領域、37A,37B…吸収層、100…露光装置

Claims (20)

  1. 光源からの光束を被照射面に照射する照明光学系であって、
    前記光源からの光束が入射して、そこから光束を出射する複数の光学素子を有するインテグレータを備え、
    前記複数の光学素子の前記光束の入射面は、それぞれ一方向の幅がそれに直交する方向の幅よりも狭く、
    前記光学素子の前記一方向の透過率分布が一様でない照明光学系。
  2. 前記光学素子の前記一方向の透過率は、少なくとも一方の端部に向かって次第に低下する請求項1に記載の照明光学系。
  3. 前記光学素子の前記一方向の透過率分布は台形状である請求項1に記載の照明光学系。
  4. 前記光学素子はミラー素子であり、
    前記光学素子の入射面は、前記ミラー素子の反射面であり、
    前記光学素子の透過率分布は、前記ミラー素子の反射率分布である請求項1に記載の照明光学系。
  5. 前記ミラー素子の前記反射面が前記一方向において表面粗さが異なる表面粗さ分布を有する請求項4に記載の照明光学系。
  6. 前記ミラー素子の前記反射面に光吸収層が形成されて、前記光吸収層はその厚さが位置によって異なる厚さ分布を有する請求項4に記載の照明光学系。
  7. 前記光源からの光束はEUV光である請求項4に記載の照明光学系。
  8. 前記光学素子は前記光束を透過する透過素子であり、
    前記光学素子の透過率分布は、前記透過素子の透過率分布である請求項1に記載の照明光学系。
  9. さらに、前記光学素子から出射した光束を被照射面に導く光学系を備える請求項1に記載の照明光学系。
  10. パターンの一部の像を物体上に投影しつつ、所定の走査方向に前記パターン及び前記物体を同期して移動する露光装置であって、
    光源からの光束が入射し、そこから光束を射出する複数の光学素子を含むインテグレータを有し、複数の光学素子からの光束で第1面を照射する照明光学系と、
    前記第1面に配置されるパターンの像を第2面に配置される物体上に投影する投影光学系とを備え、
    前記光学素子の前記走査方向に対応する方向の透過率分布が一様でない露光装置。
  11. 前記光学素子の透過率は、前記走査方向の少なくとも一方の端部に対応する方向に向かって次第に低下する請求項10に記載の露光装置。
  12. 前記光源はEUV光源であることを特徴とする請求項10に記載の露光装置。
  13. 前記照明光学系に開口絞りが設けられ、開口絞りの開口を通過した全ての光束が第1面に照射される請求項10に記載の露光装置。
  14. 前記光学素子の前記走査方向に対応する方向の透過率分布は、走査方向と対応する方向に延在する水平部と水平部から光強度が徐々に低下する傾斜部を有する形状で表される請求項10に記載の露光装置。
  15. 光学素子の前記走査方向に対応する方向の透過率分布を表わす形状は、前記第1面に照明光学系により形成された照明領域の形状及び投影光学系により第2面上に形成された露光領域の形状と相似である請求項10に記載の露光装置。
  16. 請求項10に記載の露光装置を用いて物体を露光することと、
    前記露光された物体を処理することとを含むデバイス製造方法。
  17. パターンの像を物体上に投影することで前記物体を露光する露光方法であって、
    所定方向に透過率が徐々に低下する透過率低下部を有する複数の光学素子が配列された光学系を用意し、
    光源からの光束を上記光学系の複数の光学素子に入射して、各光学素子からの光を第1面に照射することと、
    前記第1面に配置されるパターンの像を第2面に配置される物体上に投影しつつ、前記所定の方向と対応する走査方向に前記パターン及び前記物体を同期して移動することを含む露光方法。
  18. 前記第1面が、複数の光学素子により同じ開口数の光束で照明される請求項17に記載の露光方法。
  19. 前記光学素子の前記所定方向の透過率分布は、前記所定方向に延在する水平部と水平部から光強度が徐々に低下する傾斜部を有する形状で表される請求項17に記載の露光方法。
  20. 請求項17に記載の露光方法を用いて物体を露光することと、
    前記露光された物体を処理することとを含むデバイス製造方法。
JP2010520846A 2008-07-14 2009-07-10 照明光学系、露光装置、及び露光方法 Active JP5223921B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010520846A JP5223921B2 (ja) 2008-07-14 2009-07-10 照明光学系、露光装置、及び露光方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008182444 2008-07-14
JP2008182444 2008-07-14
PCT/JP2009/062592 WO2010007945A1 (ja) 2008-07-14 2009-07-10 照明光学系、露光装置、及び露光方法
JP2010520846A JP5223921B2 (ja) 2008-07-14 2009-07-10 照明光学系、露光装置、及び露光方法

Publications (2)

Publication Number Publication Date
JPWO2010007945A1 true JPWO2010007945A1 (ja) 2012-01-05
JP5223921B2 JP5223921B2 (ja) 2013-06-26

Family

ID=41550348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010520846A Active JP5223921B2 (ja) 2008-07-14 2009-07-10 照明光学系、露光装置、及び露光方法

Country Status (5)

Country Link
US (1) US9030645B2 (ja)
JP (1) JP5223921B2 (ja)
KR (1) KR101653009B1 (ja)
TW (1) TWI476539B (ja)
WO (1) WO2010007945A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0624210D0 (en) * 2006-12-04 2007-01-10 Switched Reluctance Drives Ltd Control of a Switched Reluctance Machine
DE102011003145A1 (de) * 2010-02-09 2011-08-11 Carl Zeiss SMT GmbH, 73447 Optisches System mit Blendeneinrichtung
US8958053B2 (en) * 2010-08-11 2015-02-17 Asml Netherlands B.V. Lithographic apparatus and alignment method
KR101913311B1 (ko) 2012-04-09 2019-01-15 삼성디스플레이 주식회사 실리콘 박막 측정 방법, 실리콘 박막 결함 검출 방법, 및 실리콘 박막 결함 검출 장치
NL2011456A (en) * 2012-10-15 2014-04-16 Asml Netherlands Bv Actuation mechanism, optical apparatus, lithography apparatus and method of manufacturing devices.
US8969836B1 (en) 2013-11-26 2015-03-03 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for electron beam lithography
US9285673B2 (en) * 2014-07-10 2016-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Assist feature for a photolithographic process
US10295911B2 (en) * 2016-05-19 2019-05-21 Nikon Corporation Extreme ultraviolet lithography system that utilizes pattern stitching
CN111174180B (zh) * 2020-01-19 2022-04-26 平行现实(杭州)科技有限公司 一种大动态范围光束转向装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963305A (en) 1996-09-12 1999-10-05 Canon Kabushiki Kaisha Illumination system and exposure apparatus
JP3563888B2 (ja) 1996-09-12 2004-09-08 キヤノン株式会社 照明装置及びそれを用いた投影露光装置
JP3618944B2 (ja) 1996-12-20 2005-02-09 キヤノン株式会社 照明光学系及びそれを用いた露光装置
AU1891299A (en) * 1998-01-19 1999-08-02 Nikon Corporation Illuminating device and exposure apparatus
JP4238390B2 (ja) 1998-02-27 2009-03-18 株式会社ニコン 照明装置、該照明装置を備えた露光装置および該露光装置を用いて半導体デバイスを製造する方法
US7006595B2 (en) 1998-05-05 2006-02-28 Carl Zeiss Semiconductor Manufacturing Technologies Ag Illumination system particularly for microlithography
JPH11345761A (ja) 1998-05-29 1999-12-14 Nikon Corp 走査型露光装置
US7210820B2 (en) * 2003-05-07 2007-05-01 Resonetics, Inc. Methods and apparatuses for homogenizing light
US7636149B2 (en) * 2003-05-09 2009-12-22 Nikon Corporation Optical systems that correct optical irregularities, and projection-exposure systems and methods comprising same

Also Published As

Publication number Publication date
US9030645B2 (en) 2015-05-12
KR101653009B1 (ko) 2016-08-31
WO2010007945A1 (ja) 2010-01-21
JP5223921B2 (ja) 2013-06-26
TWI476539B (zh) 2015-03-11
KR20110049792A (ko) 2011-05-12
US20100033699A1 (en) 2010-02-11
TW201003335A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
JP5223921B2 (ja) 照明光学系、露光装置、及び露光方法
US7362416B2 (en) Exposure apparatus, evaluation method and device fabrication method
EP1617292B1 (en) Light source unit and exposure apparatus having the same
JP4924421B2 (ja) センサの校正方法、露光方法、露光装置、デバイス製造方法、および反射型マスク
JP2002100561A (ja) 露光方法及び装置、並びにデバイス製造方法
JPWO2006085626A1 (ja) 露光方法及び装置、並びにデバイス製造方法
KR20110084950A (ko) 컬렉터 조립체, 방사선 소스, 리소그래피 장치 및 디바이스 제조 방법
JP2005317611A (ja) 露光方法及び装置
JP2004029625A (ja) 投影光学系、露光装置及び露光方法
JP5387982B2 (ja) 照明光学装置、露光装置、およびデバイス製造方法
US7130024B2 (en) Exposure apparatus
TWI452440B (zh) 多層鏡及微影裝置
JP2007142361A (ja) 露光装置及びデバイス製造方法
JP5119681B2 (ja) 露光装置及びデバイス製造方法
JP2004140390A (ja) 照明光学系、露光装置及びデバイス製造方法
JP2001332489A (ja) 照明光学系、投影露光装置、及びデバイス製造方法
JP5397596B2 (ja) フレア計測方法及び露光方法
JP2011108697A (ja) 露光量制御方法、露光方法、及びデバイス製造方法
TWI295577B (en) Exposure apparatus and method
TWI245324B (en) Projection optical system
JP2004273926A (ja) 露光装置
US6833905B2 (en) Illumination apparatus, projection exposure apparatus, and device fabricating method
JP2010205896A (ja) フレア計測方法及び露光方法
JP2010098171A (ja) 光学系及び露光装置
JP2009290149A (ja) 測定装置、露光装置、及び電子デバイスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

R150 Certificate of patent or registration of utility model

Ref document number: 5223921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250