JPWO2006088004A1 - Electric double layer capacitor electrode material and manufacturing method thereof - Google Patents

Electric double layer capacitor electrode material and manufacturing method thereof Download PDF

Info

Publication number
JPWO2006088004A1
JPWO2006088004A1 JP2006524165A JP2006524165A JPWO2006088004A1 JP WO2006088004 A1 JPWO2006088004 A1 JP WO2006088004A1 JP 2006524165 A JP2006524165 A JP 2006524165A JP 2006524165 A JP2006524165 A JP 2006524165A JP WO2006088004 A1 JPWO2006088004 A1 JP WO2006088004A1
Authority
JP
Japan
Prior art keywords
double layer
electric double
layer capacitor
electrode material
capacitor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006524165A
Other languages
Japanese (ja)
Inventor
友哉 岩崎
友哉 岩崎
橋爪 仁
仁 橋爪
清水 誠
誠 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinano Kenshi Co Ltd
Original Assignee
Shinano Kenshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinano Kenshi Co Ltd filed Critical Shinano Kenshi Co Ltd
Publication of JPWO2006088004A1 publication Critical patent/JPWO2006088004A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

カーボンナノファイバーを均一に分散でき、内部抵抗を減じて、大電流の高速充放電に適する電気二重層キャパシタ電極材料を提供する。本発明に係る電気二重層キャパシタ用電極材料は、窒素、酸素、硫黄のようなヘテロ原子を含む原子団が主鎖や側鎖に存在している高分子物質が溶解された溶液中にカーボンナノファイバーが分散され、該分散溶液が乾燥され、該乾燥物が500〜3000℃、非酸化性雰囲気中で焼成された複合炭素素材からなる。Provided is an electric double layer capacitor electrode material that can uniformly disperse carbon nanofibers, reduce internal resistance, and is suitable for high-speed high-speed charge / discharge. The electrode material for an electric double layer capacitor according to the present invention comprises carbon nano-particles in a solution in which a polymer substance in which an atomic group containing a heteroatom such as nitrogen, oxygen or sulfur is present in the main chain or side chain is dissolved. Fibers are dispersed, the dispersion is dried, and the dried product is composed of a composite carbon material fired at 500 to 3000 ° C. in a non-oxidizing atmosphere.

Description

本発明は、電気二重層キャパシタ電極材料およびその製造方法、電気二重層キャパシタに関する。   The present invention relates to an electric double layer capacitor electrode material, a manufacturing method thereof, and an electric double layer capacitor.

電気二重層キャパシタは小型の蓄電デバイスとして携帯機器などのバックアップ電源に使用されてきた。しかし、近年では環境問題の観点からハイブリット車や燃料電池車用に高出力密度のキャパシタが求められる。また、瞬停対策として短時間に大電流を取り出せるキャパシタも求められている。これらは共に内部抵抗を低下させることが重要である。このため、分極性電極材料として活性炭材料にカーボンブラックなどの導電材を添加し、導電性を高めて内部抵抗を低下させることは知られている。さらにカーボンナノファイバーを導電材として添加することによって電気伝導度をあげることによる内部抵抗の低下を試みることも行われた(特開2001−135554)。
特開2001−135554
An electric double layer capacitor has been used as a small power storage device for a backup power source of a portable device or the like. However, in recent years, a capacitor with a high output density is required for hybrid vehicles and fuel cell vehicles from the viewpoint of environmental problems. There is also a need for a capacitor that can extract a large current in a short time as a measure against momentary power failure. Both of these are important to reduce the internal resistance. For this reason, it is known that a conductive material such as carbon black is added to the activated carbon material as a polarizable electrode material to increase the conductivity and decrease the internal resistance. Furthermore, attempts have been made to reduce internal resistance by increasing the electrical conductivity by adding carbon nanofibers as a conductive material (Japanese Patent Laid-Open No. 2001-135554).
JP 2001-135554 A

しかし、カーボンナノファイバーを導電材として添加しても、均一に分散できなかったり、カーボンナノファイバーと活性炭材料の接触抵抗が大きくなってしまうという課題があった。
そこで本発明は上記課題を解決すべくなされたもので、その目的とするところは、カーボンナノファイバーを均一に分散でき、内部抵抗を減じて、大電流の高速充放電に適する電気二重層キャパシタ電極材料およびその製造方法を提供するにある。
本発明に係る電気二重層キャパシタ用電極材料は、窒素、酸素、硫黄のようなヘテロ原子を含む原子団が主鎖や側鎖に存在している高分子物質が溶解された溶液中にカーボンナノファイバーが分散され、該分散溶液が乾燥され、該乾燥物が500〜3000℃、非酸化性雰囲気中で焼成された複合炭素素材からなる。
前記複合炭素材料に賦活処理が施され、表面に多数の細孔が形成されていることを特徴とする。
また、電気二重層キャパシタ用電極材料は、1μm〜1000μmの粒状をなすことを特徴とする。
前記高分子物質に対するカーボンナノファイバーの量が1〜30wt%であることを特徴とする。
前記高分子物質がアミノ酸、アミノ酸からなるタンパク質、またはペプチドからなることを特徴とする。
また、高分子物質が絹素材からなることを特徴とする。
また、複合炭素素材が窒素元素を含むことを特徴とする。
前記カーボンナノファイバーが単層、二層、もしくは多層のカーボンナノチューブ、キャップスタック型カーボンナノチューブ、またはカーボンナノホーンであることを特徴とする。
また本発明に係る電気二重層キャパシタは、集電体と分極性電極よりなる一対の電極体と、セパレータと、電解液からなる電気二重層キャパシタにおいて、前記分極性電極に、請求項1〜9いずれか1項記載の電気二重層キャパシタ用電極材料を含むことを特徴とする。
また、本発明に係る電気二重層キャパシタの製造方法は、窒素、酸素、硫黄のようなヘテロ原子を含む原子団が主鎖や側鎖に存在している高分子物質が溶解された高分子物質由来の溶液中にカーボンナノファイバーを分散する工程と、該分散溶液を乾燥させる工程と、乾燥物を焼成して複合炭素材料を形成する工程とを含むことを特徴とする。
前記乾燥物を粉砕して後焼成すると好適である。
あるいは乾燥物を焼成して形成された複合炭素材料を粒状に粉砕するようにしてもよい。
高分子物質に対してカーボンナノファイバーを1〜30wt%分散させることを特徴とする。
高分子物質に絹素材を用いることを特徴とする。
However, even when carbon nanofibers are added as a conductive material, there is a problem that they cannot be uniformly dispersed or the contact resistance between the carbon nanofibers and the activated carbon material is increased.
Accordingly, the present invention has been made to solve the above-described problems, and the object of the present invention is to provide an electric double layer capacitor electrode that can uniformly disperse carbon nanofibers, reduce internal resistance, and is suitable for high-speed high-speed charge / discharge. It is in providing a material and its manufacturing method.
The electrode material for an electric double layer capacitor according to the present invention comprises carbon nano-particles in a solution in which a polymer substance in which an atomic group containing a heteroatom such as nitrogen, oxygen or sulfur is present in the main chain or side chain is dissolved. Fibers are dispersed, the dispersion solution is dried, and the dried product is composed of a composite carbon material fired at 500 to 3000 ° C. in a non-oxidizing atmosphere.
The composite carbon material is subjected to activation treatment, and a large number of pores are formed on the surface.
Moreover, the electrode material for electric double layer capacitors is characterized by having a granularity of 1 μm to 1000 μm.
The amount of carbon nanofibers relative to the polymer material is 1 to 30 wt%.
The polymer substance is composed of an amino acid, a protein composed of an amino acid, or a peptide.
Further, the polymer material is made of a silk material.
In addition, the composite carbon material includes a nitrogen element.
The carbon nanofibers are single-walled, double-walled, or multi-walled carbon nanotubes, cap-stacked carbon nanotubes, or carbon nanohorns.
Moreover, the electric double layer capacitor according to the present invention is an electric double layer capacitor comprising a pair of electrode bodies comprising a current collector and a polarizable electrode, a separator, and an electrolytic solution. The electrode material for an electric double layer capacitor described in any one of the above items is included.
In addition, the method for manufacturing an electric double layer capacitor according to the present invention includes a polymer material in which a polymer material in which an atomic group containing a hetero atom such as nitrogen, oxygen, or sulfur is present in a main chain or a side chain is dissolved. The method includes a step of dispersing carbon nanofibers in a solution derived from, a step of drying the dispersion solution, and a step of firing a dried product to form a composite carbon material.
The dried product is preferably pulverized and then calcined.
Or you may make it grind | pulverize the composite carbon material formed by baking a dried material into a granule.
Carbon nanofibers are dispersed in an amount of 1 to 30 wt% with respect to the polymer material.
It is characterized by using a silk material as a polymer material.

発明の効果
本発明によれば、カーボンナノファイバーが均一に分散し、かつ高分子材料由来の炭化物とカーボンナノファイバーとが密着していることによって、内部抵抗を十分低減することができ、大電流の高速充放電に適し、高出力の電気二重層キャパシタが得られる。
Effect of the Invention According to the present invention, the carbon nanofibers are uniformly dispersed, and the carbide derived from the polymer material and the carbon nanofibers are in close contact with each other, so that the internal resistance can be sufficiently reduced, and a large current is obtained. Therefore, it is suitable for high-speed charge / discharge, and a high-output electric double layer capacitor can be obtained.

粗粒シルクを2000℃の高温で焼成した場合の焼成物のラマンスペクトル図である。It is a Raman spectrum figure of a baked product at the time of baking coarse grain silk at the high temperature of 2000 degreeC. 粗粒シルクを700℃の高温で焼成した場合の焼成物のラマンスペクトル図である。It is a Raman spectrum figure of a baked material at the time of baking coarse grain silk at the high temperature of 700 degreeC. 粗粒シルクを1000℃の高温で焼成した場合の焼成物のラマンスペクトル図である。It is a Raman spectrum figure of a baked product at the time of baking coarse grain silk at the high temperature of 1000 degreeC. 粗粒シルクを1400℃の高温で焼成した場合の焼成物のラマンスペクトル図である。It is a Raman spectrum figure of a baked product at the time of baking coarse grain silk at the high temperature of 1400 degreeC. 複合炭素材料のSEM写真である。It is a SEM photograph of a composite carbon material. 複合炭素材料の粉体抵抗の測定値を示すグラフである。It is a graph which shows the measured value of the powder resistance of a composite carbon material. 実施例と比較例のキャパシタ特性(体積容量)を示すグラフである。It is a graph which shows the capacitor characteristic (volume capacity) of an Example and a comparative example.

以下本発明の好適な実施の形態を詳細に説明する。
電気二重層キャパシタは、集電体と分極性電極よりなる一対の電極体と、セパレータと、電解液からなる(構造自体は種々の公知の構造をとることができるので、特に図示しない)。
本実施の形態では、分極性電極に含む電極材料に特徴がある。
すなわち、この電極材料は、窒素、酸素、硫黄のようなヘテロ原子を含む原子団が主鎖や側鎖に存在している高分子物質が溶解された溶液中にカーボンナノファイバーが分散され、該分散溶液が乾燥され、該乾燥物が500℃〜3000℃、非酸化性雰囲気中で焼成された複合炭素素材からなることを特徴とする。
前記高分子材料に絹素材を用いることができる。
絹素材とは、家蚕あるいは野蚕からなる織物、編物、粉体、綿、糸等の総称である。これらを単独もしくは併用して用いることができる。
これら絹素材はタンパク質の高次構造をとり、その表面(折り畳み構造をなす、折り畳まれて内側となる表面を含む)に、種々のアミノ酸残基を含む配位基が存在する。
高分子材料としては、上記の絹素材の他に、窒素、酸素、硫黄のようなドナー原子を含む原子団が主鎖や側鎖に存在している高分子材料を用いることができる。
このような高分子材料としては、ケラチン、牛乳タンパク、トウモロコシタンパク、コラーゲン等のタンパク質も用いることができる。
具体的には、上記の高分子材料を溶解した溶液にカーボンナノファイバーを添加し、よく分散させる。カーボンナノファイバーを分散させるには、超音波振動を印加するようにするとよい。
高分子物質に対するカーボンナノファイバーの添加量は1〜30wt%程度が好適である。
カーボンナノファイバーは単層、二層、もしくは多層のカーボンナノチューブ、キャップスタック型カーボンナノチューブ、またはカーボンナノホーンを用いることができる。
次いで、上記混合溶液を自然乾燥あるいは、80℃程度に加温して水分を飛ばし、乾燥させる。
次に、この乾燥物を500℃〜3000℃の温度で焼成して複合炭素材料を得る。
次いで、この複合炭素材料を700℃程度の高温の水蒸気に晒す賦活処理を行う。
この賦活処理により、複合炭素材料中の、高分子材料由来の炭化物表面に多数の細孔が形成される。これにより、表面積が増大するので、電気二重層キャパシタの電極材料として好適となる。細孔は直径10nm以下の極めて小さなもので、これにより、複合炭素材料は、表面積が、100〜3000m/gもの大きな表面積を有するものとなる。
次に、上記賦活処理した複合炭素材料を、1μm〜1000μm程度の大きさ、好ましくは5μm〜10μm程度の粒状となるように粉砕する。このように粉砕することで、PTFE(ポリテトラフルオロエチレン)等のバインダーにより結着して、分極性電極とすることができる。なお、上記乾燥工程で乾燥した乾燥物を粉砕し、これを焼成するようにしてもよい。
また、分極性電極として、上記粒状に形成した複合炭素材料のみでもよいが、他の、活性炭、カーボンブラックなどの導電材と併用してもよい。
電極材料の配合比は特に限定されるものではないが、例えば、本実施の形態の複合炭素材料:15〜90wt%、カーボンブラック等の導電材料3〜15wt%、PTFE3〜20wt%、CMC(カルボキシメチルセルロース)3〜20wt%などが好適である。
上記焼成温度は、より高温で焼成するほど高分子材料由来の炭化物がグラファイト化して導電性がよくなるので好ましい。具体的には、1400℃以上で焼成すると導電性の良好な炭化物となる。
一方、1400℃よりも低温で焼成した場合は、高分子(特に絹素材)中の窒素成分が多く残存し、これら官能基が存在することによって電子が蓄積されやすく、これによりキャパシタの容量が向上するというメリットもある。導電性の点については、カーボンナノファイバーが補ってくれる。また必要に応じてカーボンブラック等の導電材を添加して導電性を調整するとよい。
本実施の形態では、上記のように、高分子溶液中にカーボンナノファイバーを分散させるので、カーボンナノファイバーの分散性が均一となる。
そして、この高分子溶液を乾燥後、焼成するので、カーボンナノファイバーが高分子由来の炭化物により結着され、また、カーボンナノファイバー同士も接触するので、接触抵抗が減少し、高い導電性が得られるのである。したがって、電気二重層キャパシタとした際に、内部抵抗を十分低減することができ、大電流の高速充放電に適し、高出力の電気二重層キャパシタが得られる。
なお、絹素材の導電性を確認するため、絹素材を単独で焼成して、焼成物の物性を調べた。
絹素材の焼成温度は500℃〜3000℃程度の温度で行うようにする。
また焼成雰囲気は、窒素ガスやアルゴンガス等の不活性ガス雰囲気中、あるいは真空中で行い、絹素材が燃焼して灰化してしまうのを防止する。
焼成条件は、急激な焼成を避け、複数段に分けて焼成を行うようにするとよい。この焼成条件は、上記複合素材を焼成する場合も同じである。
例えば、不活性ガス雰囲気中で、第1次焼成温度(例えば500℃)までは、毎時100℃以下、好ましくは毎時50℃以下の緩やかな昇温速度で昇温し、この第1次焼成温度で数時間保持して1次焼成する。次いで、一旦常温にまで冷却した後、第2次焼成温度(例えば700℃)まで、やはり毎時100℃以下、好ましくは50℃以下の緩やかな昇温速度で昇温し、この第2次焼成温度で数時間保持して2次焼成するのである。次いで冷却する。同様にして、第3次焼成(例えば最終焼成の2000℃)を行って炭素材料を得る。なお、焼成条件は上記に限定されるものではなく、絹素材の種類、求める炭素材料の機能等により適宜変更することができる。
上記のように、焼成を複数段に分けて行うこと、また緩やかな昇温速度で昇温して焼成することによって、十数種類のアミノ酸が、非晶性構造と結晶性構造とが入り組んだタンパク高次構造の急激な分解が避けられる。
図1は粗粒シルクを2000℃(最終段の焼成温度)の高温で焼成した場合の焼成物のラマンスペクトル図である。2681cm−1、1570cm−1、1335cm−1のところにピークが見られることからグラファイト化していることが理解される。
図2、図3、図4は、粗粒シルクをそれぞれ700℃、1000℃、1400℃で焼成した場合の焼成物のラマンスペクトル図である。1400℃の焼成温度になると、ピーク値は低いものの、上記3箇所でのピークが見られる。
1000℃未満の焼成温度の場合には、上記のピークが見られないことから、グラファイト化はほとんど起こっておらず、良好な導電性は期待できない。
したがって、導電材料として用いるときは、1000〜3000℃(最終段の焼成温度)の高温で焼成するようにするのが好ましい。
上記のようにして、1400℃、2000℃で絹素材(織布)を焼成して得た炭素材料の比抵抗を測定(単糸をほぐしたフィラメントで測定)したところ、いずれも、約1×10−5(Ω・m)であり、グラファイト(4〜7×10−7Ω・m)には及ばないものの、炭素(4×10−5)より良好な比抵抗となり、良好な電気電導性を有していることがわかる。
表1


表1は、家蚕絹紡糸編地を窒素雰囲気中で700℃で焼成した焼成物の電子線マイクロアナライザーによる元素分析結果(半定量分析結果)を示す。
測定条件は、加速電圧:15kV、照射電流:1μA、プローブ径:100μmである。なお、表中の値は検出元素の傾向を示すものであり、保証値ではない。
表1から明らかなように、27.4wt%という多量の窒素元素が残存していることがわかる。またアミノ酸由来のその他の元素も残存する多元素物であることがわかる。
このように比較的低温で絹素材を一次焼成すると、窒素元素等の元素が多く残存している。この窒素元素は、アミノ酸残基に由来するものである。
このように、絹素材を焼成すると、窒素元素等の元素が多く残存し、キャパシタの電極材料として好適となる。

実施例1
塩化カルシウム2水和物の65wt%水溶液1l中に、絹原料240gを添加し、溶液温度を95℃に保持しつつ加熱溶解を6時間行った。分解が終了した溶解液をろ過して未溶解物をろ別した後、ろ液を分子分画300の透析膜を用いて脱塩して得られたシルクタンパク溶液をさらに希釈して3wt%のシルクタンパク水溶液にした。この3wt%のシルクタンパク水溶液3mlにカーボンナノファイバーを1g混合し、超音波をかけてカーボンナノファイバーを分散させ、そのまま室温で乾燥させた。乾燥後粉砕し、窒素雰囲気中にて700℃で焼成して複合炭素材料粉末を得た。この材料を700℃にて水蒸気賦活を行い、高表面積複合炭素材料を得た。図5は、このようにして得られた複合炭素材料のSEM写真である。高分子材料由来の炭化物によりカーボンナノファイバーが結着されるとともに、カーボンナノファイバーがウニの棘状に突出しているのがわかる。電極材とした際、この突出しているカーボンナノファイバー同士が接触し、高い導電性が得られる。なお、図6は、上記カーボンナノファイバーとしてDWCNT、MWCNTを用いて形成した複合炭素材料と、上記カーボンナノファイバーの代わりにカーボンブラックを用いて形成した複合炭素材料(比較例)の粉体抵抗を計測したグラフである。
この複合炭素材料75wt%、PTFE15wt%、CMC10wt%を用いて分極性電極材料を形成した。

実施例2
3wt%のシルクタンパク水溶液3mlにカーボンナノファイバーを1g混合し、超音波をかけてカーボンナノファイバーを分散させ、80℃で乾燥させた。乾燥後粉砕し、窒素雰囲気中にて700℃で焼成して複合炭素材料粉末を得た。この材料を700℃にて水蒸気賦活を行い、高表面積複合炭素材料を得た。この複合炭素材料75wt%、PTFE15wt%、CMC10wt%を用いて分極性電極材料を形成した。

実施例3
3wt%のシルクアミノ酸水溶液3mlにカーボンナノファイバーを1g混合し、超音波をかけてカーボンナノファイバーを分散させ、80℃で乾燥させた。乾燥後粉砕し、窒素雰囲気中にて700℃で焼成して複合炭素材料粉末を得た。この材料を700℃にて水蒸気賦活を行い、高表面積複合炭素材料を得た。この複合炭素材料75wt%、PTFE15wt%、CMC10wt%を用いて分極性電極材料を形成した。

実施例4
3wt%のシルクアミノ酸水溶液3mlにカーボンナノファイバーを1g混合し、超音波をかけてカーボンナノファイバーを分散させ、80℃で乾燥させた。乾燥後粉砕し、窒素雰囲気中にて700℃で焼成して複合炭素材料粉末を得た。この材料を700℃にて水蒸気賦活を行い、高表面積複合炭素材料を得た。この複合炭素材料75wt%、PTFE15wt%、CMC10wt%を用いて分極性電極材料を形成した。

実施例5
3wt%のシルクアミノ酸水溶液3mlにカーボンナノファイバーを1g混合し、超音波をかけてカーボンナノファイバーを分散させ、そのまま室温で乾燥させた。乾燥後粉砕し、窒素雰囲気中にて700℃で焼成して複合炭素材料粉末を得た。この材料をさらに窒素雰囲気中にて2000℃で焼成して低抵抗複合炭素材料を得た。これを用いて、活性炭80wt%、低抵抗複合炭素材料10wt%、PTFE10wt%を用いて分極性電極材料を得た。
比較例として低抵抗複合炭素材料の代わりに市販のカーボンブラックを使用したもの、およびカーボンナノファイバーもカーボンブラックも添加せず、シルクアミノ酸水溶液を乾燥させ、乾燥物を粉砕したものを上記と同一の条件で焼成した炭素材料を使用した分極性電極材料を得た。
上記各分極性電極を使用し、キャパシタ用のセルに組み込み、2.5Vまで5mAで充電、2.5Vで30分保持した後、1mA、4mA、10mAにてそれぞれ放電を行った。この場合のキャパシタ特性評価を図7に示す。図7に示されるように、カーボンナノファイバーもカーボンブラックも混入していない比較例(添加無し)の場合、10mAにて放電を行うと1mA、4mAにて放電したときよりも体積容量が低下するが、カーボンブラックや複合炭素材料を用いたものでは10mAで放電しても低下は起こらなかった。またカーボンブラックのものに比べて上記複合炭素材料を添加したものの方が1F/CCだけ高い体積容量となった。
このように、複合炭素材料を用いたものの方が、カーボンブラックを用いたものと比して同等以上のキャパシタ特性が得られた。
Hereinafter, preferred embodiments of the present invention will be described in detail.
The electric double layer capacitor includes a pair of electrode bodies each including a current collector and a polarizable electrode, a separator, and an electrolytic solution (the structure itself can take various known structures and is not particularly illustrated).
This embodiment is characterized by the electrode material included in the polarizable electrode.
That is, in this electrode material, carbon nanofibers are dispersed in a solution in which a polymer substance in which an atomic group containing a hetero atom such as nitrogen, oxygen, or sulfur is present in the main chain or side chain is dissolved, The dispersion solution is dried, and the dried product is made of a composite carbon material fired in a non-oxidizing atmosphere at 500 ° C. to 3000 ° C.
A silk material can be used for the polymer material.
The silk material is a general term for woven fabrics, knitted fabrics, powders, cotton, yarns, and the like made of rabbits or wild silk. These can be used alone or in combination.
These silk materials have a higher-order protein structure, and there are coordinating groups containing various amino acid residues on the surface (including the folded inner surface).
As the polymer material, in addition to the silk material described above, a polymer material in which an atomic group containing a donor atom such as nitrogen, oxygen, or sulfur is present in the main chain or side chain can be used.
As such a polymer material, proteins such as keratin, milk protein, corn protein and collagen can also be used.
Specifically, carbon nanofibers are added to a solution in which the above polymer material is dissolved and dispersed well. In order to disperse the carbon nanofibers, it is preferable to apply ultrasonic vibration.
The amount of carbon nanofiber added to the polymer material is preferably about 1 to 30 wt%.
As the carbon nanofiber, single-walled, double-walled, or multi-walled carbon nanotubes, cap-stacked carbon nanotubes, or carbon nanohorns can be used.
Next, the mixed solution is naturally dried or heated to about 80 ° C. to remove moisture and dried.
Next, this dried product is fired at a temperature of 500 ° C. to 3000 ° C. to obtain a composite carbon material.
Next, an activation treatment is performed in which the composite carbon material is exposed to high-temperature steam at about 700 ° C.
By this activation treatment, a large number of pores are formed on the surface of the carbide derived from the polymer material in the composite carbon material. This increases the surface area, which is suitable as an electrode material for an electric double layer capacitor. The pores are extremely small with a diameter of 10 nm or less, whereby the composite carbon material has a surface area as large as 100 to 3000 m 2 / g.
Next, the composite carbon material subjected to the activation treatment is pulverized so as to have a size of about 1 μm to 1000 μm, preferably about 5 μm to 10 μm. By pulverizing in this way, a polarizable electrode can be formed by binding with a binder such as PTFE (polytetrafluoroethylene). In addition, you may make it grind | pulverize and dry the dried material dried at the said drying process.
Moreover, as the polarizable electrode, only the composite carbon material formed in the above-mentioned granular shape may be used, but other conductive materials such as activated carbon and carbon black may be used in combination.
The mixing ratio of the electrode material is not particularly limited. For example, the composite carbon material of the present embodiment: 15 to 90 wt%, conductive material such as carbon black 3 to 15 wt%, PTFE 3 to 20 wt%, CMC (carboxyl) Methyl cellulose) 3 to 20 wt% is preferable.
The firing temperature is more preferable as the firing is performed at a higher temperature because the carbide derived from the polymer material is graphitized and the conductivity is improved. Specifically, when it is fired at 1400 ° C. or higher, it becomes a highly conductive carbide.
On the other hand, when firing at a temperature lower than 1400 ° C., a large amount of nitrogen components remain in the polymer (especially silk material), and the presence of these functional groups facilitates the accumulation of electrons, thereby improving the capacitance of the capacitor. There is also an advantage of doing. In terms of conductivity, carbon nanofibers make up for it. Moreover, it is good to adjust electroconductivity by adding electrically conductive materials, such as carbon black, as needed.
In the present embodiment, since the carbon nanofibers are dispersed in the polymer solution as described above, the dispersibility of the carbon nanofibers becomes uniform.
And since this polymer solution is dried and fired, the carbon nanofibers are bound by the carbide derived from the polymer, and the carbon nanofibers are also in contact with each other, so that the contact resistance is reduced and high conductivity is obtained. It is done. Therefore, when an electric double layer capacitor is used, the internal resistance can be sufficiently reduced, and a high output electric double layer capacitor can be obtained that is suitable for high-current high-speed charge / discharge.
In addition, in order to confirm the electrical conductivity of the silk material, the silk material was fired alone, and the physical properties of the fired product were examined.
The firing temperature of the silk material is about 500 ° C. to 3000 ° C.
The firing atmosphere is performed in an inert gas atmosphere such as nitrogen gas or argon gas or in a vacuum to prevent the silk material from burning and ashing.
As for the firing conditions, it is preferable that firing is performed in a plurality of stages while avoiding rapid firing. This firing condition is the same when firing the composite material.
For example, in an inert gas atmosphere, the temperature is raised at a moderate temperature increase rate of 100 ° C./hour, preferably 50 ° C./hour or less until the first firing temperature (for example, 500 ° C.). Hold for several hours and perform primary firing. Next, after cooling to room temperature, the temperature is gradually raised to a secondary firing temperature (for example, 700 ° C.) at a moderate temperature increase rate of 100 ° C. or less, preferably 50 ° C. or less per hour. The secondary firing is performed for several hours. Then it is cooled. Similarly, a third firing (for example, 2000 ° C. for final firing) is performed to obtain a carbon material. The firing conditions are not limited to the above, and can be appropriately changed depending on the type of silk material, the function of the desired carbon material, and the like.
As described above, by performing baking in multiple stages, and by heating at a moderate temperature rise rate and baking, dozens of types of amino acids have a complex structure with an amorphous structure and a crystalline structure. Rapid decomposition of higher order structures is avoided.
FIG. 1 is a Raman spectrum diagram of a fired product obtained by firing coarse silk at a high temperature of 2000 ° C. (final stage firing temperature). 2681cm -1, 1570cm -1, it is understood that graphitized since the peak at 1335cm -1 are observed.
2, FIG. 3, and FIG. 4 are Raman spectrum diagrams of the fired products obtained by firing coarse silk at 700 ° C., 1000 ° C., and 1400 ° C., respectively. When the firing temperature is 1400 ° C., the peak value is low, but the peaks at the three locations are seen.
In the case of a calcination temperature of less than 1000 ° C., since the above peak is not observed, graphitization hardly occurs and good conductivity cannot be expected.
Therefore, when used as a conductive material, it is preferable to fire at a high temperature of 1000 to 3000 ° C. (final stage firing temperature).
When the specific resistance of the carbon material obtained by firing the silk material (woven fabric) at 1400 ° C. and 2000 ° C. was measured as described above (measured with a filament loosened from the single yarn), both were about 1 ×. 10 −5 (Ω · m), which is less than graphite (4-7 × 10 −7 Ω · m), but has a specific resistance better than that of carbon (4 × 10 −5 ), and good electrical conductivity It can be seen that
Table 1


Table 1 shows the result of elemental analysis (semi-quantitative analysis result) by electron beam microanalyzer of a fired product obtained by firing a silkworm silk knitted fabric at 700 ° C. in a nitrogen atmosphere.
The measurement conditions are acceleration voltage: 15 kV, irradiation current: 1 μA, probe diameter: 100 μm. In addition, the value in a table | surface shows the tendency of a detection element, and is not a guaranteed value.
As is clear from Table 1, it can be seen that a large amount of nitrogen element of 27.4 wt% remains. In addition, it can be seen that other elements derived from amino acids are multi-elements that remain.
Thus, when the silk material is primarily fired at a relatively low temperature, a large amount of elements such as nitrogen elements remain. This nitrogen element is derived from an amino acid residue.
Thus, when a silk raw material is baked, a large amount of elements such as a nitrogen element remain, which is suitable as a capacitor electrode material.

Example 1
In 1 liter of a 65 wt% aqueous solution of calcium chloride dihydrate, 240 g of silk raw material was added, and heating and dissolution were performed for 6 hours while maintaining the solution temperature at 95 ° C. After filtering the dissolved solution after the decomposition, the undissolved material is filtered off, and the silk protein solution obtained by desalting the filtrate using the dialysis membrane of the molecular fraction 300 is further diluted to 3 wt%. Silk protein aqueous solution was used. 1 g of carbon nanofibers was mixed with 3 ml of this 3 wt% silk protein aqueous solution, and the carbon nanofibers were dispersed by applying ultrasonic waves, and dried at room temperature. After drying, it was pulverized and fired at 700 ° C. in a nitrogen atmosphere to obtain a composite carbon material powder. This material was steam activated at 700 ° C. to obtain a high surface area composite carbon material. FIG. 5 is an SEM photograph of the composite carbon material thus obtained. It can be seen that the carbon nanofibers are bound by the carbide derived from the polymer material, and that the carbon nanofibers protrude in the shape of sea urchins. When the electrode material is used, the protruding carbon nanofibers come into contact with each other, and high conductivity is obtained. FIG. 6 shows the powder resistance of the composite carbon material formed using DWCNT and MWCNT as the carbon nanofiber and the composite carbon material formed using carbon black instead of the carbon nanofiber (comparative example). It is the measured graph.
A polarizable electrode material was formed using the composite carbon material 75 wt%, PTFE 15 wt%, and CMC 10 wt%.

Example 2
1 g of carbon nanofibers were mixed in 3 ml of a 3 wt% silk protein aqueous solution, and the carbon nanofibers were dispersed by applying ultrasonic waves, followed by drying at 80 ° C. After drying, it was pulverized and fired at 700 ° C. in a nitrogen atmosphere to obtain a composite carbon material powder. This material was steam activated at 700 ° C. to obtain a high surface area composite carbon material. A polarizable electrode material was formed using the composite carbon material 75 wt%, PTFE 15 wt%, and CMC 10 wt%.

Example 3
1 g of carbon nanofibers were mixed in 3 ml of a 3 wt% silk amino acid aqueous solution, and the carbon nanofibers were dispersed by applying ultrasonic waves, followed by drying at 80 ° C. After drying, it was pulverized and fired at 700 ° C. in a nitrogen atmosphere to obtain a composite carbon material powder. This material was steam activated at 700 ° C. to obtain a high surface area composite carbon material. A polarizable electrode material was formed using the composite carbon material 75 wt%, PTFE 15 wt%, and CMC 10 wt%.

Example 4
1 g of carbon nanofibers were mixed in 3 ml of a 3 wt% silk amino acid aqueous solution, and the carbon nanofibers were dispersed by applying ultrasonic waves, followed by drying at 80 ° C. After drying, it was pulverized and fired at 700 ° C. in a nitrogen atmosphere to obtain a composite carbon material powder. This material was steam activated at 700 ° C. to obtain a high surface area composite carbon material. A polarizable electrode material was formed using the composite carbon material 75 wt%, PTFE 15 wt%, and CMC 10 wt%.

Example 5
1 g of carbon nanofibers were mixed in 3 ml of a 3 wt% silk amino acid aqueous solution, and the carbon nanofibers were dispersed by applying ultrasonic waves, and dried at room temperature. After drying, it was pulverized and fired at 700 ° C. in a nitrogen atmosphere to obtain a composite carbon material powder. This material was further fired at 2000 ° C. in a nitrogen atmosphere to obtain a low resistance composite carbon material. Using this, a polarizable electrode material was obtained using activated carbon 80 wt%, low resistance composite carbon material 10 wt%, and PTFE 10 wt%.
Comparative examples using commercially available carbon black instead of low-resistance composite carbon material, and those obtained by drying silk amino acid aqueous solution without adding carbon nanofibers or carbon black and pulverizing the dried product are the same as above. A polarizable electrode material using a carbon material fired under conditions was obtained.
Each of the polarizable electrodes described above was incorporated into a capacitor cell, charged to 2.5 V at 5 mA, held at 2.5 V for 30 minutes, and then discharged at 1 mA, 4 mA, and 10 mA. The capacitor characteristic evaluation in this case is shown in FIG. As shown in FIG. 7, in the case of the comparative example (no addition) in which neither carbon nanofiber nor carbon black is mixed, the volume capacity decreases when discharging at 10 mA than when discharging at 1 mA and 4 mA. However, in the case of using carbon black or a composite carbon material, no reduction occurred even when discharging at 10 mA. In addition, the volume capacity of the material added with the composite carbon material was higher by 1 F / CC than that of carbon black.
Thus, the capacitor characteristics using the composite carbon material were equivalent to or better than those using the carbon black.

Claims (16)

窒素、酸素、硫黄のようなヘテロ原子を含む原子団が主鎖や側鎖に存在している高分子物質が溶解された溶液中にカーボンナノファイバーが分散され、該分散溶液が乾燥され、該乾燥物が500〜3000℃、非酸化性雰囲気中で焼成された複合炭素素材からなる電気二重層キャパシタ用電極材料。   Carbon nanofibers are dispersed in a solution in which a polymer substance in which an atomic group containing a hetero atom such as nitrogen, oxygen, and sulfur is present in the main chain or side chain is dissolved, and the dispersion solution is dried, An electrode material for an electric double layer capacitor comprising a composite carbon material obtained by firing a dried product at 500 to 3000 ° C. in a non-oxidizing atmosphere. 前記複合炭素材料に賦活処理が施され、表面に多数の細孔が形成されていることを特徴とする請求項1記載の電気二重層キャパシタ用電極材料。   2. The electrode material for an electric double layer capacitor according to claim 1, wherein the composite carbon material is subjected to an activation treatment, and a plurality of pores are formed on a surface thereof. 粒状をなすことを特徴とする請求項1または2記載の電気二重層キャパシタ用電極材料。   3. The electrode material for an electric double layer capacitor according to claim 1, wherein the electrode material is granular. 1μm〜1000μmの粒状をなすことを特徴とする請求項3記載の電気二重層キャパシタ用電極材料。   4. The electrode material for an electric double layer capacitor according to claim 3, wherein the electrode material has a granular shape of 1 [mu] m to 1000 [mu] m. 前記高分子物質に対するカーボンナノファイバーの量が1〜30wt%であることを特徴とする請求項1〜4いずれか1項記載の電気二重層キャパシタ用電極材料。   5. The electrode material for an electric double layer capacitor according to claim 1, wherein the amount of the carbon nanofibers relative to the polymer substance is 1 to 30 wt%. 前記高分子物質がアミノ酸、アミノ酸からなるタンパク質、またはペプチドからなることを特徴とする請求項1〜5いずれか1項記載の電気二重層キャパシタ用電極材料。   The electrode material for an electric double layer capacitor according to any one of claims 1 to 5, wherein the polymer substance comprises an amino acid, a protein comprising an amino acid, or a peptide. 高分子物質が絹素材からなることを特徴とする請求項1〜5いずれか1項記載の電気二重層キャパシタ用電極材料。   The electrode material for an electric double layer capacitor according to any one of claims 1 to 5, wherein the polymer substance is made of a silk material. 前記複合炭素素材が窒素元素を含むことを特徴とする請求項1〜7いずれか1項記載の電気二重層キャパシタ用電極材料。   The electrode material for an electric double layer capacitor according to claim 1, wherein the composite carbon material contains a nitrogen element. 前記カーボンナノファイバーが単層、二層、もしくは多層のカーボンナノチューブ、キャップスタック型カーボンナノチューブ、またはカーボンナノホーンであることを特徴とする請求項1〜8いずれか1項記載の電気二重層キャパシタ用電極材料。   The electrode for an electric double layer capacitor according to any one of claims 1 to 8, wherein the carbon nanofiber is a single-walled, double-walled, or multi-walled carbon nanotube, a cap-stacked carbon nanotube, or a carbon nanohorn. material. 集電体と分極性電極よりなる一対の電極体と、セパレータと、電解液からなる電気二重層キャパシタにおいて、前記分極性電極に、請求項1〜9いずれか1項記載の電気二重層キャパシタ用電極材料を含むことを特徴とする電気二重層キャパシタ。   The electric double layer capacitor according to any one of claims 1 to 9, wherein an electric double layer capacitor comprising a pair of electrode bodies comprising a current collector and a polarizable electrode, a separator, and an electrolytic solution is provided on the polarizable electrode. An electric double layer capacitor comprising an electrode material. 窒素、酸素、硫黄のようなヘテロ原子を含む原子団が主鎖や側鎖に存在している高分子物質が溶解された高分子物質由来の溶液中にカーボンナノファイバーを分散する工程と、
該分散溶液を乾燥させる工程と、
乾燥物を焼成して複合炭素材料を形成する工程とを含むことを特徴とする電気二重層キャパシタ用電極材料の製造方法。
Dispersing carbon nanofibers in a solution derived from a polymer material in which a polymer material in which a group of hetero atoms such as nitrogen, oxygen, and sulfur is present in the main chain or side chain is dissolved;
Drying the dispersion solution;
A method of producing an electrode material for an electric double layer capacitor, comprising: baking a dried product to form a composite carbon material.
乾燥物を粉砕して後焼成することを特徴とする請求項11記載の電気二重層キャパシタ用電極材料の製造方法。   The method for producing an electrode material for an electric double layer capacitor according to claim 11, wherein the dried product is pulverized and then fired. 乾燥物を焼成して形成された複合炭素材料を粒状に粉砕することを特徴とする請求項11記載の電気二重層キャパシタ用電極材料の製造方法。   The method for producing an electrode material for an electric double layer capacitor according to claim 11, wherein the composite carbon material formed by firing the dried product is pulverized into particles. 前記複合炭素材料に賦活処理を施す工程を含むことを特徴とする請求項11〜13いずれか1項記載の電気二重層キャパシタ用電極材料の製造方法。   The method for producing an electrode material for an electric double layer capacitor according to any one of claims 11 to 13, further comprising a step of activating the composite carbon material. 高分子物質に対してカーボンナノファイバーを1〜30wt%分散させることを特徴とする請求項11〜14いずれか1項記載の電気二重層キャパシタ用電極材料の製造方法。   The method for producing an electrode material for an electric double layer capacitor according to any one of claims 11 to 14, wherein carbon nanofibers are dispersed in an amount of 1 to 30 wt% with respect to the polymer substance. 高分子物質に絹素材を用いることを特徴とする請求項11〜15いずれか1項記載の電気二重層キャパシタ用電極材料の製造方法。
The method for producing an electrode material for an electric double layer capacitor according to any one of claims 11 to 15, wherein a silk material is used as the polymer substance.
JP2006524165A 2005-02-21 2006-02-14 Electric double layer capacitor electrode material and manufacturing method thereof Withdrawn JPWO2006088004A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005044573 2005-02-21
JP2005044573 2005-02-21
PCT/JP2006/302494 WO2006088004A1 (en) 2005-02-21 2006-02-14 Electrode material for electric double layer capacitor and method for producing same

Publications (1)

Publication Number Publication Date
JPWO2006088004A1 true JPWO2006088004A1 (en) 2008-07-03

Family

ID=36916410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006524165A Withdrawn JPWO2006088004A1 (en) 2005-02-21 2006-02-14 Electric double layer capacitor electrode material and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JPWO2006088004A1 (en)
CN (1) CN1942985A (en)
WO (1) WO2006088004A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285658A (en) * 2007-04-16 2008-11-27 Shinano Kenshi Co Ltd Rubber composition blended with carbon powder and method for producing the same
JP5565726B2 (en) * 2010-04-28 2014-08-06 学校法人 東洋大学 Carbon nanotubes provided with polyamino acid and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239157A (en) * 2000-02-28 2001-09-04 Rengo Co Ltd Inorganic ion exchanger-hydrophilic polymer active carbon composite and its production method
JP4179581B2 (en) * 2001-09-11 2008-11-12 昭和電工株式会社 Activated carbon, its production method and its use
JP2005001969A (en) * 2003-06-13 2005-01-06 Nippon Steel Chem Co Ltd Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor

Also Published As

Publication number Publication date
CN1942985A (en) 2007-04-04
WO2006088004A1 (en) 2006-08-24

Similar Documents

Publication Publication Date Title
Mofokeng et al. Defective 3D nitrogen-doped carbon nanotube-carbon fibre networks for high-performance supercapacitor: Transformative role of nitrogen-doping from surface-confined to diffusive kinetics
CN105280904B (en) Electrode composition for battery
US20140332731A1 (en) Electrode Composition for Battery
JP4597666B2 (en) Particles comprising a non-conductive core or a semi-conductive core coated with a hybrid conductive layer, a method for its production, and its use in electrochemical devices
Kiruthiga et al. Reduced graphene oxide embedded V2O5 nanorods and porous honey carbon as high performance electrodes for hybrid sodium-ion supercapacitors
EP1870912B1 (en) Electrode material for electric double layer capacitor and process for producing the same, electrode for electric double layer capacitor, and electric double layer capacitor
CN105304876B (en) Molybdenum sulfide/graphene/carbon nano-fiber composite material and preparation method thereof
Jo et al. Gifts from nature: bio‐inspired materials for rechargeable secondary batteries
Thangappan et al. Synthesis, structural and electrochemical properties of Mn-MoO4/graphene nanocomposite electrode material with improved performance for supercapacitor application
EP2062276A2 (en) Carbon nanotube nanocomposites, methods of making carbon nanotube nanocomposites, and devices comprising the nanocomposites
US11349117B2 (en) Magnetite (Fe3O4)—multiwalled carbon nanotube composite structures with performance as high rate electrode materials for Li-ion batteries
KR20220074955A (en) High-purity SWCNT additives to improve the performance of lithium-ion batteries
Ren et al. Self-supported MoP nanocrystals embedded in N, P-codoped carbon nanofibers via a polymer-confinement route for electrocatalytic hydrogen production
An et al. Characterization of supercapacitors using singlewalled carbon nanotube electrodes
KR101812946B1 (en) Graphene-Reduced Graphene Oxide Composite and Method for Preparing the Same
KR102084771B1 (en) Pseudo capacitor anode material and method for preparing the same
KR102481903B1 (en) Carbon nanofiber composite for energy storage device, electrode including the same, and manufacturing method thereof
Hu et al. Compact TiO2@ SnO2@ C heterostructured particles as anode materials for sodium-ion batteries with improved volumetric capacity
JPWO2006088004A1 (en) Electric double layer capacitor electrode material and manufacturing method thereof
JPWO2005090481A1 (en) Composite material, composite carbon material, and production method thereof
KR20210119720A (en) The flexible cathode electrode for lithium-sulfur battery and manufacturing method thereof
JP2019176040A (en) Manufacturing method of active carbon cellulose nanofiber
JP2006278364A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor
US20210408519A1 (en) Cathode for lithium-air battery having low cell resistance and high mechanical properties and method of manufacturing same
JP4071699B2 (en) Carbon material and manufacturing method thereof

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080528