JPWO2005071733A1 - Semiconductor device, power conversion device using the same, motor using the same, hybrid vehicle using the same, and motor drive system using the same - Google Patents

Semiconductor device, power conversion device using the same, motor using the same, hybrid vehicle using the same, and motor drive system using the same Download PDF

Info

Publication number
JPWO2005071733A1
JPWO2005071733A1 JP2005517178A JP2005517178A JPWO2005071733A1 JP WO2005071733 A1 JPWO2005071733 A1 JP WO2005071733A1 JP 2005517178 A JP2005517178 A JP 2005517178A JP 2005517178 A JP2005517178 A JP 2005517178A JP WO2005071733 A1 JPWO2005071733 A1 JP WO2005071733A1
Authority
JP
Japan
Prior art keywords
power
motor
semiconductor device
power semiconductor
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005517178A
Other languages
Japanese (ja)
Inventor
真司 白川
真司 白川
敏之 印南
敏之 印南
伸一 藤野
伸一 藤野
慶太 橋元
慶太 橋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2005071733A1 publication Critical patent/JPWO2005071733A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37025Plural core members
    • H01L2224/3703Stacked arrangements
    • H01L2224/37033Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48491Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

発電モータ(オルタネータ)に半導体装置を内蔵し、力行機能を付加する場合のように、エンジン近傍の高温環境に半導体装置が位置する場合において、高温環境に対する長期信頼性を向上できる半導体装置を提供することができる。半導体装置は、主電流の入出に上下2面の電極を用いるパワー半導体素子(13a)と、パワー半導体素子(12a)の下面電極を支持する絶縁基板(9)とを有する。線膨張率が8から12ppm/℃の範囲の導体板(15a)を用い、パワー半導体素子(13a)の上面電極と導体板(5a)を半田或いけ、金または銀のいずれかの材料を用いて接合した。Provided is a semiconductor device capable of improving long-term reliability against a high-temperature environment when the semiconductor device is located in a high-temperature environment near the engine as in a case where a power generation function is added by incorporating a semiconductor device in a generator motor (alternator). be able to. The semiconductor device includes a power semiconductor element (13a) that uses two upper and lower electrodes for input and output of a main current, and an insulating substrate (9) that supports the lower electrode of the power semiconductor element (12a). A conductor plate (15a) having a linear expansion coefficient in the range of 8 to 12 ppm / ° C. is used, the upper electrode of the power semiconductor element (13a) and the conductor plate (5a) are soldered, or either gold or silver is used. And joined.

Description

本発明は、半導体装置、それを用いた電力変換装置,それを用いたモータ,それを用いたハイブリッド自動車及びそれを用いたモータ駆動システムに係り、特に、エンジンルーム等の高温環境下でも充分に性能を発揮できる半導体装置、それを用いた電力変換装置,それを用いたモータ,それを用いたハイブリッド自動車及びそれを用いたモータ駆動システムに関する。  The present invention relates to a semiconductor device, a power conversion device using the semiconductor device, a motor using the semiconductor device, a hybrid vehicle using the semiconductor device, and a motor driving system using the semiconductor device. The present invention relates to a semiconductor device capable of exhibiting performance, a power conversion device using the same, a motor using the same, a hybrid vehicle using the same, and a motor drive system using the same.

ハイブリッド電気自動車のように走行駆動力をエンジンと電気モータから取り出し、動力を併用して用いる自動車では、電気モータへ交流電力を供給する電力変換器が必要であることは広く知られている。
そして、この種電力変換器のパワー半導体モジュールの半導体チップとAIワイヤボンドとの熱膨張差により生ずるパワー半導体チップとワイヤボンドとの接合面の剥離を防止するため、例えば、特開2000−183249号公報に記載のように、低熱膨張材を貼り付けたブスバー配線をパワー半導体素子の上面電極に導電性樹脂を用いて接合することが知られている。
It is well known that a power converter that supplies AC power to an electric motor is necessary in a vehicle that uses driving power extracted from an engine and an electric motor and uses the power together, such as a hybrid electric vehicle.
In order to prevent peeling of the joint surface between the power semiconductor chip and the wire bond caused by the difference in thermal expansion between the semiconductor chip of the power semiconductor module of this kind of power converter and the AI wire bond, for example, Japanese Patent Application Laid-Open No. 2000-183249. As described in the publication, it is known that a bus bar wiring with a low thermal expansion material attached thereto is joined to a top electrode of a power semiconductor element using a conductive resin.

ところで、燃費向上を目的に、信号待ち等の停車状態でエンジンを止め、発車時にエンジンを再始動させるモータを内蔵したアイドルストップ車(例えば、特開2003−113763号公報)の普及には、低コストで多種多様な車両への実装を容易にするアイドルストップシステムが必要である。
このようなアイドルストップ機能を、低コストでかつ容易に多種多様な車両に持たせる一方法として、殆どの車両に搭載されている発電モータ(オルタネータ)に半導体装置を内蔵し、力行機能を付加する方法が検討されている。このモータに内蔵する半導体装置の課題としては、1)モータに内蔵するための小型化と、2)モータが高発熱体であるエンジンの傍に配置されることから、半導体装置の高温環境に対する長期信頼性の向上の2点である。
長期信頼性に関して、特開2000−183249号公報に記載のものでは、エンジン近傍の高温環境を想定していないため、1)パワー半導体素子の温度が導電性樹脂材の硬化温度近傍まで上昇するため、硬化が進み、接合部がストレスに弱くなる。2)環境が高温であるため、発熱を減らしてパワー半導体素子の温度を抑制する必要があるが、導電性樹脂材の電気抵抗値が大きいと言う問題点がある。例えば、導電性樹脂材の体積抵抗率1Ω・cm(特開2000−183249号公報より)に対して、接合材として使用される鉛錫半田の体積抵抗率は約15μΩ・cmであり、導電性樹脂材の抵抗は鉛錫半田の抵抗の約7万倍と大きい。また、3)低熱膨張材を銅バスバー配線に貼り付けた構造では、その線膨張率の違いから、バスバー配線は低熱膨張材より高温で伸び、低温で縮むことになる。この現象は高温環境において顕著であり、特開2000−183249号公報に記載の構造では、バスバー配線が弓形に変形し、パワー半導体素子からブスバー配線を引き剥がす方向の力が、アイドルストップ車の運転、休止のサイクルによって、繰り返し発生することになる。そのため、前記接合部に剥離がより生じ易くなる。4)バスバー配線が弓形に変形するとそれに接続しているパワー半導体素子も弓形に変形する。パワー半導体素子と絶縁基板は、特開2000−183249号公報にあるように、はんだ等の塑性変形しやすい材料で接合しているため、パワー半導体素子と絶縁基板の接合部にも3)と同様の引き剥がす方向の力に生じさせることになる。
尚、ここでいうパワー半導体素子において絶縁基板と接続する面電極が正極側であり、もう一方の面が負極側の電極である。また、以下では、パワー半導体素子の電極を、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)の電極の呼称に準じ、正極側をドレイン電極、負極側をソース電極と称する。
本発明の目的は、発電モータ(オルタネータ)に半導体装置を内蔵し、力行機能を付加する場合のように、エンジン近傍の高温環境に半導体装置が位置する場合において、高温環境に対する長期信頼性を向上できる半導体装置を提供することにある。
本発明の他の目的は、高温環境に対する長期信頼性を向上させた半導体装置を内蔵した電力変換装置を提供することにある。
本発明のその他の目的は、高温環境に対する長期信頼性を向上させた半導体装置を内蔵して力行動作を可能とした発電モータを提供することにある。
本発明のさらに他の目的は、高温環境に対する長期信頼性を向上させた半導体装置を内蔵してアイドルストップ動作の可能なハイブリッド自動車を提供することにある。
(1)上記第1の目的を達成するために、本発明は、主電流の入出力に上下2面の電極を設けたパワー半導体素子と、前記一方の下面電極を支持する絶縁基板と、前記他方の上面電極に接合される積層導体板とを備えた半導体装置であって、前記積層導体板は線膨張率を8から12ppm/℃の範囲とし、半田或いは、金或は銀のいずれかのナノ粒子を用いて上面電極に接合したものである。
かかる構成により、高温環境に対する長期信頼性を向上できるものとなる。
(2)上記第1の目的を達成するために、本発明は、主電流の入出力に上下2面の電極を設けたパワー半導体素子と、前記一方の下面電極を支持する絶縁基板と、前記他方の上面電極に接合される積層導体板とを備えた半導体装置であって、前記積層導体板はそれぞれの板厚の比率が1:(1〜2):1となるように銅板、鉄ニッケル合金板、銅板で構成したものである。
かかる構成により、高温環境に対する長期信頼性を向上できるものとなる。
(3)上記第2の目的を達成するために、本発明は、主電流の入出に上下2面の電極を用いるパワー半導体素子を上アーム及び下アームに有するパワーモジュール部と、前記パワー半導体素子の駆動を制御する制御部とを備えた電力変換装置であって、線膨張率が8から12ppm/℃の範囲の導体板を用い、前記パワー半導体素子の上面電極と前記導体板を半田或いは、金または銀のいずれかの材料を用いて接合したものである。
(4)上記第3の目的を達成するために、本発明は、固定子と、回転子とからなるモータであって、主電流の入出に上下2面の電極を用いるパワー半導体素子を上アーム及び下アームに有し、バッテリーからの電力を変換して、前記モータに電力を供給する電力変換装置を備え、線膨張率が8から12ppm/℃の範囲の導体板を用い、前記パワー半導体素子の上面電極と前記導体板を半田或いは、金または銀のいずれかの材料を用いて接合した半導体装置のパワー半導体素子と放熱板を電気接続し、前記放熱板をブラケットに電気的かつ機械的に固定したものである。
かかる構成により、高温環境に対する長期信頼性を向上させた半導体装置を内蔵してモータを力行動作を可能とする。
(5)上記第4の目的を達成するために、本発明は、エンジンと、モータにより車輪が駆動されるハイブリット自動車であって、主電流の入出に上下2面の電極を用いるパワー半導体素子を上アーム及び下アームに有し、バッテリーからの電力を変換して、前記モータに電力を供給する電力変換装置を備え、それぞれの厚さが1:(1〜2):1の銅板、鉄ニッケル合金板、銅板からなる積層導体板を用い、前記パワー半導体の上面電極と前記積層導体板を半田或いは、金または銀のいずれかの材料を用いて接合した半導体装置のパワー半導体素子と放熱板を電気接続し、前記モータは、前記放熱板がブラケットに電気的かつ機械的に固定されて、エンジンルームに搭載されているものである。
掛かる構成により、高温環境に対する長期信頼性を向上させた半導体装置を内蔵してアイドルストップ動作の可能なハイブリッド自動車を得ることができる。
By the way, for the purpose of improving fuel efficiency, the spread of an idle stop vehicle (for example, Japanese Patent Application Laid-Open No. 2003-113763) with a built-in motor that stops the engine in a stop state such as waiting for a signal and restarts the engine at the time of departure is low. There is a need for an idle stop system that is easy to implement in a wide variety of vehicles at a low cost.
As a method of providing such an idle stop function to a wide variety of vehicles easily at low cost, a power generation function is added by incorporating a semiconductor device in a generator motor (alternator) mounted on most vehicles. A method is being considered. The problems of the semiconductor device built in the motor are as follows: 1) downsizing for incorporation in the motor, and 2) the motor being disposed beside the engine that is a high heating element. This is two points of improvement in reliability.
Regarding long-term reliability, the one described in JP 2000-183249 does not assume a high-temperature environment near the engine. 1) Because the temperature of the power semiconductor element rises to near the curing temperature of the conductive resin material. Curing progresses and the joint becomes weak against stress. 2) Since the environment is high temperature, it is necessary to reduce the heat generation and suppress the temperature of the power semiconductor element, but there is a problem that the electrical resistance value of the conductive resin material is large. For example, the volume resistivity of lead tin solder used as a bonding material is about 15 μΩ · cm, whereas the volume resistivity of conductive resin material is 1 Ω · cm (from JP 2000-183249 A). The resistance of the resin material is as large as about 70,000 times that of lead tin solder. 3) In the structure in which the low thermal expansion material is attached to the copper bus bar wiring, the bus bar wiring extends at a higher temperature than the low thermal expansion material and contracts at a low temperature due to the difference in the linear expansion coefficient. This phenomenon is conspicuous in a high temperature environment. In the structure described in Japanese Patent Laid-Open No. 2000-183249, the bus bar wiring is deformed into an arcuate shape, and the force in the direction of peeling the bus bar wiring from the power semiconductor element causes the operation of the idle stop vehicle It will occur repeatedly due to the pause cycle. For this reason, peeling is more likely to occur at the joint. 4) When the bus bar wiring is deformed into a bow shape, the power semiconductor element connected thereto is also deformed into a bow shape. Since the power semiconductor element and the insulating substrate are bonded with a material that is easily plastically deformed, such as solder, as disclosed in Japanese Patent Application Laid-Open No. 2000-183249, the joint between the power semiconductor element and the insulating substrate is the same as in 3). This is caused by the force in the direction of peeling.
In the power semiconductor element here, the surface electrode connected to the insulating substrate is the positive electrode side, and the other surface is the electrode on the negative electrode side. Hereinafter, the electrode of the power semiconductor element is referred to as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) electrode, and the positive electrode side is referred to as a drain electrode and the negative electrode side is referred to as a source electrode.
The object of the present invention is to improve the long-term reliability for a high-temperature environment when the semiconductor device is located in a high-temperature environment near the engine, such as when a power generation function is added by incorporating a semiconductor device in a generator motor (alternator). An object of the present invention is to provide a semiconductor device that can be used.
Another object of the present invention is to provide a power conversion device incorporating a semiconductor device with improved long-term reliability against a high temperature environment.
Another object of the present invention is to provide a power generation motor capable of performing a power running operation by incorporating a semiconductor device with improved long-term reliability against a high temperature environment.
Still another object of the present invention is to provide a hybrid vehicle capable of performing an idle stop operation by incorporating a semiconductor device with improved long-term reliability against a high temperature environment.
(1) In order to achieve the first object, the present invention provides a power semiconductor element having upper and lower electrodes for input and output of a main current, an insulating substrate for supporting the one lower electrode, A semiconductor device comprising a laminated conductor plate joined to the other upper surface electrode, wherein the laminated conductor plate has a linear expansion coefficient in the range of 8 to 12 ppm / ° C, and is either solder, gold or silver The nano-particles are joined to the top electrode.
With this configuration, long-term reliability against a high temperature environment can be improved.
(2) In order to achieve the first object, the present invention provides a power semiconductor element in which upper and lower electrodes are provided for input and output of a main current, an insulating substrate that supports the one lower electrode, A semiconductor device comprising a laminated conductor plate joined to the other upper surface electrode, wherein the laminated conductor plate is a copper plate, iron-nickel so that the ratio of the respective plate thicknesses is 1: (1-2): 1 It consists of an alloy plate and a copper plate.
With this configuration, long-term reliability against a high temperature environment can be improved.
(3) In order to achieve the second object, the present invention provides a power module unit having power semiconductor elements in upper and lower arms that use upper and lower electrodes for main current input and output, and the power semiconductor element. And a control unit for controlling the driving of the power converter, using a conductor plate having a linear expansion coefficient in the range of 8 to 12 ppm / ° C., and soldering the upper electrode of the power semiconductor element and the conductor plate, or Joined using either gold or silver.
(4) In order to achieve the above third object, the present invention provides a motor comprising a stator and a rotor, wherein a power semiconductor element using upper and lower electrodes for main current input / output is provided on the upper arm. And a power conversion device that is provided in the lower arm, converts power from a battery and supplies power to the motor, and uses a conductor plate having a linear expansion coefficient in the range of 8 to 12 ppm / ° C. The power semiconductor element of the semiconductor device in which the upper surface electrode of the semiconductor device and the conductor plate are joined using solder or any material of gold or silver and the heat radiating plate are electrically connected, and the heat radiating plate is electrically and mechanically connected to the bracket. It is fixed.
With such a configuration, a semiconductor device with improved long-term reliability against a high-temperature environment is incorporated, and the motor can be powered.
(5) In order to achieve the fourth object, the present invention provides a hybrid vehicle in which wheels are driven by an engine and a motor, and includes a power semiconductor element using upper and lower electrodes for main current input and output. A power conversion device that is provided in the upper arm and the lower arm, converts power from the battery, and supplies power to the motor, each having a thickness of 1: (1-2): 1, copper plate, iron nickel A power semiconductor element and a heat sink of a semiconductor device in which a laminated conductor plate made of an alloy plate or a copper plate is used, and the upper electrode of the power semiconductor and the laminated conductor plate are joined using solder, or a material of gold or silver. The motor is electrically connected, and the heat radiating plate is electrically and mechanically fixed to the bracket and mounted in the engine room.
With this configuration, it is possible to obtain a hybrid vehicle capable of performing an idle stop operation by incorporating a semiconductor device with improved long-term reliability against a high temperature environment.

図1は、本発明の一実施形態による半導体装置を内蔵したモータでエンジンを再始動させるアイドルストップ機能を有するハイブリッド自動車の構成を示すブロック図である。
図2は、本発明の一実施形態による半導体装置を内蔵したモータの構成を示すブロック図である。
図3は、本発明の一実施形態による半導体装置を内蔵したモータの構成を示す断面図である。
図4は、本発明の一実施形態による半導体装置を内蔵したモータ半導体装置である電力変換装置の構成を示す斜視図である。
図5は、本発明の一実施形態による半導体装置である電力変換装置の構成を示す断面図である。
図6は、本発明の他の実施形態による半導体装置である電力変換装置の構成を示す断面図である。
FIG. 1 is a block diagram showing a configuration of a hybrid vehicle having an idle stop function for restarting an engine with a motor incorporating a semiconductor device according to an embodiment of the present invention.
FIG. 2 is a block diagram showing a configuration of a motor incorporating a semiconductor device according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a configuration of a motor incorporating a semiconductor device according to an embodiment of the present invention.
FIG. 4 is a perspective view showing a configuration of a power conversion device which is a motor semiconductor device incorporating a semiconductor device according to an embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a configuration of a power conversion device which is a semiconductor device according to an embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a configuration of a power conversion device which is a semiconductor device according to another embodiment of the present invention.

以下、図1〜図5を用いて、本発明の一実施形態による半導体装置の構成について説明する。
最初に、図1を用いて、本実施形態による半導体装置を内蔵したモータでエンジンを再始動させるアイドルストップ機能を有するハイブリッド自動車の構成について説明する。
図1は、本発明の一実施形態による半導体装置を内蔵したモータでエンジンを再始動させるアイドルストップ機能を有するハイブリッド自動車の構成を示すブロック図である。
エンジン53が十分に暖気されている状態で車両が停車すると、制御装置51はエンジン53を停止させる。その後、制御装置51は、運転者がブレーキペダルから足を離す等の発進に移行する動作や、バッテリ電圧低下等の発電が必要な状態を検知すると、半導体装置内蔵モータ60の駆動力をベルトBによりエンジン53に伝達して、エンジン53を再始動をさせる。この時、半導体装置内蔵モータ60の電源は、バッテリー等の直流電源31である。また、本車両において、半導体装置内蔵モータ60は、走行時のエンジン回転により発電を行い、その電力を直流電源31に充電する発電モータの機能も兼ね備えている。
エンジンの再始動と発電を効率良く行うためには、エンジン53とモータ60の回転軸を直結する場合やベルト駆動の場合のいずれにしても、半導体装置内蔵モータ60は、従来発電モータ(オルタネータ)が配置されていたエンジン53の近傍に配置する必要がある。即ち、半導体装置内蔵モータ60は高温環境に置かれることになるが、半導体装置内蔵モータ60は後述するように、高温環境に対して信頼性を向上させるた構造を有している。半導体内蔵モータ60は、半導体装置の放熱板に放熱機能に加え電気配線の機能を持たせる等の機能集約により、寸法・信頼性の点で、エンジン近傍の高温環境に搭載されていた発電モータと置換え可能なものとなっている。そのため、半導体内蔵モータ60は既設計の車両に対しても適用可能であり、よって、本実施形態により、低コストで容易にアイドルストップシステムを実現できるものである。なお、このように、オルタネータのような発電機に力行動作機能をもたせ、モータとして使用し、エンジン再始動を行う自動車を、一般に、マイルドハイブリッド自動車と称されている。
次に、図2を用いて、本実施形態による半導体装置を内蔵したモータ60の電気的構成について説明する。
図2は、本発明の一実施形態による半導体装置を内蔵したモータの構成を示すブロック図である。
半導体装置内蔵モータ60は、交流電動機(モータ/ジェネレータ)61と、モータ制御装置63とから構成される。交流電動機61は、ロータの回転位置を検知するための磁極位置検出手段61MDを備えている。
モータ制御装置3は、電力変換装置63Pと、モータコントローラ63Cと、励磁駆動回路63EDとを有する。
電力変換装置63Pは、スイッチング素子(UP〜WN)と各スイッチング素子に逆並列に接続された整流素子を含む3相ブリッジ回路として構成されている。本例では、スイッチング素子として電解効果型トランジスタ(MOSFET)を使用し、整流素子としてダイオードを使用する。スイッチング素子として、IGBTを使用することもできる。
交流電動機61はステータとロータとを有し、巻線界磁式の3相交流モータとして構成されている。動力伝達手段2に駆動連結されたロータには、励磁コイル61RCが装着され、ステータには、U相、V相、W相の電機子コイル61SCが設けられている。
交流電動機61のロータの励磁コイル61RCは、励磁駆動回路63EDによって給電される。また、励磁コイル61RCへの印加電圧も、この励磁駆動回路63EDによって調整される。交流電動機61のステータの電機子コイル61SCの各相の出力線は、電力変換装置63Pの3相のスイッチング素子(UP〜WN)及び整流素子を介して、直流電源31の高電位側端子及び低電位側端子に接続された電源ラインに接続されている。
電力変換装置63Pは、交流電動機61をモータとして力行制御するときには、直流電源31に蓄電された直流電力を直流/交流変換して電機子コイル61SCに給電するインバータ回路として作動する。また、電力変換装置63Pは、交流電動機61を発電機として発電制御するときには、発電によって電機子コイル61SCから出力される交流電力を交流/直流変換して電源ラインに給電するコンバータ(整流器)回路として作動する。こうした電力変換装置63Pの作動に係るスイッチング素子(UP〜WN)のオン/オフ操作は、モータコントローラ63Cによって操作されている。モータコントローラ63Cには、制御装置51からの指令に基づいて、力行モードと発電モードを切替える切替え手段を有し、力行制御と発電制御を行う。
モータ制御装置63は、交流電動機61をモータとして力行制御するときには、直流電源31からの直流電力を交流電力に変換するインバータ回路として作動し、交流電動機61を発電機として発電制御するときには、交流電動機61からの交流電力を直流電力に変換するコンバータ(整流器)回路として作動する。
エンジンを起動するとき、モータ制御装置63は、交流電動機61を力行制御する。即ち、交流電動機61には、直流電源31からモータ制御装置63を介して交流電力が供給される。交流電動機61の出力軸は、力行トルクを発生し、動力伝達手段を介してエンジンのクランクシャフトを回転させる。エンジンが所定の回転数に達すると、自力回転を開始する。本例では、交流電動機61は、スタータモータとしての役割を果たすことになる。
エンジンが安定して自立運転をしているとき、モータ制御装置63は、交流電動機61への力行制御を停止し、発電制御を行う。即ち、交流電動機61は、エンジンの動力によって駆動され、発電を行う。発電によって発生した交流電力は、モータ制御装置63によって直流電力に変換され直流電源31へ充電される。
このように、交流電動機61は、直流電源31からの電力供給によって動力を発生するモータとして機能すると共に、エンジンからの動力供給によって発電を行う発電機として機能する。
次に、図3を用いて、本実施形態による半導体装置を内蔵したモータ60の機械的構成について説明する。
図3は、本発明の一実施形態による半導体装置を内蔵したモータの構成を示す断面図である。
交流電動機61は、2個のブラケット61BF,61BRによって固定されたステータ61Sと、ステータ61Sの内側に回転可能に保持されたロータ61Rとを備えている。ロータ61Rのシャフト61RSは、2つのブラケットに取り付けられた軸受61BE1,61BE2によって回転可能に支持されている。ステータ61Sは、固定子鉄芯61SCと、固定子コイル61SOとから構成される。ロータ61Rは、回転子鉄芯61RCと、回転子コイル61ROとから構成される。ブラケット61BRには、図2に示したモータ制御装置63が取り付けられている。
モータ制御装置63の中の電力変換装置63Pは、その放熱板にてリアブラケット61BRに面固定されている。リアブラケット61BRには、空冷フィン61CFが一体的に設けられている。半導体装置内蔵モータ60では、バッテリ端子61BTが正極端子、リアブラケット61BRが負極端子(グランド端子)である。リアブラケット61BRに半導体装置である電力変換装置63Pの冷却器と電気配線の二つの機能を持たせることで、半導体装置内蔵モータ60は、半導体装置内蔵モータ60の内部において専用のグランド配線を省くことができた。その部品削減効果により、本実施形態の半導体装置内蔵モータでは、そのモータを大きくすること無く、半導体装置を内蔵することを可能にした。なお、リアブラケット61BRは、配線として使用するために、アルミニウム等の良導体が用いられている。
次に、図4を用いて、本実施形態による半導体装置を内蔵したモータ60に用いる半導体装置である電力変換装置63Pの構成について説明する。
図4は、本発明の一実施形態による半導体装置を内蔵したモータ半導体装置である電力変換装置の構成を示す斜視図である。
リアブラケット61BRに二つの機能を持たせるためには、半導体装置である電力変換装置63Pの配線構造もそれを可能とする構造にする必要がある。そこで、本実施形態では、半導体装置である電力変換装置63Pの構造を、図4に示す構成としている。図4は、モータに内蔵する半導体装置において、本発明に直接係わる配線構造を図示したものである。
図4に示す構造では、リアブラケット61BRへ電流を流すために、まず、放熱板7を銅や銅−モリブデン等の良導体で構成し、ブリッジ回路ロウサイド側のパワー半導体素子13b(図2のスイッチング素子UN,VN,WN)のソース電極と接続している積層導体板15bをそのもう一端で放熱板7と接続している。これにより、放熱板はグランド配線としての機能を持つことになる。放熱板7をリアブラケット61BRと導体のネジ8等で面固定すると、放熱板7との接触面から熱を、導体ネジから電気をリアブラケット61BRへ伝えることになり、即ち、リアブラケット61BRは、電力変換装置である半導体装置の冷却器と電気配線の二つの機能を持つことになる。
以上の説明のように、本実施形態では、高温環境における信頼性を向上させた半導体装置に半導体装置の放熱板とモータのリアブラケットに放熱と電気配線の機能を持たせる等の機能集約による省スペース化を実現している。それにより、半導体装置を内蔵したモータは、寸法・信頼性の点で、エンジン近傍の高温環境に搭載されていた発電モータと置換え可能なものとなっている。
次に、図5を用いて、本実施形態による半導体装置である電力変換装置の構成について説明する。
図5は、本発明の一実施形態による半導体装置である電力変換装置の構成を示す断面図である。
パワー半導体素子13aと積層導体板15aは、接合材18aによって接合している。積層導体板15aと導体板10bは、接合材18bによって接合している。接合材18a,18bは電流が流れる部位であるため、その材料には半田またはAu,Agを主成分としたナノ粒子材の高電気伝導材を用いている。また、積層導体板15aは、ほぼ同じ厚さの銅板16a,16bで鉄ニッケル合金板17を両側から挟んだ部品であり、その板厚の比は銅板16a,16bを1とすると、鉄ニッケル合金17は1〜2である。ここで、積層導体板15aの等価線膨張率を計算すると、以下のように求められる。式(1)は、材質の異なる板を張り合わせた積層板の等価線膨張率を概算する式である。
等価線膨張率=Σ(線膨張率×ヤング率×板厚)/Σ(ヤング率×板厚) …(1)
式(1)より、積層導体板15aの等価線膨張率は約8〜12ppm/℃と求めることができる。ここで、銅の線膨張率は約18ppm/℃、鉄ニッケル合金の線膨張率は約1.5ppm/℃、銅のヤング率は118Gpa、鉄ニッケル合金のヤング率は144Gpaである。
次に、本実施形態に直接係わる各構成物とそれらの接続関係を説明する。パワー半導体素子13aと導体板10aは、半田12bによって接合している。絶縁基板9と放熱板7は、半田12aによって接合している。絶縁基板9は、第1層目に導体板10aと10bを、第2層目に絶縁体11を、第3層目に導体板10cを積層した部材である。導体板10a,10b,10cに銅を、絶縁体11に窒化シリコンを用いて、各層の厚さを第1層と第3層は0.4mmに、第2層を0.32mmにした場合、式(1)より絶縁基板9の等価線膨張率は約10ppm/℃である。ここで窒化シリコンの線膨張率は2.7ppm/℃、ヤング率は303Gpa、銅の物性値は前述の値を用いた。前述で示した本実施形態に直接係わる各構成物には、エンジン近傍の高温環境で使用するため、耐熱性のある材料が用いられる。
次に、本実施形態の構造の作用について説明する。本実施形態の構造はパワー半導体素子13aを等価線膨張率10ppm/℃の絶縁基板9と等価線膨張率8〜12ppm/℃の積層導体板15aのほぼ同じ線膨張率の部材で挟んでいるため、高温環境で顕著になる各部材の膨張差を小さくすることができる。理想的には積層導体板15aの線膨張率を絶縁基板9に一致させることで、半田12bと接合材18aに生じる熱応力が最小になり、最も長期信頼性を向上させることができる。前述の絶縁基板9の等価線膨張率は、具体的な値で計算した一例であるが、絶縁基板に使われる材料と厚さの範囲から等価線膨張率の範囲を計算すると次のようになる。絶縁基板において、第1層と第3層の銅板厚さは凡そ0.4mmから0.5mmの範囲であり、第2層が窒化シリコン板の場合はその厚さが0.32mmから0.64mmの範囲、第2層が窒化アルミ板の場合はその厚さは凡そ0.64mmである。式(1)を用いて計算すると、前述の板材と厚さの組み合せから絶縁基板の等価線膨張率は8〜12ppm/℃の範囲にあることが分かる。ここで、窒化アルミの線膨張率は4.4ppm/℃、ヤング率は160GPaとして計算した。の分析により、積層導体板15aは、銅板16a、16bの厚さ1に対して鉄ニッケル合金17の厚さを1〜2の範囲にすると絶縁基板の線膨張率に近い値にすることができることが分かる。なお、前述の説明は、各部品が熱膨張しても平坦なままであることとを前提としているが、本構造では、積層導体板15aを同じ材料かつ同じ厚さの板で異なる材料の板を挟み込む構造にすることで、熱膨張した場合でも弓形に変形せず、パワー半導体素子との接合面を平坦に保つことが出来る構造になっている。
以上説明したように、本実施形態による半導体装置は、発電モータ(オルタネータ)に半導体装置を内蔵し、力行機能を付加する場合のように、エンジン近傍の高温環境に半導体装置が位置する場合において、高温環境に対する長期信頼性を向上できる。
また、本実施形態による半導体装置を内蔵した電力変換装置の高温環境に対する長期信頼性を向上できる。
さらに、本実施形態による発電モータは、高温環境に対する長期信頼性を向上させた半導体装置を内蔵して力行動作が可能となる。
また、本実施形態によるハイブリッド自動車は、高温環境に対する長期信頼性を向上させた半導体装置を内蔵してアイドルストップ動作が可能となる。
次に、図6を用いて、本発明の他の実施形態による半導体装置である電力変換装置の構成について説明する。なお、図1〜図4の構成は、本実施形態でも共通である。
図6は、本発明の他の実施形態による半導体装置である電力変換装置の構成を示す断面図である。
図5の実施形態において、積層導体板15aはその一方を導体板10bと接合しているが、本発明は積層導体板15aの一方を導体板10bと接合した構成に限定するものではなく、他の実施形態について図6を用いて説明する。
本実施形態では、積層配線板18aにワイヤ14dが接合し、そしてワイヤ14dが導体板10bと接合している点が図5の実施形態と異なる。なお、ワイヤ14dはアルミニウムを主成分した配線である。その他は同じ構造であるため、本実施形態では、図5の実施形態と同様、高温環境で接合材18aと半田12bに生じる熱応力を小さくする効果がある。
積層配線板18aとワイヤ14dの接合部の信頼性について説明すれば、積層配線板18aの第2層に使用されている鉄ニッケル合金は熱伝導率が11W/m℃(参考値:銅の熱伝導率380W/m℃、アルミの熱伝導率233W/m℃)と小さく、パワー半導体素子13aからワイヤ14dまでの熱抵抗を大きくする効果がある。半導体装置において、電流スイチッングをするパワー半導体素子が最も高温になる部品であるが、熱抵抗の増大により、前述の積層配線板18aとワイヤ14dの接合部の温度を、従来のワイヤをパワー半導体素子と直接接合した場合と比べ、低くすることができる。接合部の温度低減はその部分の熱膨張の低減を意味し、よって、ワイヤをパワー半導体素子と直接接合した場合と比べ、長期的信頼性が向上することを示している。
以上説明したように、本実施形態による半導体装置は、発電モータ(オルタネータ)に半導体装置を内蔵し、力行機能を付加する場合のように、エンジン近傍の高温環境に半導体装置が位置する場合において、高温環境に対する長期信頼性を向上できる。
また、本実施形態では、半導体装置の配線レイアウトの自由度を上げることができるワイヤ配線を高温環境で使用する半導体装置に適用可能にしたものである。
また、本実施形態による半導体装置を内蔵した電力変換装置の高温環境に対する長期信頼性を向上できる。
さらに、本実施形態による発電モータは、高温環境に対する長期信頼性を向上させた半導体装置を内蔵して力行動作が可能となる。
また、本実施形態によるハイブリッド自動車は、高温環境に対する長期信頼性を向上させた半導体装置を内蔵してアイドルストップ動作が可能となる。
なお、本発明における半導体装置において、パワー半導体素子はMOSFETに限定したものはなく、IGBT(Insulated Gate Bipolar Transistor)等の主電流の入出に上下2面の電極を持っている半導体素子ならば、同様に適用することができる。
また、本発明の半導体装置はモータに内蔵する半導体装置に限定したものではなく、電力変換装置にも適用することができる。電力変換装置に本半導体装置を適用することによって、高温環境の場所に搭載できて、かつ専用の冷却器を持たなくても長期的な信頼性を確保可能な電力変換装置を提供することが可能になる。
以上のように、本発明の各実施形態によれば、パワー半導体素子の電極に接合される積層導体板の線膨張率を8から12ppm/℃の範囲とし、半田或いは、金或は銀のいずれかのナノ粒子を用いて上面電極に接合することによって、高温環境に対するパワー半導体素子の接合部の長期信頼性を向上させることができる。
また、本実施形態の半導体内蔵モータは、半導体装置の放熱板に放熱機能に加え電気配線の機能を持たせる等の機能集約により、寸法・信頼性の点で、エンジン近傍の高温環境に搭載されていた発電モータと置換え可能なものとなっているため、低コストで容易に多種多様な車両への適用可能なアイドルストップシステムを実現できる。
Hereinafter, the configuration of a semiconductor device according to an embodiment of the present invention will be described with reference to FIGS.
First, the configuration of a hybrid vehicle having an idle stop function for restarting the engine with the motor incorporating the semiconductor device according to the present embodiment will be described with reference to FIG.
FIG. 1 is a block diagram showing a configuration of a hybrid vehicle having an idle stop function for restarting an engine with a motor incorporating a semiconductor device according to an embodiment of the present invention.
When the vehicle stops while the engine 53 is sufficiently warmed, the control device 51 stops the engine 53. Thereafter, when the control device 51 detects an operation of shifting to a start such as the driver removing his foot from the brake pedal or a state where power generation is required such as a decrease in battery voltage, the control device 51 applies the driving force of the motor 60 built in the semiconductor device to the belt B. Is transmitted to the engine 53 to restart the engine 53. At this time, the power source of the semiconductor device built-in motor 60 is a DC power source 31 such as a battery. Further, in this vehicle, the semiconductor device built-in motor 60 also has a function of a power generation motor that generates power by rotating the engine during traveling and charges the power to the DC power source 31.
In order to efficiently restart the engine and generate power, the semiconductor device built-in motor 60 is a conventional power generation motor (alternator) regardless of whether the engine 53 and the rotation shaft of the motor 60 are directly connected or in the case of belt drive. It is necessary to arrange in the vicinity of the engine 53 that has been arranged. That is, the semiconductor device built-in motor 60 is placed in a high temperature environment, but the semiconductor device built-in motor 60 has a structure that improves the reliability against the high temperature environment, as will be described later. The semiconductor built-in motor 60 is a power generation motor mounted in a high temperature environment in the vicinity of the engine in terms of size and reliability by integrating functions such as providing a heat radiating function in addition to a heat radiating function to the heat radiating plate of the semiconductor device. It can be replaced. Therefore, the semiconductor built-in motor 60 can be applied to an already designed vehicle. Therefore, according to the present embodiment, an idle stop system can be easily realized at low cost. In addition, a vehicle in which a power generator function such as an alternator is provided with a power running operation function and used as a motor to restart the engine is generally referred to as a mild hybrid vehicle.
Next, the electrical configuration of the motor 60 incorporating the semiconductor device according to the present embodiment will be described with reference to FIG.
FIG. 2 is a block diagram showing a configuration of a motor incorporating a semiconductor device according to an embodiment of the present invention.
The semiconductor device built-in motor 60 includes an AC electric motor (motor / generator) 61 and a motor control device 63. AC motor 61 includes magnetic pole position detection means 61MD for detecting the rotational position of the rotor.
The motor control device 3 includes a power conversion device 63P, a motor controller 63C, and an excitation drive circuit 63ED.
The power conversion device 63P is configured as a three-phase bridge circuit including a switching element (UP to WN) and a rectifying element connected in antiparallel to each switching element. In this example, a field effect transistor (MOSFET) is used as the switching element, and a diode is used as the rectifying element. An IGBT can also be used as the switching element.
The AC motor 61 has a stator and a rotor, and is configured as a winding field type three-phase AC motor. An excitation coil 61RC is mounted on the rotor drivingly connected to the power transmission means 2, and U-phase, V-phase, and W-phase armature coils 61SC are provided on the stator.
The excitation coil 61RC of the rotor of the AC motor 61 is supplied with power by the excitation drive circuit 63ED. Further, the voltage applied to the excitation coil 61RC is also adjusted by the excitation drive circuit 63ED. The output line of each phase of the armature coil 61SC of the stator of the AC motor 61 is connected to the high potential side terminal of the DC power supply 31 and the low voltage via the three-phase switching elements (UP to WN) and the rectifying element of the power converter 63P. It is connected to the power supply line connected to the potential side terminal.
The power converter 63P operates as an inverter circuit that performs DC / AC conversion of DC power stored in the DC power supply 31 and supplies power to the armature coil 61SC when performing power running control using the AC motor 61 as a motor. The power converter 63P is a converter (rectifier) circuit that converts AC power output from the armature coil 61SC by power generation to AC / DC and feeds the power to the power line when the AC motor 61 is controlled to generate power. Operate. The on / off operation of the switching elements (UP to WN) related to the operation of the power conversion device 63P is operated by the motor controller 63C. The motor controller 63C has switching means for switching between the power running mode and the power generation mode based on a command from the control device 51, and performs power running control and power generation control.
The motor control device 63 operates as an inverter circuit that converts DC power from the DC power source 31 to AC power when performing power running control using the AC motor 61 as a motor, and when performing AC power generation control using the AC motor 61 as a generator, the AC motor. It operates as a converter (rectifier) circuit that converts AC power from 61 into DC power.
When starting the engine, the motor control device 63 performs power running control on the AC motor 61. That is, AC power is supplied to the AC motor 61 from the DC power supply 31 via the motor control device 63. The output shaft of the AC motor 61 generates a power running torque and rotates the crankshaft of the engine via the power transmission means. When the engine reaches a predetermined speed, it starts to rotate by itself. In this example, the AC motor 61 serves as a starter motor.
When the engine is stably operating independently, the motor control device 63 stops the power running control to the AC motor 61 and performs power generation control. That is, the AC motor 61 is driven by engine power to generate power. The AC power generated by the power generation is converted into DC power by the motor control device 63 and charged to the DC power supply 31.
As described above, the AC motor 61 functions as a motor that generates power by supplying power from the DC power source 31 and also functions as a generator that generates power by supplying power from the engine.
Next, the mechanical configuration of the motor 60 incorporating the semiconductor device according to the present embodiment will be described with reference to FIG.
FIG. 3 is a cross-sectional view showing a configuration of a motor incorporating a semiconductor device according to an embodiment of the present invention.
The AC motor 61 includes a stator 61S fixed by two brackets 61BF and 61BR, and a rotor 61R rotatably held inside the stator 61S. The shaft 61RS of the rotor 61R is rotatably supported by bearings 61BE1 and 61BE2 attached to two brackets. The stator 61S is composed of a stator iron core 61SC and a stator coil 61SO. The rotor 61R includes a rotor iron core 61RC and a rotor coil 61RO. The motor control device 63 shown in FIG. 2 is attached to the bracket 61BR.
The power conversion device 63P in the motor control device 63 is fixed to the rear bracket 61BR by its heat radiating plate. Air cooling fins 61CF are integrally provided on the rear bracket 61BR. In the semiconductor device built-in motor 60, the battery terminal 61BT is a positive terminal, and the rear bracket 61BR is a negative terminal (ground terminal). By providing the rear bracket 61BR with the two functions of a cooler and electric wiring of the power conversion device 63P, which is a semiconductor device, the motor 60 with a built-in semiconductor device eliminates a dedicated ground wiring inside the motor 60 with a built-in semiconductor device. I was able to. Due to the effect of reducing parts, the semiconductor device built-in motor according to the present embodiment can incorporate the semiconductor device without enlarging the motor. The rear bracket 61BR is made of a good conductor such as aluminum for use as wiring.
Next, the configuration of the power conversion device 63P, which is a semiconductor device used in the motor 60 incorporating the semiconductor device according to the present embodiment, will be described with reference to FIG.
FIG. 4 is a perspective view showing a configuration of a power conversion device which is a motor semiconductor device incorporating a semiconductor device according to an embodiment of the present invention.
In order to provide the rear bracket 61BR with two functions, the wiring structure of the power conversion device 63P, which is a semiconductor device, needs to be a structure that enables this. Therefore, in the present embodiment, the structure of the power conversion device 63P, which is a semiconductor device, is configured as shown in FIG. FIG. 4 shows a wiring structure directly related to the present invention in a semiconductor device built in a motor.
In the structure shown in FIG. 4, in order to pass a current to the rear bracket 61BR, first, the heat sink 7 is made of a good conductor such as copper or copper-molybdenum, and the power semiconductor element 13b (the switching element shown in FIG. The laminated conductor plate 15b connected to the source electrode (UN, VN, WN) is connected to the heat sink 7 at the other end. Thereby, the heat sink has a function as a ground wiring. When the radiator plate 7 is fixed to the rear bracket 61BR and the conductor screw 8 or the like, heat is transmitted from the contact surface with the radiator plate 7 and electricity is transmitted from the conductor screw to the rear bracket 61BR. That is, the rear bracket 61BR is It has two functions of a cooler and electrical wiring of a semiconductor device that is a power conversion device.
As described above, in this embodiment, the semiconductor device with improved reliability in a high-temperature environment saves power by integrating functions such as providing the heat sink of the semiconductor device and the function of the electric wiring to the rear bracket of the motor. Realization of space. As a result, a motor incorporating a semiconductor device can be replaced with a generator motor mounted in a high-temperature environment near the engine in terms of size and reliability.
Next, the configuration of the power converter as the semiconductor device according to the present embodiment will be described with reference to FIG.
FIG. 5 is a cross-sectional view showing a configuration of a power conversion device which is a semiconductor device according to an embodiment of the present invention.
The power semiconductor element 13a and the laminated conductor plate 15a are joined together by a joining material 18a. The laminated conductor plate 15a and the conductor plate 10b are joined together by a joining material 18b. Since the bonding materials 18a and 18b are portions through which current flows, a high electrical conductive material of a nanoparticle material mainly composed of solder or Au or Ag is used as the material. The laminated conductor plate 15a is a component in which the iron-nickel alloy plate 17 is sandwiched between the copper plates 16a and 16b having substantially the same thickness, and the ratio of the plate thickness is 1 when the copper plates 16a and 16b are 1. 17 is 1-2. Here, when the equivalent linear expansion coefficient of the laminated conductor plate 15a is calculated, it is obtained as follows. Formula (1) is a formula that approximates the equivalent linear expansion coefficient of a laminated plate in which plates of different materials are bonded together.
Equivalent linear expansion coefficient = Σ (Linear expansion coefficient × Young's modulus × plate thickness) / Σ (Young's modulus × plate thickness) (1)
From equation (1), the equivalent linear expansion coefficient of the laminated conductor plate 15a can be determined to be about 8 to 12 ppm / ° C. Here, the linear expansion coefficient of copper is about 18 ppm / ° C., the linear expansion coefficient of iron-nickel alloy is about 1.5 ppm / ° C., the Young's modulus of copper is 118 Gpa, and the Young's modulus of iron-nickel alloy is 144 Gpa.
Next, each component directly related to the present embodiment and their connection relationship will be described. The power semiconductor element 13a and the conductor plate 10a are joined by solder 12b. The insulating substrate 9 and the heat sink 7 are joined by solder 12a. The insulating substrate 9 is a member in which the conductor plates 10a and 10b are laminated in the first layer, the insulator 11 is laminated in the second layer, and the conductor plate 10c is laminated in the third layer. When copper is used for the conductor plates 10a, 10b, and 10c, and silicon nitride is used for the insulator 11, the thickness of each layer is 0.4 mm for the first and third layers, and 0.32 mm for the second layer, From equation (1), the equivalent linear expansion coefficient of the insulating substrate 9 is about 10 ppm / ° C. Here, the linear expansion coefficient of silicon nitride was 2.7 ppm / ° C., the Young's modulus was 303 Gpa, and the physical properties of copper were the values described above. For each component directly related to the present embodiment described above, a heat-resistant material is used for use in a high temperature environment near the engine.
Next, the operation of the structure of this embodiment will be described. In the structure of this embodiment, the power semiconductor element 13a is sandwiched between members of the insulating substrate 9 having an equivalent linear expansion coefficient of 10 ppm / ° C. and the laminated conductor plate 15a having an equivalent linear expansion coefficient of 8 to 12 ppm / ° C. In addition, it is possible to reduce the expansion difference of each member that becomes noticeable in a high temperature environment. Ideally, by matching the linear expansion coefficient of the laminated conductor plate 15a to the insulating substrate 9, the thermal stress generated in the solder 12b and the bonding material 18a is minimized, and the long-term reliability can be improved most. The above-described equivalent linear expansion coefficient of the insulating substrate 9 is an example calculated with a specific value. However, when the range of the equivalent linear expansion coefficient is calculated from the range of the material used for the insulating substrate and the thickness, the following is obtained. . In the insulating substrate, the thicknesses of the copper layers of the first layer and the third layer are in the range of about 0.4 mm to 0.5 mm. When the second layer is a silicon nitride plate, the thickness is 0.32 mm to 0.64 mm. When the second layer is an aluminum nitride plate, the thickness is approximately 0.64 mm. If it calculates using Formula (1), it turns out that the equivalent linear expansion coefficient of an insulated substrate exists in the range of 8-12 ppm / degreeC from the combination of the above-mentioned board | plate material and thickness. Here, the linear expansion coefficient of aluminum nitride was calculated as 4.4 ppm / ° C., and the Young's modulus was calculated as 160 GPa. As a result of the analysis, the laminated conductor plate 15a can have a value close to the linear expansion coefficient of the insulating substrate when the thickness of the iron-nickel alloy 17 is in the range of 1 to 2 with respect to the thickness 1 of the copper plates 16a and 16b. I understand. The above description is based on the premise that each component remains flat even when thermally expanded, but in this structure, the laminated conductor plate 15a is a plate of the same material and the same thickness but of a different material. By sandwiching the structure, even if it is thermally expanded, it is not deformed into an arcuate shape, so that the joint surface with the power semiconductor element can be kept flat.
As described above, the semiconductor device according to the present embodiment incorporates the semiconductor device in the generator motor (alternator), and when the semiconductor device is located in a high-temperature environment near the engine, as in the case of adding a power running function, Long-term reliability against high temperature environment can be improved.
In addition, the long-term reliability of the power conversion device incorporating the semiconductor device according to the present embodiment against a high temperature environment can be improved.
Furthermore, the power generation motor according to the present embodiment incorporates a semiconductor device with improved long-term reliability against a high-temperature environment and can perform a power running operation.
In addition, the hybrid vehicle according to the present embodiment incorporates a semiconductor device with improved long-term reliability against a high temperature environment, and can perform an idle stop operation.
Next, the configuration of a power conversion device that is a semiconductor device according to another embodiment of the present invention will be described with reference to FIG. 1 to 4 is common to the present embodiment.
FIG. 6 is a cross-sectional view showing a configuration of a power conversion device which is a semiconductor device according to another embodiment of the present invention.
In the embodiment of FIG. 5, one of the laminated conductor plates 15a is joined to the conductor plate 10b, but the present invention is not limited to the configuration in which one of the laminated conductor plates 15a is joined to the conductor plate 10b. This embodiment will be described with reference to FIG.
This embodiment is different from the embodiment of FIG. 5 in that the wire 14d is joined to the laminated wiring board 18a, and the wire 14d is joined to the conductor plate 10b. The wire 14d is a wiring mainly composed of aluminum. Since the rest of the structure is the same, this embodiment has an effect of reducing the thermal stress generated in the bonding material 18a and the solder 12b in a high temperature environment as in the embodiment of FIG.
The reliability of the joint between the laminated wiring board 18a and the wire 14d will be described. The iron-nickel alloy used for the second layer of the laminated wiring board 18a has a thermal conductivity of 11 W / m ° C. (reference value: heat of copper The conductivity is as low as 380 W / m ° C. and the thermal conductivity of aluminum is 233 W / m ° C.), and there is an effect of increasing the thermal resistance from the power semiconductor element 13 a to the wire 14 d. In a semiconductor device, a power semiconductor element that performs current switching is the highest temperature component. However, due to an increase in thermal resistance, the temperature at the junction between the laminated wiring board 18a and the wire 14d is changed to a conventional power semiconductor element. Compared with the case where it is directly joined, it can be lowered. The reduction in the temperature of the joint means a reduction in the thermal expansion of the part, and thus shows that the long-term reliability is improved as compared with the case where the wire is directly joined to the power semiconductor element.
As described above, the semiconductor device according to the present embodiment incorporates the semiconductor device in the generator motor (alternator), and when the semiconductor device is located in a high-temperature environment near the engine, as in the case of adding a power running function, Long-term reliability against high temperature environment can be improved.
In the present embodiment, the wire wiring that can increase the degree of freedom of the wiring layout of the semiconductor device can be applied to a semiconductor device that uses it in a high temperature environment.
In addition, the long-term reliability of the power conversion device incorporating the semiconductor device according to the present embodiment against a high temperature environment can be improved.
Furthermore, the power generation motor according to the present embodiment incorporates a semiconductor device with improved long-term reliability against a high-temperature environment and can perform a power running operation.
In addition, the hybrid vehicle according to the present embodiment incorporates a semiconductor device with improved long-term reliability against a high temperature environment, and can perform an idle stop operation.
In the semiconductor device according to the present invention, the power semiconductor element is not limited to the MOSFET, and any semiconductor element having upper and lower electrodes for input / output of the main current such as IGBT (Insulated Gate Bipolar Transistor) is the same. Can be applied to.
The semiconductor device of the present invention is not limited to a semiconductor device built in a motor, and can also be applied to a power conversion device. By applying this semiconductor device to a power conversion device, it is possible to provide a power conversion device that can be installed in a place with a high temperature environment and can ensure long-term reliability without having a dedicated cooler. become.
As described above, according to each embodiment of the present invention, the coefficient of linear expansion of the laminated conductor plate joined to the electrode of the power semiconductor element is in the range of 8 to 12 ppm / ° C., and either solder, gold or silver is used. By bonding such a nanoparticle to the upper surface electrode, the long-term reliability of the bonded portion of the power semiconductor element with respect to a high temperature environment can be improved.
In addition, the semiconductor built-in motor of this embodiment is mounted in a high-temperature environment near the engine in terms of size and reliability by integrating functions such as providing a heat dissipation function in addition to a heat dissipation function to the heat sink of the semiconductor device. Since the generator motor can be replaced, it is possible to realize an idle stop system that can be easily applied to various vehicles at low cost.

本発明によれば、発電モータ(オルタネータ)に半導体装置を内蔵し、力行機能を付加する場合のように、エンジン近傍の高温環境に半導体装置が位置する場合において、高温環境に対する長期信頼性を向上できる半導体装置を提供することができる。
また、高温環境に対する長期信頼性を向上させた半導体装置を内蔵した電力変換装置を提供することができる。
さらに、高温環境に対する長期信頼性を向上させた半導体装置を内蔵して力行動作を可能とした発電モータを提供することができる。
また、高温環境に対する長期信頼性を向上させた半導体装置を内蔵してアイドルストップ動作の可能なハイブリッド自動車を提供することができる。
According to the present invention, when a semiconductor device is built in a generator motor (alternator) and a power running function is added, when the semiconductor device is located in a high-temperature environment near the engine, long-term reliability with respect to the high-temperature environment is improved. A semiconductor device that can be provided can be provided.
Further, it is possible to provide a power conversion device incorporating a semiconductor device with improved long-term reliability against a high temperature environment.
Furthermore, it is possible to provide a generator motor that incorporates a semiconductor device with improved long-term reliability against a high temperature environment and enables a power running operation.
In addition, it is possible to provide a hybrid vehicle that incorporates a semiconductor device with improved long-term reliability against a high temperature environment and can perform an idle stop operation.

Claims (11)

主電流の入出に上下2面の電極を用いるパワー半導体素子と、
このパワー半導体素子の下面電極を支持する絶縁基板とを有する半導体装置であって、
線膨張率が8から12ppm/℃の範囲の導体板を用い、前記パワー半導体素子の上面電極と前記導体板を半田或いは、金または銀のいずれかの材料を用いて接合したことを特徴とする半導体装置。
A power semiconductor device using upper and lower electrodes for input and output of the main current;
A semiconductor device having an insulating substrate for supporting a lower electrode of the power semiconductor element,
A conductor plate having a linear expansion coefficient in the range of 8 to 12 ppm / ° C. is used, and the upper electrode of the power semiconductor element and the conductor plate are joined using solder, or any material of gold or silver. Semiconductor device.
主電流の入出に上下2面の電極を用いるパワー半導体素子と、
このパワー半導体素子の下面電極を支持する絶縁基板を有する半導体装置であって、
それぞれの厚さが1:(1〜2):1の銅板、鉄ニッケル合金板、銅板からなる積層導体板を用い、前記パワー半導体の上面電極と前記積層導体板を半田或いは、金または銀のいずれかの材料を用いて接合したことを特徴とする半導体装置。
A power semiconductor device using upper and lower electrodes for input and output of the main current;
A semiconductor device having an insulating substrate that supports a lower electrode of the power semiconductor element,
A laminated conductor plate made of a copper plate, an iron-nickel alloy plate, and a copper plate having a thickness of 1: (1-2): 1 is used, and the upper electrode of the power semiconductor and the laminated conductor plate are made of solder, gold, or silver. A semiconductor device which is bonded using any material.
主電流の入出に上下2面の電極を用いるパワー半導体素子を上アーム及び下アームに有するパワーモジュール部と、前記パワー半導体素子の駆動を制御する制御部とを備えた電力変換装置であって、
線膨張率が8から12ppm/℃の範囲の導体板を用い、前記パワー半導体素子の上面電極と前記導体板を半田或いは、金または銀のいずれかの材料を用いて接合したことを特徴とする電力変換装置。
A power conversion device comprising: a power module unit having upper and lower arm power semiconductor elements that use upper and lower electrodes for main current input and output; and a control unit that controls driving of the power semiconductor element,
A conductor plate having a linear expansion coefficient in the range of 8 to 12 ppm / ° C. is used, and the upper electrode of the power semiconductor element and the conductor plate are joined using solder, or any material of gold or silver. Power conversion device.
主電流の入出に上下2面の電極を用いるパワー半導体素子と、
このパワー半導体素子の下面電極を支持する絶縁基板を有する半導体装置であって、
それぞれの厚さが1:(1〜2):1の銅板、鉄ニッケル合金板、銅板からなる積層導体板を用い、前記パワー半導体の上面電極と前記積層導体板を半田或いは、金または銀のいずれかの材料を用いて接合した半導体装置を内蔵していることを特徴とする電力変換装置。
A power semiconductor device using upper and lower electrodes for input and output of the main current;
A semiconductor device having an insulating substrate that supports a lower electrode of the power semiconductor element,
A laminated conductor plate made of a copper plate, an iron-nickel alloy plate, and a copper plate having a thickness of 1: (1-2): 1 is used, and the upper electrode of the power semiconductor and the laminated conductor plate are made of solder, gold, or silver. A power conversion device comprising a semiconductor device bonded using any material.
固定子と、回転子とからなるモータであって、
主電流の入出に上下2面の電極を用いるパワー半導体素子を上アーム及び下アームに有し、バッテリーからの電力を変換して、前記モータに電力を供給する電力変換装置を備え、
線膨張率が8から12ppm/℃の範囲の導体板を用い、前記パワー半導体素子の上面電極と前記導体板を半田或いは、金または銀のいずれかの材料を用いて接合した半導体装置のパワー半導体素子と放熱板を電気接続し、前記放熱板をブラケットに電気的かつ機械的に固定したことを特徴とするモータ。
A motor composed of a stator and a rotor,
A power semiconductor device that uses electrodes on the upper and lower surfaces for input and output of the main current is provided in the upper arm and the lower arm, and includes a power conversion device that converts power from the battery and supplies power to the motor.
A power semiconductor of a semiconductor device in which a conductor plate having a linear expansion coefficient in the range of 8 to 12 ppm / ° C. is used, and the upper electrode of the power semiconductor element and the conductor plate are joined using solder, gold, or silver. A motor characterized in that an element and a heat radiating plate are electrically connected and the heat radiating plate is electrically and mechanically fixed to a bracket.
請求項5記載のモータにおいて、前記半導体装置は、ブラケットの内面に装着されることを特徴とするモータ。6. The motor according to claim 5, wherein the semiconductor device is mounted on an inner surface of a bracket. 固定子と、回転子とからなるモータであって、
主電流の入出に上下2面の電極を用いるパワー半導体素子を上アーム及び下アームに有し、バッテリーからの電力を変換して、前記モータに電力を供給する電力変換装置を備え、
それぞれの厚さが1:(1〜2):1の銅板、鉄ニッケル合金板、銅板からなる積層導体板を用い、前記パワー半導体素子の上面電極と積層導体板を半田或いは、金または銀のいずれかの材料を用いて接合したパワー半導体素子と放熱板を電気接続し、前記放熱板をブラケットに電気的かつ機械的に固定したことを特徴とするモータ。
A motor composed of a stator and a rotor,
A power semiconductor device that uses electrodes on the upper and lower surfaces for input and output of the main current is provided in the upper arm and the lower arm, and includes a power conversion device that converts power from the battery and supplies power to the motor.
A laminated conductor plate made of a copper plate, iron-nickel alloy plate, or copper plate having a thickness of 1: (1-2): 1 is used, and the upper electrode and the laminated conductor plate of the power semiconductor element are soldered or made of gold or silver. A motor characterized in that a power semiconductor element and a heat radiating plate joined using any material are electrically connected, and the heat radiating plate is electrically and mechanically fixed to a bracket.
請求項7記載のモータにおいて、前記パワー半導体素子は、ブラケットの内面に装着されることを特徴とするモータ。8. The motor according to claim 7, wherein the power semiconductor element is mounted on an inner surface of a bracket. エンジンと、モータにより車輪が駆動されるハイブリット自動車であって、
主電流の入出に上下2面の電極を用いるパワー半導体素子を上アーム及び下アームに有し、バッテリーからの電力を変換して、前記モータに電力を供給する電力変換装置を備え、
線膨張率が8から12ppm/℃の範囲の導体板を用い、前記パワー半導体素子の上面電極と前記導体板を半田或いは、金または銀のいずれかの材料を用いて接合した半導体装置のパワー半導体素子と放熱板を電気接続し、
前記モータは、前記放熱板がブラケットに電気的かつ機械的に固定されて、エンジンルームに搭載されていることを特徴とするハイブリット自動車。
A hybrid vehicle in which wheels are driven by an engine and a motor,
A power semiconductor device that uses electrodes on the upper and lower surfaces for input and output of the main current is provided in the upper arm and the lower arm, and includes a power conversion device that converts power from the battery and supplies power to the motor.
A power semiconductor of a semiconductor device in which a conductor plate having a linear expansion coefficient in the range of 8 to 12 ppm / ° C. is used, and the upper electrode of the power semiconductor element and the conductor plate are joined using solder, gold, or silver. Electrical connection between the element and the heat sink
The hybrid motor according to claim 1, wherein the motor is mounted in an engine room with the heat dissipation plate electrically and mechanically fixed to a bracket.
エンジンと、モータにより車輪が駆動されるハイブリット自動車であって、
主電流の入出に上下2面の電極を用いるパワー半導体素子を上アーム及び下アームに有し、バッテリーからの電力を変換して、前記モータに電力を供給する電力変換装置を備え、
それぞれの厚さが1:(1〜2):1の銅板、鉄ニッケル合金板、銅板からなる積層導体板を用い、前記パワー半導体の上面電極と前記積層導体板を半田或いは、金または銀のいずれかの材料を用いて接合した半導体装置のパワー半導体素子と放熱板を電気接続し、
前記モータは、前記放熱板がブラケットに電気的かつ機械的に固定されて、エンジンルームに搭載されていることを特徴とするハイブリット自動車。
A hybrid vehicle in which wheels are driven by an engine and a motor,
A power semiconductor device that uses electrodes on the upper and lower surfaces for input and output of the main current is provided in the upper arm and the lower arm, and includes a power conversion device that converts power from the battery and supplies power to the motor.
A laminated conductor plate made of a copper plate, an iron-nickel alloy plate, and a copper plate having a thickness of 1: (1-2): 1 is used, and the upper electrode of the power semiconductor and the laminated conductor plate are made of solder, gold, or silver. Electrical connection between the power semiconductor element and the heat sink of the semiconductor device joined using any material,
The hybrid motor according to claim 1, wherein the motor is mounted in an engine room with the heat dissipation plate electrically and mechanically fixed to a bracket.
固定子と、回転子とからなるモータと、
主電流の入出に上下2面の電極を用いるパワー半導体素子を上アーム及び下アームに有し、バッテリーからの電力を変換して、前記モータに電力を供給する電力変換装置を有するモータ駆動システムであって、
線膨張率が8から12ppm/℃の範囲の導体板を用い、前記パワー半導体素子の上面電極と前記導体板を半田或いは、金または銀のいずれかの材料を用いて接合した半導体装置のパワー半導体素子と放熱板を電気接続し、
前記モータは、前記放熱板がブラケットに電気的かつ機械的に固定されて、エンジンルームに搭載されていることを特徴とするモータ駆動システム。
A motor composed of a stator and a rotor;
A motor drive system having power semiconductor devices using upper and lower electrodes for input and output of a main current in an upper arm and a lower arm, and converting power from a battery and supplying power to the motor. There,
A power semiconductor of a semiconductor device in which a conductor plate having a linear expansion coefficient in the range of 8 to 12 ppm / ° C. is used, and the upper electrode of the power semiconductor element and the conductor plate are joined using solder, gold, or silver. Electrical connection between the element and the heat sink
The motor drive system according to claim 1, wherein the heat radiating plate is electrically and mechanically fixed to a bracket and mounted in an engine room.
JP2005517178A 2004-01-26 2004-01-26 Semiconductor device, power conversion device using the same, motor using the same, hybrid vehicle using the same, and motor drive system using the same Pending JPWO2005071733A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/000660 WO2005071733A1 (en) 2004-01-26 2004-01-26 Semiconductor device, power converter employing it, motor employing it, hybrid automobile employing it, and motor drive system employing it

Publications (1)

Publication Number Publication Date
JPWO2005071733A1 true JPWO2005071733A1 (en) 2007-07-26

Family

ID=34805298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005517178A Pending JPWO2005071733A1 (en) 2004-01-26 2004-01-26 Semiconductor device, power conversion device using the same, motor using the same, hybrid vehicle using the same, and motor drive system using the same

Country Status (2)

Country Link
JP (1) JPWO2005071733A1 (en)
WO (1) WO2005071733A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062453A1 (en) * 2010-12-06 2012-06-06 Robert Bosch Gmbh Semiconductor device with increased stability to thermo-mechanical influences and method for contacting a semiconductor
JP2012145489A (en) * 2011-01-13 2012-08-02 Sankei Engineering:Kk Manufacturing method of inspection probe
DE102012208251A1 (en) * 2012-05-16 2013-11-21 Robert Bosch Gmbh Electrical contacting for semiconductors
JP6494178B2 (en) * 2014-05-22 2019-04-03 三菱電機株式会社 Power semiconductor device
JP6576108B2 (en) * 2015-06-08 2019-09-18 三菱電機株式会社 Power semiconductor device
JP6460160B2 (en) * 2017-06-27 2019-01-30 日立金属株式会社 Electrical connection member, electrical connection structure, and method of manufacturing electrical connection member
US20210257327A1 (en) * 2018-11-30 2021-08-19 Hitachi Metals, Ltd. Electrical connection member, electrical connection structure, and method for manufacturing electrical connection member
US20220302071A1 (en) 2019-06-20 2022-09-22 Rohm Co., Ltd. Semiconductor device and production method for semiconductor device
JP7392558B2 (en) * 2020-04-13 2023-12-06 住友電気工業株式会社 optical module
CN112410178B (en) * 2020-12-04 2023-07-04 中国科学院青藏高原研究所 Microorganism preservation device of control by temperature change

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936186A (en) * 1995-07-24 1997-02-07 Hitachi Ltd Power semiconductor module and its mounting method
JP2001036001A (en) * 1999-07-21 2001-02-09 Toyota Central Res & Dev Lab Inc Power semiconductor module
JP2004128264A (en) * 2002-10-03 2004-04-22 Toyota Industries Corp Semiconductor module and flat lead

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163045A (en) * 1997-11-26 1999-06-18 Toshiba Corp Semiconductor device and its manufacture
JP3664650B2 (en) * 2000-12-18 2005-06-29 三菱電機株式会社 Control device integrated motor
JP3744431B2 (en) * 2002-01-31 2006-02-08 トヨタ自動車株式会社 Semiconductor device and manufacturing method thereof
JP3869755B2 (en) * 2002-05-16 2007-01-17 三洋電機株式会社 Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936186A (en) * 1995-07-24 1997-02-07 Hitachi Ltd Power semiconductor module and its mounting method
JP2001036001A (en) * 1999-07-21 2001-02-09 Toyota Central Res & Dev Lab Inc Power semiconductor module
JP2004128264A (en) * 2002-10-03 2004-04-22 Toyota Industries Corp Semiconductor module and flat lead

Also Published As

Publication number Publication date
WO2005071733A1 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
JP4293246B2 (en) Power converter
EP1843453B1 (en) Rotary electric machine
JP4054137B2 (en) Power semiconductor element power supply and heat dissipation device
JP4378239B2 (en) A semiconductor device, a power conversion device using the semiconductor device, and a hybrid vehicle using the power conversion device.
JP4147987B2 (en) Multi-phase AC rotating electric machine
US20140151146A1 (en) Mold module utilized as power unit of electric power steering apparatus and electric power steering apparatus
US8552283B2 (en) Thermoelectric application for waste heat recovery from semiconductor devices in power electronics systems
US7362001B2 (en) Generator-motor
JP2008029093A (en) Power conversion equipment
JP4166804B2 (en) Controller-integrated rotating electrical machine
WO2015112691A1 (en) B+ mounted integrated active rectifier electronics
JPWO2005071733A1 (en) Semiconductor device, power conversion device using the same, motor using the same, hybrid vehicle using the same, and motor drive system using the same
JP4015634B2 (en) Semiconductor device
JP2009130201A (en) Semiconductor device
JP2004031590A (en) Semiconductor device
JP2006165409A (en) Power conversion equipment
JP2007081155A (en) Semiconductor device
JP3972855B2 (en) Inverter module
JP2008041851A (en) Power semiconductor device
CN106165280B (en) It is molded module
US20070108855A1 (en) Vehicle alternator
JP5083665B2 (en) Rotating electric machine for vehicles
JP4227987B2 (en) Rotating electric machine and manufacturing method thereof
US20230148137A1 (en) Semiconductor Device, Power Module, Inverter Device, and Electric Vehicle
JP2019160969A (en) Power conversion device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714