JPWO2004051724A1 - Silica glass jig used in the process of manufacturing a semiconductor and its manufacturing method - Google Patents

Silica glass jig used in the process of manufacturing a semiconductor and its manufacturing method Download PDF

Info

Publication number
JPWO2004051724A1
JPWO2004051724A1 JP2004556891A JP2004556891A JPWO2004051724A1 JP WO2004051724 A1 JPWO2004051724 A1 JP WO2004051724A1 JP 2004556891 A JP2004556891 A JP 2004556891A JP 2004556891 A JP2004556891 A JP 2004556891A JP WO2004051724 A1 JPWO2004051724 A1 JP WO2004051724A1
Authority
JP
Japan
Prior art keywords
silica glass
glass jig
layer removing
removing means
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004556891A
Other languages
Japanese (ja)
Other versions
JP4475581B2 (en
Inventor
親 伊藤
親 伊藤
敏文 岩見
敏文 岩見
博至 木村
博至 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Fukui Shin Etsu Quartz Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Fukui Shin Etsu Quartz Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd, Fukui Shin Etsu Quartz Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Publication of JPWO2004051724A1 publication Critical patent/JPWO2004051724A1/en
Application granted granted Critical
Publication of JP4475581B2 publication Critical patent/JP4475581B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67303Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
    • H01L21/67306Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements characterized by a material, a roughness, a coating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

半導体を製造する工程で使用するシリカガラス治具において、その表面の一部又は全部に中心線平均粗さRaで0.1〜20μmの凹凸が存在し、かつ軽微な表層エッチング処理に対しても表面状態の変化が小さいことを特徴とするシリカガラス治具であって、使用時に半導体素子を汚染するパーティクルの発生がなく、しかも使用を重ねても処理条件の変動の少ない。また、本発明のシリカガラス治具は、シリカガラスの表面に物理的表層除去手段と化学的表層除去手段による処理を交互に2回以上繰り返し適用すことで容易に製造できる。In a silica glass jig used in the process of manufacturing a semiconductor, a part or all of its surface has an unevenness of 0.1 to 20 μm in centerline average roughness Ra, and also for a slight surface etching process. It is a silica glass jig characterized by a small change in the surface state, and does not generate particles that contaminate the semiconductor element during use, and the processing conditions hardly change even when used repeatedly. In addition, the silica glass jig of the present invention can be easily manufactured by repeatedly applying the treatment by the physical surface layer removing means and the chemical surface layer removing means to the surface of the silica glass two or more times alternately.

Description

本発明は、半導体の製造工程で使用されるシリカガラス治具、さらに詳しくは表面に細な凹凸があるとともに軽微な表層エッチングに対して表面状態の変化が小さいシリカガラス治具およびその製造方法に関する。  The present invention relates to a silica glass jig used in a semiconductor manufacturing process, and more particularly, to a silica glass jig having a fine unevenness on the surface and a small change in surface state with respect to light surface etching, and a method of manufacturing the same .

シリカガラス治具は半導体素子の製造における拡散工程、気相成長工程、エッチング・アッシング工程などの様々な工程で使用されている。このシリカガラス治具の表面はサンドブラストや研削加工といった処理が施され凹凸をもった不透明に仕上げられたり、或は鏡面研摩や焼き仕上げと呼ばれる火炎研摩等で平滑で透明に仕上げられたものなど、用途などにより適宜選択されているが、洗浄などが容易で汚れにくい透明に仕上げられた表面を有する治具が多く使用されている。中でも、拡散工程、気相成長工程、特に気相成長工程ではCVD(Chemical Vapor Deposition)法などで半導体素子に例えばポリシリコン膜を成長させるが、その際透明仕上げされたシリカガラス治具にもポリシリコン膜が副生成物として堆積し、それが剥離しパーティクルとなって半導体素子を汚染することが起こる。そのため、副生成物を定期的に除去する必要があった。その除去にはフッ化水素酸及び硝酸を含む溶液が一般的に用いられているが、平滑な治具の表面も同時にエッチングされて表面が粗れ、表面積等の表面状態の変化が起こり、急に副生成物の付着量が変動し、消費する気相反応ガスの消費量も変動し半導体素子へのポリシリコン膜の成長量の制御が困難となるなどの問題があった。そこで、治具表面にサンドブラスト加工で微細な凹凸を形成し、そこに積極的に副生成物を捕捉しパーティクルの発生を防止することが図られたが、今度は微細な凹凸の加工時に発生した加工塑性層やマイクロクラック等のダメージ部分からシリカガラスの微細な破片が使用時に飛散し半導体素子を汚染するパーティクルの発生が起こった。また、副生成物が厚くなるとシリカガラスとポリシリコンとの熱膨張差による破損が発生し、その防止のため、治具の使用前にガスエッチングやウエットエッチングによる洗浄を行なっているが、透明な表面を有する治具の場合と同様に定期的に副生成物を除去する必要があり、微細な凹凸面が同時にエッチングされ表面状態が変わるなどの問題があった。
上記問題点は半導体素子への拡散や気相成長工程にとどまらず、エッチング処理においても同様であった。すなわち、処理ガスを流しながらプラズマなどを利用しエッチングやアッシングを行う工程においても副生成物がシリカガラス治具に堆積し剥離しパーティクルを発生することがあり、CVD等と同様にサンドブラストや研削加工により表面に微細な凹凸を形成し、積極的に副生成物を捕捉しパーティクルの発生を防止することが図られた。しかし、凹凸の加工時に発生した加工塑性層やマイクロクラック等のダメージ部分からプラズマによりシリカガラスの微細な破片が使用時に飛散し半導体素子を汚染するパーティクルになるなどの問題があった。特に、ドライエッチングでは、シリカガラス治具の表面もフッ化水素含有溶液処理と酷似したエッチングがなされ、表面の状態が大きく変わり、半導体素子のエッチング処理自体の制御を困難とするなどの問題があった。
上記問題を解決するため、機械加工した治具を、フッ化水素含有溶液でエッチングしマイクロクラックを開放させ、マイクロクラックフリーの面としたシリカガラス治具(特開平10−59744号公報)やシリカガラス治具表面を機械加工で凹凸にしたのち、フッ化水素とフッ化アンモニウムを含有する溶液で処理し、表面に20〜300μmのエクボ状凹部と20〜30μmの間隔で幅が0.5〜50μmの溝を形成し、かつ溝間及び溝内に幅1〜50μm、高さ0.1〜10μmの小突起を均一に分散させたシリカガラス治具(特開平2002−104843号公報)が提案された。しかしながら、実際の使用では前記治具はいずれも、使用により凹部が大きなすり鉢状になり急に副生成物の付着量が変わったり、凹凸が減少し、ある程度使用を続けると、剥離パーティクルが発生するなの欠点があった。
こうした現状に鑑み、本発明者等は鋭意研究を重ねた結果、シリカガラス治具の表面粗さを中心線平均粗さRaで0.1〜20μmとし、かつ軽微な表層エッチング処理に対しても表面状態の変化が小さい面とすることで、副生成物の剥離やシリカガラスの微細な破片の飛散がなく、かつ処理ガスの消費の変化が少なく各工程での処理の制御が容易となることを見出した。そして前記シリカガラス治具が特定の物理的表層除去手段と特定の化学的表層除去手段とを交互に複数回繰り返すことで容易に製造できることをも見出して、本発明を完成したものである。すなわち
本発明は、使用時に半導体素子を汚染するパーティクルの発生がなく、かつ使用を重ねても処理条件を変動することがないシリカガラス治具を提供することを目的とする。
また、本発明は、上記シリカガラス治具の製造方法を提供することを目的とする。
Silica glass jigs are used in various processes such as a diffusion process, a vapor phase growth process, and an etching / ashing process in the manufacture of semiconductor elements. The surface of this silica glass jig is treated with sand blasting or grinding to make it opaque with irregularities, or finished with a smooth and transparent finish such as flame polishing called mirror polishing or baking finish, etc. Although it is appropriately selected depending on the application and the like, many jigs having a transparent finished surface that is easy to clean and difficult to get dirty are used. In particular, in a diffusion process, a vapor phase growth process, particularly a vapor phase growth process, for example, a polysilicon film is grown on a semiconductor element by a CVD (Chemical Vapor Deposition) method. A silicon film is deposited as a by-product, which peels off and becomes particles, which contaminates the semiconductor element. Therefore, it was necessary to remove by-products regularly. For the removal, a solution containing hydrofluoric acid and nitric acid is generally used, but the surface of the smooth jig is also etched at the same time to roughen the surface, resulting in a change in surface condition such as surface area. In addition, the amount of attached by-products fluctuates, and the amount of gas phase reaction gas consumed also fluctuates, which makes it difficult to control the growth amount of the polysilicon film on the semiconductor element. Therefore, it was attempted to form fine irregularities on the jig surface by sandblasting and actively capture by-products there to prevent the generation of particles, but this time it occurred during the machining of fine irregularities. Fine particles of silica glass were scattered from damaged parts such as processed plastic layers and microcracks during use, generating particles that contaminated semiconductor elements. In addition, when the by-product becomes thick, damage due to the difference in thermal expansion between silica glass and polysilicon occurs. To prevent this, cleaning by gas etching or wet etching is performed before using the jig. As in the case of a jig having a surface, it is necessary to periodically remove by-products, and there is a problem that a fine uneven surface is etched at the same time to change the surface state.
The above problems are not limited to the diffusion to the semiconductor element and the vapor phase growth process, but the same is true in the etching process. That is, in the process of etching and ashing using plasma etc. while flowing process gas, by-products may accumulate on the silica glass jig and peel off to generate particles. As a result, fine irregularities were formed on the surface, and byproducts were actively captured to prevent generation of particles. However, there has been a problem that fine fragments of silica glass are scattered by using plasma from damaged portions such as processed plastic layers and microcracks generated during processing of irregularities and become particles that contaminate the semiconductor element during use. In particular, in dry etching, the surface of a silica glass jig is etched very similar to the treatment with a hydrogen fluoride-containing solution, the surface state changes greatly, and it is difficult to control the etching process of the semiconductor element itself. It was.
In order to solve the above problem, a machined jig is etched with a hydrogen fluoride-containing solution to release microcracks, and a silica glass jig (Japanese Patent Laid-Open No. 10-59744) or silica having a microcrack-free surface is used. After making the surface of the glass jig uneven by machining, the glass jig is treated with a solution containing hydrogen fluoride and ammonium fluoride, and the surface is 20-300 μm indentations and 20-30 μm apart at a width of 0.5- A silica glass jig (Japanese Patent Laid-Open No. 2002-104843) in which grooves of 50 μm are formed and small protrusions having a width of 1 to 50 μm and a height of 0.1 to 10 μm are uniformly dispersed between and within the grooves is proposed. It was done. However, in actual use, any of the above jigs has a large mortar shape due to use, and the amount of attached by-product suddenly changes or the unevenness is reduced. There was a drawback.
In view of such a current situation, the present inventors have conducted extensive research, and as a result, the surface roughness of the silica glass jig is set to 0.1 to 20 μm in the centerline average roughness Ra, and even for a slight surface etching process. By using a surface with a small change in surface condition, there is no separation of by-products or scattering of fine fragments of silica glass, and there is little change in processing gas consumption, making it easy to control processing in each process. I found. The present inventors have also found that the silica glass jig can be easily manufactured by alternately repeating a specific physical surface layer removing unit and a specific chemical surface layer removing unit a plurality of times, thereby completing the present invention. That is, an object of the present invention is to provide a silica glass jig that does not generate particles that contaminate a semiconductor element during use, and that does not change processing conditions even after repeated use.
Moreover, an object of this invention is to provide the manufacturing method of the said silica glass jig | tool.

本発明は、半導体を製造する工程で使用するシリカガラス治具において、その表面の一部又は全部に中心線平均粗さRaで0.1〜20μmの凹凸が存在し、かつ軽微な表層エッチング処理に対しても表面状態の変化が小さいことを特徴とするシリカガラス治具およびその製造方法に係る。
本発明のシリカガラス治具は、例えば炉芯管、ウェーハ載置用ボート、エッチング・アッシング用チャンバー等、半導体素子を製造する工程で使用される治具であり、その表面にはその一部又は全部に中心線平均粗さRaで0.1〜20μmの凹凸が存在し、かつ軽微な表層エッチング処理に対して表面状態の変化が小さい治具である。前記表面状態の変化の小ささは濃度3.0〜4.0%で液温が17〜23℃のフッ化水素酸溶液にて15〜17時間エッチング処理したものと、エッチング前との該表面のJISB0601に基づく中心線平均粗さを、触針部先端のRが2〜10μmの範囲である触針式の表面粗さ測定装置にて測定し、その中心線平均粗さの変化率を50%以下とするのがよい。つまり、実際のエッチング、例えばプラズマガスによるエッチングでシリカガラス治具の表面が変化するが、具体的には初期の段階でRaが大きくなるが、その変化の大きさは前記表面状態の変化の小ささを示す中心線平均粗さの変化率と関係し、その変化率が50%以下であると実使用においてもRaの変化は小さいままである。前記フッ化水素酸溶液の濃度が前記範囲未満では変化に時間がかかり過ぎて効率的でなく、前記範囲を超えると初期の変化の速度が速く判定時間が短くなるものの、測定物を溶液から取り出して、表面を水で置換しエッチングを停止するまでに誤差が生じる。また、フッ化水素酸溶液の温度17〜23℃は、その温度が最も一般的であることから採用する。
さらに、エッチング処理時間15〜17時間は、判定のための精度の高い変化率を得るための時間である。前記変化率の測定にはJISB0601に基づく触針部先端のRが2〜10μmである触針式の表面測定装置を使用することが重要である。前記触針部先端のRが2〜10μmである触針式表面測定装置を使用する理由は、実使用時におけるシリカガラス治具の表面状態の変化が、その初期状態面に存在するマイクロクラックがエッチング処理により拡大したり、或はその表面のギザギザの凹凸がエッチング処理により形状変化を起したりして大きく変わる。それを非接触型の測定装置、例えばレーザーの反射光を使用する測定装置では、測定形状から算出される中心線平均粗さは正しいものの、使用中に副生成物により直に埋まってしまうような狭い谷部などをも検出し、使用時に処理条件が変わるような大きな状態変化が解りずらいことによる。この触針式表面測定装置を使用する測定法を用いることで、凸部の変化は勿論、特に副生成物の付着状況に敏感な谷部の変化が捕らえ易くなる。前記触針部先のRが2〜10μmであるのは、細い谷を検出しない範囲である2μmから、実質的な凹凸が判定できる10μmの範囲とするもので、実際の使用時に即した表面状態の変化が容易に測定できる。
シリカガラス治具の実際の使用において、使用プロセスに応じた副生成物の適正捕捉量があり、例えばCVDプロセスの場合には、ウエハー上の膜成長の余剰ガスが、プラズマ等によるドライエッチング工程の場合には、エッチングされた反応ガスが、シリカガラス治具の表面を粗くすることにより、より多く副生成物として治具上に捕捉堆積させることになる。副生成物の堆積があまり大量であるとウエハー上に膜を形成するガスが必要以上に減少し膜の成長やエッチングが阻害される。その一方、捕捉が少ないと剥離等によりパーティクルが発生し、また、使用時におけるエッチングによるシリカガラス治具の粗さや状態が初期状態から変化し前述と同様な問題を提起する。シリカガラス治具の表面の凹凸は、鋸状の凹凸や不規則で鋭角な山谷が連続するギザギザや台形状の凸部が並ぶものがあるが、いずれも、実使用時のエッチング処理により縁部が尖った大きなお椀状の凹凸となり、副生成物の捕捉能力等、初期状態から大きく変化する。また、初期の状態からお椀状の凹凸を形成した場合、表面積が小さいため、副生成物の捕捉能力が実用に耐えられず、さらにお椀状の縁部の尖った部分が脱落し、パーティクルを発生する。そのため、本発明のシリカガラス治具にあっては、その表面の一部又は全部に中心線平均粗さRaで0.1〜20μmの凹凸を存在させている。この凹凸の存在により副生成物の捕捉が確となり膜の剥離を抑制できる。好ましくは前記凹凸を大柄な凹凸とその表面に微細な浅いお椀状の凹部を形成した多重構造とするのがよい。この多重構造を有することで、軽微なエッチングでは変化しづらい大柄な波状の凹凸により必要な厚みの副生成物を捕捉できる凹凸を確保できる。
さらにその大柄な波状の凹凸に微細な浅いお椀状の凹凸を存在させることで捕捉した副生成物を剥離させることなく固定でき、安定した表面を有する治具が得られる。特に望ましくは、浅いお椀状の凹部が、凹部の縁径より底の深さが小で、かつ隣り合った凹部間の境界の縁部が鋭角な凸でないことである。これにより凹部が使用時にエッチングされても、縁部付近も均等に減損し、隣り合った凹部との間に鋭角で脱落しやすい突起状の縁取りが発生するのを防止できる。
本発明のシリカガラス治具は、物理的表層除去手段と化学的表層除去手段とを交互に2回以上繰り返し適用することで製造できる。好ましくは物理的表層除去手段で形成する表面粗さが順次小さくなるような処理条件を選択するのがよい。
上記物理的表層除去手段とは、固定砥粒砥石による研削処理、遊離砥粒による研摩処理、遊離砥粒によるブラスト処理、液体ホーニングによる処理又はそれらの組合せをいう。そして、固定砥粒砥石はとしては、具体的にレジンボンド型ダイヤモンド砥石などが挙げられ、遊離砥粒としてはシリカやSiCが挙げられ、液体ホーニングによる処理としては、遊離砥粒を液体に分散し吹き付ける処理などが挙げられる。この物理的表層除去手段では、シリカガラス表面に加工塑性層やマイクロクラック等のダメージ層が形成され治具の使用時にシリカガラスの微細な破片が飛散し、パーティクルの発生源となる。その上、エッチング処理工程時に不均質な侵食が起こり、不完全なマイクロクラックの開放による深い溝ができ、表面状態が大きく変化し、CVD工程やエッチング工程などの処理条件を変動させる必要が生じる。しかし、前記物理的表層除去手段に続いて化学的表層除去手段を適用することで加工塑性層の除去やマイクロクラックの開放がなされパーティクルの発生がすくなくなる上に、表面状態の変動も少なくなるが、化学的表層除去手段による表層の除去量が少ないと加工塑性層の除去やマイクロクラックの開放が十分に行なわれない。そこで、物理的表層除去手段で形成した加工塑性層やマイクロクラックのあるダメージ層の除去を十分に行おうとすると、大きな溝やお椀状又はすり鉢状の凹部で外周の縁が尖ったへこみが多くできる。特に外周の縁の尖った部分からは微細なガラスの破片が飛散し易い。前記外周の縁が尖った凹みも発生しない処理法として前記特許文献2に記載の処理法があるが、この方法では物理的表層除去手段で形成した加工塑性層やマイクロクラックなどのダメージ層の除去が十分にできず、エッチング処理時の表面状態の変化が大きくなる。また、実使用時のエッチングが進行すると外周の縁の尖った凹部が多数出現し、パーティクルを発生し易い。
本発明の製造方法にあっては、最初の物理的表層除去手段の後に化学的表層除去手段により表面に有るマイクロクラックが開放された表面、例えばすり鉢やお椀状の凹凸が多数ある表面を形成した後に、再度物理的表層除去手段を適用し、凹凸の鋭角な部分を波状にならし、さらに化学的表層除去手段を適用することにより、比較的平坦な面に残留する加工塑性層や僅かに残ったマイクロクラックを開放するものである。前記物理的表層除去手段および化学的表層除去手段は交互に2回以上繰り返し適用するのがよい。これにより使用中のシリカガラス治具の表面状態の変化が小さい治具が得られる。前記物理的表層除去手段はより好ましくは最初より表面粗さが小さくなるようにつぎの物理的表層除去手段を選択するのがよい。これにより形成した大柄な波状の凹凸の形状が大きく変化しない範囲で次の物理的表層除去手段のダメージやマイクロクラックのみを、容易に次の化学的表層除去手段で開放できるだけでなく、大柄な波状の凹凸の表面にお椀状の凹部を多数有する多重構造とすることができる。例えば最初比較的粒度の大きな砥粒を用い、次の除去手段では比較的粒度の小さい砥粒を用いるなどである。その場合、固定砥粒砥石による研削処理に続いて遊離砥粒による研摩処理などを組合せる物理的表層除去手段の組合せも採用できる。例えば最初#120のダイヤモンド砥粒を含む固定砥粒砥石を用いた後#600のSiC遊離砥粒によるサンドブラスト処理を適用するなどである。
本発明で使用する化学的表層除去手段としては、フッ化水素を含有する溶液による処理が挙げられるが、好ましくは、最後の物理的表層除去手段後の化学的表層除去手段には、前記溶液にさらにフッ化アンモニウムを含有させるのがよい。これにより、仕組みについては明確でないが、例えば化学的表層除去手段により形成されたお椀状やすり鉢状の凹部の外周縁部にできた尖った突起やその他の鋭角な突起が除去され滑らかな凹凸面とすることができる。これは、フッ化水素とフッ化アンモニウム及びシリカガラスが反応してできた結晶が、例えばお椀状の底部に良く発生し、突起部には発生しないか突起部を吸収した結晶が直ぐに離脱し、結果として突起部が選択的にエッチング除去され、鋭角な部分を持たない丸みを帯びた形態になるものと考えられる。さらに好ましくは、前記フッ化水素を含有する溶液に粒径が10〜200μmの樹脂、シリカ又はセラミックのいずれか又はその組合せの微粒子を分散させるのがよい。この微粒子を分散させることで治具表面のダメージ層の除去が容易で、かつ微細な凹凸の形成能が高くなり、製造手順を簡素化できる。さらに超音波振動や攪拌手段を付加することで一段と処理の効率化が図られる。
本発明のシリカガラス治具は、その使用時にパーティクルの発生が少ない上に、使用を重ねても処理条件が変動することがほとんどなく、安定に高品質の半導体素子の処理ができる効果を奏する。しかも、前記シリカガラス治具は特定の物理的表層除去手段と化学的表層除去手段とを2回以上繰り返し適用することにより容易に製造でき、その工業的価値は高いものがある。
In the silica glass jig used in the process of manufacturing a semiconductor, the present invention has a slight surface layer etching treatment in which unevenness of 0.1 to 20 μm exists in a part or all of the surface with a centerline average roughness Ra. Further, the present invention relates to a silica glass jig characterized by having a small change in surface state and a method for producing the same.
The silica glass jig of the present invention is a jig used in a process of manufacturing a semiconductor element, such as a furnace core tube, a wafer mounting boat, an etching / ashing chamber, etc. It is a jig that has unevenness of 0.1 to 20 μm in center line average roughness Ra in all and has a small change in surface state with respect to a slight surface layer etching process. The change in the surface state is as small as 3.0 to 4.0% in the etching process with a hydrofluoric acid solution having a liquid temperature of 17 to 23 ° C. for 15 to 17 hours and before the etching. The center line average roughness based on JISB0601 was measured with a stylus type surface roughness measuring device in which R at the tip of the stylus part was in the range of 2 to 10 μm, and the change rate of the center line average roughness was 50. % Or less. That is, the surface of the silica glass jig is changed by actual etching, for example, etching by plasma gas. Specifically, Ra increases at an early stage, but the magnitude of the change is small in the change of the surface state. In relation to the change rate of the centerline average roughness indicating the roughness, if the change rate is 50% or less, the change in Ra remains small even in actual use. If the concentration of the hydrofluoric acid solution is less than the above range, the change takes too much time and is not efficient. If the concentration exceeds the above range, the initial change speed is high and the determination time is short, but the measurement object is taken out from the solution. Thus, an error occurs until the surface is replaced with water and etching is stopped. Further, the temperature of 17 to 23 ° C. of the hydrofluoric acid solution is adopted because the temperature is most common.
Furthermore, the etching processing time of 15 to 17 hours is a time for obtaining a highly accurate change rate for determination. For the measurement of the rate of change, it is important to use a stylus type surface measuring device in which R at the tip of the stylus part is 2 to 10 μm based on JISB0601. The reason for using a stylus type surface measuring device in which R at the tip of the stylus part is 2 to 10 μm is that the change in the surface state of the silica glass jig during actual use is caused by microcracks present in the initial state surface. Enlargement is caused by the etching process, or jagged irregularities on the surface thereof change greatly due to a shape change caused by the etching process. In a non-contact type measuring device, for example, a measuring device using reflected light of a laser, the center line average roughness calculated from the measured shape is correct, but it is directly buried by a by-product during use. This is because even a narrow valley portion is detected, and it is difficult to understand a large state change in which processing conditions change during use. By using the measuring method using this stylus type surface measuring device, it is easy to capture not only the change of the convex part but also the change of the valley part particularly sensitive to the adhesion state of the by-product. The R of the tip of the stylus part is 2 to 10 μm from 2 μm, which is a range where thin valleys are not detected, to 10 μm where substantial unevenness can be determined. Can be easily measured.
In the actual use of the silica glass jig, there is an appropriate amount of by-product trapped according to the process used. For example, in the case of a CVD process, excess gas for film growth on the wafer is caused by plasma or the like in a dry etching process. In some cases, the etched reaction gas causes the surface of the silica glass jig to be roughened, and more is trapped and deposited on the jig as a by-product. If the amount of by-product deposited is too large, the gas for forming a film on the wafer is reduced more than necessary, and the growth and etching of the film are hindered. On the other hand, if the amount of trapping is small, particles are generated due to peeling or the like, and the roughness and state of the silica glass jig due to etching during use change from the initial state, thereby raising the same problem as described above. The surface irregularities of the silica glass jig include saw-shaped irregularities, jagged edges with irregular and sharp peaks and valleys, and trapezoidal convex parts, all of which are edged by etching during actual use. It becomes a large bowl-shaped unevenness with sharp points, and the byproduct trapping ability and the like greatly change from the initial state. In addition, when the bowl-shaped irregularities are formed from the initial state, the surface area is small, so the byproduct capture ability cannot be practically used, and the sharp edges of the bowl-shaped edge fall off, generating particles. To do. Therefore, in the silica glass jig of the present invention, unevenness having a centerline average roughness Ra of 0.1 to 20 μm is present on a part or all of the surface thereof. The presence of the unevenness ensures the capture of by-products and suppresses the peeling of the film. Preferably, the unevenness has a multiple structure in which large unevenness and a fine shallow bowl-shaped recess are formed on the surface. By having this multiple structure, it is possible to secure unevenness capable of capturing a by-product having a required thickness due to large wavy unevenness that is difficult to change by light etching.
Further, by making the large wavy irregularities have fine shallow bowl-shaped irregularities, the captured by-products can be fixed without peeling, and a jig having a stable surface can be obtained. It is particularly desirable that the shallow bowl-shaped recess has a bottom depth smaller than the edge diameter of the recess, and that the edge of the boundary between adjacent recesses is not an acute convex. Thus, even if the recess is etched during use, the vicinity of the edge is also uniformly damaged, and it is possible to prevent the occurrence of a protruding edging that is easy to drop off between adjacent recesses.
The silica glass jig of the present invention can be produced by repeatedly applying the physical surface layer removing means and the chemical surface layer removing means alternately twice or more. Preferably, the processing conditions are selected so that the surface roughness formed by the physical surface layer removing means decreases sequentially.
The physical surface layer removing means refers to a grinding process using a fixed abrasive wheel, a polishing process using free abrasive grains, a blast process using free abrasive grains, a process using liquid honing, or a combination thereof. As the fixed abrasive grindstone, specifically, a resin bond type diamond grindstone is exemplified. As the free abrasive grain, silica or SiC is exemplified. As the treatment by liquid honing, the free abrasive grain is dispersed in a liquid. For example, a spraying process. In this physical surface layer removing means, a damage layer such as a processed plastic layer or a microcrack is formed on the surface of the silica glass, and fine fragments of the silica glass are scattered when the jig is used, which becomes a generation source of particles. In addition, inhomogeneous erosion occurs during the etching process, deep grooves are formed due to incomplete opening of microcracks, the surface state changes greatly, and it is necessary to change processing conditions such as the CVD process and the etching process. However, by applying a chemical surface layer removing means subsequent to the physical surface layer removing means, the processing plastic layer is removed and the microcracks are released, so that the generation of particles is reduced and the fluctuation of the surface state is reduced. If the removal amount of the surface layer by the chemical surface layer removing means is small, the processed plastic layer and the microcracks are not sufficiently removed. Therefore, if the processing plastic layer formed by the physical surface layer removing means and the damaged layer with microcracks are sufficiently removed, the outer periphery has many sharp dents with large grooves, bowl-shaped or mortar-shaped recesses. . In particular, fine glass fragments are likely to scatter from the sharp edge of the outer periphery. There is a processing method described in Patent Document 2 as a processing method that does not generate a dent with a sharp edge on the outer periphery. In this method, however, a damaged layer such as a processed plastic layer or a microcrack formed by a physical surface layer removing means is removed. Is not sufficient, and the change in the surface state during the etching process becomes large. In addition, when etching during actual use proceeds, a large number of concave portions with sharp edges on the outer periphery appear and particles are easily generated.
In the manufacturing method of the present invention, after the first physical surface layer removing means, a surface where the microcracks on the surface are opened by the chemical surface layer removing means, for example, a surface having many mortars and bowl-shaped irregularities was formed. Later, the physical surface layer removing means is applied again, the sharp portions of the irregularities are waved, and the chemical surface layer removing means is further applied, so that the processed plastic layer remaining on the relatively flat surface or slightly remains. The micro crack is opened. The physical surface layer removing unit and the chemical surface layer removing unit are preferably repeatedly applied two or more times alternately. Thereby, the jig | tool with a small change of the surface state of the silica glass jig | tool in use is obtained. More preferably, the physical surface layer removing means is selected as the next physical surface layer removing means so that the surface roughness is smaller than the first. As long as the shape of the large wavy irregularities formed thereby does not change significantly, not only the next physical surface removal means damage and micro cracks can be easily released by the next chemical surface removal means, but also the large wavy shapes It is possible to obtain a multiple structure having a large number of bowl-shaped recesses on the uneven surface. For example, abrasive grains having a relatively large grain size are used first, and abrasive grains having a relatively small grain size are used in the next removing means. In that case, a combination of physical surface removal means that combines a grinding process with a fixed abrasive grindstone followed by a polishing process with loose abrasive grains can also be employed. For example, after first using a fixed abrasive wheel containing # 120 diamond abrasive grains, sandblasting with # 600 SiC loose abrasive grains is applied.
Examples of the chemical surface layer removing means used in the present invention include treatment with a solution containing hydrogen fluoride. Preferably, the chemical surface layer removing means after the last physical surface layer removing means includes the above solution. Furthermore, it is preferable to contain ammonium fluoride. As a result, the mechanism is not clear, but for example, sharp protrusions and other sharp protrusions formed on the outer peripheral edge of the bowl-shaped mortar-shaped recess formed by the chemical surface layer removing means are removed, and the smooth uneven surface It can be. This is because the crystals formed by the reaction of hydrogen fluoride with ammonium fluoride and silica glass often occur, for example, at the bottom of the bowl, and the crystals that do not occur on the protrusions or absorb the protrusions are released immediately, As a result, it is considered that the protrusion is selectively removed by etching, and a rounded shape having no acute angle portion is obtained. More preferably, fine particles of a resin having a particle diameter of 10 to 200 μm, silica, ceramic, or a combination thereof are dispersed in the hydrogen fluoride-containing solution. Dispersion of the fine particles facilitates removal of the damaged layer on the jig surface, increases the ability to form fine irregularities, and simplifies the manufacturing procedure. Furthermore, the processing efficiency can be further improved by adding ultrasonic vibration and stirring means.
The silica glass jig of the present invention produces less particles during use, and the processing conditions hardly change even after repeated use, and has the effect of stably processing a high-quality semiconductor element. Moreover, the silica glass jig can be easily manufactured by repeatedly applying a specific physical surface layer removing means and a chemical surface layer removing means twice or more, and has a high industrial value.

第1図は、実施例1のドライエッチング用治具表面をマイクロスコープで観察した500倍の写真である。
第2図は、実施例1のドライエッチング用治具表面を3.5質量%のフッ化水素酸に16時間浸漬した後でマイクロスコープで観察した500倍の写真である。
第3図は、実施例1のドライエッチング用治具表面を走査電子顕微鏡で観察した500倍の写真である。
第4図は、実施例2のウエハーボートを走査電子顕微鏡で観察した200倍の写真である。
第5図は、実施例2のウエハーボートを走査電子顕微鏡で観察した1,000倍の写真である。
第6図は、実施例2のウエハーボートを20℃、3.5%フッ化水素酸溶液で16時間のエッチングテストを行った後のSEMで観察した200倍の写真である。
第7図は、実施例2のウエハーボートを20℃、3.5%フッ化水素酸溶液で16時間のエッチングテストを行った後のSEMで観察した1000倍の写真である。
第8図は、比較例2のウエハーボートをSEMで観察した200倍の写真である。
第9図は、比較例2のウエハーボートをSEMで観察した1000倍の写真である。
第10図は、比較例2のウエハーボートを20℃、3.5%フッ化水素酸溶液で16時間のエッチングテストを行った後のSEMで観察した200倍の写真である。
第11図は、比較例2のウエハーボートを20℃、3.5%フッ化水素酸溶液で16時間のエッチングテスト後のウエハーボートをSEMで観察した1,000倍の写真である。
FIG. 1 is a 500 × photograph of the surface of the dry etching jig of Example 1 observed with a microscope.
FIG. 2 is a 500 × photograph observed with a microscope after the surface of the dry etching jig of Example 1 was immersed in 3.5% by mass of hydrofluoric acid for 16 hours.
FIG. 3 is a 500 × photograph of the surface of the dry etching jig of Example 1 observed with a scanning electron microscope.
FIG. 4 is a 200 × photograph of the wafer boat of Example 2 observed with a scanning electron microscope.
FIG. 5 is a 1,000 times photograph of the wafer boat of Example 2 observed with a scanning electron microscope.
FIG. 6 is a 200 × photograph of the wafer boat of Example 2 observed by SEM after performing an etching test for 16 hours with a 3.5% hydrofluoric acid solution at 20 ° C.
FIG. 7 is a 1000 × photograph of the wafer boat of Example 2 observed by SEM after performing an etching test for 16 hours with a 3.5% hydrofluoric acid solution at 20 ° C.
FIG. 8 is a 200 × photograph of the wafer boat of Comparative Example 2 observed with an SEM.
FIG. 9 is a 1000 × photograph of the wafer boat of Comparative Example 2 observed with an SEM.
FIG. 10 is a 200 × photograph of the wafer boat of Comparative Example 2 observed by SEM after performing an etching test for 16 hours with a 3.5% hydrofluoric acid solution at 20 ° C.
FIG. 11 is a 1,000 times photograph of the wafer boat of Comparative Example 2 observed with an SEM after an etching test for 16 hours with a 3.5% hydrofluoric acid solution at 20 ° C.

次に本発明の実施例について述べるがこれによって本発明はなんら限定されるものではない。なお、以下の実施例1及び比較例1の中心線平均粗さRaは、表面粗さ計(東京精密(株)製Surfcom300B)により測定した。それ以外の実施例等では、(株)ミツトヨ製の表面粗さ計(SJ−400)を使用した。    Next, examples of the present invention will be described, but the present invention is not limited thereto. In addition, the centerline average roughness Ra of Example 1 and Comparative Example 1 below was measured with a surface roughness meter (Surfcom 300B manufactured by Tokyo Seimitsu Co., Ltd.). In other examples, etc., a surface roughness meter (SJ-400) manufactured by Mitutoyo Corporation was used.

直径300mmの石英ガラス表面を#300のダイヤモンド砥粒を含むレジンボンド砥石で研削し円板状のドライエッチング用治具を作成した。得られた治具の中心線平均粗さRaは1.2μmであった。この治具を50%のフッ化水素酸溶液に10分間浸漬した。得られた治具の中心線平均粗さRaは2.8μmであった。続いて該治具を#1000のSiC砥粒のレジンボンド砥石で表面除去を行い、中心線平均粗さRaを0.5μmとし、さらに、フッ化水素15質量%、フッ化アンモニウム15質量%、酢酸50質量%及び水とからなる処理液で1時間処理した。その時の中心線平均粗さRaは1.4μmであった。前記治具を20℃、3.5質量%のフッ化水素酸溶液に浸漬しRaの変化を調べたところ、表1のとおりであった。前記0時間時のマイクロスコープで観察した表面写真を図1に、16時間エッチング処理した後のマイクロスコープで観察した表面写真を図2に示す。さらに、0時間時の走査電子顕微鏡で観察した写真を図3に示す。
比較例1
実施例1と同様の石英ガラス治具を#300のダイヤモンド砥粒を含むレジンボド砥石で研削し円板状のドライエッチング用治具を作成した。得られた治具の中心線平均粗さRaは1.2μmであった。この治具を次いで10%のフッ化水素酸溶液に10分間浸漬した。その時のRaは1.3μmであった。この治具について実施例1と同様に3.5質量%のフッ化水素酸による表面粗さの変化を調べたところ、表1のとおりであった。

Figure 2004051724
上記表1にみるように実施例1の本発明のシリカガラス治具は、3.5質量%のフッ化水素酸溶液のエッチングテストにおいて、Raなどの表面状態の変化が比較例1に比して極めて小さかった。そこで、実施例1と比較例1による治具を、実際にCF/Arガス、2kwのプラズマドライエッチング装置に投入し、実施例1の治具では5バッチの処理を行なったところ、パーティクルの発生数はいずれのバッチも10ケ未満であった。これに対し、比較例1の治具では、3バッチ目で50ケ以上の大量のパーティクルが発生し、使用を中止した。また、各使用後のRaは実施例1の治具が2μm、比較例1の治具が5.2μmと、3.5質量%のフッ化水素酸溶液によるエッチングテストと同様に大きな開きがあった。さらに、実施例1の5バッチ目及び比較例1の3バッチ目の処理ウエハーのエッチングレートを比較したところ、実施例1の治具に対して比較例1の治具はレートが少なかった。A surface of quartz glass having a diameter of 300 mm was ground with a resin bond grindstone containing # 300 diamond abrasive grains to prepare a disk-shaped dry etching jig. The center line average roughness Ra of the obtained jig was 1.2 μm. This jig was immersed in a 50% hydrofluoric acid solution for 10 minutes. The obtained jig had a center line average roughness Ra of 2.8 μm. Subsequently, the surface of the jig was removed with a resin bond grindstone of # 1000 SiC abrasive grains, the center line average roughness Ra was set to 0.5 μm, and further, 15% by mass of hydrogen fluoride, 15% by mass of ammonium fluoride, It was treated for 1 hour with a treatment solution comprising 50% by mass of acetic acid and water. The centerline average roughness Ra at that time was 1.4 μm. The jig was immersed in a hydrofluoric acid solution at 20 ° C. and 3.5% by mass, and the change in Ra was examined. The surface photograph observed with the microscope at the time of 0 hours is shown in FIG. 1, and the surface photograph observed with the microscope after the etching treatment for 16 hours is shown in FIG. Furthermore, the photograph observed with the scanning electron microscope at the time of 0 hours is shown in FIG.
Comparative Example 1
A quartz glass jig similar to that in Example 1 was ground with a resin-bodied grindstone containing # 300 diamond abrasive grains to produce a disk-shaped dry etching jig. The center line average roughness Ra of the obtained jig was 1.2 μm. This jig was then immersed in a 10% hydrofluoric acid solution for 10 minutes. Ra at that time was 1.3 μm. When the jig was examined for changes in surface roughness caused by 3.5% by mass of hydrofluoric acid in the same manner as in Example 1, it was as shown in Table 1.
Figure 2004051724
As shown in Table 1 above, the silica glass jig of Example 1 of the present invention has a surface condition change such as Ra as compared with Comparative Example 1 in an etching test of a 3.5% by mass hydrofluoric acid solution. It was extremely small. Therefore, the jigs of Example 1 and Comparative Example 1 were actually put into a CF 4 / Ar gas, 2 kw plasma dry etching apparatus, and 5 batches of processing were performed with the jig of Example 1; The number of occurrences was less than 10 in any batch. On the other hand, in the jig of Comparative Example 1, a large amount of particles of 50 or more were generated in the third batch, and the use was stopped. In addition, the Ra after each use is 2 μm for the jig of Example 1 and 5.2 μm for the jig of Comparative Example 1, and there is a large difference as in the etching test using a 3.5 mass% hydrofluoric acid solution. It was. Further, when the etching rates of the fifth batch of Example 1 and the third batch of the processed wafer of Comparative Example 1 were compared, the rate of the jig of Comparative Example 1 was lower than that of the jig of Example 1.

直径150mmのシリコンウエハーに対応する縦型の気相成長用ウエハボートを作成した。前記ウエハボートを#150の炭化珪素砥粒でサンドブラスト処理を行い、その後15%のフッ化水素酸溶液にて20分処理した後にさらに、#600の炭化珪素砥粒でサンドブラスト処理を行い、続けてフッ化水素14質量%、フッ化アンモニウム12質量%及び水からなる処理液にて1時間処理した。得られたウエハボートの表面を走査電子顕微鏡(SEM)で撮影した。その結果を第4、5図に示す。該ウエハボート表面の粗さは中心線平均粗さRaで2.1μmであった。第4、5図にみるように大柄な波状の凹凸の表面に浅い凹部が形成された多重構造であった。前記ウエハーボートを20℃、3.5%フッ化水素酸溶液で16時間のエッチングテストを行った。テスト後のウエハーボートの表面をSEMで撮影した写真を第6、7図に示す。前より大柄な波状の凹部が若干広くなって数を減少させているものの多重構造であった。この時のRaは2.1μmであった。さらに、前記ウエハーボートを、実際の窒化珪素の気相成長工程に使用し、2μmの膜を堆積させた。前記成長工程での積算成長毎に、4%のフッ化水素酸溶液で1時間の洗浄を5回繰り返した。使用後の表面のRaは2.5μmであった。
比較例2
実施例2と同様のウエハーボートに、#150の炭化珪素砥粒でサンドブラスト処理を行い、さらに、#600の炭化珪素砥粒でサンドブラスト処理を行った。次に、10%のフッ化水素酸溶液で1時間の処理を行った。得られたウエハボートの表面を走査電子顕微鏡(SEM)で撮影した。その結果を図8、9に示す。ウエハボートの粗さは中心線平均粗さRaで2.2μmであった。このウエハーボートについて、実施例2と同様に20℃、3.5%フッ化水素酸溶液で16時間のエッチングテストを行った。テスト後のウエハーボートの表面をSEMで撮影した写真を10、11図に示すが、大きな凹状で縁部が鋭角な凹みが連続する図6の表面とは大きく異なり、Raは4.8μmであった。さらに、前記ウエハーボートを、実際の窒化珪素の気相成長工程に使用し、2μmの膜の積算成長毎に、4%のフッ化水素酸溶液で1時間の洗浄を5回繰り返した。使用後の表面のRaは5.1μmであった。また、3回目から急激なウエハー上に成長する膜厚が減少し、また、処理ウエハーの上のパーティクルの増加がみられた。
A vertical type vapor phase growth wafer boat corresponding to a silicon wafer having a diameter of 150 mm was prepared. The wafer boat was sandblasted with # 150 silicon carbide abrasive grains, then treated with a 15% hydrofluoric acid solution for 20 minutes, and further sandblasted with # 600 silicon carbide abrasive grains. It was treated for 1 hour with a treatment solution consisting of 14% by mass of hydrogen fluoride, 12% by mass of ammonium fluoride and water. The surface of the obtained wafer boat was photographed with a scanning electron microscope (SEM). The results are shown in FIGS. The surface roughness of the wafer boat was 2.1 μm in terms of centerline average roughness Ra. As shown in FIGS. 4 and 5, it was a multiple structure in which shallow concave portions were formed on the surface of large wavy irregularities. The wafer boat was subjected to an etching test with a 3.5% hydrofluoric acid solution at 20 ° C. for 16 hours. FIGS. 6 and 7 show photographs taken by SEM of the surface of the wafer boat after the test. It was a multi-layer structure although the number of wave-like concave portions larger than before was slightly widened to reduce the number. At this time, Ra was 2.1 μm. Further, the wafer boat was used in an actual silicon nitride vapor phase growth process to deposit a 2 μm film. For each cumulative growth in the growth step, washing for 1 hour with a 4% hydrofluoric acid solution was repeated 5 times. The surface Ra after use was 2.5 μm.
Comparative Example 2
The same wafer boat as in Example 2 was subjected to sand blasting treatment with # 150 silicon carbide abrasive grains, and further subjected to sand blasting treatment with # 600 silicon carbide abrasive grains. Next, treatment was performed for 1 hour with a 10% hydrofluoric acid solution. The surface of the obtained wafer boat was photographed with a scanning electron microscope (SEM). The results are shown in FIGS. The roughness of the wafer boat was 2.2 μm in terms of centerline average roughness Ra. This wafer boat was subjected to an etching test for 16 hours with a 3.5% hydrofluoric acid solution at 20 ° C. in the same manner as in Example 2. 10 and 11 show photographs of the surface of the wafer boat after the test taken with an SEM, which differs greatly from the surface of FIG. 6 in which the concaves having large concave shapes and sharp edges are continuous, and Ra is 4.8 μm. It was. Further, the wafer boat was used in an actual silicon nitride vapor phase growth process, and for each cumulative growth of a film having a thickness of 2 μm, washing with a 4% hydrofluoric acid solution for 1 hour was repeated five times. The surface Ra after use was 5.1 μm. Further, the film thickness growing on the wafer abruptly decreased from the third time, and the increase of particles on the treated wafer was observed.

本発明のシリカガラス治具は、使用時に半導体素子を汚染するパーティクルの発生がなく、かつ使用を重ねても処理条件が変動することがないので、炉芯管、ウェーハ載置用ボート、エッチング・アッシング用チャンバー、リング、プレートとして有用に使用できる。  Since the silica glass jig of the present invention does not generate particles that contaminate semiconductor elements during use, and the processing conditions do not change even after repeated use, the furnace core tube, wafer mounting boat, etching It can be usefully used as an ashing chamber, ring, or plate.

Claims (11)

半導体を製造する工程で使用するシリカガラス治具において、その表面の一部又は全部に中心線平均粗さRaで0.1〜20μmの凹凸が存在し、かつ軽微な表層エッチング処理に対しても表面状態の変化が小さいことを特徴とするシリカガラス治具。In a silica glass jig used in the process of manufacturing a semiconductor, a part or all of its surface has an unevenness of 0.1 to 20 μm in centerline average roughness Ra, and also for a slight surface etching process. A silica glass jig characterized by a small change in surface state. 軽微な表層エッチングにおける表面状態の変化の小ささが、その表面の一部又は全部を濃度3.0〜4.0%で液温が17〜23℃のフッ化水素水溶液にて15〜17時間エッチングしたものと、エッチング前との該表面のJISB0601に基づく中心線平均粗さRaを、触針部先端のRが2〜10μmの範囲である触針式の表面粗さ測定装置にて測定し、その中心線平均粗さの変化率が50%以下であることを特徴とする請求項1記載のシリカガラス治具。The small change of the surface state in the slight surface etching is that part or all of the surface is 15 to 17 hours in a hydrogen fluoride aqueous solution having a concentration of 3.0 to 4.0% and a liquid temperature of 17 to 23 ° C. The centerline average roughness Ra based on JISB0601 of the etched and unetched surface is measured with a stylus type surface roughness measuring device in which R at the stylus tip is in the range of 2 to 10 μm. 2. The silica glass jig according to claim 1, wherein a change rate of the center line average roughness is 50% or less. 表面の一部又は全部に存在するRaで0.1〜20μmの凹凸が、大柄な波状の凹凸とその表面に存在する微細な浅いお椀状の凹部の多重構造により全体としての粗さが制御されており、前記お椀状の凹部が、凹部の縁径より底の深さが小の浅さであり、凹部間の縁が鋭角な凸でないことを特徴とする請求項1又は2記載のシリカガラス治具。The roughness of 0.1 to 20 μm of Ra existing on part or all of the surface is controlled by the multiple structures of large wavy unevenness and fine shallow bowl-shaped recesses present on the surface. 3. The silica glass according to claim 1, wherein the bowl-shaped concave portion has a shallow depth whose bottom is smaller than the edge diameter of the concave portion, and the edge between the concave portions is not an acute convex. jig. シリカガラスの表面に物理的表層除去手段と化学的表層除去手段による処理を交互に2回以上繰り返し適用すことを特徴とするシリカガラス治具の製造方法。A method for producing a silica glass jig, wherein a treatment by a physical surface layer removing means and a chemical surface layer removing means is alternately and repeatedly applied to the surface of silica glass twice or more. 物理的表層除去手段で形成する表面の凹凸が後工程ほど順次小さくなることを特徴とする請求項4記載のシリカガラス治具の製造方法。5. The method for producing a silica glass jig according to claim 4, wherein the unevenness of the surface formed by the physical surface layer removing means is gradually reduced in the subsequent steps. 表面の一部又は全部に存在する凹凸のRaで0.1〜20μmの範囲の粗さを、粗い面が形成可能な物理的表層除去手段を行使した後に化学的表層除去手段を行使し前記Raと同等か大きな粗さである大柄な凹凸面を形成し、以後繰り返される処理を前記Raより微細な粗さが形成可能な物理的表層除去手段を行使した後に化学的表層除去手段を行使する組み合わせにより、大柄な波状の凹凸表面に複数の微細なお椀状の凹部がある多重構造である制御された表面を形成する請求項5記載のシリカガラス治具の製造方法。The Ra in the range of 0.1 to 20 μm with the uneven Ra present on a part or all of the surface is exercised after the physical surface removal means that can form a rough surface is used, and then the chemical surface removal means is exercised. A combination of exercising a chemical surface removal means after exercising a physical surface removal means capable of forming a rough surface having a roughness equal to or greater than that of the surface, and capable of forming a roughness that is finer than Ra. The method for producing a silica glass jig according to claim 5, wherein a controlled surface having a multiple structure in which a plurality of fine bowl-shaped concave portions are formed on a large wavy uneven surface. 物理的表層除去手段が、固定砥粒砥石による研削処理、遊離砥粒による研摩処理、遊離砥粒によるブラスト処理、液体ホーニング処理又はそれらの組合せのいずれかであることを特徴とする請求項4、5又は6記載のシリカガラス治具の製造方法。The physical surface layer removing means is any one of a grinding process using a fixed abrasive wheel, a polishing process using free abrasive grains, a blasting process using free abrasive grains, a liquid honing process, or a combination thereof. The manufacturing method of the silica glass jig | tool of 5 or 6. 化学的表層除去手段がフッ化水素を含有する溶液による処理であることを特徴とする請求項6記載のシリカガラス治具の製造方法。7. The method for producing a silica glass jig according to claim 6, wherein the chemical surface layer removing means is treatment with a solution containing hydrogen fluoride. 最終の物理的表層除去手段の後に行われる化学的表層除去手段がフッ化水素とフッ化アンモニウムを含有する溶液による処理であることを特徴とする請求項6又は8記載のシリカガラス治具の製造方法。9. The method for producing a silica glass jig according to claim 6, wherein the chemical surface layer removing means performed after the final physical surface layer removing means is treatment with a solution containing hydrogen fluoride and ammonium fluoride. Method. 化学的表層除去手段のうち少なくとも1つが、粒径が10〜200μmの樹脂、シリカ又はセラミックのいずれかの微粒子を分散したフッ化水素を含有する溶液による処理であることを特徴とする請求項6又は8記載のシリカガラス治具の製造方法。7. At least one of the chemical surface layer removing means is a treatment with a solution containing hydrogen fluoride in which fine particles of any of resin, silica or ceramic having a particle size of 10 to 200 μm are dispersed. Or the manufacturing method of the silica glass jig | tool of 8. 化学的表層除去手段後にさらに超音波振動又は攪拌手段を付加することを特徴とする請求項10記載のシリカガラス治具の製造方法。The method for producing a silica glass jig according to claim 10, further comprising an ultrasonic vibration or stirring means added after the chemical surface layer removing means.
JP2004556891A 2002-12-03 2003-12-02 Manufacturing method of silica glass jig Expired - Lifetime JP4475581B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002351439 2002-12-03
JP2002351439 2002-12-03
PCT/JP2003/015420 WO2004051724A1 (en) 2002-12-03 2003-12-02 Silica glass jig used in process for manufacturing semiconductor and method of manufacturing silica glass jig

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009234804A Division JP2010042991A (en) 2002-12-03 2009-10-09 Silica glass jig used in process for manufacturing semiconductor

Publications (2)

Publication Number Publication Date
JPWO2004051724A1 true JPWO2004051724A1 (en) 2006-04-06
JP4475581B2 JP4475581B2 (en) 2010-06-09

Family

ID=32463150

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2004556891A Expired - Lifetime JP4475581B2 (en) 2002-12-03 2003-12-02 Manufacturing method of silica glass jig
JP2009234804A Pending JP2010042991A (en) 2002-12-03 2009-10-09 Silica glass jig used in process for manufacturing semiconductor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009234804A Pending JP2010042991A (en) 2002-12-03 2009-10-09 Silica glass jig used in process for manufacturing semiconductor

Country Status (5)

Country Link
JP (2) JP4475581B2 (en)
KR (1) KR100614741B1 (en)
AU (1) AU2003289124A1 (en)
TW (1) TWI249510B (en)
WO (1) WO2004051724A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1895574A1 (en) * 2005-06-16 2008-03-05 Shin-Etsu Quartz Products Co., Ltd. Quartz glass tool for heat treatment of silicon wafer and process for producing the same
JP5026816B2 (en) * 2007-02-26 2012-09-19 東ソー・クォーツ株式会社 Quartz glass jig and manufacturing method thereof
JP6326210B2 (en) * 2013-09-30 2018-05-16 テクノクオーツ株式会社 Quartz glass part and method for producing quartz glass part
CN108594342B (en) * 2013-12-19 2020-09-25 康宁股份有限公司 Textured surfaces for display applications
WO2016060165A1 (en) * 2014-10-17 2016-04-21 旭硝子株式会社 Transparent member, method for manufacturing transparent member and method for evaluating degree of soiling of surface of transparent member
KR102581501B1 (en) 2021-04-20 2023-09-26 주식회사 금강쿼츠 Quartz glass surface treatment method and quartz glass prepared thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450112B2 (en) * 1996-01-24 2003-09-22 株式会社福井信越石英 Surface treatment method for quartz glass jig and surface treated jig
JPH11130451A (en) * 1997-10-31 1999-05-18 Shinetsu Quartz Prod Co Ltd Quartz glass jig for semiconductor heat treatment apparatus
JP2001089198A (en) * 1999-09-22 2001-04-03 Asahi Glass Co Ltd Silica glass jig for semiconductor device and method for producing the same jig
KR100547743B1 (en) * 2000-09-28 2006-01-31 신에쯔 세끼에이 가부시키가이샤 Silica Glass Jig for Semiconductor Industry and Manufacturing Method Thereof
JP3824299B2 (en) * 2001-01-30 2006-09-20 東芝セラミックス株式会社 Frost treatment liquid and frost treatment method on quartz glass surface

Also Published As

Publication number Publication date
KR100614741B1 (en) 2006-08-21
AU2003289124A8 (en) 2004-06-23
KR20050016547A (en) 2005-02-21
WO2004051724A1 (en) 2004-06-17
JP4475581B2 (en) 2010-06-09
TW200417524A (en) 2004-09-16
WO2004051724A8 (en) 2007-06-28
AU2003289124A1 (en) 2004-06-23
JP2010042991A (en) 2010-02-25
TWI249510B (en) 2006-02-21

Similar Documents

Publication Publication Date Title
JP2010042991A (en) Silica glass jig used in process for manufacturing semiconductor
TWI630999B (en) Ductile mode machining methods for hard and brittle components of plasma processing apparatuses
JP2002047034A (en) Quarts glass jig for process device utilizing plasma
JP6232680B2 (en) How to clean the susceptor
JP2007204286A (en) Method for manufacturing epitaxial wafer
JP2017534001A (en) Process component with improved plasma etching resistance and method for enhancing plasma etching resistance
JP2006120819A (en) Semiconductor wafer and manufacturing method therefor
EP1193327B1 (en) Silica glass apparatus for semiconductor industry and method for producing the same
WO2006134779A1 (en) Quartz glass tool for heat treatment of silicon wafer and process for producing the same
JP3231888U (en) Physical dry surface treatment structure of semiconductor wafer
KR100607890B1 (en) Film thickness measuring monitor wafer
JP6666516B1 (en) Quartz glass dummy wafer
JP2001089198A (en) Silica glass jig for semiconductor device and method for producing the same jig
JP2008007350A (en) Yttria ceramic sintered compact
JP4437365B2 (en) Silica glass jig for semiconductor industry and manufacturing method thereof
JP4150266B2 (en) Shower plate for plasma processing and manufacturing method thereof
JP3956291B2 (en) Semiconductor processing components
JP4058893B2 (en) Silicon boat manufacturing method and silicon boat
JP2003203890A (en) Method for manufacturing silicon wafer
JP2004238262A (en) Surface treatment method of quartz glass member
JP4539794B2 (en) Silica glass jig for semiconductor industry and manufacturing method thereof
JP2004224610A (en) Low dusting type aluminum nitride
CN113661559A (en) Textured silicon semiconductor processing chamber assembly
JP2001284275A (en) Member for cvd-silicon carbide film covered semiconductor heat treatment
JP2003277074A (en) Method for removing film of die for forming and die for forming

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20050926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100305

R150 Certificate of patent or registration of utility model

Ref document number: 4475581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term