JPWO2002021578A1 - 半導体レーザ素子 - Google Patents

半導体レーザ素子 Download PDF

Info

Publication number
JPWO2002021578A1
JPWO2002021578A1 JP2002525901A JP2002525901A JPWO2002021578A1 JP WO2002021578 A1 JPWO2002021578 A1 JP WO2002021578A1 JP 2002525901 A JP2002525901 A JP 2002525901A JP 2002525901 A JP2002525901 A JP 2002525901A JP WO2002021578 A1 JPWO2002021578 A1 JP WO2002021578A1
Authority
JP
Japan
Prior art keywords
layer
current
semiconductor laser
laser device
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002525901A
Other languages
English (en)
Other versions
JP3974852B2 (ja
Inventor
小磯 武
藤本 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Publication of JPWO2002021578A1 publication Critical patent/JPWO2002021578A1/ja
Application granted granted Critical
Publication of JP3974852B2 publication Critical patent/JP3974852B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/164Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/168Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising current blocking layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Geometry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

半導体レーザ素子は、レーザ光の出射する前端面とこれに対向する後端面とを結ぶ方向に延びるストライプ状の電流注入領域を画定する第一の電流ブロック層と、前記前端面近傍で前記ストライプ状電流注入領域を横切るように形成された第二の電流ブロック層とを備え、第一電流ブロック層と第二電流ブロック層は同一の層で構成されている。これによって、製造が容易で、半導体レーザ素子にダメージを与えずかつ特性劣化を最小限に抑えた構造で端面近傍に電流ブロック構造を設けることによって、高い端面光学損傷破壊レベル、長期連続動作での高い信頼性を達成できる。

Description

【技術分野】
この発明は、端面近傍に電流非注入領域を有する高出力半導体レーザに関するものであり、とくには、高い端面光学損傷レベル、長期連続動作での高い信頼性をもたらすものである。
【背景技術】
半導体レーザ素子は通信分野で用いられる光増幅器用の励起光源を始めとして様々な分野で使用されている。これらのレーザには高出力動作が求められる場合がある。しかしながら、高出力動作において十分な寿命を持つ半導体レーザは得にくいという問題がある。一般に半導体レーザの劣化の主要因としては端面での光学損傷破壊COD(Catastrophic Optical Damage)であることが知られている。光学損傷破壊は以下の過程により引き起こされる。まず端面近傍の欠陥により非発光再結合が生じ温度上昇を引き起こす。またこの温度上昇によってバンドギャップが縮小し光の再吸収が起こり、これによってさらに温度が上昇するという悪循環に陥る。これらの過程により端面の溶融等が誘起され光出力が低下し、非可逆的な破壊が起こることになる。
以上のことから半導体レーザの高出力化には端面を強化することが端面光学損傷破壊防止の上で重要となる。端面光学損傷破壊防止の1つの方策として端面近傍を電流非注入にする方法がある。この場合、端面近傍への電流注入が抑えられているため、端面近傍では非励起状態となっている。このため非発光再結合が抑制され、端面光学損傷レベルの向上が可能になる。具体的な例として、端面の電極の下にSiNなどの絶縁膜を設けて端面を電流非注入にする手法、半導体層からなる電流ブロック層を端面に形成し端面を電流非注入にする手法そして端面近傍にイオン打ち込みをして端面を電流非注入にする手法などがある。
端面の電極の下にSiNなどの絶縁膜を設けて端面を電流非注入にする手法、半導体層からなる電流ブロック層を端面に形成し端面を電流非注入にする手法そして端面近傍にイオン打ち込みをして端面を電流非注入にする手法はいずれも製造工程が複雑になってしまう。また端面近傍にイオン打ち込みをして端面を電流非注入にする手法は半導体レーザ素子にダメージを与えてしまう。また、これらの端面電流ブロック構造はいずれも導波層から離れて形成されている。電流ブロック構造を設けた場合、電流の回り込みが起こることが考えられる。電流の回り込みは、電流ブロック構造と活性層の距離が長いほうが影響は大きいと考えられる。端面に電流ブロック構造を設けても電流の回り込みの影響が大きい場合、端面にまで電流が回りこんでしまい、これによって端面電流ブロック構造の機能が低下してしまう。よって、電流の回り込みを考慮すると、どうしても端面電流ブロック領域を広く取らざるを得ない。端面電流ブロック領域を広く取った場合、その領域内での光の吸収の影響が大きくなるため、半導体レーザ素子の特性(閾値、スロープ効率、温度特性など)が悪くなる。ゆえに上記で挙げた従来技術はいずれも端面近傍に電流ブロック構造を形成する上では必ずしも好ましいやり方とは限らない。
【発明の開示】
本発明は以上のような問題を解決するためのものであり、製造が容易で、半導体レーザ素子にダメージを与えずかつ特性劣化を最小限に抑えた構造で端面近傍に電流ブロック構造を設けることによって、高い端面光学損傷破壊レベル、長期連続動作での高い信頼性を備えた半導体レーザ素子を提供することを目的としたものである。
以上の目的を達成するため、本発明は活性層を挟むようにn型とp型導波層が形成され、かつこれらの導波層の外側を挟むようにn型とp型クラッド層が形成され、またレーザ光の出射する前端面とこれに対向する後端面とを結ぶ方向に延びるストライプ状の電流注入領域を画定する第一電流ブロック層を備えた半導体レーザ素子であって、前記前端面近傍で前記ストライプ状電流注入領域を横切るように形成された第二の電流ブロック層を備え、第一電流ブロック層と第二電流ブロック層は同一の層で構成されている半導体レーザ素子である。
このように構成された半導体レーザ素子では、共振器方向に延びるストライプ状の電流注入領域を挟むように形成された第一電流ブロック層と片側もしくは両側の端面近傍を電流非注入にするための第二電流ブロック層とが同一の層、すなわち同じ組成同じ膜厚で形成されているため、製造が容易で、なおかつ製造時に従来と比べて加工工数が増えることがないので半導体レーザ素子にダメージを与えずに端面近傍に電流ブロック構造を設けることができる。これによって高い端面光学損傷破壊レベル、長期連続動作での高い信頼性を備えた半導体レーザ素子を提供することができる。前端面だけでなく後端面近傍にも電流ブロック層を設けてもよい。第二電流ブロック層の両側部の一方は、端面に達している。
ここで電流注入領域と電流ブロック層が存在する領域との間に等価屈折率差を設けることによって屈折率導波構造を形成することができる。さらに、導波層より大きなエネルギーギャップを有するキャリヤブロック層が活性層と導波層の間に設けることによりキャリアを閉じ込めて、かつエピタキシャル方向の導波モードを広げられるので、端面での活性層への光強度の集中を抑えて端面光学損傷破壊レベルをさらに高めることができる。
また第一および第二電流ブロック層が導波層の中に形成されていることが望ましい。あるいは第一および第二電流ブロック層が導波層に隣接して形成されていてもよい。この場合、第二電流ブロック層の幅が大きすぎると導波損失が大きくなるため、実用的には第二電流ブロック層の幅の範囲は2〜25μmが好ましい。
導波層より低い屈折率を有する端面近傍の電流ブロック層を導波層中あるいは導波層に隣接して設けられた構成においては、端面近傍の低屈折率層により端面近傍での導波モードプロファイルを活性層からずらすことができる。これによって端面近傍の活性層付近でのビームエネルギー密度を低減させることができ、大幅な端面光学損傷レベルの向上、長期連続動作での高い信頼性を備えた半導体レーザ素子を提供することができる。また導波層は活性層の近傍にあるため、導波層中に端面電流ブロック構造を設けることによって、活性層への電流の回り込みの影響を小さくできる。これによって、電流ブロック構造が導波層よりも上にある場合に比べ、端面光学損傷レベルの向上、長期連続動作での高い信頼性を確保するのに必要な電流ブロック領域を狭くできる。電流ブロック領域を狭くできればこの領域内での光の吸収の影響を小さくすることができるため、半導体レーザの特性(閾値、スロープ効率、温度特性など)の劣化を小さく抑えることができる。
またこれら本発明の半導体レーザ素子の活性層がInGaAsからなり、かつ導波層がAlを含まないGaAsからなることが望ましい。
活性層の量子井戸にInGaAsを用いることにより導波層にAlを含まないGaAsを用いることが可能になる。これによって電流ブロック層の形成過程では、再成長界面での酸化が無いため、プロセスが安定し、良好な膜を形成することができる。またAlを含まないGaAsの導波層を用いることによって、電気抵抗、熱抵抗の低減することができる。
端面近傍の電流ブロック層を導波層よりも低屈折率にした場合、端面近傍の導波モードがこの層によって影響を受ける。つまり、導波層中に埋め込まれた端面近傍の電流ブロック層の位置、端面からの距離および屈折率を変えることにより導波モードを制御することが可能になる。
端面の活性層付近のビームエネルギー密度を低減させることが端面光学損傷破壊レベルを向上させる1つの手段であることは一般に知られている。活性層付近でのビームエネルギー密度は光閉じ込め係数Гで表される。我々は、電流非注入領域を設けることによって、膜厚方向の1次元スラブ導波路から得られる電流注入領域位置での光閉じ込め係数Г1d Injectionと端面付近の電流非注入領域位置での膜厚方向の光閉じ込め係数Г1d Non−injectionの関係が、
Г1d Injection>Г1d Non−injection
となるように端面近傍の電流ブロック層の位置、幅および屈折率を設計することにより、端面での活性層付近のビームエネルギー密度を低減させ、端面光損傷(COD)レベルを高めることができることを見出した。たとえば後述の実施例において、電流注入領域位置での光閉じ込め係数Г1d Injectionは0.0084に対して、端面付近の電流非注入領域位置での膜厚方向の光閉じ込め係数Г1d Non−injectionは0.0071となっており端面付近の活性層付近のビームエネルギー密度が低減されている。
このとき用いた1次元スラブ導波路の光閉じ込め係数Гの計算式は以下の通りである。
【式1】
Figure 2002021578
ここで、E(x)は膜厚方向の電界、AとBはそれぞれ電界座標の最大値と最小値である。またaとbは活性層の境界で決まる値である。
実際には、導波モードは動的にビームが伝播していく。導波モードが端面近傍の電流ブロック層によって影響を受ける様子は、たとえばビーム伝搬法を用いたコンピュータシュミレーションにより解析することができる。我々は、電流注入領域位置での光閉じ込め係数Г2d Injectionと電流注入領域の導波モードを電流非注入領域にビーム伝搬法を用いて伝搬させたときの前端面での活性層における伝搬モードに対する光強度比Г2d Facetの関係が、
Г2d Injection>Г2d Facet
となるように導波層中に埋め込まれた端面近傍の電流ブロック層の位置、幅および屈折率を設計して導波モードを制御することにより、端面光学損傷破壊レベルを高くすることができることを見出した。さらに端面の活性層付近のビームエネルギー密度が極小値を含む隣り合う変曲点の間になるように設計すれば端面光学損傷破壊レベルがより高い半導体レーザ素子が得られる。たとえば、図7は後述の実施例の図3に示した構造で、前端部に設けられた電流ブロック層23の両側部のうち、前端面40に接する側部とは反対側の側部(図3Cの23a)での伝搬モードに対する活性層の光強度比(光閉じ込め係数)Гと、電流ブロック層23(電流非注入領域)の幅Wとの関係についてビーム伝搬法を用いたコンピュータシュミレーション(Optiwave Corporation製 BPM_CAD)により解析したものである。このとき用いた光閉じ込め係数Гの計算式は以下の通りである。
【式2】
Figure 2002021578
ここで、E(x,y)は電界、(A,B)と(C,D)はそれぞれ電界座標の最大値と最小値である。また(a,b)と(c、d)は活性層の境界で決まる値である。
図7からわかるように、この場合は端面での電流ブロック層の幅は5μm付近、15μm付近それぞれで光閉じ込め係数が極小になる。ただし、端面の光閉じ込め係数を最小にする端面近傍での電流ブロック層の幅の最適値は層構成により適宜設計されるものである。また端面近傍の電流ブロック層の位置、幅および屈折率を変えることによっても光閉じ込め係数が極小になる幅は変わってくる。
【発明を実施するための最良の形態】
本発明の実施の形態について図面を参照して説明する。図1Aは本発明の半導体レーザ素子の一例を示す斜視図であり、図2は本発明に関わる電流ブロック層23を分かりやすくするため、仮想的に層構成を分割して示したものである。図3A〜図3Cは図2の断面図で、図3Aはレーザの共振器長方向に直角方向A−A’での断面であり出射端面(前端面)および後端面から離れた位置にある。図3BはA−A’と平行な断面B−B’で出射端面の近傍を示す。図3Cは共振器長方向で光が導波するストライプのほぼ中央のC−C’での断面である。
これらの図において、n−GaAs基板33上にバッファ層32、n側クラッド層31、n側導波層30、活性層領域35、p側導波層24、電流ブロック層23、p側導波層22、p側クラッド層21、p側キャップ層20が形成されている。活性層領域35は図1Bで拡大して示すように、n側キャリヤブロック層29、n側サイドバリア層28、量子井戸層とそれらを補間するバリア層で構成される活性層27、p側サイドバリア層26、p側キャリアブロック層25からなっている。ここで電流ブロック層23は、共振器長方向でストライプSを画定するようにストライプの両側に設けられ、かつ前端面40と後端面41近傍でストライプSを横切って設けられている。
次にこの半導体レーザ素子の製造方法を説明する。図4A〜図4Cは、図2のA−A’断面部分を製造工程順に並べたものである。まず図4Aにおいて、n型(1×1023−3)−GaAs基板33上にGaAs(0.5μm)からなるn型(1×1023−3)バッファ層32、Al0.09Ga0.91As(2.5μm)からなるn型(1×1024−3)クラッド層31、GaAs(0.45μm)からなるn型(1×1023−3)導波層30、Al0.4Ga0.6As(0.02μm)からなるn型(1×1024−3)キャリヤブロック層29、Al0.1Ga0.9As(0.05μm)からなるサイドバリア層28、2本のIn0.18Ga0.82As(0.007μm/本)量子井戸層とそれらを補間するAl0.1Ga0.9As(0.006μm)からなるバリア層で構成される活性層27、Al0.1Ga0.9As(0.05μm)からなるサイドバリア層26、Al0.4Ga0.6As(0.02μm)からなるp型(1×1024−3)キャリアブロック層25、GaAs(0.1μm)からなるp型(1×1024−3)導波層24を順次成長させる。なお第1回目の結晶成長にはMOCVD法を用いたが、MBE法など他の結晶成長法を用いることもできる。
こうして結晶成長させた基板を結晶成長装置から取り出してたとえば電子ビーム蒸着装置に投入して、たとえばSiOからなるマスク34を全面に形成した後、フォトリソグラフィ技術を用いてストライプ状の窓となる中央領域以外のマスクを除去して、ストライプ状のマスク34を形成する。このとき端面に電流非注入領域を形成するために端面近傍のマスクも同時に除去する。このマスク34は極めて薄いため、従来のフォトリソグラフィー技術でも高い精度で再現性よく形成可能である。
2回目の結晶成長においてマスク34付の基板を結晶成長装置に戻して、p型(1×1024−3)導波層24の上にn型(1×1024−3)Al0.09Ga0.91As(0.18μm)からなる電流ブロック層23を選択成長させると、図4Bに示すように、マスク34が付着した領域では結晶成長が行われない層構成が得られる。マスク34を例えばフッ酸水溶液で除去する。もちろん、電流ブロック層は2層以上の層構成になってもよい。また、電流ブロック層を全面に形成した後、エッチング処理により電流が流れる中央領域のみを取り除いてもよい。このようにして第一電流ブロック層と第二電流ブロック層は同一の層として、同時に形成できる。
3回目の結晶成長において図4Cに示すように、GaAs(0.35μm)からなる上部のp型(1×1023−3)導波層22、Al0.32Ga0.68As(0.78μm)からなるp型(1×1024−3)クラッド層21、p型(1×1024−3)−GaAs(1.4μm)からなるキャップ層20を順次形成すると、図2に示す本発明の半導体レーザ素子の一例が得られる。その後、基板およびキャップ層20に電極を形成して電流を流すと、キャリヤ注入によってレーザ発振が可能になる。こうして得られた半導体レーザ素子は端面近傍の導波層中に電流ブロック層が設けられている。この半導体レーザの電流注入領域での膜厚方向の光閉じ込め係数Г1d Injectionは共振器長方向に依存せず、一定である。電流非注入領域での膜厚方向の光閉じ込め係数Г1d Non−injectionは第二電流ブロック層の位置、幅および屈折率を変えることによってГ1d Injectionより小さくできる。また電流注入領域の導波モードを電流非注入領域にビーム伝搬法を用いて伝搬させたときの前端面での活性層における伝搬モードに対する光強度比Г2d Facetは第二電流ブロック層の位置、幅および屈折率を変えることによってГ2d Injectionより小さくできる。たとえば本実施例においては、図7に示すようにГ2d FacetはГ2d Injectionより小さくでき、さらに端面の活性層付近のГ2d Facatが極小値を含む隣り合う変曲点の間になるように電流プロック層の幅を選択することによってГ2d Facetをより小さくできる。
ところで電流ブロック層の位置は導波層中に限定されるものではなく、導波層に隣接していてもよい。このように構成された半導体レーザ素子では端面近傍への電流注入が抑えられているため、端面近傍では非励起状態となっている。このため非発光再結合が抑制され、端面光学損傷レベルの向上が可能になる。本発明の半導体レーザ素子は活性領域を電流ブロック層によって挟むように構成したリッジ構造にしてもよい。
また第一電流ブロック層と第二電流ブロック層は、この実施形態のように連続でもよいし、特性を劣化させない程度に一部が途切れていてもよい。
図5に上記のようにして得られた半導体レーザ素子に過電流を流したときの光出力の様子を示す。ここでは導波層中に埋め込まれた端面近傍でストライプを横切る電流ブロック層の幅xを変えたサンプルをいくつか準備した。端面近傍では電流ブロック層の一縁部は端面に接しており、他縁部が端面から共振器長方向にx離れた位置にあることになる。これらのサンプルについて電流−光出力特性を測定したところ、x=0μmの素子、つまり端面近傍に電流ブロック層がない素子は電流を流している途中で光学損傷破壊を起こしている。それに対し、端面近傍に電流ブロック層を設けた素子は光学損傷破壊を起こさずに完全に熱飽和しきっている。この後、端面近傍に電流ブロック層を設けた素子にもう一度、過電流を流しても再現性が確認された。本実施例では、活性層に近い導波層中に端面電流ブロック層が形成されているため、活性層への電流の回り込みの影響が少なくなる。本発明の実施例では、図5に示してあるように、x=5μmにおいて端面光学損傷レベルの向上が確認されたことから、電流ブロック層の領域が狭い場合でも、活性層への電流の回り込みの影響が少なくなり、電流ブロック構造が十分に機能していることがわかる。
また、図6A・Bは環境温度を70℃として、一定のレーザ光出力が出力するように注入電流を制御し、その注入電流の時間変化を測定した結果である。図6Aは端面近傍に電流ブロック層がない半導体レーザ素子についての結果である。一定出力になるように電流が制御された状態で動作しているため劣化した場合は電流が増大していく。図6Aから端面近傍に電流ブロック層がない半導体レーザ素子については初期の段階から素子が劣化しているのがわかる。
それに対して図6Bは端面近傍に第二電流ブロック層の幅xの異なるサンプルとしてx=5μm、12μm、25μmおよび35μmの4種類の半導体レーザ素子を各4素子づつ用いて試験を行った結果である。端面近傍に電流ブロック層を設けた半導体レーザ素子については劣化がなく長時間安定して連続動作しているのがわかる。
以上のことから端面近傍での電流ブロック層によって端面光学損傷破壊レベルが大幅に向上したことは明らかである。またこの結果から、x=5μmという電流ブロック層の領域が狭い場合でも十分に、長期連続動作での高い信頼性が確保できることがわかる。
本発明は上述した実施の形態に限定されるものではなく、種々の構造、組成の半導体レーザについて適用可能である。
【図面の簡単な説明】
図1Aは本発明の半導体レーザ素子の一例の斜視図で、図1Bはその部分拡大図である。
図2は、本発明に関わる電流ブロック層の一例を示す図である。
図3A〜図3Cは、図1に示す半導体レーザ素子の断面図である。
図4A〜図4Cは、図1に示す半導体レーザの製造工程を示す図である。
図5は、半導体レーザ素子の出力特性を示すグラフである。
図6Aおよび図6Bは、半導体レーザ素子の注入電流の経時変化を示す図である。
図7は、端面での電流非注入領域の幅と光閉じ込め係数の関係を示す図である。

Claims (20)

  1. 活性層を挟むようにn型とp型導波層が形成され、かつこれらの導波層の外側を挟むようにn型とp型クラッド層が形成され、またレーザ光の出射する前端面とこれに対向する後端面とを結ぶ方向に延びるストライプ状の電流注入領域を画定する第一の電流ブロック層を備えた半導体レーザ素子であって、
    前記前端面近傍で前記ストライプ状電流注入領域を横切るように形成された第二の電流ブロック層を備え、第一電流ブロック層と第二電流ブロック層は同一の層で構成され、該電流注入領域と第一および第二電流ブロック層が存在する領域との間に等価屈折率差を設けることによって実屈折率導波構造を形成したことを特徴とする半導体レーザ素子。
  2. 導波層より大きなエネルギーギャップを有するキャリヤブロック層が活性層とn型導波層、p型導波層の両方または片側一方の間に設けられたことを特徴とする請求の範囲第1項記載の半導体レーザ素子。
  3. 前記第一および第二電流ブロック層が導波層の中に形成されていることを特徴とする請求の範囲第1項または第2項記載の半導体レーザ素子。
  4. 前記第一および第二電流ブロック層が導波層に隣接して形成されていることを特徴とする請求の範囲第1項または第2項記載の半導体レーザ素子。
  5. 活性層がInGaAsからなり、かつ導波層がAlを含まないGaAsからなることを特徴とする請求の範囲第3項または第4項記載の半導体レーザ素子。
  6. 活性層がInGaAsP層を含む多層からなり、かつ導波層がAlを含まないGaAsからなることを特徴とする請求の範囲第3項または第4項記載の半導体レーザ素子。
  7. 電流注入領域位置での光閉じ込め係数Г1d Injectionと電流非注入領域での光閉じ込め係数Г1d Non−injectionの関係が、
    Г1d Injection>Г1d Non−injection
    となるように第二電流ブロック層が形成されたことを特徴とする請求の範囲第1項〜第6項のいずれかに記載の半導体レーザ素子。
  8. 電流注入領域位置での光閉じ込め係数Г2d Injectionと電流注入領域の導波モードを電流非注入領域にビーム伝搬法を用いて伝搬させたときの前端面での活性層における伝搬モードに対する光強度比Г2d Facetの関係が、
    Г2d Injcetion>Г2d Facet
    となるように第二電流ブロック層が形成されたことを特徴とする請求の範囲第1項〜第7項のいずれかに記載の半導体レーザ素子。
  9. 前記Г2d Facetが極小値を含む隣り合う変曲点の間になるように第二電流ブロック層の位置、厚さ、及び幅が構成されていることを特徴とする請求の範囲第9項記載の半導体レーザ素子。
  10. 第二の電流ブロック層の幅が2μm〜25μmの範囲であることを特徴とする請求の範囲第3項〜第5項のいずれかに記載の半導体レーザ素子。
  11. 活性層を挟むようにn型とp型導波層が形成され、かつこれらの導波層の外側を挟むようにn型とp型クラッド層が形成され、またレーザ光の出射する前端面とこれに対向する後端面とを結ぶ方向に延びるストライプ状の電流注入領域を画定する第一の電流ブロック層を備えた半導体レーザ素子であって、
    前記前端面近傍で前記ストライプ状電流注入領域を横切るように形成された第二の電流ブロック層を備え、電流注入領域位置での光閉じ込め係数Г1d Injectionと電流非注入領域での光閉じ込め係数Г1d Non−injectionの関係が、
    Г1d Injection>Г1d Non−injection
    となるように第二電流ブロック層が形成されたことを特徴とする半導体レーザ素子。
  12. 活性層を挟むようにn型とp型導波層が形成され、かつこれらの導波層の外側を挟むようにn型とp型クラッド層が形成され、またレーザ光の出射する前端面とこれに対向する後端面とを結ぶ方向に延びるストライプ状の電流注入領域を画定する第一の電流ブロック層を備えた半導体レーザ素子であって、
    前記前端面近傍で前記ストライプ状電流注入領域を横切るように形成された第二の電流ブロック層を備え、電流注入領域位置での光閉じ込め係数Г2d Injectionと電流注入領域の導波モードを電流非注入領域にビーム伝搬法を用いて伝搬させたときの前端面での活性層における伝搬モードに対する光強度比Г2d Facetの関係が、
    Г2d Injection>Г2d Facet
    となるように第二電流ブロック層が形成されたことを特徴とする半導体レーザ素子。
  13. 前記Г2d Facetが極小値を含む隣り合う変曲点の間になるように第二電流ブロック層の位置、厚さ、及び幅が構成されていることを特徴とする請求の範囲第12項記載の半導体レーザ素子。
  14. 第二の電流ブロック層の幅が2μm〜25μmの範囲であることを特徴とする請求の範囲第11項〜第13項のいずれかに記載の半導体レーザ素子。
  15. 該電流注入領域と第一および第二電流ブロック層が存在する領域との間に等価屈折率差を設けて実屈折率導波構造を形成したことを特徴とする請求の範囲第11項〜第14項のいずれかに記載の半導体レーザ素子。
  16. 導波層より大きなエネルギーギャップを有するキャリヤブロック層が活性層とn型導波層、p型導波層の両方または片側一方の間に設けられたことを特徴とする請求の範囲第11項〜第15項のいずれかに記載の半導体レーザ素子。
  17. 前記第一および第二電流ブロック層が導波層の中に形成されていることを特徴とする請求の範囲第11項〜第15項のいずれかに記載の半導体レーザ素子。
  18. 前記第一および第二電流ブロック層が導波層に隣接して形成されていることを特徴とする請求の範囲第11項〜第17項のいずれかに記載の半導体レーザ素子。
  19. 活性層がInGaAsからなり、かつ導波層がAlを含まないGaAsからなることを特徴とする請求の範囲第17項または第18項に記載の半導体レーザ素子。
  20. 活性層がInGaAsP層を含む多層からなり、かつ導波層がAlを含まないGaAsからなることを特徴とする請求の範囲第17項または第18項に記載の半導体レーザ素子。
JP2002525901A 2000-09-08 2001-09-06 半導体レーザ素子 Expired - Lifetime JP3974852B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000274013 2000-09-08
JP2000274013 2000-09-08
PCT/JP2001/007724 WO2002021578A1 (fr) 2000-09-08 2001-09-06 Element laser semi-conducteur

Publications (2)

Publication Number Publication Date
JPWO2002021578A1 true JPWO2002021578A1 (ja) 2004-01-15
JP3974852B2 JP3974852B2 (ja) 2007-09-12

Family

ID=18759850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002525901A Expired - Lifetime JP3974852B2 (ja) 2000-09-08 2001-09-06 半導体レーザ素子

Country Status (5)

Country Link
US (1) US6822990B2 (ja)
EP (1) EP1248296A4 (ja)
JP (1) JP3974852B2 (ja)
CN (1) CN1204665C (ja)
WO (1) WO2002021578A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798815B2 (en) * 2002-04-24 2004-09-28 Bookham Technology Plc High power semiconductor laser diode and method for making such a diode
JP3911461B2 (ja) * 2002-08-29 2007-05-09 シャープ株式会社 半導体レーザ装置およびその製造方法
GB2471266B (en) * 2009-06-10 2013-07-10 Univ Sheffield Semiconductor light source and method of fabrication thereof
WO2011004674A1 (ja) 2009-07-06 2011-01-13 古河電気工業株式会社 半導体光デバイスの製造方法、半導体光レーザ素子の製造方法および半導体光デバイス
JP5579096B2 (ja) * 2011-02-14 2014-08-27 古河電気工業株式会社 半導体レーザ素子および通信システム
JP7406487B2 (ja) * 2018-07-27 2023-12-27 ヌヴォトンテクノロジージャパン株式会社 半導体レーザ素子
CN112260060B (zh) * 2020-12-22 2021-03-09 武汉敏芯半导体股份有限公司 一种分布式反馈激光器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799228A (en) * 1985-08-23 1989-01-17 Kabushiki Kaisha Toshiba Transverse-mode stabilized semiconductor laser diode with slab-coupled waveguide
JPS6251281A (ja) 1985-08-30 1987-03-05 Nec Corp 半導体レ−ザ
US4893313A (en) * 1988-03-14 1990-01-09 Kabushiki Kaisha Toshiba Semiconductor laser device which has a double-hetero structure having an optimal layer thickness
JPH02125488A (ja) * 1988-07-22 1990-05-14 Mitsubishi Electric Corp 半導体レーザ装置
US5181218A (en) * 1988-12-14 1993-01-19 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor laser with non-absorbing mirror structure
JP2550717B2 (ja) * 1989-08-23 1996-11-06 日本電気株式会社 半導体レーザ素子の製造方法
JPH03126283A (ja) 1989-10-11 1991-05-29 Toshiba Corp 窓構造半導体レーザ素子の製造方法
JPH0590706A (ja) * 1991-09-26 1993-04-09 Anritsu Corp 半導体レーザ素子
JPH06188507A (ja) 1992-12-16 1994-07-08 Matsushita Electric Ind Co Ltd 量子細線半導体レーザおよびその製造方法
JP2879875B2 (ja) * 1993-01-11 1999-04-05 ローム株式会社 半導体レーザ素子およびその製造方法
JPH06251281A (ja) 1993-02-23 1994-09-09 King Tsushin Kogyo Kk 機械警備システム
JPH11154775A (ja) 1997-09-18 1999-06-08 Mitsui Chem Inc 半導体レーザの製造方法
DE60021505T2 (de) * 1999-11-19 2006-06-01 Fuji Photo Film Co. Ltd., Minamiashigara Hochleistungshalbleiterlaser mit Strombegrenzung und indexgeführter Struktur

Also Published As

Publication number Publication date
US20020171094A1 (en) 2002-11-21
CN1394372A (zh) 2003-01-29
US6822990B2 (en) 2004-11-23
EP1248296A4 (en) 2006-05-24
WO2002021578A1 (fr) 2002-03-14
EP1248296A1 (en) 2002-10-09
JP3974852B2 (ja) 2007-09-12
CN1204665C (zh) 2005-06-01

Similar Documents

Publication Publication Date Title
US6167073A (en) High power laterally antiguided semiconductor light source with reduced transverse optical confinement
JPH036676B2 (ja)
JPH05243669A (ja) 半導体レーザ素子
KR19990072352A (ko) 자기발진형반도체레이저
US7778299B2 (en) Semiconductor laser
JP3974852B2 (ja) 半導体レーザ素子
US7251381B2 (en) Single-mode optical device
KR100789309B1 (ko) 반도체 레이저
EP0905837B1 (en) Semiconductor laser device
JP2522021B2 (ja) 半導体レ―ザ
JP6925540B2 (ja) 半導体光素子
CN111937260B (zh) 半导体激光器及其制造方法
JPH10261835A (ja) 半導体レーザ装置、及びその製造方法
JP2702871B2 (ja) 半導体レーザおよびその製造方法
JP2010123726A (ja) 半導体レーザおよびその製造方法
JPH10209553A (ja) 半導体レーザ素子
JP3761130B2 (ja) 面発光レーザ装置
JP2003158339A (ja) 半導体レーザ素子
JPH08316566A (ja) 半導体レーザ素子
JP2526962B2 (ja) 半導体レ―ザ
JPH041514B2 (ja)
US20070076773A1 (en) Buried ridge waveguide laser diode
JPH0728093B2 (ja) 半導体レ−ザ素子
JP3038186B2 (ja) 半導体レーザ素子の製造方法
JPH0728094B2 (ja) 半導体レ−ザ素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070615

R150 Certificate of patent or registration of utility model

Ref document number: 3974852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term