JPS642210B2 - - Google Patents

Info

Publication number
JPS642210B2
JPS642210B2 JP57011550A JP1155082A JPS642210B2 JP S642210 B2 JPS642210 B2 JP S642210B2 JP 57011550 A JP57011550 A JP 57011550A JP 1155082 A JP1155082 A JP 1155082A JP S642210 B2 JPS642210 B2 JP S642210B2
Authority
JP
Japan
Prior art keywords
gas
molten metal
inert gas
blowing
exhaust pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57011550A
Other languages
Japanese (ja)
Other versions
JPS58129346A (en
Inventor
Toshio Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57011550A priority Critical patent/JPS58129346A/en
Publication of JPS58129346A publication Critical patent/JPS58129346A/en
Publication of JPS642210B2 publication Critical patent/JPS642210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents
    • G01N33/2025Gaseous constituents

Description

【発明の詳細な説明】 本発明は溶融金属中のガス濃度を測定者の熟練
度や手腕によらず安定して迅速かつ精度良く連続
的に測定するためのガス定量用ガス採取方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas sampling method for gas quantitative determination for stably, rapidly, and accurately continuously measuring the gas concentration in molten metal regardless of the skill or skill of the measurer.

金属材料中に存在するガス、例えば水素はその
金属の特性に大きな影響を及ぼす。中でも鍛鋼材
料中に高濃度の水素が含有されると、鍛造後の冷
却によつて白点やヘヤラインクラツク等重大欠陥
発生の主原因となる。
Gases present in metal materials, such as hydrogen, have a significant influence on the properties of the metal. In particular, when a forged steel material contains a high concentration of hydrogen, it becomes the main cause of serious defects such as white spots and hairline cracks during cooling after forging.

一方、鋼塊を適当な高温度に保持することによ
り、鋼塊中の水素を拡散除去することは可能であ
る。しかし、このためにはかなり長時間を要し、
実用的な方法でない。鋼中ガスの主体をなす残り
の酸素、窒素についてもその存在により低温脆化
傾向が顕著になる等、材料自体に与える影響が大
である。
On the other hand, by maintaining the steel ingot at an appropriately high temperature, it is possible to diffuse and remove hydrogen in the steel ingot. However, this takes quite a long time,
It's not a practical method. The remaining oxygen and nitrogen, which are the main gases in steel, also have a significant effect on the material itself, such as a tendency towards low-temperature embrittlement due to their presence.

そこで、これら金属材料の製造に際してはその
溶製段階において溶融金属中のガスの挙動を把握
し、必要に応じて脱ガス処理を施すなどしてガス
含有量の管理を適正に行なうことが極めて重要な
課題となつている。この適正管理のためにはまず
溶融金属中のガス濃度を精度よく定量することが
不可欠である。
Therefore, when manufacturing these metal materials, it is extremely important to understand the behavior of the gas in the molten metal at the melting stage, and to appropriately manage the gas content by performing degassing treatment as necessary. This has become a major issue. For this proper management, it is first essential to accurately quantify the gas concentration in the molten metal.

このような理由から、これまで種々の金属中ガ
ス定量方法が検討されている。最近、溶鋼中の酸
素及び窒素については固体電解質を用いたセンサ
ーが開発され、これらガス濃度を連続的に測定し
て品質管理の種々の工程制御に用いられている。
しかし、水素ガスについては高温度で適用可能な
固体電解物質が発見されておらず、従つてこの種
水素センサも開発されていない。このため、現状
では対象とする鋼浴中より少量の試料を採取して
ガス分析し、全体を代表させる方法が一般的であ
る。
For these reasons, various methods for quantifying gases in metals have been studied. Recently, sensors using solid electrolytes have been developed for oxygen and nitrogen in molten steel, and these sensors are used to continuously measure the concentrations of these gases and control various processes for quality control.
However, for hydrogen gas, no solid electrolyte applicable at high temperatures has been discovered, and therefore this type of hydrogen sensor has not been developed. For this reason, the current method is to collect a small sample from the steel bath and perform gas analysis to make it representative of the entire sample.

一方、溶融金属中の水素濃度を測定する方法と
して、溶融金属全体をチヤンバ内に収納しチヤン
バ内にアルゴンガスを通入することによつて水素
ガスを放出させ、この放出ガスを定量する方法
(例えば法華弘通氏;特開昭50−23296)が知られ
ている。この方法はチヤンバ内での水素の拡散放
出時間を十分に確保することによつて溶融金属中
の水素のほぼ全量を測定できるため原理的に精度
も良く、確実な値が期待できる。しかし、この方
法は工場の生産現場を想定した大容量の溶融金属
への適用には次の二つの点で問題がある。一つは
溶融金属の容量に対応した大きさの機密性の良い
チヤンバ及び加熱装置を準備する必要があり、経
済的事情から実現は難しい。他の一つは溶融金属
の容量が増すにつれて水素の拡散放出に必要な時
間が極端に長くなり実用的でない。
On the other hand, as a method for measuring the hydrogen concentration in molten metal, the entire molten metal is housed in a chamber, hydrogen gas is released by introducing argon gas into the chamber, and this released gas is quantified ( For example, Mr. Hiromichi Hokke (Japanese Patent Publication No. 50-23296) is known. This method can measure almost the entire amount of hydrogen in the molten metal by ensuring sufficient time for diffusion and release of hydrogen within the chamber, so in principle it has good accuracy and reliable values can be expected. However, this method has the following two problems when applied to large volumes of molten metal intended for factory production sites. One is that it is necessary to prepare a highly airtight chamber and heating device of a size corresponding to the capacity of the molten metal, which is difficult to realize due to economic reasons. The other method is impractical because as the capacity of the molten metal increases, the time required for hydrogen diffusion and release becomes extremely long.

本発明はこうした事情に着目してなされたもの
で、その目的は溶融金属中のガスを不活性ガスの
吹込みにより迅速に拡散放出させてこれを測定
し、溶融金属の容量の大小によらずそのガス濃度
を安定して精度良く、かつ連続的に定量できるよ
うにすることにある。
The present invention was made in view of these circumstances, and its purpose is to quickly diffuse and release gas in molten metal by blowing inert gas and measure it, regardless of the volume of molten metal. The object is to be able to stably, accurately, and continuously quantify the gas concentration.

本発明は溶融金属中のガス拡散放出速度を促進
する手法として不活性ガス気泡の吹込みに着目
し、この方法によつてガス放出速度が著しく向上
し、さらに、拡散放出されるガスの量と溶融金属
中のガス濃度との間には良い相関関係のあること
を実験によつて確認し、この結果より、放出ガス
の測定により溶融金属中のガス濃度を定量できる
ようにしたものである。
The present invention focuses on the injection of inert gas bubbles as a method of accelerating the rate of gas diffusion and release in molten metal, and this method significantly improves the gas release rate and further reduces the amount of gas diffused and released. It has been confirmed through experiments that there is a good correlation between the gas concentration in the molten metal, and based on this result, it has become possible to quantify the gas concentration in the molten metal by measuring the released gas.

本発明は、下記(イ)〜(ニ)の工程を順次含むことを
特徴とする溶融金属中ガスの定量用ガス採取方法
にある。
The present invention resides in a gas sampling method for quantitative determination of gas in molten metal, which is characterized by sequentially including the following steps (a) to (d).

(イ) カツプ状を有し、カツプの底の部分に不活性
ガス導入管及び排気管を有し、さらに開口部に
不活性ガス吹込部を有するガス捕集容器を該容
器の底の部分を上にして溶融金属中に一部分を
浸漬する浸漬工程。
(b) A gas collection container that has a cup shape, has an inert gas inlet pipe and an exhaust pipe at the bottom of the cup, and has an inert gas blowing part at the opening. An immersion process in which a portion is immersed upside down into molten metal.

(ロ) 該浸漬工程後、前記溶融金属と前記捕集容器
の底との空間に溜つた空気を前記不活性ガス導
入管より不活性ガスを導入し、前記排気管にて
排気することにより除去する空気除去工程。
(b) After the immersion step, the air accumulated in the space between the molten metal and the bottom of the collection container is removed by introducing an inert gas through the inert gas introduction pipe and exhausting it through the exhaust pipe. air removal process.

(ハ) 該空気除去工程後、前記溶融金属中に不活性
ガス吹込部を浸漬して不活性ガスを吹込む不活
性ガス吹込み工程。
(c) After the air removal step, an inert gas blowing step of immersing an inert gas blowing part into the molten metal and blowing inert gas into the molten metal.

(ニ) 該不活性ガスの吹込みによつて溶融金属中よ
り放出したガスを前記排気管を通して採取し、
該採取したガスを分析装置に送る工程。
(d) Collecting the gas released from the molten metal through the exhaust pipe by blowing the inert gas,
A step of sending the sampled gas to an analyzer.

次に本発明を実施例によつて説明する。第1図
は本発明の一実施例で、溶鋼の水素濃度を定量す
るためのガス捕集容器の断面構造図を示す。カツ
プ状を呈した放集容器3の開口部が下になるよう
にセツトし、開口部近傍に多孔質耐火材料7及び
中空部8からなるArガス吹込み部を有し、ガス
捕集容器3の低部にはArガス吹込管及び排気管
6が配設され、ガス捕集容器3は上下に移動可能
な支持具9により固定されている。次に、実際の
測定にあたつての動作は次のようである。通常、
鋼浴1の上にはスラグ層2が存在しているため、
ガス捕集容器3の浸漬に際してはバルブ13を開
放してArガスを多量に吹込むことによつて内部
の気圧を高く維持し、ガス捕集容器3内部へのス
ラグ層の流入を防止する。所定位置まで浸漬後は
バルブ13も閉じ、Arガス吹込み管4を通して
一定量のArガスを中空部8に送り、多孔質耐火
材料7を通して鋼浴中に吹込む。このとき、中空
部8は重要なポイントでこれにより均一なガス泡
の吹込みが可能となる。鋼浴より放出されたガス
は吹込んだArとの混合ガスとして排気管6を通
して系外に送り、混合ガス中の水素を定量する。
Next, the present invention will be explained with reference to examples. FIG. 1 is an embodiment of the present invention, and shows a cross-sectional structural diagram of a gas collection vessel for quantifying the hydrogen concentration of molten steel. The cup-shaped collection container 3 is set so that the opening is facing downward, and has an Ar gas injection part consisting of a porous refractory material 7 and a hollow part 8 near the opening. An Ar gas blowing pipe and an exhaust pipe 6 are provided at the bottom of the tank, and the gas collection container 3 is fixed by a vertically movable support 9. Next, the operation for actual measurement is as follows. usually,
Since there is a slag layer 2 on top of the steel bath 1,
When the gas collection container 3 is immersed, the valve 13 is opened and a large amount of Ar gas is blown into the tank to maintain a high internal pressure and prevent the slag layer from flowing into the gas collection container 3. After immersion to a predetermined position, the valve 13 is also closed, and a certain amount of Ar gas is sent to the hollow part 8 through the Ar gas blowing pipe 4 and blown into the steel bath through the porous refractory material 7. At this time, the hollow portion 8 is an important point, which allows uniform injection of gas bubbles. The gas released from the steel bath is sent out of the system through the exhaust pipe 6 as a mixed gas with the blown Ar, and the hydrogen in the mixed gas is quantified.

第2図は本発明による溶鋼中の水素濃度定量の
ための一実施例によるブロツク図を示す。鋼浴中
に吹込まれたArガス及び鋼浴から放出されたガ
スとの混合ガスを排気管4を通して、一定圧に調
整したポンプにより排気する。この混合ガスを分
離管によつて水素を分離して定量し、この水素量
に対応して鋼中の水素濃度を同定する。
FIG. 2 shows a block diagram of an embodiment for determining hydrogen concentration in molten steel according to the present invention. A mixed gas of the Ar gas blown into the steel bath and the gas released from the steel bath is exhausted through an exhaust pipe 4 by a pump adjusted to a constant pressure. Hydrogen is separated from this mixed gas using a separation tube and quantified, and the hydrogen concentration in the steel is identified in accordance with this amount of hydrogen.

上記実施例ではガス捕集容器内部は単なる円筒
形状を有している。この内部を二層に分離して、
このうちの一層からArガスを吹込む構造とする
ことにより、ガス捕集容器内部における鋼浴の循
環がよりスムーズとなる。このため、上記実施例
に比較して鋼中からのガス放出が促進され、ガス
濃度の定量感度をさらに高める効果がある。
In the above embodiment, the inside of the gas collection container has a simple cylindrical shape. Separate this interior into two layers,
By adopting a structure in which Ar gas is blown into one of these layers, the circulation of the steel bath inside the gas collection container becomes smoother. Therefore, gas release from the steel is promoted compared to the above embodiments, and there is an effect of further increasing the quantitative sensitivity of gas concentration.

さらに改良を加えた他の実施例を第4図に示
す。ガス捕集容器3の底部にポーラスフイルタを
配設することにより、溶湯飛散による排気管6の
目づまりを防止することができ、同時に排気圧力
に急激な変動が生じた場合の圧力緩衝装置として
の効果も得られる。
Another embodiment with further improvements is shown in FIG. By arranging a porous filter at the bottom of the gas collection container 3, it is possible to prevent clogging of the exhaust pipe 6 due to molten metal scattering, and at the same time, it is effective as a pressure buffer when a sudden change in exhaust pressure occurs. You can also get

本発明によれば、溶融金属中に直接不活性ガス
を吹込むことにより次の効果を得ることができ
る。すなわち、測定対象とする溶融金属の容量に
よらず常に一定の装置を用いて溶融金属中のガス
濃度を、測定者の熟練度や手腕によらず安定して
精度良く、連続的に定量できる。
According to the present invention, the following effects can be obtained by directly blowing an inert gas into molten metal. That is, regardless of the volume of the molten metal to be measured, the gas concentration in the molten metal can be determined stably, accurately, and continuously using a constant device regardless of the skill or skill of the measurer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるガス捕集容器の断面構造
図を示し、第2図は本発明による溶融金属中ガス
濃度定量のためのブロツク図を示し、第3図は本
発明の変形例の断面構造図、第4図はさらに改良
した実施例の断面構造図を示す。 1……鋼浴、2……スラグ層、3……ガス捕集
容器、4……Arガス吹込管、5……Arガス吹込
管、6……排気管、7……多孔質耐火材料、8…
…中空部、9……支持具、10……Arガス、1
1……Arガス、12……混合ガス、13……バ
ルブ。
FIG. 1 shows a cross-sectional structural diagram of a gas collection container according to the present invention, FIG. 2 shows a block diagram for determining gas concentration in molten metal according to the present invention, and FIG. 3 shows a cross-sectional view of a modified example of the present invention. Structural diagram, FIG. 4 shows a cross-sectional structural diagram of a further improved embodiment. 1... Steel bath, 2... Slag layer, 3... Gas collection container, 4... Ar gas blowing pipe, 5... Ar gas blowing pipe, 6... Exhaust pipe, 7... Porous refractory material, 8...
...Hollow part, 9...Support, 10...Ar gas, 1
1...Ar gas, 12...mixed gas, 13...valve.

Claims (1)

【特許請求の範囲】 1 下記(イ)〜(ニ)の工程を順次含むことを特徴とす
る溶融金属中ガスの定量用ガス採取方法。 (イ) カツプ状を有し、カツプの底の部分に不活性
ガス導入管及び排気管を有し、さらに開口部に
不活性ガス吹込部を有するガス捕集容器を該容
器の底の部分を上にして溶融金属中に一部分を
浸漬する浸漬工程。 (ロ) 該浸漬工程後、前記溶融金属と前記捕集容器
の底との空間に溜つた空気を前記不活性ガス導
入管より不活性ガスを導入し、前記排気管にて
排気することにより除去する空気除去工程。 (ハ) 該空気除去工程後、前記溶融金属中に不活性
ガス吹込部を浸漬して不活性ガスを吹込む不活
性ガス吹込み工程。 (ニ) 該不活性ガスの吹込みによつて溶融金属中よ
り放出したガスを前記排気管を通して採取し、 該採取したガスを分折装置に送る工程。
[Scope of Claims] 1. A gas sampling method for quantitative determination of gas in molten metal, characterized by sequentially comprising the following steps (a) to (d). (b) A gas collection container that has a cup shape, has an inert gas inlet pipe and an exhaust pipe at the bottom of the cup, and has an inert gas blowing part at the opening. An immersion process in which a portion is immersed upside down into molten metal. (b) After the immersion step, the air accumulated in the space between the molten metal and the bottom of the collection container is removed by introducing an inert gas through the inert gas introduction pipe and exhausting it through the exhaust pipe. air removal process. (c) After the air removal step, an inert gas blowing step of immersing an inert gas blowing part into the molten metal and blowing inert gas into the molten metal. (d) A step of collecting the gas released from the molten metal through the exhaust pipe by blowing in the inert gas, and sending the collected gas to a fractionator.
JP57011550A 1982-01-29 1982-01-29 Quantitative determining method for gas in fused metal Granted JPS58129346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011550A JPS58129346A (en) 1982-01-29 1982-01-29 Quantitative determining method for gas in fused metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011550A JPS58129346A (en) 1982-01-29 1982-01-29 Quantitative determining method for gas in fused metal

Publications (2)

Publication Number Publication Date
JPS58129346A JPS58129346A (en) 1983-08-02
JPS642210B2 true JPS642210B2 (en) 1989-01-17

Family

ID=11781057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011550A Granted JPS58129346A (en) 1982-01-29 1982-01-29 Quantitative determining method for gas in fused metal

Country Status (1)

Country Link
JP (1) JPS58129346A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613492Y2 (en) * 1985-10-11 1994-04-06 住友軽金属工業株式会社 Probe for measuring hydrogen concentration in molten metal
JP2648925B2 (en) * 1988-02-22 1997-09-03 新日本製鐵株式会社 Method and apparatus for analyzing hydrogen in molten steel
JPH0623750B2 (en) * 1988-11-19 1994-03-30 新日本製鐵株式会社 Method and device for on-line analysis of hydrogen in molten steel
JPH02232546A (en) * 1989-03-07 1990-09-14 Nippon Steel Corp Gas sampling for determining gas component in molten steel
FR2959014B1 (en) * 2010-04-19 2013-01-04 Total Raffinage Marketing TRACKING THE CORROSION SPEED OF A METALLIC CONDUIT CONDUCTED BY A CORROSIVE FLUID

Also Published As

Publication number Publication date
JPS58129346A (en) 1983-08-02

Similar Documents

Publication Publication Date Title
JP5890672B2 (en) Sample analysis method and apparatus for molten metal
US6216526B1 (en) Gas sampler for molten metal and method
JPS642210B2 (en)
CA2179996C (en) Manufacture of copper rod
JP3981157B2 (en) Manufacture of metal products using gas analyzers
US4098576A (en) Method for analyzing the latent gas content of metal samples
CA1205651A (en) Sampler and an apparatus for hydrogen determination in molten metal
Anyalebechi Techniques for determination of the Hydrogen Content in Aluminium and its Alloys—A Review
JP2648925B2 (en) Method and apparatus for analyzing hydrogen in molten steel
JPS58129258A (en) Method for determination of hydrogen contained in molten metal
JPH07120363A (en) Method and apparatus for direct analysis of gas component in molten steel
JP4022347B2 (en) Analytical oxygen analysis method
JPH0140954B2 (en)
JPS63176410A (en) Method for simultaneous measurement of material in different layers
JP3231154B2 (en) Rapid measurement method and device for trace carbon in molten steel
RU2052810C1 (en) Method for determination of gas content in liquid metals
JPS6213006Y2 (en)
SU859857A1 (en) Liquid metal sampler
Jenkins et al. Sampling and analysis for an oxygen steel shop
JP3678132B2 (en) Dehydrogenation refining method for molten steel
JPS58144729A (en) Determination of gas in molten metal
JPH10253620A (en) Decompression and solidification test device for aluminum alloy
JPH02298861A (en) Estimation of decarburization in vacuum using mass spectrometer
JP2000009719A (en) Quantitative method classified by form and quantitative device classified by form of carbon contained in steel
JPH01288765A (en) Analyzing apparatus of hydrogen in molten steel in treating ladle