JPH02232546A - Gas sampling for determining gas component in molten steel - Google Patents

Gas sampling for determining gas component in molten steel

Info

Publication number
JPH02232546A
JPH02232546A JP1054339A JP5433989A JPH02232546A JP H02232546 A JPH02232546 A JP H02232546A JP 1054339 A JP1054339 A JP 1054339A JP 5433989 A JP5433989 A JP 5433989A JP H02232546 A JPH02232546 A JP H02232546A
Authority
JP
Japan
Prior art keywords
probe
molten steel
gas
gas recovery
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1054339A
Other languages
Japanese (ja)
Inventor
Akihiro Ono
小野 昭紘
Kengo Senoo
妹尾 健吾
Masaki Ina
正樹 伊奈
Masaaki Mori
正晃 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1054339A priority Critical patent/JPH02232546A/en
Publication of JPH02232546A publication Critical patent/JPH02232546A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/12Dippers; Dredgers
    • G01N1/125Dippers; Dredgers adapted for sampling molten metals

Abstract

PURPOSE:To prevent solidification of molten steel in a gas recovery probe by repeating the raising and lowering of a pressure of an inert gas within the gas recovery probe until the temperature of the gas recovery probe reaches a level at which no solidification of the molten steel is caused in the probe. CONSTITUTION:When a gas recovery probe 1 is dipped into molten steel 2, it 1 is fed with a high pressure inert gas to lower a level of the molten steel in the probe 1. A supply pressure is lowered to raise the level of the molten steel 2 within the probe 1. These actions are repeated to preheat the probe 1. With the alternate rising and lowering of the molten steel 2 within the probe 1, the solidification of the molten steel 2 within the probe 1 is checked while the probe 1 is heated by a high temperature the molten steel 2 holds. While the molten steel 2 rises and lowers alternately, the temperature of the probe 1 rises gradually. Therefore, it suffices to repeat the raising or lowering of the pressure of the inert gas within the probe 1 until the temperature of the probe 1 approaches near a temperature the molten steel to be analyzed hold as a whole. Thus, there is no solidification caused in the molten steel within the probe 1 dipped thereinto 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,製鋼プロセスの操業管理をより迅速,かつ綿
密に行うために必要な、溶鋼中に含まれる水素,酸素,
窒素等ガス成分の分析に関し,特に,下端が開口したガ
ス回収プローブを溶鋼中に浸漬し該プローブ内の溶鋼中
に不活性ガスを吹込み,溶鋼より浮上したガスをガス分
析装置に送って含有成分を定藍する,溶鋼中ガス成分の
定呈におけるガス採取方法に関する. 〔従来の技術〕 溶鋼中のガス含有成分の分析は.通常,溶鋼試料をサン
ブラーで採取して得たブロック試料を対象に分析する方
法が一般的であるが、溶鋼採取から分析結果を得るまで
に人手と時間がかかり,また水素分析の場合には.試料
採取における水素の散逸が原囚で定景値の信頼性が低下
する問題がある.そのために,例えば溶鋼中の水素成分
の分析において,下端が開口したガス回収プローブを溶
鋼中に浸漬し該プローブ内の溶渭中に不活性ガスを吹込
み、溶鋼より浮上したガスをガス分析装置に送って水素
成分を分析する,オンラインの溶鋼中水素の分析方法が
提供されている(例えば特開昭58−168938号公
報および特開昭58−129346号公報,ならびに、
特顕昭63 − 373.93号および特願昭63−1
111351号). 〔発明が解決しようとする課題〕 ガス回収プローブの下端開口よりプローブ内に溶鋼を取
り入れ、この溶鋼中に不活性ガスを吹込んで,その不活
性ガス気泡中に溶鋼中の例えば水素などのガス成分を拡
散・放出させて回収し,ガス分析装置に送って分析する
,しかし,ガス回収プローブが低温であると,プローブ
内で溶鋼が凝固し,溶鋼中への不活性ガスの吹込みがで
きなくなったり、あるいは,回収したガスをガス分析装
置に送ることができなくなる.このような問題を解決す
るためには,ガス回収プローブを予熱すればよいが,ガ
スバーナーや電気炉等による予熱では、予熱作業に手数
と時間がかかると共に、予熱を完了したプローブの取り
扱いが戴かしくなると共に溶鋼中に浸漬するまでに冷え
ていくという問題があり、予熱後浸漬までの取り扱いが
むづかしい, 本発明は.ガス回収プローブにおける溶鋼の凝囚を防止
することを第1の目的とし,凝固防止のための予熱とガ
ス回収プローブの取扱いを容易にすることを第2の目的
とする. 〔a題を解決するための手段〕 本発明では,ガス回収プローブを溶鋼中に浸漬するとき
,該ガス回収プローブに高圧不活性ガスを供給してガス
回収プローブ内の溶鋼レベルを降下させ次いで供給圧を
下げてガス回収プローブ内の溶鋼レベルを高め、これら
を交互に繰り返してガス回収プローブを予熱する. 〔作用〕 ガス回収プローブ内で溶鋼が交互に上昇/降下して、ガ
ス回収プローブ内の溶鋼の凝固が阻止されると共に5溶
鋼が保有する約1600℃の高温によってガス回収プロ
ーブが加熱され,溶鋼を交互に上昇/降下している間に
ガス回収プローブの温度が次第に上昇する.したがって
.ガス回収プローブの温度が、分析対象としている処理
鍋等の溶鋼全体の保有する温度に近くなるまで,ガス回
収プローブ内での不活性ガスの昇圧と降圧を繰り返せば
よく,溶榊に浸漬されたガス回収プローブに溶鋼の凝固
を生じない.プローブ内溶鋼温度を分析対象とする溶鋼
全体のもつ温度にすることは,不活性ガス気泡中に溶鋼
中のガス成分を拡散・放出させて回収するには溶鋼温度
が影響するので,正しい分析値を得るために必要である
. ガス回収プローブは.溶鋼に浸漬するために昇降装誼に
装尊するとき格別に高い予熱を要しないので,装着作業
が容易である.上述の昇圧と降圧の交互繰り返しは、ガ
ス回収プローブの不活性ガス供給路又はガス回収路に切
換弁などの弁装置を介挿してこれによりガス供給路又は
ガス回収路を交互に高圧ガス路と低圧ガス路に切換え接
続することにより実施でき、このような付加装備は比較
的に容易である. 本発明の他の目的および特徴は,図面を参照した以下の
実施例の説明より明らかになろう,〔実施例〕 第1図に.本発明を一態様で実施する装置構成を示す.
不活性ガスボンベ8から不活性ガスが,流量調節弁16
.除湿器9,配管10および保持具6を通して,ガス回
収プローブIの吹き込み管4に供給され,リング状のボ
ーラスブラグ5を通して.ガス回収プローブ1の内空間
に吹込まれる.ブa−ブ内圧は、圧力計12で示さ九,
圧力計12が示す値とプローブの降下速度より計算によ
って,ボーラスブラグ5の溶渭表面下の深さを知ること
ができる. ガス回収プローブ1の内空間のガスは電磁切換弁20を
通して,また溶鋼微粒子を除去するフィルタl3を通し
てガス分析装V114に至り,ガス分析装[34が、こ
の実施例では.不活性ガス中の水素分圧を測定して測定
データをデータ処理装置15に与える.データ処理装α
15は,溶鋼中の水素濃度と不活性ガス中の水素分圧と
の間に成立する平衡関係を規定する演算式に,測定した
水素分圧データを導入して、水素分圧データ対応の水素
濃度を演算する. 本発明の実施のため.この実施例では,前述の電磁切換
弁20がガス回収管】1とガス分析装置14の間に介挿
され,かつ電磁切換弁20に.M湿器l9および流量調
節弁l8を介して高圧不活性ガスボンベl7が接続され
ており,かつ、電磁切換弁20に揺動コントローラ21
が接続されている. 電磁切換弁20は,その電気コイルに通電がないときに
は.ガス回収管IIをガス分析装5!14に接続し,電
気コイルに通電があるとガス回収管1lを高圧ガスボン
ベl7に接続するものである.第2図に,揺動コントロ
ーラ21の構成を示す9揺動コントローラ21の主体は
,この実施例では,マイクロプロセッサ(以下CPUと
称す)26であり、これに,キーインターフエイス23
を介してキースイッチ22(12個のキースイッチ》が
接続されている.CPU26にはディスプレイドライバ
25が接続されており、CPU26はディスプレイデー
タをドライバ25に与え,ドライノ{25が,ディスプ
レイデータが指定するキャラクタをキャラクタディスプ
レイ24に表示する.CPU21の出力ボートOUTI
には,ソレノイドドライバ27およびランプドライバ2
8が接続されており.出力ボートOUTIの信号レベル
が11のとき,ソレノイドドライバ27が電磁切換弁2
0の電気コイルに通電し.かつランプドライバ28が加
圧表示灯29に発光付勢電流を流す.出力ポートOLI
TIの信号レベルを反転した信号がランプドライバ30
に与えられ.ランプドライバ30が.出力ボートouT
iがLのときに減圧表示灯31に発光付勢電流を流す. CPU26の出力ボートOUT2には,ランプドライバ
32が接続されており,出力ボートOUT2の信号レベ
ルが■]のとき,ランプドライバ32が揺動表示灯33
に発光付勢電流を流す. 出力ボートOU丁2の信号レベルを反転した信号がラン
プドライバ34に与えられ,ランプドライバ34が、出
力ボートOuT2がLのときに終了表示灯35に発光付
勢電流を流す. ffi3図に、CPU26の制御動作を示す.電源が投
入されるとCPU26は,内部レジスタ,フラグ,タイ
マ,カウンタ等をクリアし.出力ボ−トOυTl ,O
UT2に待機時の信号レベルLを出力し,ディスプレイ
ドライバ25に表示クリア(零の表示)を指示する.こ
れにより,電源が投入されると,電磁切換弁20が回収
管11−ガス分析装置14の接続となり,減圧表示灯3
1が点灯し,終了表示灯35が点灯して5ディスプレイ
24は零(10進の3桁が000)を表示する(ステッ
プ1および2:以下カツコ内ではステップという語を省
略する), 次にCPU26は,キースイッチ22の入力を待つ. 今,ここで第4図に示すように,加圧(11−17接続
)と減圧(11−14接続)を交互にガス回収プローブ
lに与えるように設定すると仮定すると,オペレータは
,キースイッチ22の各キーを次の順に押せばよい. (1)本キー    (2)テンキー(1とO)(3)
Mキー    (4)テンキー(2)(5)Mキー  
  (6)テンキー(1とO)(7)Mキー    (
8)テンキー(5)(9)Mキー    (10)テン
キー(1とO)(11) Mキー   (12)テンキ
ー(5)(13) Mキー   (14)テンキー(1
と0)(+5) Mキー    (1(i)  *キー
上記(1)のキー人力があると.CP026は、テンキ
ー人力を書込む置数レジスタをクリアして,時間データ
(第4図のlO秒,2秒,10秒,・・・)を書込む時
間データレジスタ1〜mをクリアし,時間デ.一夕入力
回数をカウントする回数レジスタ(iはレジスタiの内
容)をクリアして,フラグレジスタIFに1を番込む(
3 − 4 − 5 − 6).上記(2)のキー人力
があると,CPU26は7キ一人力の数値データ(2通
データ)を置数レジスタの内容に加算し,得た和を直数
レジスタに更新番込みし.置数レジスタの内容を(10
進数で)ディスプレイ24に表示する(3 − 4 −
 7 − 8).上記(3)のキー人力があると,CP
U26は,回数レジスタiの内容を1大きい数値を示す
ものに更新し,時間データレジスタ1−rr+の内の,
レジスタiの内容iの番号の時間データレジスタiに置
数レジスタの数値データを書込み,置数レジスタをクリ
アしディスプレイ24をクリア(零を表示)する(3−
4−7−9−11−12−10).上記(3)のキー人
力を終了したとき,時間データレジスタ1  (i=1
)にlO秒を示すデータが書込まれている. 上記(4),(6),・・・(14)のキー人力のとき
のCPU2 6の動作は,上記(2)のキー人力があっ
たときのものと同様であり,上記(5),(7),・・
・(15)のキー人力のときのCPU26の処理動作は
、上記(3)のキー人力があったときのものと同様であ
る. 上記(16)の*キ一人力があると,CPU26は,回
数レジスタiの内容を1インクレメントして(3−4−
5−13)、7j′Si番目の時間データレジスタi(
iは回数レジスタiの内容)にエンドデータを書込み(
14) .フラグレジスタIFをクリアする(15). 上記(2),(3),(4),(5).(6)・・・(
l6)のキー人力とこれに応答したCPU26の処理動
作により、時間データレジスタ1,2,3,4,5.6
および7に、それぞれ10秒,2秒,10秒,5秒, 
10秒,5秒,10秒を示すデータが書込まれ.17デ
ータレジスタ8にはエンドデータが書込まれる.なお、
CLRキ一人力があると置数レジスタをクリアしディス
プレイをクリア(′8を表示)する(9−40)ので,
誤ったテンキー人力をしたときにはCLRキーを一度押
して,新たに正しいテンキー人力をすればよい. 上記(1)〜(16)のキー人力をした後に.オペレー
タがスタートキーSTAを押すと、CPU26は,回数
レジスタiに1を更新番込みして.出力ボートOU丁2
に11を出力し、計時(時間経過の計i11!)と,計
時値の表示(1秒経過毎の経過時間の表示更新)を開始
する.これにより,揺動表示灯33が点灯して終了表示
灯35が消灯し.ディスプレイ24の表示がOOOとな
って,それから1秒の経過毎に,001,002,  
・・・と時閲経過が更新表示されるようになる. CPU26は次に、時間データレジスタi (ここでは
i=1であるので時間データレジスタ1)のデータ(1
0秒)を読み出して.それがエンドデータであるかをチ
ェックして(1B) ,エンドデータでないと、タイマ
レジスタTMに時間データレジスタi  (i==1)
の時間データ(10秒)を書込み(+9),回数レジス
タiのデータi 口=1)が奇数であるかをチェックし
て(20) ,奇数であると出力ボートOUTIにHを
出力して(20.21)タイマTMをスタートする(2
2). Tlvlはタイマレジスタの内容である,これ
により.電磁切換弁20が通電されて.ガス回収管l1
が.ガス分析装11!14から高圧ガスボンベ17に切
換え接続され,加圧表示灯29が点灯し減圧表示灯31
が消灯する.CPU26は,タイマTMのタイムオーバ
(10秒の時間経過)を待って(23) ,タイムオー
バすると.回数レジスタiの内容を1インクレメントし
て(25) .時間データレジスタi (ここではi=
2であるので時間データレジスタ2)のデータ(2秒)
を読み出して,それがエンドデータであるかをチェック
して(18).エンドデータでないと,タイマレジスタ
TMに時間データレジスタi  (+=2)の時間デー
タ(2秒)を書込み(l9)、回数レジスタiのデータ
i  (i=2)が奇数であるかをチェックして(20
) ,偶数であると出力ボー1〜OUT 1にr一を出
力して(20.26)タイマTMをスタートする(22
). TMはタイマレジスタの内容である.これにより
,電磁切換弁20の通電が停止して,ガス回収管11が
、高圧ガスボンベ17からガス分析装置l4に切換え接
続され、加圧表示灯29が消灯し減圧表示灯31が点灯
する. C P tJ 2 6は、タイマTMのタイムオーバ(
2秒の時間経過)を待って(23)、タイムオーバする
と,回数レジスタiの内容を1インクレメントして(2
5),時間データレジスタi (ここではi=3である
ので時間データレジスタ3)のデータ(10秒)を読み
出して,それがエンドデータであるかをチェックして(
18)、エンドデータでないと.タイマレジスタTMに
時間データレジスタi(i=3)の時間データ(10秒
)を書込む.CPU26は以下同様にタイミング処理を
実行し,時間データレジスタi(i=8)のデータを読
出したとき,該データがエンドデータであると,CPU
26は.出力ボートOUT 1およびOLIT2にLを
出力して、計時を停止する(111. 27).これに
より、電磁切換弁20は,ガス回収Irfllを高圧ガ
スボンベl7からガス分析装置14に切換え接続し、加
圧表示灯29が消灯し減圧表示灯31が点灯し,しかも
,揺動表示灯33が消灯して終了表示灯35が点灯して
,オン(加圧:llを17に接&1!)/オフ(減圧:
11を14に接続)の交互繰返しが停止してオフ(減圧
)設定となる. なお,このように交互繰返しをしている間に、それを停
止するときには、オペレータはストップキー5TPを押
する.するとCPU26は.出力ポート0υT1および
OU丁2にLを出力して,計時を停止する(24.27
). 以上のように,キースイッチ22の操作で,例えば第4
図に示すような,オン(加圧)/オフ(減圧)の交互繰
返しの各インターバル時間を任意に揺動コントローラ2
1に設定することができ,スタートキーSTAを押すこ
とにより,このようなオン/オフの交互繰返しが開始さ
れ、オンのときには加圧表示灯29が点灯し,オフのと
きには減圧表示灯31が点灯する.交互繰返しの継続中
には揺動表示灯33が点灯しており、交互繰返し終了タ
イミング(エンドデータの読出し)で自動的にこの交互
繰返しが停止して,オフ(減圧)設定となる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the hydrogen, oxygen, and
Regarding the analysis of gas components such as nitrogen, in particular, a gas recovery probe with an open bottom end is immersed in molten steel, inert gas is blown into the molten steel within the probe, and the gas that floats up from the molten steel is sent to a gas analyzer to contain it. This paper relates to gas sampling methods for determining gas components in molten steel. [Prior art] Analysis of gas-containing components in molten steel. Normally, the method of analyzing a block sample obtained by collecting a molten steel sample with a sampler is common, but it takes time and labor to obtain the analysis results from sampling the molten steel, and in the case of hydrogen analysis. There is a problem that hydrogen dissipates during sample collection and reduces the reliability of the fixed view value. For this purpose, for example, in the analysis of hydrogen components in molten steel, a gas recovery probe with an open bottom end is immersed in the molten steel, inert gas is blown into the molten steel inside the probe, and the gas that floats up from the molten steel is collected by a gas analyzer. An online method for analyzing hydrogen in molten steel has been provided (for example, JP-A-58-168938 and JP-A-58-129346, and
Tokken Sho 63-373.93 and patent application Sho 63-1
No. 111351). [Problem to be Solved by the Invention] Molten steel is taken into the probe through the lower end opening of the gas recovery probe, and inert gas is blown into the molten steel to collect gas components such as hydrogen in the molten steel into the inert gas bubbles. However, if the gas recovery probe is at a low temperature, the molten steel will solidify inside the probe, making it impossible to blow inert gas into the molten steel. or the recovered gas cannot be sent to the gas analyzer. To solve this problem, it is possible to preheat the gas recovery probe, but preheating using a gas burner or electric furnace takes time and effort, and requires handling of the preheated probe. The present invention has the problem that it becomes hard and cools down by the time it is immersed in molten steel, making it difficult to handle after preheating and before immersion. The first purpose is to prevent solidification of molten steel in the gas recovery probe, and the second purpose is to facilitate preheating to prevent solidification and the handling of the gas recovery probe. [Means for solving problem a] In the present invention, when the gas recovery probe is immersed in molten steel, high pressure inert gas is supplied to the gas recovery probe to lower the level of molten steel in the gas recovery probe, and then the molten steel is supplied. Lower the pressure to increase the molten steel level in the gas recovery probe, and repeat these steps alternately to preheat the gas recovery probe. [Function] The molten steel alternately rises and falls within the gas recovery probe, preventing the molten steel within the gas recovery probe from solidifying, and the gas recovery probe is heated by the high temperature of approximately 1600°C possessed by the molten steel. The temperature of the gas recovery probe gradually increases while the temperature is being raised and lowered alternately. therefore. It is sufficient to repeat the pressure increase and decrease of the inert gas in the gas recovery probe until the temperature of the gas recovery probe becomes close to the temperature of the entire molten steel in the processing ladle, etc. that is being analyzed. No solidification of molten steel occurs on the gas recovery probe. Setting the temperature of the molten steel in the probe to the temperature of the entire molten steel to be analyzed is important because the molten steel temperature affects the recovery of gas components in the molten steel by diffusing and releasing them into inert gas bubbles, so correct analytical values can be obtained. It is necessary to obtain Gas recovery probe. The installation work is easy because it does not require particularly high preheating when installing it on the elevator to be immersed in molten steel. The above-mentioned pressure increase and pressure decrease are alternately repeated by inserting a valve device such as a switching valve in the inert gas supply path or gas recovery path of the gas recovery probe, and thereby making the gas supply path or the gas recovery path alternately serve as a high-pressure gas path. This can be done by switching and connecting to the low-pressure gas line, and such additional equipment is relatively easy. Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings, [Embodiments] shown in FIG. The configuration of an apparatus for carrying out one embodiment of the present invention is shown.
Inert gas is supplied from the inert gas cylinder 8 to the flow rate control valve 16.
.. The gas is supplied through the dehumidifier 9, piping 10 and holder 6 to the blowing tube 4 of the gas recovery probe I, and then through the ring-shaped bolus plug 5. The gas is blown into the inner space of the gas recovery probe 1. The internal pressure of the valve a-b is indicated by the pressure gauge 12.
By calculating the value indicated by the pressure gauge 12 and the descending speed of the probe, the depth below the surface of the bolus blug 5 can be determined. The gas in the inner space of the gas recovery probe 1 passes through the electromagnetic switching valve 20 and the filter 13 for removing molten steel particles, and reaches the gas analyzer V114. The hydrogen partial pressure in the inert gas is measured and the measured data is provided to the data processing device 15. Data processing unit α
15 introduces the measured hydrogen partial pressure data into the equation that defines the equilibrium relationship between the hydrogen concentration in molten steel and the hydrogen partial pressure in the inert gas, and calculates the hydrogen corresponding to the hydrogen partial pressure data. Calculate the concentration. For carrying out the present invention. In this embodiment, the aforementioned electromagnetic switching valve 20 is inserted between the gas recovery pipe 1 and the gas analyzer 14, and the electromagnetic switching valve 20 is inserted between the gas recovery pipe 1 and the gas analyzer 14. A high-pressure inert gas cylinder 17 is connected via an M humidifier 19 and a flow rate control valve 18, and a swing controller 21 is connected to an electromagnetic switching valve 20.
is connected. The electromagnetic switching valve 20 operates when the electric coil is not energized. The gas recovery pipe II is connected to the gas analyzer 5!14, and when the electric coil is energized, the gas recovery pipe 1l is connected to the high pressure gas cylinder 17. FIG. 2 shows the configuration of the swing controller 21. In this embodiment, the main body of the swing controller 21 is a microprocessor (hereinafter referred to as CPU) 26, which includes a key interface 23.
A key switch 22 (12 key switches) is connected to the CPU 26. A display driver 25 is connected to the CPU 26, and the CPU 26 provides display data to the driver 25. Display the character to be displayed on the character display 24.The output port OUTI of the CPU 21
includes a solenoid driver 27 and a lamp driver 2.
8 is connected. When the signal level of the output boat OUTI is 11, the solenoid driver 27
0 is energized. In addition, the lamp driver 28 applies a light-emitting energizing current to the pressure indicator lamp 29. Output port OLI
A signal obtained by inverting the signal level of TI is sent to the lamp driver 30.
given to. The lamp driver 30. Output boat outT
When i is L, a light emission energizing current is applied to the pressure reduction indicator lamp 31. A lamp driver 32 is connected to the output boat OUT2 of the CPU 26, and when the signal level of the output boat OUT2 is ■], the lamp driver 32 turns on the swinging indicator light 33.
A light-emission energizing current is applied to. A signal obtained by inverting the signal level of the output port OUT2 is given to the lamp driver 34, and the lamp driver 34 causes a light emission energizing current to flow through the end indicator lamp 35 when the output port OUT2 is at L. Figure ffi3 shows the control operation of the CPU 26. When the power is turned on, the CPU 26 clears internal registers, flags, timers, counters, etc. Output boat OυTl, O
It outputs a standby signal level L to the UT2 and instructs the display driver 25 to clear the display (display zero). As a result, when the power is turned on, the electromagnetic switching valve 20 connects the recovery pipe 11 to the gas analyzer 14, and the reduced pressure indicator light 3
1 lights up, the end indicator 35 lights up, and the 5 display 24 displays zero (3 decimal digits are 000) (steps 1 and 2: the word step will be omitted in the brackets below), then The CPU 26 waits for input from the key switch 22. Now, assuming that the setting is to alternately apply pressurization (connection 11-17) and depressurization (connection 11-14) to gas recovery probe l as shown in FIG. Press each key in the following order. (1) Main key (2) Numeric keypad (1 and O) (3)
M key (4) Numeric keypad (2) (5) M key
(6) Numeric keypad (1 and O) (7) M key (
8) Numeric keypad (5) (9) M key (10) Numeric keypad (1 and O) (11) M key (12) Numeric keypad (5) (13) M key (14) Numeric keypad (1
and 0) (+5) M key (1 (i) * key If there is key manual power in (1) above. CP026 clears the numeric register where the numeric keypad manual power is written, and writes the time data (lO in Fig. 4). Clear the time data registers 1 to m to write the time data (seconds, 2 seconds, 10 seconds, etc.), clear the number register (i is the content of register i) to count the number of inputs in one night, Set 1 to flag register IF (
3-4-5-6). When there is the key power in (2) above, the CPU 26 adds the numerical data (double data) of the 7 keys to the contents of the register, and updates the obtained sum to the direct number register. Set the contents of the number register to (10
displayed on the display 24 (in decimal notation) (3 − 4 −
7-8). With the key human resources in (3) above, CP
U26 updates the contents of the number of times register i to one indicating a numerical value larger by 1, and updates the contents of the time data register 1-rr+.
Write the numerical data of the numeric register to the time data register i of the contents of register i, clear the numeric register, and clear the display 24 (display zero) (3-
4-7-9-11-12-10). When the key manual operation in (3) above is completed, time data register 1 (i=1
) is written with data indicating lO seconds. The operations of the CPU 2 6 when there is manual key power in (4), (6), ... (14) above are the same as when there is manual key power in (2) above, and (5), (7),...
- The processing operation of the CPU 26 when there is key human power in (15) is the same as that when there is key human power in (3) above. If there is enough power in (16) above, the CPU 26 increments the contents of the number of times register i by 1 (3-4-
5-13), 7j'Si-th time data register i (
Write end data to (i is the content of count register i) (
14). Clear the flag register IF (15). (2), (3), (4), (5) above. (6)...(
16) and the processing operation of the CPU 26 in response, the time data registers 1, 2, 3, 4, 5.6
and 7, 10 seconds, 2 seconds, 10 seconds, 5 seconds, respectively.
Data indicating 10 seconds, 5 seconds, and 10 seconds is written. 17 End data is written to data register 8. In addition,
If the CLR key has enough power, it will clear the numeric register and clear the display (display '8) (9-40), so
If you press the numeric keypad incorrectly, press the CLR key once and use the correct numeric keypad again. After performing the key tasks (1) to (16) above. When the operator presses the start key STA, the CPU 26 updates the number of times register i by 1. Output boat OU-cho 2
Outputs 11 to start clocking (time elapsed time measurement i11!) and displaying the timed value (updating the elapsed time display every 1 second). As a result, the swing indicator light 33 lights up and the end indicator light 35 goes out. The display 24 shows OOO, and then every second, 001,002,
...The time progress will be updated and displayed. Next, the CPU 26 inputs the data (1) of the time data register i (here, since i=1, time data register 1).
0 seconds). Check whether it is end data (1B), and if it is not end data, set time data register i (i==1) to timer register TM.
Writes the time data (10 seconds) (+9), checks whether the data i (=1) of the number of times register i is an odd number (20), and if it is an odd number, outputs H to the output port OUTI ( 20.21) Start timer TM (2
2). Tlvl is the contents of the timer register, thereby. The electromagnetic switching valve 20 is energized. Gas recovery pipe l1
but. The gas analyzer 11!14 is switched and connected to the high pressure gas cylinder 17, the pressurization indicator light 29 lights up, and the depressurization indicator light 31 lights up.
goes out. The CPU 26 waits for the timer TM to time out (10 seconds elapsed) (23), and when the timer TM times out. Increment the contents of count register i by 1 (25). Time data register i (here i=
2, so the data of time data register 2) (2 seconds)
Read out and check whether it is end data (18). If it is not the end data, write the time data (2 seconds) of the time data register i (+=2) to the timer register TM (l9), and check whether the data i (i=2) of the number of times register i is an odd number. Te (20
), if it is an even number, output r1 to output baud 1 to OUT1 (20.26) and start timer TM (22
). TM is the contents of the timer register. As a result, the electromagnetic switching valve 20 is de-energized, the gas recovery pipe 11 is switched from the high-pressure gas cylinder 17 to the gas analyzer l4, the pressurization indicator light 29 goes out, and the depressurization indicator light 31 lights up. C P tJ 2 6 is the timeout of timer TM (
Wait for 2 seconds to elapse (23), and when the time has elapsed, increment the contents of count register i by 1 (23).
5) Read the data (10 seconds) of time data register i (here i = 3, so time data register 3) and check whether it is end data (
18), unless it is end data. Write the time data (10 seconds) of time data register i (i=3) to timer register TM. The CPU 26 similarly executes timing processing, and when reading the data of the time data register i (i=8), if the data is end data, the CPU 26
26 is. Output L to output boat OUT1 and OLIT2 and stop timing (111.27). As a result, the electromagnetic switching valve 20 switches and connects the gas recovery Irflll from the high-pressure gas cylinder 17 to the gas analyzer 14, the pressurization indicator light 29 goes out, the depressurization indicator light 31 lights up, and the swinging indicator light 33 turns on. The light goes out and the end indicator light 35 lights up, then on (pressurization: connect 17 & 1!) / off (depressurization:
11 to 14) is stopped, and the setting is turned off (depressurization). Incidentally, to stop the alternating repetition in this way, the operator presses the stop key 5TP. Then, the CPU 26. Output L to output ports 0υT1 and OU2 to stop timing (24.27
). As described above, by operating the key switch 22, for example, the fourth
As shown in the figure, each interval of alternate repetition of on (pressurization) and off (depressurization)
1, and by pressing the start key STA, such an alternating cycle of on/off is started, and when it is on, the pressure indicator light 29 lights up, and when it is off, the pressure reduction indicator light 31 lights up. do. While the alternating repetition is continuing, the swinging indicator light 33 is lit, and at the end timing of the alternating repetition (reading of end data), the alternating repetition is automatically stopped and the setting is turned off (depressurization).

次に再度第1図を参照して溶fR2の水素濃度の測定手
順を説明する.1jl2中の水素濃度の測定を行なうと
きには、昇降装I2!7の,上退避位置にあるプローブ
保持具6にガス回収プローブ1を装着し,揺動コントロ
ーラ21の電源スイッチをオンにして.この揺動コント
ローラ2lに第4図に示すような.予熱のための加圧/
減圧パターンを,前述のようなオペレータ入力で設定す
る.流量調節弁16で不活性ガス吹込み流社をl000
m Q / mjn程度に設定しこのガスは,ボーラス
プラグの目詰り防止およびプローブ内残留空気の排除の
目的から常時流通しておく.また,流量,調節弁18は
、溶鋼の約1001の深さ以上に対応する圧力を出力す
る流j1(約200/mj.n)に設定しておく.この
状態で,揺動コン1−ローラ21は5電磁切換弁20を
非通電にして,減圧表示灯31および終了表示灯35を
点灯しており,ディスプレイ24の表示はOOOである
. 次に,不活性ガスをボーラスブラグ5より吹き込みなが
ら.ガス回収プロ.−ブ1を装置したプローブ保持具6
を昇降装置7を操作して降下させ,プローブ1の下端が
溶鋼面に到達する直前又は直後に揺動コントO−ラ21
のキースイッチ22のスタートキーSTAを押す。この
とき,プローブ1はゆっくりと降下を続けており、まだ
プローブ内には溶鋼は侵入してきていない。従ってプロ
ーブの降下途中から内圧制御による予熱操作は実施され
.プローブの降下動作はボーラスプラグ位置が溶鋼表面
下50〜I00++giとなった時点で停止されるが,
予熱操作はプローブ下降停止後も第4図に示すような予
め定めたプログラムによって進められ,所定温度まで加
熱される.予熱操作は第4図に示すパターン(加圧二W
l磁切換弁20通電:l1−17接続),(減圧:20
非通電:11−14接続)で電磁切換弁20の切換えが
自動的に行なわれる.該パターンの「加圧」のとき、ガ
ス回収プローブ1の下開口からプローブ1の内空間に入
っていた溶鋼は、高圧不活性ガスボンベ17から供給さ
れる高圧ガスにより押し下げられて大部分がプローブ1
から出る.次の「低圧」のときには、電磁切換弁20が
ボンベl7から遮断されてガス分析装[14に接続され
るので,プローブ1の内空間のガスが分析装置14に抜
けて低圧となるので,溶#jI2がプローブ1に侵入す
る.このようにして、プローブ1の下開口で溶鋼がプロ
ーブ1から出て入りまた出て入るという出入を繰返す.
この繰返しにより、プローブlの内空間および下開口部
で溶鋼は凝固せず、溶鋼の熱によりプローブ1の内面及
び下開口部が次第に加熱される。
Next, referring to FIG. 1 again, the procedure for measuring the hydrogen concentration of molten fR2 will be explained. When measuring the hydrogen concentration in 1jl2, the gas recovery probe 1 is attached to the probe holder 6 in the upper retracted position of the elevator I2!7, and the power switch of the swing controller 21 is turned on. This swing controller 2l has a structure as shown in FIG. Pressure for preheating/
Set the decompression pattern using operator input as described above. Inert gas blowing flow is controlled by flow control valve 16.
This gas is set at approximately m Q / mjn and is kept flowing at all times to prevent clogging of the bolus plug and to eliminate residual air within the probe. Further, the flow rate control valve 18 is set to a flow j1 (about 200/mj.n) that outputs a pressure corresponding to a depth of about 1001 or more in the molten steel. In this state, the swing controller 1-roller 21 de-energizes the 5 electromagnetic switching valve 20, turns on the pressure reduction indicator light 31 and the end indicator light 35, and the display 24 shows OOO. Next, while blowing inert gas through bolus plug 5. Gas recovery professional. - probe holder 6 equipped with probe 1;
is lowered by operating the lifting device 7, and immediately before or after the lower end of the probe 1 reaches the molten steel surface, the swing controller 21 is lowered.
Press the start key STA of the key switch 22. At this time, the probe 1 continues to descend slowly, and molten steel has not yet entered the probe. Therefore, a preheating operation using internal pressure control was performed during the probe's descent. The lowering operation of the probe is stopped when the bolus plug position reaches 50 to I00++ gi below the surface of the molten steel.
Even after the probe stops descending, the preheating operation continues according to a predetermined program as shown in Figure 4, and the probe is heated to a predetermined temperature. The preheating operation is carried out in the pattern shown in Fig.
l Magnetic switching valve 20 energization: l1-17 connection), (pressure reduction: 20
(De-energized: 11-14 connected), the solenoid switching valve 20 is automatically switched. During the "pressurization" of this pattern, the molten steel that had entered the inner space of the probe 1 from the lower opening of the gas recovery probe 1 was pushed down by the high pressure gas supplied from the high pressure inert gas cylinder 17, and most of it was absorbed into the probe 1.
Get out of. At the next "low pressure", the electromagnetic switching valve 20 is shut off from the cylinder 17 and connected to the gas analyzer [14], so the gas in the inner space of the probe 1 escapes to the analyzer 14 and becomes low pressure, so the solution #jI2 invades probe 1. In this way, the molten steel repeatedly enters and exits from the probe 1 through the lower opening of the probe 1, enters the probe 1, exits and enters the probe 1 again.
By repeating this process, the molten steel does not solidify in the inner space and lower opening of the probe 1, and the inner surface and lower opening of the probe 1 are gradually heated by the heat of the molten steel.

この加熱の間揺動コントローラ2lにおいて揺動表示灯
33が点灯しており、かつ,溶鋼がプローブ1の下関口
から外に出る時点には加圧表示灯29が点灯し,溶鋼が
プローブ1の内空間に入る時点には減圧表示灯が点灯す
る.ディスプレイ24は、秒単位で.スタートキーST
Aが押さ九てから(予熱開始から)の経過時間を表示す
る.第4図に示すようなパターンを揺動コントローラ2
1に設定しているときには.スタートキーSTAを押し
てから52秒が経過した時点に、揺動コントローラ21
が電磁切換弁20を11−14接続に戻し、減圧表示灯
31を点灯しかつ終了表示灯35を点灯する.計時を停
止するのでディスプレイ24の表示は、52(秒)で停
止する.終了表示灯35が点灯すると分析装1iql4
に接統するデータ処理装置l5が測定を開始し,常時吹
き込み状態になっている不活性ガスが回収して送られて
くる水素分析がσa始される.〔発明の効果〕 以上の通り,本発明によれば,ガス日収プローブ1内で
溶鋼が交互に上昇/降下して、ガス回収プローブ1内の
溶鋼の凝固が阻止されると共に、溶鋼によってガス回収
プローブ1が加熱され,溶謂を交互に上昇/降下してい
る間にガス回収ブロ一ブ!の内面温度が短時間で上昇す
る.したがって,ガス回収プローブ1の温度が,溶清の
凝固を生じない温度になるまで,ガス回収プローブ1内
での不活性ガスの昇圧と降圧を繰り返せばよく,溶鋼に
浸漬されたガス回収プローブ1内に溶鋼の凝固を生じな
い. ガス回収プローブIは,溶鋼に浸漬するために昇降装禮
6に装着するとき格別に高い予熱を要し,ないので.装
若作業が容易である.また,予め加熱するための電気炉
等の高価で大型の設備を必要としなくなった.上述の昇
圧と降圧の交互繰り返しは、ガス回収プローブIの不活
性ガス供給路10又はガス日収路11に切換弁などの弁
装首20を介挿してこれによりガス供給路】O又はガス
回収路11を交互に高圧ガス路17と低圧ガス路[4に
切換え接続することにより実施でき.このような付加装
鍔は比較的容易である.
During this heating, the swing indicator light 33 in the swing controller 2l is lit, and when the molten steel exits from the Shimonoseki entrance of the probe 1, the pressurization indicator light 29 lights, and the molten steel is turned on at the probe 1. The decompression indicator light lights up when entering the interior space. The display 24 shows the seconds. Start key ST
Displays the elapsed time since A was pressed (from the start of preheating). The swing controller 2
When set to 1. When 52 seconds have elapsed since the start key STA was pressed, the rocking controller 21
returns the electromagnetic switching valve 20 to the 11-14 connection, turns on the pressure reduction indicator lamp 31, and turns on the end indicator lamp 35. Since the time measurement is stopped, the display on the display 24 stops at 52 (seconds). When the completion indicator light 35 lights up, the analyzer 1iql4
The data processing device 15 connected to the system starts measurement, and the hydrogen analysis, in which the inert gas that is constantly being blown in is recovered and sent, begins at σa. [Effects of the Invention] As described above, according to the present invention, the molten steel alternately rises and falls within the gas daily income probe 1, and solidification of the molten steel within the gas recovery probe 1 is prevented, and the molten steel causes the gas to rise and fall. While the recovery probe 1 is heated and alternately ascending and descending, the gas recovery blow! The internal temperature increases in a short period of time. Therefore, it is sufficient to repeat the pressure increase and decrease of the inert gas within the gas recovery probe 1 until the temperature of the gas recovery probe 1 reaches a temperature that does not cause solidification of the molten steel. No solidification of molten steel occurs inside the steel. The gas recovery probe I requires a particularly high preheating time when attached to the lifting gear 6 in order to be immersed in molten steel. The rejuvenation work is easy. Additionally, expensive and large equipment such as electric furnaces for preheating is no longer required. The above-mentioned pressure increase and pressure decrease can be repeated alternately by inserting a valve neck 20 such as a switching valve into the inert gas supply path 10 or the gas daily intake path 11 of the gas recovery probe I. This can be carried out by alternately connecting the line 11 to the high pressure gas line 17 and the low pressure gas line [4]. Adding such an additional tsuba is relatively easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は,本発明を一態様で実施する装匿構成を示すブ
ロック図である. 第2図は、第1図に示す揺動コントローラ2lの楕成を
示すブロック図である. 第3図は,第2図に示すマイクロプロセッサCPU26
のftiNH動作を示すフローチャートである. 第4図は、第1図に示すガス回収プローブ1内で溶鋼を
昇降させる加圧/wc圧パターンの一例を示すタイムチ
ャートである. 1:ガス回収プローブ     2:溶鋼3:容器  
        4:吹込み管5;ボーラスブラグ  
    6:プローブ保持具7:昇降装li!f8:不
活性ガスボンベ9:除湿FJ10:配管
FIG. 1 is a block diagram showing a concealing configuration that implements one aspect of the present invention. FIG. 2 is a block diagram showing the structure of the swing controller 2l shown in FIG. 1. Figure 3 shows the microprocessor CPU26 shown in Figure 2.
2 is a flowchart showing the ftiNH operation of . FIG. 4 is a time chart showing an example of the pressurization/wc pressure pattern for raising and lowering molten steel within the gas recovery probe 1 shown in FIG. 1: Gas recovery probe 2: Molten steel 3: Container
4: Insufflation tube 5; Bolus plug
6: Probe holder 7: Elevating device li! f8: Inert gas cylinder 9: Dehumidification FJ10: Piping

Claims (1)

【特許請求の範囲】 下端が開口したガス回収プローブを溶鋼中に浸漬し該プ
ローブ内の溶鋼中に不活性ガスを吹込み、溶鋼より浮上
したガスをガス分析装置に送ってガス含有成分を分析す
る、溶鋼中ガス成分の定量において、 前記ガス回収プローブを溶鋼中に浸漬するとき、該ガス
回収プローブに高圧不活性ガスを供給してガス回収プロ
ーブ内の溶鋼レベルを降下させ次いで供給圧を下げてガ
ス回収プローブ内の溶鋼レベルを高め、これらを交互に
繰り返してガス回収プローブを予熱することを特徴とす
る、溶鋼中ガス成分定量用ガス採取方法。
[Claims] A gas recovery probe with an open bottom end is immersed in molten steel, inert gas is blown into the molten steel within the probe, and the gas that floats up from the molten steel is sent to a gas analyzer to analyze the gas-containing components. In the determination of gas components in molten steel, when the gas recovery probe is immersed in molten steel, a high-pressure inert gas is supplied to the gas recovery probe to lower the molten steel level in the gas recovery probe, and then the supply pressure is lowered. A gas sampling method for quantifying gas components in molten steel, characterized in that the level of molten steel in the gas recovery probe is raised by heating the gas recovery probe, and these steps are repeated alternately to preheat the gas recovery probe.
JP1054339A 1989-03-07 1989-03-07 Gas sampling for determining gas component in molten steel Pending JPH02232546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1054339A JPH02232546A (en) 1989-03-07 1989-03-07 Gas sampling for determining gas component in molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1054339A JPH02232546A (en) 1989-03-07 1989-03-07 Gas sampling for determining gas component in molten steel

Publications (1)

Publication Number Publication Date
JPH02232546A true JPH02232546A (en) 1990-09-14

Family

ID=12967849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1054339A Pending JPH02232546A (en) 1989-03-07 1989-03-07 Gas sampling for determining gas component in molten steel

Country Status (1)

Country Link
JP (1) JPH02232546A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129346A (en) * 1982-01-29 1983-08-02 Hitachi Ltd Quantitative determining method for gas in fused metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129346A (en) * 1982-01-29 1983-08-02 Hitachi Ltd Quantitative determining method for gas in fused metal

Similar Documents

Publication Publication Date Title
CN107966398B (en) Test device for simulating high-temperature corrosion
CN101424635A (en) Aurum element analyzing and detecting method in smelting material
US5522915A (en) Method and apparatus for sequentially and continuously determining concentrations of carbon, hydrogen, and nitrogen in molten steel, and method and apparatus for rapidly determining trace amounts of carbon in molten steel
DE50202257D1 (en) Method and apparatus for melting aluminum scrap
JPH02232546A (en) Gas sampling for determining gas component in molten steel
CN109507173A (en) A kind of continuous testing and analysis system of LF refining furnace molten steel composition
CN103163092B (en) Method for rapidly determining gold in lead concentrate by flame atomic absorption spectrometry
EP0305875A3 (en) Device for cryogenic enrichment of traces in gases
JP2010151499A (en) Mercury analyzer and method of analyzing mercury
JP5585173B2 (en) Total organic carbon measuring device
CN210775371U (en) Novel cupellation furnace for simultaneously and efficiently detecting gold and silver samples by fire assaying method
JP3197501U (en) Analyzer with calendar schedule function
US6180069B1 (en) Cleaning system and method for cleaning a flow restrictor in a supercritical fluid extraction system
Matsuura et al. Development of the oxygen blast furnace process
JPH06347442A (en) Measuring device for oxygen activity in molten material and measuring method employing the device
JP3377229B2 (en) Atmosphere gas filter regeneration method for soldering
JPH10123122A (en) Sample supply device for carbon/sulfur analysing device
JP2002228506A (en) Flowmeter and recovery time period displaying/ controlling method
JPH09243627A (en) Exhalation analyser
SU125264A1 (en) The method of control and regulation of the converter steel-making process
JPH11201963A (en) Method and apparatus for analysis of oxygen by kind of oxides or of oxides in sample to be analyzed
JPH07120363A (en) Method and apparatus for direct analysis of gas component in molten steel
JPS5838132A (en) Method of displaying error of injection molder
CN116626237A (en) Iron ore circulating hydrogen-rich reduction and molten drop process H 2 Utilization rate detection method and system
CN2341995Y (en) Automatic controller for gas cement carbon furnace concentration of chemical heat treatment