JPS63960A - Organic electrolyte cell - Google Patents

Organic electrolyte cell

Info

Publication number
JPS63960A
JPS63960A JP14196986A JP14196986A JPS63960A JP S63960 A JPS63960 A JP S63960A JP 14196986 A JP14196986 A JP 14196986A JP 14196986 A JP14196986 A JP 14196986A JP S63960 A JPS63960 A JP S63960A
Authority
JP
Japan
Prior art keywords
positive electrode
mixture
graphite
manganese dioxide
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14196986A
Other languages
Japanese (ja)
Inventor
Hisaaki Otsuka
大塚 央陽
Mitsuru Namihana
浪花 満
Junko Komatsu
小松 准子
Hirofumi Oishi
大石 裕文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14196986A priority Critical patent/JPS63960A/en
Publication of JPS63960A publication Critical patent/JPS63960A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the positive electrode filler capacity and to improve the discharge property, by adding a specific amount of a conductive material of a mixture of graphite and a carbon black to manganese dioxide in order to produce a positive electrode for an organic electrolyte cell. CONSTITUTION:To 100 wt part of manganese dioxide as an active substance, a mixture of 2 to 5 wt part of a carbon black such as Ketjen black and 1 to 5 wt part of graphite is added, and moreover, a binder is added to produce a positive electrode composite. Then it is spread to a collector 1' consisting of an expanding metal such as titanium to form a positive electrode 1. The positive electrodes 1 are combined with negative electrodes 2 with a light metal such as lithium as the active substance, separators 4, and an organic solution,to compose anorganic electrolyte cell. Therefore, as well as the filler density of the active substance is increased, the inner resistance is reduced and the cell property can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、二酸化マンガンからなる正極活物質と、リチ
ウム,ナトリウムなどの軽金属から選択した負極活物質
と、有機電解液とからなる有機電解液電池に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an organic electrolyte battery comprising a positive electrode active material made of manganese dioxide, a negative electrode active material selected from light metals such as lithium and sodium, and an organic electrolyte. It is something.

従来の技術 一般に有機電解液電池は、高エネルギー密度を有し、漏
液しにクク、貯蔵性K優れるなど多くの長所を有するた
め、他の系の電池に代わり、OA機器や、カメラなどの
精密機器の電源として、現在広く用いられている。
Conventional technology In general, organic electrolyte batteries have many advantages such as high energy density, resistance to leakage, and excellent storage performance, so they are used in OA equipment, cameras, etc. instead of other types of batteries. It is currently widely used as a power source for precision equipment.

この種の電池の負極活物質として、一般に金属リチウム
が広く用いられる。又電解液には、γ−プチロラクトン
,1,2−ジメトキシエタン,ジオキソラン,プロピレ
ンカーボネイトなどの群から一種類あるいは、二種類以
上を選択して混合した液に、導電性を付与するために、
過塩素酸リチウム,ホウフソ化リチウムなどを溶解した
ものを使用する。又、正極活物質としては、二酸化マン
ガンなどの金属酸化物や、フフ化黒鉛などのハロゲン化
物が用いられる。
Metallic lithium is generally widely used as the negative electrode active material for this type of battery. In addition, in order to impart conductivity to the electrolytic solution, one type or a mixture of two or more types selected from the group such as γ-butyrolactone, 1,2-dimethoxyethane, dioxolane, propylene carbonate, etc.
Use a solution of lithium perchlorate, lithium borofluoride, etc. Further, as the positive electrode active material, metal oxides such as manganese dioxide and halides such as fluorinated graphite are used.

最近では二酸化マンガンリテウム電池が注目を集めてい
る。正極活物質に二酸化マンガンを使用した場合、リチ
ウム電池の特徴である、高電圧,耐漏液性などを保持し
、低温性能を大幅に改善することができる。
Recently, manganese dioxide lithium batteries have been attracting attention. When manganese dioxide is used as the positive electrode active material, it is possible to maintain the characteristics of lithium batteries, such as high voltage and leakage resistance, and to significantly improve low-temperature performance.

従来、二酸化マンガンリチウム電池の正極構成方法とし
ては次の方法が一般的である。
Conventionally, the following method has been commonly used to construct the positive electrode of a lithium manganese dioxide battery.

二酸化マンガンの粉末に、導電性を付与するために炭素
粉末を混合し、結着剤として、ポリ47ッ化エチレンな
どを加えて混練し、この混合物(以降合剤と称する)を
加圧成形するか、あるいは集電体兼用の金属基板上に塗
着し、乾燥後圧延を施すなどの加工をして、使用してい
たO発明が解決しようとする問題点 こうした正極構成法においては、用いられる炭素粉末の
種類や、正極形成体中の含有量が、電池性能はもとより
、製造工程ならびに、加工性など知多犬の影響を及ぼす
0導電材料として使用する炭素粉末としては、カーボン
プラックがよく用いられる。使用される理由としては、
製造後の正極板がしなやかであり、加工性K優れること
、又、カーボンブラノクの表面積が500〜1ooom
”/yあり、二酸化マンガン粒子としての接触面積が広
く、放電時の反応が進行しやすく、活物質の利用率を上
げるためである〇一方、合剤を金属基板上に塗着するか
、又は充填を行う場合や、極板の圧延時において、カー
ボンブランクの嵩密度が小さいために合剤の充填密度が
低くなシ、正味の活物質の量が少なくなるという欠点を
有する0更に、極板に圧延をかけた際、カーボンプラス
クを用いると、そのすべりにより極板がふくらみやすく
、所定の厚み寸法を維持するためには、多量の結着剤を
混入せねばならず、電池特性の低下をまねくという欠点
も有する。
Carbon powder is mixed with manganese dioxide powder in order to impart conductivity, and poly(47-ethylene chloride) is added as a binder and kneaded, and this mixture (hereinafter referred to as the mixture) is press-molded. Or, it is applied on a metal substrate that also serves as a current collector, and processed by rolling after drying. The type of carbon powder and the content in the positive electrode forming body affect not only battery performance but also the manufacturing process and processability. Carbon plaque is often used as a carbon powder used as a conductive material. . The reason it is used is
The positive electrode plate after manufacturing is flexible and has excellent workability, and the surface area of the carbon blank is 500 to 1000.
”/y, the contact area as manganese dioxide particles is large, the reaction during discharge is easy to proceed, and the utilization rate of the active material is increased.On the other hand, whether the mixture is applied on the metal substrate or In addition, when filling or rolling the electrode plate, the packing density of the mixture is low due to the small bulk density of the carbon blank, and the net amount of active material is reduced. When carbon plastic is used to roll a plate, the plate tends to swell due to slippage, and in order to maintain the specified thickness, a large amount of binder must be mixed in, which may affect battery characteristics. It also has the disadvantage of causing a decline.

以上のようなカーボンプラックを導電材料として用いた
場合の短所を改善するためには、限られた体積の正極板
内に、より多くの活物質を確保できる物性を備え、放電
反応に有利な表面積の犬なる導電材料があれば、好都合
である。しかしながら、これらの特徴を兼ね備えた導電
材料として、工業的に実用化されたものは、今だ見い出
されておらず、導電材料の選択および使用法は、正極構
成上の大きな問題点であった。
In order to improve the above-mentioned disadvantages of using carbon plaque as a conductive material, it is necessary to create a carbon plaque that has physical properties that can secure more active material within the limited volume of the positive electrode plate and a surface area that is advantageous for discharge reactions. It would be advantageous if there were a conductive material that could be used. However, an industrially practical conductive material that has both of these characteristics has not yet been found, and the selection and usage of the conductive material have been major problems in the construction of positive electrodes.

本発明は、前記問題点を解決するもので、正極合剤の充
填密度を上げ、活物質の正味の充填容量を増加させると
ともに、正極板の内部抵抗を低下させて電池の放電特性
を向上させることを目的とする。
The present invention solves the above problems by increasing the packing density of the positive electrode mixture, increasing the net filling capacity of the active material, and lowering the internal resistance of the positive electrode plate to improve the discharge characteristics of the battery. The purpose is to

問題点を解決するだめの手段 本発明は、前記目的を達成するため、リチウムなどの軽
金属を活物質とする負極と、有機電解液と、二酸化マン
ガンを活物質とする正極を用い、正極の導電材料として
炭素粉末、および結着剤の混合物をそれぞれ用いた有機
電解液電池において、正極合剤の導電材料として、グラ
フ7イトとケツチェンブラックもしくは、アセチレンブ
ラックなどのカーボンプラックとを混合して用いたこと
を特徴とするものである。
Means to Solve the Problems In order to achieve the above object, the present invention uses a negative electrode made of a light metal such as lithium as an active material, an organic electrolyte, and a positive electrode made of manganese dioxide as an active material, and improves the conductivity of the positive electrode. In an organic electrolyte battery that uses a mixture of carbon powder and a binder as materials, a mixture of graphite and carbon plaque such as Ketschen black or acetylene black can be used as the conductive material for the positive electrode mixture. It is characterized by the fact that

作   用 このように混合した導電材料(以降、混合導電材料と呼
ぶ)を用いることによって、正極合剤の充填容量の増加
が可能となり、極板の加工も容易となり、合剤の比抵抗
を低減させることができる。
Function: By using a conductive material mixed in this manner (hereinafter referred to as a mixed conductive material), it is possible to increase the filling capacity of the positive electrode mixture, facilitate the processing of the electrode plate, and reduce the specific resistance of the mixture. can be done.

そのため、電池を構成する際極板の巻回を容易にし、更
に電池の放電特性を向上させることができるものである
Therefore, when constructing a battery, it is possible to easily wind the electrode plate and further improve the discharge characteristics of the battery.

実施例 以下、一実施例をあげて、本発明を詳しく説明する。第
1図中、1は正極で、チタンのエキスノくンドメタルよ
りなる集電体1′に正極合剤を塗着したものである。
EXAMPLE Hereinafter, the present invention will be explained in detail by way of an example. In FIG. 1, reference numeral 1 denotes a positive electrode, which is made by applying a positive electrode mixture to a current collector 1' made of titanium xeno-kunded metal.

正極合剤の組成としては、活物質であるβ型二酸化マン
ガン10Q重量部に対して、導電材料として、ケッチェ
ンブラックを4重量部、グラファイトを3重量部を加え
てよく混合し、さらに結着剤としてポリ4フソ化エチレ
ンを固形分で5重量部を加えて混線を施したものを用い
た。その後、チタンのエキスバンドメタルに塗着し、乾
燥後、圧延し、所要寸法に切断したものを正極板とする
The composition of the positive electrode mixture is as follows: To 10Q parts by weight of β-type manganese dioxide, which is an active material, 4 parts by weight of Ketjen Black and 3 parts by weight of graphite are added as conductive materials, and then mixed well. As an agent, 5 parts by weight of polytetrafluorinated ethylene was added as a solid content to cross-wire. Thereafter, it is applied to expanded titanium metal, dried, rolled, and cut into required dimensions to form a positive electrode plate.

又、2は負極活物質をなす金属リチウムで、その片面に
はニソケルからなる集電体が圧入されていて、ニノケル
の集電体から突出したリード部2′が、鉄にニノケルメ
ソキを施した電池ケース3に溶接されている。
In addition, 2 is metallic lithium which forms the negative electrode active material, and a current collector made of Ni-Kel is press-fitted into one side of it, and the lead part 2' protruding from the Ni-Kel-Meso-K is a battery made of iron with Ni-Kel Meso-K. Welded to case 3.

前記の正極1および負極2は両者間に、ポリプロピレン
の不織布からなるセバレータ4を介在して全体が渦巻状
に巻回され、電池ケース3に収納されている。5はチタ
/よりなる正極リードで、その一端は正極1のチタンか
らなる集電体1′に溶接されて一体化されており、又そ
の他端はポリプロピレンからなる封口板6の下面中央に
、アノレミリベノト7で固定されたチタンワクシャー8
に溶接されている。9は封口板6の上面にリベント7の
かしめ部により固定されたチタンワツシャーで、その周
縁には、正極端子をなすキャップ10がリベットをとり
囲むように溶接されている。11は底部絶縁リング、1
2は上部絶縁リングである0また、電解液として、有機
溶媒のプロピレンカーボネイトとジメトキシエタンを体
積比1:1で混合した混合有機溶媒に、電解質として0
.5モル/lの過塩素酸リチウムを溶解したものを使用
した。
The positive electrode 1 and the negative electrode 2 are wound together in a spiral shape with a separator 4 made of a nonwoven polypropylene fabric interposed therebetween, and are housed in a battery case 3. Reference numeral 5 denotes a positive electrode lead made of titanium, one end of which is welded and integrated with the current collector 1' made of titanium of the positive electrode 1, and the other end is attached to an anole millimeter at the center of the lower surface of the sealing plate 6 made of polypropylene. Titanium waxure 8 fixed with 7
is welded to. A titanium washer 9 is fixed to the upper surface of the sealing plate 6 by the caulking part of the rib vent 7, and a cap 10 forming a positive electrode terminal is welded to the periphery of the titanium washer so as to surround the rivet. 11 is the bottom insulation ring, 1
2 is the upper insulating ring 0 Also, as an electrolyte, a mixed organic solvent of organic solvent propylene carbonate and dimethoxyethane mixed at a volume ratio of 1:1 is used as an electrolyte.
.. A solution containing 5 mol/l of lithium perchlorate was used.

又、合剤の比抵抗および正極合剤への充填容量や充填密
度におよぼす混合導電材料の効果を調べる比較物として
、単独のグラフ7イトおよびケツチェンブランクをそれ
ぞれ導電材料とした合剤、すなわち、二酸化マンガン1
00重量部に対し、導電材料7重量部結着剤6重量部と
した合剤を用いて正極板を作成し、これで電池を構成し
た0作製した正極板は、混合導電材料,単独のグラファ
イト,ケッテエンブラックの各々を使用した場合につい
て、正極板上への合剤の充填密度,充填容量合剤の比抵
抗を比較した。
In addition, as a comparative material to investigate the effect of the mixed conductive material on the specific resistance of the mixture and the filling capacity and packing density of the positive electrode mixture, a mixture using a single graphite and a Ketschen blank as conductive materials, namely , manganese dioxide 1
A positive electrode plate was created using a mixture of 00 parts by weight, 7 parts by weight of the conductive material, and 6 parts by weight of the binder, and a battery was constructed with this mixture. , Ketteen Black were used, and the packing density of the mixture onto the positive electrode plate and the specific resistance of the filling capacity of the mixture were compared.

又、構成した電池は定抵抗放電を行って、放電特性を比
較した。これらの試験結果について以下に記述する。
Further, the constructed batteries were subjected to constant resistance discharge and the discharge characteristics were compared. The results of these tests are described below.

正極板の充填密度,ふくらみ,充填容量および合剤の比
抵抗の測定結果を表1に示す0表   1 ?1に示したように、混合導電材料を使用した合剤を充
填した極板は、充填密度,比抵抗ともに、単独のグラフ
7イトやケッテエンプラノクを使用した正極板の中間の
数値を示す0これは嵩の異なるグラフ7イトとケノチェ
ンブラックを混合して用いたため、両者の物性の特徴が
現われたものと推測できる。
Table 1 shows the measurement results of the filling density, swelling, filling capacity, and specific resistance of the positive electrode plate. As shown in Figure 1, the electrode plate filled with a mixture using a mixed conductive material has a filling density and specific resistance that are between the values of the positive electrode plate using a single graphite or Ketteemplanok. It can be inferred that because graph 7ite and Kenochen black, which have different bulks, were used in combination, the characteristics of the physical properties of both were exhibited.

次に、各導電材料を使用して構成した電池を■℃1KΩ
の定抵抗放電を行い、放電特性を比較した。その結果を
第2図に示す。図中Aは混合導電材料を使用して構成し
た電池、Bはグラフ7イトを導電材料として構成した電
池、Cはケノチェンブラソクを使用した電池である。こ
れらの電池の放電結果から計算した放電容量および正極
活物質の利用率を表2に示す。
Next, a battery constructed using each conductive material was
A constant resistance discharge was performed and the discharge characteristics were compared. The results are shown in FIG. In the figure, A is a battery constructed using a mixed conductive material, B is a battery constructed using graphite as the conductive material, and C is a battery constructed using Kenochen Blasok. Table 2 shows the discharge capacity and the utilization rate of the positive electrode active material calculated from the discharge results of these batteries.

表2に示したように、放電容量は混合導電材料使用の電
池Aが最も多く、以下電池C,Hの順に少なくなる。又
、正極活物質の利用率は、電池Aが72%と最も多く、
以下電池C,Bの順で減少する。
As shown in Table 2, battery A using a mixed conductive material has the highest discharge capacity, followed by batteries C and H, which decrease in that order. In addition, battery A had the highest utilization rate of the positive electrode active material at 72%.
The number decreases in the following order for batteries C and B.

すなわち、混合導電材料を用いることでグラフ7イトや
クノチェンブラックを単独で使用する場合よりも、正極
活物質の利用率を向上させることができる。
That is, by using the mixed conductive material, the utilization rate of the positive electrode active material can be improved more than when graphite or Kunochen black is used alone.

この現象は、混合導電材料中の表面積の大きなケッチェ
ンブラック粒子が、グラフ1イトの成形性を向上させる
働きのため、二酸化マンガン粒子と、より密接に接触し
、電池の放電反応を促進させるためと考えられる。
This phenomenon occurs because the Ketjen black particles with a large surface area in the mixed conductive material work to improve the formability of graphite, and come into closer contact with the manganese dioxide particles, promoting the discharge reaction of the battery. it is conceivable that.

以上の試験結果から、正極板に混合導電材料を用いる方
法は、電池の放電特性の向上に極めて有効なことは明ら
かである。
From the above test results, it is clear that the method of using a mixed conductive material in the positive electrode plate is extremely effective in improving the discharge characteristics of the battery.

又、導電材料の合剤中での混入割合については、グラフ
ァイトが1〜5重量チ,カーボンプラックが2〜5重量
チの割合が適当である。すなわちグラファイトの混入割
合を6重量部以上とし、更にケッチェンブラックを5重
量部混入した場合、合剤の充填密度、および極板の構成
例に示した形状における充填容量は減少する。一方、グ
ラファイトを1重量部未満とし、更にケッチェンブラッ
クを2重量部とした場合、グラファイトの混入効果は得
られなくなり、形成した正極板のふくらみを抑制できな
くなる。又、充填密度,充填容量ともに減少する。更に
ケッチェンブラックの混入量の減少から、極板のしなや
かさ等の加工性も失われる。
Regarding the mixing ratio of the conductive materials in the mixture, it is appropriate that graphite be mixed in a proportion of 1 to 5% by weight, and carbon plaque be mixed in a proportion of 2 to 5% by weight. That is, when the mixing ratio of graphite is 6 parts by weight or more and 5 parts by weight of Ketjenblack is further mixed, the packing density of the mixture and the filling capacity in the shape shown in the configuration example of the electrode plate decrease. On the other hand, if the graphite content is less than 1 part by weight and the Ketjenblack content is 2 parts by weight, the effect of graphite inclusion cannot be obtained and the bulge of the formed positive electrode plate cannot be suppressed. Also, both the packing density and the filling capacity decrease. Furthermore, due to the decrease in the amount of Ketjen black mixed in, the workability such as flexibility of the electrode plate is also lost.

これらの結果を表3に示す。These results are shown in Table 3.

発明の効果 以上のように、正極活物質としてβ型二酸化マンガンを
用い、負極活物質として金属リチウムを使用する二酸化
マンガンリチウム電池において、正極導電材料としてグ
ラフ7イトと男−ボンプラソクとの混合物を用いる本発
明は、電池の正極充填容量を増し、極板の加工性を向上
させるとともに放電特性向上に大なる効果を得ることが
できる。
Effects of the Invention As described above, in a lithium manganese dioxide battery that uses β-type manganese dioxide as a positive electrode active material and metallic lithium as a negative electrode active material, a mixture of Graph 7ite and O-bonprasok is used as a positive electrode conductive material. The present invention can increase the filling capacity of the positive electrode of the battery, improve the workability of the electrode plate, and have great effects on improving the discharge characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における有機電解液電池の断
面図、第2図は同電池の放電特性を示す図である。 1・・・・・・正極、1′・・・・・・正極集電体、2
・・・・・・負極リチウムシ一ト、3・・・・・金属ケ
ース、4・・・・・・セバレータ、6・・・・・・正極
リード、6・・・・・・樹脂封口板、7・・・・・・ア
ルミリベット、8・・・・・・チタンワッシャー、9・
・・・・鉄ワノシャー、10・・・・・・キャップ、1
1・・・・・・底部絶縁リング、12・・・・・・上部
絶縁リング。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名イ゜
一正本i
FIG. 1 is a sectional view of an organic electrolyte battery according to an embodiment of the present invention, and FIG. 2 is a diagram showing the discharge characteristics of the battery. 1...Positive electrode, 1'...Positive electrode current collector, 2
...Negative electrode lithium sheet, 3...Metal case, 4...Separator, 6...Positive electrode lead, 6...Resin sealing plate, 7...Aluminum rivet, 8...Titanium washer, 9.
...Tetsu Wanosha, 10...Cap, 1
1...Bottom insulating ring, 12...Top insulating ring. Name of agent: Patent attorney Toshio Nakao and one other person

Claims (2)

【特許請求の範囲】[Claims] (1)軽金属を活性質とする負極と、二酸化マンガンを
活性質とする正極と、有機電解液とからなり、上記正極
に、導電材料として、グラファイトとカーボンブラック
との混合物を使用することを特徴とした有機電解液電池
(1) Consisting of a negative electrode containing a light metal as an active substance, a positive electrode containing manganese dioxide as an active substance, and an organic electrolyte, the positive electrode is characterized by using a mixture of graphite and carbon black as a conductive material. Organic electrolyte battery.
(2)正極の合剤混合割合が、二酸化マンガン100重
量部に対し、グラファイトが1〜5重量部、カーボンブ
ラックが2〜5重量部である特許請求の範囲第1項記載
の有機電解液電池。
(2) The organic electrolyte battery according to claim 1, wherein the mixture ratio of the positive electrode mixture is 1 to 5 parts by weight of graphite and 2 to 5 parts by weight of carbon black to 100 parts by weight of manganese dioxide. .
JP14196986A 1986-06-18 1986-06-18 Organic electrolyte cell Pending JPS63960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14196986A JPS63960A (en) 1986-06-18 1986-06-18 Organic electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14196986A JPS63960A (en) 1986-06-18 1986-06-18 Organic electrolyte cell

Publications (1)

Publication Number Publication Date
JPS63960A true JPS63960A (en) 1988-01-05

Family

ID=15304336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14196986A Pending JPS63960A (en) 1986-06-18 1986-06-18 Organic electrolyte cell

Country Status (1)

Country Link
JP (1) JPS63960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120537C (en) * 1997-03-11 2003-09-03 松下电器产业株式会社 Secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120537C (en) * 1997-03-11 2003-09-03 松下电器产业株式会社 Secondary battery

Similar Documents

Publication Publication Date Title
WO1998040923A1 (en) Nonaqueous electrolyte battery and charging method therefor
JPH0487156A (en) Nonaqueous electrolyte battery
JP2013254647A (en) Lithium ion-lithium air composite secondary battery, charging/discharging method using the same, and cathode material for lithium ion-lithium air composite secondary battery
JP7109094B2 (en) Positive electrode active material for magnesium secondary battery, method for producing the same, and magnesium secondary battery
JP2001307735A (en) Lithium secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
JP2000294294A (en) Nonaqueous electrolyte secondary battery
JPS63960A (en) Organic electrolyte cell
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JP3451602B2 (en) Non-aqueous electrolyte battery
JP2014175243A (en) Sodium secondary battery
JP3273569B2 (en) Lithium battery
JPH02239572A (en) Polyaniline battery
JP3008627B2 (en) Non-aqueous electrolyte secondary battery
JP3968248B2 (en) Aluminum battery
JP3494400B2 (en) Lithium secondary battery
JP2797528B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2000036302A (en) Organic electrolyte battery
JPH0494066A (en) Organic electrolyte battery
JP2703338B2 (en) Non-aqueous electrolyte battery
JPS614170A (en) Nonaqueous electrolyte secondary battery
JP2003178753A (en) Lithium battery
JP2002343413A (en) Seal type lead-acid battery