JPS6395919A - Method and device for injection molding - Google Patents

Method and device for injection molding

Info

Publication number
JPS6395919A
JPS6395919A JP24347886A JP24347886A JPS6395919A JP S6395919 A JPS6395919 A JP S6395919A JP 24347886 A JP24347886 A JP 24347886A JP 24347886 A JP24347886 A JP 24347886A JP S6395919 A JPS6395919 A JP S6395919A
Authority
JP
Japan
Prior art keywords
cavity
temperature
mold
cooling
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24347886A
Other languages
Japanese (ja)
Other versions
JPH066304B2 (en
Inventor
Koji Kubota
浩司 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61243478A priority Critical patent/JPH066304B2/en
Publication of JPS6395919A publication Critical patent/JPS6395919A/en
Publication of JPH066304B2 publication Critical patent/JPH066304B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To control temperature in a cavity locally in a short period of time and prevent a molded form from generating deformation, crack or the like, by a method wherein a magnetic body, constituting the cavity of a mold, is equipped with a temperature detector and a temperature control mechanism. CONSTITUTION:Molds are opened and a mold temperature regulator 17 is operated by a sequencer 24 to start the rising of the surface temperature of the cavity of a mold 10. Eddy current is generated in the magnetic bodies 11a-11d of the cavity by electromagnetic induction whereby Joule's heat is generated and only the magnetic bodies 11a-11d are heated. When the surface temperature of the cavity has arrived at a set temperature Test, the molds are closed and injection process is started. During this period, the surface temperature of the cavity is held at a set value by a control mechanism. After finishing the injection process, the conduction of high frequency wave is stopped by the command of the sequencer 24 and cooling water is introduced into the mold 10 by a mold cooling water supply on-off valve 25. Heating and cooling can be controlled quickly in only a part of the cavity whereby a molding time may be shortened and the deformation or the like of a molded form due to faulty cooling may be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は射出成形機における射出成形方法及び装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an injection molding method and apparatus for an injection molding machine.

(従来の技術) 金型のキャビティに溶融樹脂を射出する射出成形方法に
おいて溶融樹脂がキャビティ内流動をすると金型に冷却
されて粘度が高くなり、流動性の著しく悪い層(スキン
層と呼ばれる)が生じる。これによりキャビティ表面か
らの転写性が悪くなったり、フローマーク、ウェルドラ
イン等の成形不良を生じやすくなる。
(Prior art) In an injection molding method in which molten resin is injected into a mold cavity, when the molten resin flows within the cavity, it is cooled by the mold and becomes highly viscous, creating a layer with extremely poor fluidity (called a skin layer). occurs. As a result, transferability from the cavity surface deteriorates, and molding defects such as flow marks and weld lines are likely to occur.

その対策としてキャビティ表面を樹脂の軟化温度以上に
高周波誘導加熱してから後、射出成形する方法(例えば
特公昭58−40504号公報)が提案されている。
As a countermeasure against this problem, a method has been proposed in which the cavity surface is heated by high frequency induction to a temperature higher than the softening temperature of the resin and then injection molded (for example, Japanese Patent Publication No. 58-40504).

第4図に示す様に金型1の固定側と18と可動側1bの
間に、図示しない工業用ロボ・ノドにより移動される高
周波誘導加熱コイル2を設置する。
As shown in FIG. 4, a high-frequency induction heating coil 2 is installed between the fixed side 18 and the movable side 1b of the mold 1, which is moved by an industrial robot throat (not shown).

コイル2は、直径3鶴の鋼管を5 +u間隔で渦巻き状
に皿形状に沿わせて型づくりし、それを3個の厚さにな
る様にエポキシ樹脂で注型し、平板状に固定固化形成さ
れたものである。
Coil 2 is made by making a spiral mold of a steel tube with a diameter of 3 mm along the dish shape at 5 mm intervals, then casting it with epoxy resin to a thickness of 3 pieces, and fixing and solidifying it into a flat plate. It was formed.

射出成形において、成形品取り出し後の型開きで、図示
しない工業用ロボットによりコイル2を下げて固定側1
aと可動側1bとの間に挟みこみ、そのままの状態で高
周波を通電してキャビティ表面1cを加熱させる。この
時金型1に冷却水は通水していない。
In injection molding, when the mold is opened after taking out the molded product, an industrial robot (not shown) lowers the coil 2 and fixes the fixed side 1.
a and the movable side 1b, and in that state, a high frequency current is applied to heat the cavity surface 1c. At this time, cooling water is not flowing through the mold 1.

この金型の温度の測定例を第5図に示す(金型表面のA
点やB点のみ急激に昇温し、金型内部の0点1 B点は
高周波誘導加熱によっては温度の上昇がほとんどない)
。しかるのち金型1を一度開き、コイル2を固定側1a
及び可動側1bの間より抜き出し、再度金型1を閉じて
通常の射出成形と同様に充填工程、保圧工程からなる射
出工程、金型1に冷却水を通水して冷却する冷却工程を
行なう。
An example of measuring the temperature of this mold is shown in Fig. 5 (A of the mold surface
Only the points 0 and 1 and B rise rapidly, and the temperature at points 0 and 1 inside the mold hardly rises due to high-frequency induction heating.)
. Afterwards, open the mold 1 once and place the coil 2 on the fixed side 1a.
and the movable side 1b, the mold 1 is closed again, and the injection process consisting of the filling process and the pressure holding process is carried out in the same way as normal injection molding, and the cooling process of passing cooling water through the mold 1 to cool it. Let's do it.

以上により、キャビティ表面が樹脂の軟化温度以上に加
熱された後射出されるので、キャビティ表面にスキン層
が生じにくくなり、転写性を著しく向上し、フローマー
ク、ウェルドライン等の成形不良が解決できる。
As described above, injection is performed after the cavity surface is heated above the softening temperature of the resin, making it difficult to form a skin layer on the cavity surface, significantly improving transferability, and solving molding defects such as flow marks and weld lines. .

(発明が解決しようとする問題点) キャビティの形状が複雑な場合、その形状を完全に転写
したコイルを作るのが困難となり、コイルがキャビティ
に完全に接触しないので、キャビティの加熱の度合いに
差を生じる。これにより、フローマーク、ウェルドライ
ン等の成形不良が解決できないなどの問題があった。
(Problem to be solved by the invention) When the shape of the cavity is complex, it is difficult to create a coil that perfectly copies the shape, and since the coil does not come into complete contact with the cavity, there is a difference in the degree of heating of the cavity. occurs. As a result, problems such as molding defects such as flow marks and weld lines cannot be resolved.

前記従来の場合は、コイルを金型で挟みこんだ時のみ、
キャビティを加熱する為、コイルの出し入れ及び金型の
挟みごみの動作時間分、成形サイクルが伸びるなどの問
題があった。また室温、型開き、時間、成形品取出し時
間の変動によりキャビティの冷却が変動するので、同一
時間加熱してもキャビティ温度が変動し、そのため成形
品の品質が安定しないなどの問題があった。
In the conventional case, only when the coil is sandwiched between the molds,
Because the cavity is heated, there are problems such as the molding cycle being extended by the amount of time it takes to take the coil in and take it out and remove the dust that is caught in the mold. In addition, the cooling of the cavity varies due to variations in room temperature, mold opening time, molded product removal time, so even if heated for the same period of time, the cavity temperature fluctuates, resulting in problems such as unstable quality of the molded product.

更に射出工程中、キャビティの加熱をしていないため、
射出工程の後半にあたる保圧工程において、冷却の速度
の速い部分でスキン層の生成が生じるので、ゲートから
保圧により充填される樹脂層との間ですり応力を生じる
。このすり応力により、残留応力を生じ、この残留応力
により、変形、クランク、寸法精度不良の発生を生じ、
特に光ディスク、コンパクトディスクの基盤では、複屈
折の悪化の問題があった。
Furthermore, since the cavity is not heated during the injection process,
In the holding pressure step, which is the latter half of the injection process, a skin layer is formed in the portion where the cooling rate is high, so that abrasion stress is generated between the gate and the resin layer filled by holding pressure. This scraping stress causes residual stress, which causes deformation, cranking, and poor dimensional accuracy.
Particularly in the bases of optical discs and compact discs, there has been a problem of deterioration of birefringence.

本発明は前記従来の問題点を解決するために提案された
ものである。
The present invention has been proposed to solve the above-mentioned conventional problems.

(問題点を解決するための手段) そのため本発明は、射出工程開始以前に金型キャビティ
表面を予め設定された樹脂の軟化温度以上の設定値に加
熱し、射出工程中同設定値を保つ様に制御し、冷却工程
に切換わると前記加熱を完了して金型を冷却するように
してなるもので、これを問題点解決のための手段とする
ものである。
(Means for solving the problem) Therefore, the present invention heats the surface of the mold cavity to a preset value higher than the softening temperature of the resin before the start of the injection process, and maintains the same set value during the injection process. When the heating process is switched to the cooling process, the heating is completed and the mold is cooled, and this is a means for solving the problem.

また本発明は、キャビティを構成する面を磁性体で、そ
れ以外を非磁性体で構成し、内部に高周波誘導加熱コイ
ルと、キャビティ部分の温度を検出する温度検出器を設
けた金型と前記キャビティ温度検出器の検出温度とキャ
ビティ温度設定器の設定値を比較してキャビティ部分の
温度が同設定値になる様に閉ループ制御する金型温調器
とからなるもので、これを問題点解決のための手段とす
るものである。
The present invention also provides a mold in which the surface constituting the cavity is made of a magnetic material and the other part is made of a non-magnetic material, and a high-frequency induction heating coil and a temperature detector for detecting the temperature of the cavity portion are provided inside the mold. This system consists of a mold temperature controller that compares the temperature detected by the cavity temperature detector and the set value of the cavity temperature setter and performs closed-loop control so that the temperature of the cavity part becomes the same set value, which solves the problem. It is intended as a means for

(作用) 本発明では、高周波が流れているコイルより発生してい
る磁力線による電磁誘導により、キャビティ部分の磁性
体に渦電流が生じ、この渦電流と磁性体との抵抗による
ジュール熱でキャビティが加熱される。また非磁性体に
は電磁誘導による渦電流が生じないので、加熱されない
(Function) In the present invention, an eddy current is generated in the magnetic material in the cavity part due to electromagnetic induction due to magnetic lines of force generated by a coil in which a high frequency is flowing, and the cavity is heated by Joule heat due to the resistance between this eddy current and the magnetic material. heated. Furthermore, non-magnetic materials do not generate eddy currents due to electromagnetic induction, so they are not heated.

磁性体でキャビティを構成すれば、複雑な形状全体又は
キャビティの任意な1部分のみの加熱が可能となる。ま
た成形品を取り出した後、金型が開いていても、即加熱
開始できるため、従来より成形サイクルを短縮できる。
If the cavity is made of a magnetic material, it becomes possible to heat the entire complex shape or just an arbitrary part of the cavity. Furthermore, even if the mold is open after taking out the molded product, heating can be started immediately, making the molding cycle shorter than before.

更にキャビティ温度を閉ループ制御するので、室温等の
外乱を補償できると共に、射出工程中加熱を持続できる
ので、キャビティ温度を軟化温度以上にでき、これによ
り射出工程中のスキン層の生成を防止できるので残留応
力を低減でき、成形不良を解決できる。
Furthermore, since the cavity temperature is controlled in a closed loop, disturbances such as room temperature can be compensated for, and heating can be maintained during the injection process, so the cavity temperature can be kept above the softening temperature, thereby preventing the formation of a skin layer during the injection process. Residual stress can be reduced and molding defects can be solved.

(実施例) 以下本発明を図面の実施例について説明すると、第1図
は本発明に用いられる金型10の1実施例を示す。この
金型10は光ディスク、コンパクトディスク等の基盤に
用いられるものである。
(Example) The present invention will be described below with reference to the embodiments shown in the drawings. FIG. 1 shows one embodiment of a mold 10 used in the present invention. This mold 10 is used for the base of optical discs, compact discs, etc.

また金型10は固定側10aと可動側10bとから構成
され、同固定及び可動側の金型内面に取付けられた炭素
鋼(SC又は5KD)等の磁性体11a、 llb、 
llc、 lidによりキャビティ15が形成されてい
る。
The mold 10 is composed of a fixed side 10a and a movable side 10b, and magnetic materials 11a, llb, etc. made of carbon steel (SC or 5KD) are attached to the inner surfaces of the mold on the fixed and movable sides.
A cavity 15 is formed by the llc and lid.

そしてこれ以外はオーステナイト系ステンレス鋼、(S
US304等)、アルミ合金、セラミック等の非磁性体
が用いられている。また12a。
Other than this, austenitic stainless steel (S
Non-magnetic materials such as US304, aluminum alloy, and ceramic are used. Also 12a.

12b、 12c、 12dは高周波誘導加熱コイル、
13はスプル、14はゲート、16a、16bはキャビ
ティの表面温度を検出するキャビティ温度検出器である
12b, 12c, 12d are high frequency induction heating coils,
13 is a sprue, 14 is a gate, and 16a and 16b are cavity temperature detectors that detect the surface temperature of the cavity.

第2図にキャビティ表面温度制御のブロック図を示す。FIG. 2 shows a block diagram of cavity surface temperature control.

第2図において金型温調器17は予め設定された樹脂の
軟化温度以上のキャビティ表面温度設定値Tsetを出
力するキャビティ温度設定器20と、キャビティ表面温
度を検出するキャビティ温度検出器16a、16bの出
力Tを前記設定値Tsetより減算して偏差e (=T
set−T)を出力する比較器21と、偏差eをPID
制御(P・・・比例、l−・積分、D・−微分)の上出
力する制御器22と制御器22の出力に応じて周波数可
変して加熱コイル12a〜12dへ出力する高周波発振
器23からなる閉ループ制御系が構成されている。また
金型温調器17と金型冷却水の通水をオンオフする金型
冷却水通水オンオフ弁25をシーケンス制御するシーケ
ンサ24がある。
In FIG. 2, the mold temperature controller 17 includes a cavity temperature setter 20 that outputs a cavity surface temperature set value Tset that is higher than a preset resin softening temperature, and cavity temperature detectors 16a and 16b that detect the cavity surface temperature. The output T of is subtracted from the set value Tset to obtain the deviation e (=T
set-T) and a comparator 21 that outputs the deviation e as PID.
From a controller 22 that outputs control (P...proportional, l--integral, D--differential) and a high frequency oscillator 23 that varies the frequency according to the output of the controller 22 and outputs it to the heating coils 12a to 12d. A closed loop control system is constructed. There is also a sequencer 24 that sequentially controls the mold temperature regulator 17 and the mold cooling water flow on/off valve 25 that turns on and off the flow of mold cooling water.

なお、第2図では閉ループ系を1つにして示しているが
、固定側10aと可動側10bでは、熱容量が違うので
、キャビティ温度検出器16aに対して12a、12c
を同可動側16bに対して12b、 12dを夫々独立
して閉ループ制御するようになっている。
Although FIG. 2 shows the closed loop system as one, the fixed side 10a and the movable side 10b have different heat capacities, so 12a and 12c are used for the cavity temperature detector 16a.
12b and 12d are independently controlled in a closed loop with respect to the movable side 16b.

次に作用を説明すると、第3図に本発明の射出成形工程
の説明図を示す。先ず型開して製品取出し後、第2図に
示すシーケンサ24の指令により金型温調器17が作動
して金型10のキャビティ表面の昇温を開始する。
Next, to explain the operation, FIG. 3 shows an explanatory diagram of the injection molding process of the present invention. First, after the mold is opened and the product is taken out, the mold temperature regulator 17 is activated in response to a command from the sequencer 24 shown in FIG. 2 to start raising the temperature of the cavity surface of the mold 10.

次に加熱原理について説明する。ここで加熱コイル12
a〜12dに高周波を通電すると、その電流により磁力
線が発生し、その磁力線の中に磁性体112〜11 d
があると、磁性体11a〜11dの中に渦電流が流れる
。この渦電流と磁性体11a〜lidとの抵抗によるジ
ュール熱で、磁性体112〜lidが加熱される。
Next, the heating principle will be explained. Here heating coil 12
When a high frequency current is applied to a to 12d, magnetic lines of force are generated by the current, and magnetic bodies 112 to 11d are included in the lines of magnetic force.
If there is, an eddy current flows in the magnetic bodies 11a to 11d. The magnetic bodies 112 to 112 are heated by Joule heat caused by the resistance between this eddy current and the magnetic bodies 11a to 11 lid.

この時の負荷インピーダンスZは、式(1)で表わされ
る。
The load impedance Z at this time is expressed by equation (1).

Z=R+ j  (2πf ) L−−−−−−−−−
−−(11R−磁性体の高周波抵抗 L・・−加熱コイルのインダクタンス f −周波数 また磁性体113〜Ildに流れる渦電流値■。
Z=R+ j (2πf) L−−−−−−−−
--(11R-High frequency resistance L of the magnetic body...-Inductance f of the heating coil -Frequency and value of eddy current flowing in the magnetic bodies 113 to Ild.

は式(2)で表わされる。is expressed by equation (2).

IL =E/Z=□−・−(2) R” + (2πfL)2 E−高周波発振器の出力電圧 また磁性体の発熱量は式(3)となる。IL = E/Z = □-・-(2) R” + (2πfL)2 E - Output voltage of high frequency oscillator Further, the calorific value of the magnetic material is expressed by equation (3).

P = I L ” R−−−−−−−−−−−(3)
次にキャビティ表面温度が前記作用により昇温されてく
ると、偏差eが小さくなる。偏差eが小さくなるにつれ
て制御器22の指令により高周波発振器23は、周波数
fを高くする。これにより式(2)に示す様に渦電流値
ILが減少し、また周波数が高くなると、高周波発振器
23の出カドランシスターのコレクタ・エミッタ電圧が
低下するのでI、、E共に低くなり、発熱量が減少する
。この調節により偏差eが零になる様にPID制御を行
なう。
P = I L ”R---------------(3)
Next, as the cavity surface temperature increases due to the above action, the deviation e becomes smaller. As the deviation e becomes smaller, the high frequency oscillator 23 increases the frequency f according to a command from the controller 22. As a result, as shown in equation (2), the eddy current value IL decreases, and as the frequency increases, the collector-emitter voltage of the output run sister of the high-frequency oscillator 23 decreases, so both I and E decrease, and the amount of heat generated increases. decreases. Through this adjustment, PID control is performed so that the deviation e becomes zero.

キャビティ表面温度が設定温度Tsetに到達すると、
型閉して射出工程が開始される。なお、この間前記PI
D!II御によりキャビティ表面温度が設定値に保持さ
れる。
When the cavity surface temperature reaches the set temperature Tset,
The mold is closed and the injection process begins. During this time, the PI
D! II control maintains the cavity surface temperature at the set value.

次に射出工程が完了して冷却工程に切換わると、シーケ
ンサ24の指令により高周波の通電を停止し、金型冷却
水通水オンオフ弁により、金型10に冷却水を通水する
Next, when the injection process is completed and the process is switched to the cooling process, the high frequency energization is stopped according to a command from the sequencer 24, and cooling water is passed through the mold 10 by the mold cooling water flow on/off valve.

次いで冷却工程が完了すると、シーケンサ24の指令に
より金型10への冷却水通水を停止して型開を始める。
Next, when the cooling process is completed, the flow of cooling water to the mold 10 is stopped according to a command from the sequencer 24, and the mold opening is started.

次に前記最初のキャビティ表面の昇温を開始する工程に
戻り、以後前述の各工程を繰り返す。
Next, the process returns to the first step of starting to raise the temperature of the cavity surface, and thereafter the above-described steps are repeated.

また前記実施例に代え、磁性体の発熱量の調節を周波数
の可変ではな(、加熱コイルへの高周波通電時間を可変
とする方法に代えてもよい。
Further, instead of the above-mentioned embodiment, the amount of heat generated by the magnetic body may be adjusted by a method in which the frequency is not varied (or the time period during which high-frequency current is applied to the heating coil is varied).

例えば、発熱量を50%にする場合、オン1秒、オフ1
秒を連続で繰り返すようにしてもよい。
For example, to set the heat generation amount to 50%, turn on for 1 second and turn off for 1 second.
Seconds may be repeated continuously.

(発明の効果) 以上詳細に説明した如く本発明は構成されているので、
キャビティ表面のみを加熱でき、従来の様に加熱コイル
を挟みこむ工程が不要の為、サイクルが短縮できる。ま
たキャビティ表面温度を閉ループ制御する為、成形品の
品質がより安定する。更に射出工程の間、キャビティ表
面温度を樹脂の軟化温度以上に保持するため、スキン層
の生成が防止されて残留応力が低減し、変形、クランク
、複屈折の悪化等の成形不良を解決できる。
(Effects of the Invention) Since the present invention is configured as explained in detail above,
Only the surface of the cavity can be heated, and the process of inserting a heating coil in the conventional method is not necessary, so the cycle can be shortened. Also, since the cavity surface temperature is controlled in a closed loop, the quality of the molded product is more stable. Furthermore, during the injection process, the cavity surface temperature is maintained above the softening temperature of the resin, which prevents the formation of a skin layer and reduces residual stress, thereby solving molding defects such as deformation, cranking, and deterioration of birefringence.

【図面の簡単な説明】 第1図は本発明の実施例を示す射出成形機用金型の側断
面図、第2図はキャビティ表面温度制御のブロック図、
第3図は本発明の1実施例を示す射出成形工程のブロッ
ク図、第4図は従来の高周波誘導加熱による金型の側面
図、第5図は第4図の金型の温度分布例を示す線図であ
る。 図の主要部分の説明 1〇−金型 11a、 llb、 Ilc −磁性体12a、 12
b、 12c、 12d −加熱コイル16a、16b
 −キャビティ温度検出器17−金型温調器 qフ (D J 副 酬 ○ ○J 槻 七
[Brief Description of the Drawings] Fig. 1 is a side sectional view of a mold for an injection molding machine showing an embodiment of the present invention, Fig. 2 is a block diagram of cavity surface temperature control,
Fig. 3 is a block diagram of an injection molding process showing one embodiment of the present invention, Fig. 4 is a side view of a mold using conventional high-frequency induction heating, and Fig. 5 shows an example of temperature distribution in the mold shown in Fig. 4. FIG. Explanation of main parts of the figure 1〇-Mold 11a, Ilb, Ilc-Magnetic body 12a, 12
b, 12c, 12d - heating coils 16a, 16b
- Cavity temperature detector 17 - Mold temperature controller qfu (D J Supplementary ○ ○J Tsukinana

Claims (2)

【特許請求の範囲】[Claims] (1)射出工程開始以前に金型キャビティ表面を予め設
定された樹脂の軟化温度以上の設定値に加熱し、射出工
程中同設定値を保つ様に制御し、冷却工程に切換わると
前記加熱を完了して金型を冷却することを特徴とする射
出成形方法。
(1) Before the start of the injection process, the surface of the mold cavity is heated to a preset value that is higher than the softening temperature of the resin, and is controlled to maintain the same set value during the injection process, and when the cooling process is switched to, the surface of the mold cavity is heated. An injection molding method characterized by completing the process and cooling the mold.
(2)キャビティを構成する面を磁性体で、それ以外を
非磁性体で構成し、内部に高周波誘導加熱コイルと、キ
ャビティ部分の温度を検出する温度検出器を設けた金型
と前記キャビティ温度検出器の検出温度とキャビティ温
度設定器の設定値を比較してキャビティ部分の温度が同
設定値になる様に閉ループ制御する金型温調器とからな
ることを特徴とする射出成形装置。
(2) A mold in which the surface forming the cavity is made of magnetic material and the other part is made of non-magnetic material, and a high-frequency induction heating coil and a temperature detector for detecting the temperature of the cavity part are installed inside, and the cavity temperature. An injection molding apparatus comprising a mold temperature controller that compares the temperature detected by the detector with the set value of the cavity temperature setter and performs closed-loop control so that the temperature of the cavity portion becomes the same set value.
JP61243478A 1986-10-14 1986-10-14 Injection molding equipment Expired - Lifetime JPH066304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61243478A JPH066304B2 (en) 1986-10-14 1986-10-14 Injection molding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61243478A JPH066304B2 (en) 1986-10-14 1986-10-14 Injection molding equipment

Publications (2)

Publication Number Publication Date
JPS6395919A true JPS6395919A (en) 1988-04-26
JPH066304B2 JPH066304B2 (en) 1994-01-26

Family

ID=17104486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61243478A Expired - Lifetime JPH066304B2 (en) 1986-10-14 1986-10-14 Injection molding equipment

Country Status (1)

Country Link
JP (1) JPH066304B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001181A (en) * 2005-06-24 2007-01-11 Sony Corp Apparatus and method for molding
JP2007223143A (en) * 2006-02-23 2007-09-06 Sumitomo Chemical Co Ltd Method for molding thermoplastic resin molding
JPWO2005075184A1 (en) * 2004-02-04 2007-10-11 住友重機械工業株式会社 Pressure molding apparatus, mold and pressure molding method
JP2010000714A (en) * 2008-06-20 2010-01-07 Sumitomo Heavy Ind Ltd Mold assembly and method of adjusting its temperature
JP2010083123A (en) * 2008-09-30 2010-04-15 Mitac Precision Technology (Kunshan) Corp Compound high-speed molding system
CN103372954A (en) * 2012-04-13 2013-10-30 通用汽车环球科技运作有限责任公司 Injection molding tool with embedded induction heater
JP2014024280A (en) * 2012-07-27 2014-02-06 Honda Motor Co Ltd Injection molding apparatus and injection molding method using the same
JP2014038710A (en) * 2012-08-10 2014-02-27 Tokuden Co Ltd Induction heating-type mold device
JPWO2012133406A1 (en) * 2011-03-31 2014-07-28 広島県 Resin molding die, method for manufacturing the resin molding die, and method for manufacturing a resin molded product
CN104385539A (en) * 2014-11-21 2015-03-04 常熟康尼格科技有限公司 Electromagnetic induction heating type glue injection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988569B1 (en) * 2008-07-18 2010-10-18 삼성전자주식회사 Mold

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144457A (en) * 1975-06-06 1976-12-11 Asahi Chemical Ind Method of molding filler container polyamide resin
JPS5840504A (en) * 1981-09-04 1983-03-09 Furukawa Electric Co Ltd:The Converging method for optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144457A (en) * 1975-06-06 1976-12-11 Asahi Chemical Ind Method of molding filler container polyamide resin
JPS5840504A (en) * 1981-09-04 1983-03-09 Furukawa Electric Co Ltd:The Converging method for optical fiber

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005075184A1 (en) * 2004-02-04 2007-10-11 住友重機械工業株式会社 Pressure molding apparatus, mold and pressure molding method
JP2007001181A (en) * 2005-06-24 2007-01-11 Sony Corp Apparatus and method for molding
JP2007223143A (en) * 2006-02-23 2007-09-06 Sumitomo Chemical Co Ltd Method for molding thermoplastic resin molding
JP2010000714A (en) * 2008-06-20 2010-01-07 Sumitomo Heavy Ind Ltd Mold assembly and method of adjusting its temperature
JP2010083123A (en) * 2008-09-30 2010-04-15 Mitac Precision Technology (Kunshan) Corp Compound high-speed molding system
JP4653209B2 (en) * 2008-09-30 2011-03-16 漢達精密電子(昆山)有限公司 Combined high speed molding system
JPWO2012133406A1 (en) * 2011-03-31 2014-07-28 広島県 Resin molding die, method for manufacturing the resin molding die, and method for manufacturing a resin molded product
JP5967834B2 (en) * 2011-03-31 2016-08-10 広島県 Resin molding die, method for manufacturing the resin molding die, and method for manufacturing a resin molded product
CN103372954A (en) * 2012-04-13 2013-10-30 通用汽车环球科技运作有限责任公司 Injection molding tool with embedded induction heater
US9085106B2 (en) 2012-04-13 2015-07-21 GM Global Technology Operations LLC Method of embedding an induction heating element into an injection molding tool
CN103372954B (en) * 2012-04-13 2016-08-03 通用汽车环球科技运作有限责任公司 There is the injection molding tooling of embedded sensing heater
JP2014024280A (en) * 2012-07-27 2014-02-06 Honda Motor Co Ltd Injection molding apparatus and injection molding method using the same
JP2014038710A (en) * 2012-08-10 2014-02-27 Tokuden Co Ltd Induction heating-type mold device
CN104385539A (en) * 2014-11-21 2015-03-04 常熟康尼格科技有限公司 Electromagnetic induction heating type glue injection device

Also Published As

Publication number Publication date
JPH066304B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
US5762972A (en) Apparatus for heating a mold for an injection molding system
JPS6395919A (en) Method and device for injection molding
JPH0433253B1 (en)
JPH09239070A (en) Method for molding golf ball and metal mold for molding golf ball
JP4674241B2 (en) Method for heating molding mold and method for producing resin molded product
JP3946813B2 (en) Molding method to improve sink marks
JPH02128819A (en) Injection molding method
JPH01200925A (en) Method for molding plastic lens
JPS63176124A (en) Injection molding method and equipment
JPH0513531Y2 (en)
JP4703890B2 (en) Molding mold heating apparatus and heating method
JP3393079B2 (en) Light metal injection molding method
JPH04173313A (en) Mold for injection molding and injection molding method using said mold
JP3348807B2 (en) Molding equipment
JP2005219280A (en) Mold
JPH1177780A (en) Plastic molding method and apparatus therefor
JPH1044203A (en) Injection molding method for molding with uneven thickness
JP2510575B2 (en) Molding temperature analysis method for molded products
JP3908341B2 (en) Casting method
JPH07112447A (en) Forming of heat-setting resin
JPH0339208A (en) Molding device and molding method
JPH11138610A (en) Method and apparatus for forecasting shape of finished molding
JPH02162007A (en) Method for molding molded item
JPS62161458A (en) Method and apparatus for casting
JPH0225562Y2 (en)