JPS63176124A - Injection molding method and equipment - Google Patents

Injection molding method and equipment

Info

Publication number
JPS63176124A
JPS63176124A JP791887A JP791887A JPS63176124A JP S63176124 A JPS63176124 A JP S63176124A JP 791887 A JP791887 A JP 791887A JP 791887 A JP791887 A JP 791887A JP S63176124 A JPS63176124 A JP S63176124A
Authority
JP
Japan
Prior art keywords
mold
temperature
moving core
cavity
mold body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP791887A
Other languages
Japanese (ja)
Inventor
Koji Kubota
浩司 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP791887A priority Critical patent/JPS63176124A/en
Publication of JPS63176124A publication Critical patent/JPS63176124A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2673Moulds with exchangeable mould parts, e.g. cassette moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To reduce residual stress by preventing formation of a skin layer, by a method wherein temperature control of a movable core is performed at least at the preset softening temperature of resin, a mold is cooled always, and in a cooling process the movable core is cooled suddenly through heat conductivity by bringing the movable core into contact with the mold by moving the movable core. CONSTITUTION:Hydraulic oil from a hydraulic mechanism 35 is fed into each of hydraulic oil chambers 19a, 19b through a command of a sequencer 36 and rams 17a, 17b are shifted. Then a gap delta is generated between mold bodies 10a, 10b corresponding to each of movable cores 11a, 11b, and heat insulation of the mold bodies 10a, 10b and movable cores 11a, 11b, which are cooled always, is performed. A temperature rise of each of the movable cores 11a, 11b is performed by operating a mold temperature control instrument 31. Heating equipments 13a, 13b are controlled by a control instrument 34 based on a deflection (e) among each of temperatures detected by each of temperature detecting instruments 12a, 12b and a preset temperature Tset of at least the preset softening temperature. Injection is started and a process is entered into a filling process. Heat insulation control is performed during the injection also through a mold temperature control instrument 31. When resin pressure on the inside of the cavity 15 is raised by completing the filling process, the hydraulic oil is discharged and the movable cores 11a, 11b come into contact with the mold bodies 10a, 11b.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、充填工程にあってはキャビティ内を均一な高
温に保持し、冷却工程では急速に冷却することを可能に
した射出成形方法及び射出成形装置に関するものである
Detailed Description of the Invention (Field of Industrial Application) The present invention provides an injection molding method and an injection molding method that make it possible to maintain the inside of a cavity at a uniform high temperature in the filling process and rapidly cool it in the cooling process. This invention relates to injection molding equipment.

(従来の技術) 金型のキャビティに熔融樹脂を射出して成形する射出成
形方法においては、熔融樹脂がキャビティ内を流動する
とき金型に接する部分では金型により冷却されて粘度が
高くなり、流動性の著しく悪い層(スキン層と呼ばれる
。)が生じる。これによりキャビティ表面からの転写性
が悪くなったり、フローマーク或はウェルドライン等の
成形不良が生じやすくなる。
(Prior Art) In an injection molding method in which molten resin is injected into a mold cavity, when the molten resin flows in the cavity, the part in contact with the mold is cooled by the mold and becomes highly viscous. A layer with extremely poor fluidity (called a skin layer) is formed. As a result, transferability from the cavity surface deteriorates, and molding defects such as flow marks or weld lines are likely to occur.

その対策として、キャビティ表面を樹脂の軟化温度以上
に高周波誘導加熱した後に射出成形する方法が、例えば
特公昭58−40504号により提案されている。
As a countermeasure against this problem, a method has been proposed, for example, in Japanese Patent Publication No. 58-40504, in which injection molding is performed after high-frequency induction heating of the cavity surface to a temperature higher than the softening temperature of the resin.

その構成につき簡単に説明すると、第4図は同方法を実
施するための金型部分を示し、金型1の固定側1aと可
動側1bの間に図示しない工業用ロボットにより高周波
誘導加熱コイル2が移動設置される。同コイル2は、直
径3璽1の鋼管を5龍間隔で渦巻き状に皿形状にそわせ
て型作り、それを3 amの厚さになる様にエポキシ樹
脂をもって注型し、平板状に固化形成されたものである
To briefly explain its configuration, FIG. 4 shows a mold part for carrying out the method, and a high-frequency induction heating coil is placed between the fixed side 1a and the movable side 1b of the mold 1 by an industrial robot (not shown). will be moved and installed. The coil 2 is made by molding a steel pipe with a diameter of 3 cm into a dish shape in a spiral pattern at 5-diameter intervals, then casting it with epoxy resin to a thickness of 3 am, and solidifying it into a flat plate. It was formed.

射出成形にあたっては、前回の成形品を取り出した後の
型開き状態にあるとき、図示せぬ工業用ロボットによっ
てコイル2を降下させて、金型lの固定側1aと可動側
1bとの間に挿入した後に金型1を閉じ、コイル2を金
型1の固定側1a及び可動側1bとで挾み込み、その状
態で高周波を通電してキャビティ表面ICを加熱する。
During injection molding, when the mold is in an open state after the previous molded product has been taken out, the coil 2 is lowered by an industrial robot (not shown) and is placed between the fixed side 1a and the movable side 1b of the mold l. After insertion, the mold 1 is closed, the coil 2 is sandwiched between the fixed side 1a and the movable side 1b of the mold 1, and in this state, high frequency current is applied to heat the IC on the cavity surface.

このとき、金型1に冷却水は通水されていない。At this time, cooling water is not flowing through the mold 1.

この高周波誘導加熱による金型温度の測定例を第5図に
示す。同図におけるA、B、C,D点は第4図における
A、B、C,Dに対応する位置の各点を示している。第
5図から明らかな如く、金型表面のA点とB点は短時間
で急激に昇温し、金型内部の0点及びD点では高周波誘
導加熱によっては温度の上昇がほとんどないことが分る
FIG. 5 shows an example of measuring mold temperature by this high-frequency induction heating. Points A, B, C, and D in the figure indicate points corresponding to A, B, C, and D in FIG. 4. As is clear from Figure 5, the temperatures at points A and B on the mold surface rise rapidly in a short period of time, and at points 0 and D inside the mold, there is almost no temperature rise due to high-frequency induction heating. I understand.

さて、上記操作により金型表面の昇温を確認したのち、
金型1を一旦開き、コイル2を金型1の固定側1a及び
可動側1bの間から抜き出し、再度金型1を閉じて通常
の射出成形と同様に充填工程と保圧工程からなる射出工
程、金型1に冷却水を通水して冷却する冷却工程を実行
する。
Now, after confirming the temperature rise on the mold surface by the above operation,
The mold 1 is once opened, the coil 2 is extracted from between the fixed side 1a and the movable side 1b of the mold 1, the mold 1 is closed again, and the injection process consists of a filling process and a pressure holding process similar to normal injection molding. , a cooling process is performed in which cooling water is passed through the mold 1 to cool it.

本射出成形方法によると、こうしてキャビティ表面が樹
脂の軟化温度以上に加熱された後に射出されるため、キ
ャビティ表面でスキン層が生じにくくなり、転写性が著
しく向上し、フローマーク・ウェルドライン等の成形不
良の発生が防止できる。
According to this injection molding method, since injection is performed after the cavity surface is heated above the softening temperature of the resin, a skin layer is less likely to form on the cavity surface, and transferability is significantly improved, resulting in flow marks, weld lines, etc. The occurrence of molding defects can be prevented.

(発明が解決しようとする問題点) ところで、上記したようなコイルを使っての金型表面の
加熱には次のような問題点がある。
(Problems to be Solved by the Invention) By the way, heating the mold surface using the above-mentioned coil has the following problems.

(1)  キャビティの形状が複雑になると、その形状
を完全に転写したコイルを作ることが困難となり、そう
なるとコイルがキャビティの全面に完全に密着しないの
で、キャビティ表面の加熱度合に差が生じる。その結果
、フローマーク・ウェルドライン等の成形不良が解決で
きないことになる。
(1) When the shape of the cavity becomes complex, it becomes difficult to create a coil that perfectly copies the shape, and in this case, the coil does not completely adhere to the entire surface of the cavity, resulting in differences in the degree of heating of the cavity surface. As a result, molding defects such as flow marks and weld lines cannot be resolved.

(2)  コイルを金型で挾み込んだ時点でのみキャビ
ティを加熱するようにしているため、コイルの出入れ及
び金型の挾み込みに要する動作時間分、成形サイクルが
延びるという結果になる。
(2) Since the cavity is heated only when the coil is inserted into the mold, the molding cycle is extended by the operating time required to take the coil in and out and insert it into the mold. .

(3)室温、型開き時間、成形品の取出し時間が変動す
ると、それに伴なってキャビティの冷却割合が変動する
ので、同一時間加熱してもキャビティ温度が変動し、そ
のため成形品質が安定しない。
(3) If the room temperature, mold opening time, or molded product removal time changes, the cooling rate of the cavity will change accordingly, so even if the heating time is the same, the cavity temperature will fluctuate, and therefore the molding quality will not be stable.

(4)特に薄肉成形品の場合、射出工程において、生ず
るスキン層の生成速度が速いため、溶融樹脂の流れ方向
に圧力勾配を生じ、ゲート付近に過大圧がかかって、前
記スキン層とゲートから供給される樹脂との間でずり応
力が発生する。このすり応力により残留応力が生じ、そ
の結果、変形、クラック。
(4) Particularly in the case of thin-walled molded products, the formation rate of the skin layer during the injection process is fast, which creates a pressure gradient in the flow direction of the molten resin, causing excessive pressure to be applied near the gate, causing the skin layer and gate to Shear stress occurs between the resin and the supplied resin. This abrasion stress causes residual stress, resulting in deformation and cracking.

寸法精度不良等が発生し、特に光ディスク。Poor dimensional accuracy occurs, especially with optical discs.

コンパクトディスクの基盤では、複屈折の悪化という致
命的な成形不良を生じる。
In the base of a compact disc, a fatal molding defect occurs due to worsening of birefringence.

(5)前項の対策として、樹脂温度を通常よりも上げて
成形しているが、このときのキャビティに対する射出開
始前の加熱設定温度は作業者の経験と勘に頌って決めざ
るを得ないものである。
(5) As a countermeasure for the previous item, the resin temperature is raised higher than usual during molding, but the heating temperature setting for the cavity before injection starts must be determined based on the experience and intuition of the operator. It is something.

本発明はこれらの諸問題を一挙に解決すべく開発された
もので、射出工程に入る前に自動的にキャビティ表面を
所定の温度まで均一に冑め、冷却工程では急速冷却を可
能にして高品質の成形品を得られるようにする射出成形
方法及び装置を提供しようとするものである。
The present invention was developed to solve these problems all at once. It automatically and uniformly heats the cavity surface to a predetermined temperature before entering the injection process, and enables rapid cooling during the cooling process to achieve high temperatures. It is an object of the present invention to provide an injection molding method and apparatus that make it possible to obtain high-quality molded products.

(問題点を解決するための手段及び作用)このため、本
発明は射出成形方法として、キャビティを形成する移動
可能な中子とこれを取り囲む常時冷却状態にある金型本
体とからなる2重構造の金型を用い、射出開始前から充
填工程中は金型本体と移動中子とを非接触状態とするこ
とにより両者間を断熱すると共に移動中子の温度を樹脂
の軟化温度以上に昇温保持し、続く保圧工程ではキャビ
ティ内の圧力(保圧)により移動中子を金型本体に接触
させ、かつ移動中子の加熱を停止することにより、次の
冷却工程において急速冷却を行なうことを構成とし、こ
の方法を実施するための装置として、キャビティを形成
する移動中子と、それを取り囲む金型本体と、前記移動
中子を前記金型本体内で駆動する駆動機構と、移動中子
の内部を配される加熱装置及び温度検出器とを有する金
型を備えると共に、前記温度検出器の信号を受けて、前
記移動中子の温度を設定温度に制御する金型温調器を装
備することを構成として、これらの構成をもって上記問
題点の解決手段とするものである。
(Means and effects for solving the problem) Therefore, the present invention provides an injection molding method with a double structure consisting of a movable core forming a cavity and a mold body surrounding the movable core which is constantly cooled. The mold is used, and the mold body and the moving core are kept in a non-contact state from before the start of injection until during the filling process, thereby insulating the space between them and raising the temperature of the moving core to a temperature higher than the softening temperature of the resin. In the subsequent cooling process, the moving core is brought into contact with the mold body by the pressure inside the cavity (holding pressure), and the heating of the moving core is stopped, allowing rapid cooling in the next cooling process. A device for carrying out this method includes a moving core that forms a cavity, a mold body that surrounds it, a drive mechanism that drives the moving core within the mold body, and A mold having a heating device disposed inside the core and a temperature detector, and a mold temperature controller configured to control the temperature of the moving core to a set temperature in response to a signal from the temperature detector. These configurations are intended to solve the above-mentioned problems.

即ち、本発明では、 (11キャビティを形成する部分を移動中子とし、それ
を取り囲む金型本体との間で接触あるいは非接触状態を
可能にした2重構造の金型とする。
That is, in the present invention, (11) the mold has a double structure in which the part forming the cavity is used as a moving core and the mold body surrounding it can be in contact or non-contact.

(2)  この移動中子は、予め設定された樹脂の軟化
温度以上に温度制御され、金型本体は常時冷却されてい
る。
(2) The temperature of this moving core is controlled to be higher than a preset softening temperature of the resin, and the mold body is constantly cooled.

(3)射出開始前及び射出工程中は、移動中子と金型本
体を非接触の状態とする。このため移動中子と金型本体
との間が断熱されることになり、キャビティ表面の温度
は、前記温度制御と相俟って所定の温度に保たれ、射出
工程中のスキン層の生成を防止し、残留応力を低減させ
る。その結果、成形不良を生じさせない。
(3) Before starting injection and during the injection process, the moving core and the mold body are kept in a non-contact state. Therefore, the space between the moving core and the mold body is insulated, and the temperature of the cavity surface is maintained at a predetermined temperature in conjunction with the temperature control described above, which prevents the formation of a skin layer during the injection process. prevent and reduce residual stress. As a result, no molding defects occur.

(4)  冷却工程に入ると、移動中子を移動させて金
型本体と接触させ、金型本体からの移動中子への熱伝達
率が高め、移動中子を急速に冷却する。このように、金
型本体が常時冷却されており、冷却工程では移動中子だ
けを冷却すれば足りるだけ成形サイクルが短縮される。
(4) When the cooling process begins, the moving core is moved and brought into contact with the mold body, increasing the heat transfer rate from the mold body to the moving core, and rapidly cooling the moving core. In this way, the mold body is constantly cooled, and the molding cycle can be shortened to the extent that only the moving core needs to be cooled in the cooling process.

(5)一方、前記移動中子は、通常の機械加工により任
意の形状に加工できるので、複雑な成形品にも容易に対
応し得る。
(5) On the other hand, since the movable core can be processed into any shape by ordinary machining, it can be easily applied to complex molded products.

(実施例) 以下、本発明の実施例を図面に基づいて詳述する。第1
図は本発明の方法を実施するための移動中子と金型本体
からなる金型の側断面を示す。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings. 1st
The figure shows a side cross section of a mold consisting of a moving core and a mold body for carrying out the method of the invention.

図において、10は金型であり、金型1oは従来と同様
に固定側金型と可動側金型から構成され、各金型とも移
動中子11a、 llbと同移動中子11a。
In the figure, 10 is a mold, and the mold 1o is composed of a fixed side mold and a movable side mold as in the conventional case, and each mold has a movable core 11a and a movable core llb.

11bをそれぞれ囲むようにして成形された金型本体1
0a、 10bとからなることを基本構成としている。
The mold body 1 is formed so as to surround each of the mold bodies 11b.
The basic configuration consists of 0a and 10b.

キャビティ15は固定側の移動中子11と可動側の移動
中子11bにより形成される。つまり、本発明における
金型10は、固定側と可動側と全て対になっているもの
で、図面では固定側にはaを、可動側にはbの符号を付
しである。従って、その構造の説明にあたっては可動側
を主に説明するが、固定側についても同様の構造である
The cavity 15 is formed by the movable core 11 on the fixed side and the movable core 11b on the movable side. That is, the mold 10 according to the present invention has a fixed side and a movable side, all of which are paired, and in the drawings, the fixed side is denoted by a and the movable side is denoted by b. Therefore, in explaining the structure, the movable side will be mainly explained, but the fixed side has a similar structure.

移動中子11bは可能な限り厚さを薄く形成して表面積
の割に質量を小さくし、かつアルミの如き熱伝導率の高
い材質のものを使用する。移動中子11bの内部には、
移動中子11bのキャビティ側の表面温度、すなわちキ
ャビティ表面温度Tを検出する熱電対等を用いる温度検
出器12bとヒータ等を用いる加熱装置13bが設置さ
れている。移動中子11bの外周には、ナイロン。
The moving core 11b is formed to be as thin as possible to reduce its mass relative to its surface area, and is made of a material with high thermal conductivity such as aluminum. Inside the moving core 11b,
A temperature detector 12b using a thermocouple or the like to detect the surface temperature on the cavity side of the moving core 11b, that is, a cavity surface temperature T, and a heating device 13b using a heater or the like are installed. The outer periphery of the moving core 11b is made of nylon.

ベークライト等の合成樹脂、又はジルコニア(ZrO□
)等のセラミックスの如き熱伝導率の小さい材料からな
る断熱材で構成されるライナー14bが、固定されてい
る。同ライナー14bは、溶融樹脂の漏れを防ぎ、かつ
キャビティ15内の樹脂圧力に耐え得る最小限の大きさ
としている。
Synthetic resin such as Bakelite, or zirconia (ZrO□
) A liner 14b made of a heat insulating material made of a material with low thermal conductivity such as ceramics is fixed. The liner 14b has a minimum size that can prevent leakage of the molten resin and withstand the resin pressure within the cavity 15.

移動中子11bの反キャビティ側(後端)の金型本体1
0bには、含油軸受等からなるブツシュ16bで保持さ
れ、外周にリップパツキン等によるシール18bを嵌め
込み、金型本体10bとの間に形成される油室19bの
圧油により進退駆動されるラム17bが設置され、同ラ
ム17bの先端は前記ライナー14bと同様の断熱材2
0bを介して移動中子11bの後端と連結されている。
Mold body 1 on the side opposite to the cavity (rear end) of the moving core 11b
A ram 17b is held by a bush 16b made of an oil-impregnated bearing or the like, and a seal 18b made of a lip seal or the like is fitted to the outer periphery of the ram 17b, which is driven forward and backward by pressure oil in an oil chamber 19b formed between the mold body 10b. is installed, and the tip of the ram 17b is covered with a heat insulating material 2 similar to the liner 14b.
It is connected to the rear end of the movable core 11b via 0b.

21bは前記油室19bに通じる油孔端部で、高圧ゴム
ホースの接続口であり、22bは金型本体10bを冷却
する冷却水通路である。23は固定側金型本体10aに
取付けられたスプルーブシュである。固定側及び可動側
の移動中子11a、 llbは、対応する各ラム17a
、 17bにより各金型本体10a。
21b is the end of the oil hole communicating with the oil chamber 19b, which is a connection port for a high-pressure rubber hose, and 22b is a cooling water passage for cooling the mold body 10b. 23 is a sprue bushing attached to the stationary mold body 10a. The moving cores 11a and llb on the fixed side and the movable side are connected to each corresponding ram 17a.
, 17b for each mold body 10a.

10b内を隙間δだけ移動する。δの値は、0.3〜1
 、0 **の範囲で選ばれるのが好ましい。
10b by the gap δ. The value of δ is 0.3 to 1
, 0** is preferable.

この各移動中子11a、 llbが各金型本体11a、
llb内をδだけ前進したときには、同移動中子11a
These moving cores 11a and llb are each mold body 11a,
When moving forward in llb by δ, the same moving core 11a
.

11bはキャビティ15、対応するライナー14a、 
14b−断熱材20a、 20b及び各移動中子11a
、 llbの移動により形成されるスペースA、Aによ
り金型本体10a、 10bとは断熱状態におかれる。
11b is a cavity 15, a corresponding liner 14a,
14b - Thermal insulation 20a, 20b and each moving core 11a
, llb are insulated from the mold bodies 10a and 10b by the spaces A and A formed by the movement of the mold bodies 10a and 10b.

第2図にキャビティ表面温度の制御ブロック線図を示す
FIG. 2 shows a control block diagram of the cavity surface temperature.

金型温調器31は、予め設定された樹脂の軟化温度以上
のキャビティ表面温度の設定値Tsetを出力する設定
器32と、キャビティ表面温度を検出する温度検出器1
2a、 12bの出力Tを前記設定値Tsetより減算
して偏差e (= Tset −T)を出力する比較器
33と、同偏差eをPID制御(P・−・比例、 ■・
・・積分、  D−i分)の玉出力する制御器34と、
制御器34の出力に応じて発熱量が変化する加熱装置1
3a、 13bとからなる閉ループ制御系として構成さ
れている。
The mold temperature controller 31 includes a setting device 32 that outputs a set value Tset of the cavity surface temperature that is higher than a preset softening temperature of the resin, and a temperature detector 1 that detects the cavity surface temperature.
A comparator 33 that subtracts the output T of 2a and 12b from the set value Tset and outputs the deviation e (= Tset - T), and a comparator 33 that outputs the deviation e (= Tset - T), and a comparator 33 that outputs the deviation e (= Tset - T), and a
...integral, D-i minute).
Heating device 1 whose calorific value changes according to the output of the controller 34
It is configured as a closed loop control system consisting of 3a and 13b.

この金型温調器31と、1対の高圧ゴムホース接続口2
1a、 21bを通して各油室19a、 19bに圧油
を供給し又は各油室19a、 19bの圧油を排出する
油圧機構35とをシーケンス制御するシーケンサ36が
用意される。
This mold temperature controller 31 and a pair of high pressure rubber hose connection ports 2
A sequencer 36 is provided which sequentially controls a hydraulic mechanism 35 that supplies pressure oil to each oil chamber 19a, 19b through 1a, 21b or discharges pressure oil from each oil chamber 19a, 19b.

なお、第2図では閉ループ系を1つにして示しているが
、固定側金型本体10aと可動側金型本体10bで熱容
量が違う場合は、夫々独立して閉ループ制御するほうが
より効率が良い。
Although Fig. 2 shows a single closed loop system, if the fixed mold body 10a and the movable mold body 10b have different heat capacities, it is more efficient to perform closed loop control for each independently. .

第3図に本発明が適用されるときの射出成形の工程例を
示す。以下、その工程を第1図及び第2図を参照しつつ
説明する。
FIG. 3 shows an example of an injection molding process to which the present invention is applied. The process will be explained below with reference to FIGS. 1 and 2.

(11まず、型開して製品を取出した後に型閉を行ない
、その後シーケンサ36の指令により油圧機構35から
の圧油が各油室19a、 19bに供給されて、ラム1
7a、 17bを移動させて各移動中子11a、 ll
bと対応する金型本体10a。
(11 First, the mold is opened and the product is taken out, and then the mold is closed. Then, according to a command from the sequencer 36, pressure oil from the hydraulic mechanism 35 is supplied to each oil chamber 19a, 19b, and the ram 1
7a, 17b to each moving core 11a, ll
A mold body 10a corresponding to b.

10bとの間に隙間δを生じさせ、常時冷却している金
型本体10a、 10bと移動中子11a。
The mold bodies 10a, 10b and the moving core 11a are constantly cooled by creating a gap δ between them and the moving core 11a.

11bとを断熱する。この移動中子の移動操作は型閉動
作と同時又は型閉動作の途中から実施してもよい。
11b. This moving operation of the moving core may be performed simultaneously with the mold closing operation or during the mold closing operation.

(2)  シーケンサ36の指令により金型温調器31
が作動して各移動中子11a、 llbを昇温させる。
(2) The mold temperature controller 31 is activated by the command from the sequencer 36.
operates to raise the temperature of each moving core 11a, llb.

各温度検出器12a、 12bにより各移動中子11a
、 llbのキャビティ15に近い側の温度が検出され
、同検出器12a、 12bからの出力と予め設定され
た樹脂の軟化温度以上の設定温度Tsetとの偏差eに
基づき制御器34により加熱装置13a、 13bを調
節して、偏差eを零、即ち上記設定温度Tsetを保持
するためのPID制御が行なわれる。
Each moving core 11a is controlled by each temperature detector 12a, 12b.
, llb on the side closer to the cavity 15 is detected, and the heating device 13a is controlled by the controller 34 based on the deviation e between the output from the detectors 12a and 12b and a preset temperature Tset that is higher than the softening temperature of the resin. , 13b to maintain the deviation e at zero, that is, the set temperature Tset.

(3)移動中子11a、 llbの温度が上記設定温度
Tsetに到達すると、金型温調器31からの信号を受
けて、シーケンサ36の指令により射出が開始され充填
工程に入る。射出中も金型温調器31により前記設定温
度に保温制御される。
(3) When the temperature of the moving cores 11a and llb reaches the set temperature Tset, a signal is received from the mold temperature controller 31, and injection is started according to a command from the sequencer 36, and the filling process begins. Even during injection, the mold temperature controller 31 maintains the temperature at the set temperature.

(4)  充填工程が完了して、キャビティ15内の樹
脂圧力が上昇すると、この圧力に負けて各油室19a、
 19bの圧油が排出され、移動中子11a、 llb
は金型本体10a、 10bと接触する。
(4) When the filling process is completed and the resin pressure inside the cavity 15 rises, each oil chamber 19a,
The pressure oil 19b is discharged, and the moving cores 11a, llb
contact the mold bodies 10a, 10b.

一般に、この切換状態はスクリュ位置。Generally, this switching state is the screw position.

射出油圧、キャビティ内の樹脂圧力等により検知が可能
である。このとき、射出制御は保圧制御に切換えられて
保圧工程となり、同時にシーケンサ36の指令により加
熱装置13a、 13bは加熱を停止する。
Detection is possible using injection oil pressure, resin pressure inside the cavity, etc. At this time, the injection control is switched to pressure holding control to enter the pressure holding process, and at the same time, the heating devices 13a and 13b stop heating according to a command from the sequencer 36.

(5)保圧工程及び次工程である冷却工程においても、
金型本体10a、 10bは、冷却水通路22a、 2
2bを通水される冷却水により常時冷却されており、移
動中子11a、 llbと金型本体10a、 10bが
接触することにより、移動中子11a、 llbと金型
本体10a、 10bとの間で熱伝達が促進され、キャ
ビティ15内の溶融樹脂を急速に冷却する。
(5) In the pressure holding process and the next cooling process,
The mold bodies 10a, 10b have cooling water passages 22a, 2.
The moving cores 11a, llb and the mold bodies 10a, 10b come into contact with each other, thereby creating a gap between the moving cores 11a, llb and the mold bodies 10a, 10b. heat transfer is promoted and the molten resin in the cavity 15 is rapidly cooled.

成形品の形状及び寸法は、移動中子118゜11bと金
型本体10a、10bとが接触した状態下でのキャビテ
ィ形状・寸法となる如く設定される。
The shape and dimensions of the molded product are set so as to have the cavity shape and dimensions when the movable core 118° 11b and the mold bodies 10a, 10b are in contact with each other.

(6)  ここで、予め設定された冷却時間が経過する
と、シーケンサ3′6の指令により型開を開始する。
(6) Here, when the preset cooling time has elapsed, mold opening is started according to a command from the sequencer 3'6.

(7)前記(1)に戻り、以後は同様の動作を繰り返す
(7) Return to (1) above and repeat the same operation thereafter.

移動中子11a、 llbと金型本体10a、 10b
との対面する部分の形状・寸法は、両者が接触する部分
に配設されるライナー14a、 14b並びに移動中子
11a、 llbとラム17a、 17bとの連結部に
ある断熱材20a、 20bを強度上必要となる最小限
の大きさとし、それ以外を移動中子11a、 Ilbが
後退したとき接触するような表面形状・寸法とする。
Moving cores 11a, llb and mold bodies 10a, 10b
The shape and dimensions of the portions facing the rams 17a, 17b are determined by the strength of the liners 14a, 14b disposed at the portions where they come into contact with each other, and the heat insulating materials 20a, 20b located at the joints between the moving cores 11a, llb and the rams 17a, 17b. The surface shape and dimensions are such that the movable cores 11a and Ilb come into contact with each other when they retreat.

また、既述したとおり移動中子11a、 llbは、厚
さを小さくして表面積の割に質量が小さく、かつ熱伝導
率の高い材料で加工されているため、移動中子11a、
 1lbO昇温時間は短縮され、同時に移動中子11a
、 llbと金型本体10a、 10bとの接触による
熱伝達の促進がはかられる。
Furthermore, as described above, the moving cores 11a, llb have a small thickness, have a small mass relative to the surface area, and are made of a material with high thermal conductivity.
1lbO heating time is shortened, and at the same time the moving core 11a
, llb and the mold bodies 10a, 10b promote heat transfer.

なお、上記実施例では説明を避けたが、金型本体10a
、 10bと移動中子11a、 Ilb間で断熱をより
効率良く行なうために、上記隙間δの部分のエアを抜く
ようにして同部分を真空とする場合もある。こうすると
、移動中子11a、 Llbの昇温時間を更に短縮でき
ることになる。
In addition, although the explanation was avoided in the above embodiment, the mold body 10a
, 10b and the moving cores 11a, Ilb, the gap δ may be evacuated to create a vacuum by removing air from the gap δ. In this way, the time required to raise the temperature of the moving cores 11a and Llb can be further shortened.

(発明の効果) 以上、詳細に説明した如く本発明によれば、金型をキャ
ビティを形成する部分と金型本体とに分けたため、次の
諸効果を奏するようになる。
(Effects of the Invention) As described above in detail, according to the present invention, the mold is divided into a portion forming a cavity and a mold body, so that the following effects can be achieved.

(1)移動中子を金型本体と非接触状態で加熱制御する
ことができるため、キャビティ表面だけを効率よく加熱
でき、同時に従来の様な加熱コイルを挾み込むに要する
時間が不要となって、サイクルが大巾に短縮できる。
(1) Since the moving core can be heated without contacting the mold body, only the cavity surface can be heated efficiently, and at the same time, the time required to insert a heating coil as in the conventional method is unnecessary. This can significantly shorten the cycle.

(2)  キャビティの表面温度を金型本体とは断熱さ
れた移動中子につき閉ループ制御するため、制御時には
所定の温度が保持されるようになり、成形品の品質がよ
り安定する。
(2) Since the surface temperature of the cavity is controlled in a closed loop using a moving core that is insulated from the mold body, a predetermined temperature is maintained during control, making the quality of the molded product more stable.

(3)射出工程の間、キャビティ部分を常時冷却状態に
ある金型本体から離して断熱することによりキャビティ
表面温度を樹脂の軟化温度以上に保持し易くなり、スキ
ン層の生成が防止されて残留応力が低減し、変形。
(3) During the injection process, by separating the cavity from the mold body, which is constantly cooled, and insulating it, it becomes easier to maintain the cavity surface temperature above the softening temperature of the resin, preventing the formation of a skin layer that remains. Reduced stress and deformation.

クラック、複屈折の悪化等の成形不良が解決される。Molding defects such as cracks and deterioration of birefringence are resolved.

以上の効果に加えて、移動中子は通常の機械加工により
容易に加工ができるものであるから、複雑な形状・寸法
の型でも容易に得られるという効果もある。
In addition to the above-mentioned effects, since the moving core can be easily processed by ordinary machining, it also has the effect that even molds with complicated shapes and dimensions can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す金型の概略断面図、第
2図は本発明によるキャビティ表面の温度制御ブロック
線図、第3図は本発明による射出成形工程の工程説明図
、第4図は従来の高周波誘導加熱による金型の加熱概念
を示す側面図、第5図は同加熱による金型の温度分布の
1例を示す説明図である。 図の主要部分の説明 10・−金型      10a、 10b−金型本体
11a、 1lb−移動中子 12a、 12b−=温
度検出器13a、 13b・−加熱装置 14a、 1
4b−ライナー15・−キャビテ4   17a、 1
7b−・−ラム19a、 19b−一油室 20a、 20b−=−断熱材 22a、 22b・−・・冷却水通路 30−金型温調器 第1図 第4図 8吾 間 (1篭ト)
FIG. 1 is a schematic cross-sectional view of a mold showing an embodiment of the present invention, FIG. 2 is a block diagram for temperature control of the cavity surface according to the present invention, and FIG. 3 is a process explanatory diagram of an injection molding process according to the present invention. FIG. 4 is a side view showing the concept of heating a mold by conventional high-frequency induction heating, and FIG. 5 is an explanatory diagram showing an example of the temperature distribution of the mold by the same heating. Description of main parts of the figure 10 - Mold 10a, 10b - Mold body 11a, 1lb - Moving core 12a, 12b - Temperature detector 13a, 13b - Heating device 14a, 1
4b-liner 15--cavity 4 17a, 1
7b--Ram 19a, 19b-1 Oil chamber 20a, 20b-=-Insulating material 22a, 22b--Cooling water passage 30-Mold temperature controller Fig. 1 Fig. 4 Fig. 8 )

Claims (2)

【特許請求の範囲】[Claims] (1)キャビティを形成する移動可能な中子とこれを取
り囲む常時冷却状態にある金型本 体とからなる2重構造の金型を用い、射出 開始前から充填工程中は金型本体と移動中 子とを非接触状態とすることにより両者間 を断熱すると共に移動中子の温度を樹脂の 軟化温度以上に昇温保持し、続く保圧工程 ではキャビティ内の圧力(保圧)により移動中子を金型
本体に接触させ、かつ移動中子 の加熱を停止することにより、次の冷却工 程において急速冷却を行なうことを特徴と する射出成形方法。
(1) A mold with a double structure consisting of a movable core that forms a cavity and a mold body that surrounds it and is in a constantly cooled state is used, and from before the start of injection to during the filling process, the mold body and the mold body are moving. The moving core is kept in a non-contact state by keeping it in a non-contact state, and the temperature of the moving core is raised and maintained above the softening temperature of the resin.In the subsequent pressure holding process, the moving core is heated by the pressure inside the cavity (holding pressure). An injection molding method characterized in that rapid cooling is performed in the next cooling step by bringing the moving core into contact with the mold body and stopping heating of the moving core.
(2)キャビティを形成する移動中子と、それを取り囲
む金型本体と、前記移動中子を前 記金型本体内で駆動する駆動機構と、移動 中子の内部に配される加熱装置及び温度検 出器とを有する金型を備えると共に、前記 温度検出器の信号を受けて、前記移動中子 の温度を設定温度に制御する金型温調器を 装備することを特徴とする射出成形装置。
(2) A moving core that forms a cavity, a mold body surrounding it, a drive mechanism that drives the moving core within the mold body, and a heating device and temperature disposed inside the moving core. What is claimed is: 1. An injection molding apparatus, comprising: a mold having a detector; and a mold temperature regulator that receives a signal from the temperature detector and controls the temperature of the moving core to a set temperature.
JP791887A 1987-01-16 1987-01-16 Injection molding method and equipment Pending JPS63176124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP791887A JPS63176124A (en) 1987-01-16 1987-01-16 Injection molding method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP791887A JPS63176124A (en) 1987-01-16 1987-01-16 Injection molding method and equipment

Publications (1)

Publication Number Publication Date
JPS63176124A true JPS63176124A (en) 1988-07-20

Family

ID=11678907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP791887A Pending JPS63176124A (en) 1987-01-16 1987-01-16 Injection molding method and equipment

Country Status (1)

Country Link
JP (1) JPS63176124A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0909626A2 (en) * 1997-10-17 1999-04-21 TOHOKU MUNEKATA Co., Ltd. Method and apparatus for injection moulding plastics
JP2009255450A (en) * 2008-04-18 2009-11-05 Toyo Mach & Metal Co Ltd Molding machine
WO2011006704A1 (en) * 2009-07-13 2011-01-20 Evonik Röhm Gmbh Device and method for producing thick-walled plastic molded parts having reduced shrinkage sites by injection molding or embossing
JP2012026138A (en) * 2010-07-22 2012-02-09 Assist:Kk Agitation-type snow-melting device
JP2019072989A (en) * 2017-10-16 2019-05-16 トリニティ工業株式会社 Decorative parts and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0909626A2 (en) * 1997-10-17 1999-04-21 TOHOKU MUNEKATA Co., Ltd. Method and apparatus for injection moulding plastics
EP0909626A3 (en) * 1997-10-17 2000-02-02 TOHOKU MUNEKATA Co., Ltd. Method and apparatus for injection moulding plastics
JP2009255450A (en) * 2008-04-18 2009-11-05 Toyo Mach & Metal Co Ltd Molding machine
WO2011006704A1 (en) * 2009-07-13 2011-01-20 Evonik Röhm Gmbh Device and method for producing thick-walled plastic molded parts having reduced shrinkage sites by injection molding or embossing
CN102470575A (en) * 2009-07-13 2012-05-23 赢创罗姆有限公司 Device and method for producing thick-walled plastic molded parts having reduced shrinkage sites by injection molding or embossing
JP2012026138A (en) * 2010-07-22 2012-02-09 Assist:Kk Agitation-type snow-melting device
JP2019072989A (en) * 2017-10-16 2019-05-16 トリニティ工業株式会社 Decorative parts and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US20080054527A1 (en) Injection molding apparatus and method of using the same
CN101528440A (en) Injection molding system, computer program, method of injection molding, and injection molding machine
JPS63176124A (en) Injection molding method and equipment
JPH066304B2 (en) Injection molding equipment
JP2000302460A (en) Molding of optical element and molding apparatus
KR100509410B1 (en) A mold and a method for manufacturing the same
JP3560221B2 (en) Injection molding control device and control method
JPH01113211A (en) Measurement of internal temperature of vulcanized object and control of tire vulcanization
JPH10315292A (en) Method and device for plastic molding
JPH11291300A (en) Mold for plastic injection molding, production thereof and injection molding method using mold
JPH0581540B2 (en)
JPH10323872A (en) Method and machine for injection molding
KR20030036161A (en) A device and a method for thermal treatment
JP2003112246A (en) Die for metal alloy injection molding
JP3393079B2 (en) Light metal injection molding method
JP2970374B2 (en) Injection molding control device
JPH06328538A (en) Heat cycle system for injection molding
JP3605499B2 (en) Mold temperature control device
KR910003319B1 (en) Molding by mold
JP2008188909A (en) Injection molding machine/method
JP2000169159A (en) Device and process for forming glass element
JP2914592B2 (en) Plastic molding method and apparatus
JP2002103400A (en) Method and apparatus for injection-compression molding
JPH03174965A (en) Method and apparatus for injection forming
JPS6241094B2 (en)