JPS639395B2 - - Google Patents

Info

Publication number
JPS639395B2
JPS639395B2 JP6343679A JP6343679A JPS639395B2 JP S639395 B2 JPS639395 B2 JP S639395B2 JP 6343679 A JP6343679 A JP 6343679A JP 6343679 A JP6343679 A JP 6343679A JP S639395 B2 JPS639395 B2 JP S639395B2
Authority
JP
Japan
Prior art keywords
discharge
dielectric
electrode
gas laser
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6343679A
Other languages
Japanese (ja)
Other versions
JPS55154790A (en
Inventor
Shigenori Yagi
Shuji Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6343679A priority Critical patent/JPS55154790A/en
Publication of JPS55154790A publication Critical patent/JPS55154790A/en
Publication of JPS639395B2 publication Critical patent/JPS639395B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 本発明は無声放電式ガスレーザ、特に高出力無
声放電式ガスレーザの電極構造の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the electrode structure of a silent discharge gas laser, particularly a high output silent discharge gas laser.

ガスレーザ媒質を励起してレーザビームを放出
するガスレーザが周知であり、金属等の穴明け、
溶接その他の加工に広範囲に用いられ、微細な加
工を迅速に行なうことができる利点を有する。こ
の種のガスレーザにおいて高圧側電極の低圧側電
極との対向部に誘電体を設け、両電極間で無声放
電を行なう無声放電式ガスレーザが周知である
が、従来の無声放電式ガスレーザでは高圧側電極
の良好な絶縁構造が得られないという問題があつ
た。
A gas laser that excites a gas laser medium and emits a laser beam is well-known, and is used for drilling holes in metals, etc.
It is widely used in welding and other processing, and has the advantage of being able to perform fine processing quickly. In this type of gas laser, a silent discharge type gas laser is well known in which a dielectric is provided at the part of the high voltage side electrode facing the low voltage side electrode, and a silent discharge is performed between both electrodes.However, in the conventional silent discharge type gas laser, the high voltage side electrode There was a problem that a good insulation structure could not be obtained.

第1図には従来の高出力無声放電式炭酸ガスレ
ーザの一例が示されている。レーザ共振器の容器
10内には接地側の金属電極12と高電圧が供給
される誘電体電極14が対向配置されている。両
電極12,14間には放電空間16が形成され、
放電空間16内に炭酸ガス、ヘリウム及び窒素等
の混合ガスから成るガスレーザ媒質が熱交換器1
8にて冷却された後ブロア20により加速されて
毎秒30メートル程度の高速度で循環供給されてい
る。放電空間16の両端には全反射鏡22及び部
分反射鏡24が固定配置され、光共振器が形成さ
れている。
FIG. 1 shows an example of a conventional high-output silent discharge type carbon dioxide laser. Inside the laser resonator container 10, a ground-side metal electrode 12 and a dielectric electrode 14 to which a high voltage is supplied are arranged to face each other. A discharge space 16 is formed between both electrodes 12 and 14,
A gas laser medium consisting of a mixed gas of carbon dioxide, helium, nitrogen, etc. is placed in the heat exchanger 1 in the discharge space 16.
After being cooled at step 8, it is accelerated by a blower 20 and is circulated and supplied at a high speed of about 30 meters per second. A total reflection mirror 22 and a partial reflection mirror 24 are fixedly arranged at both ends of the discharge space 16 to form an optical resonator.

誘電体電極14は金属電極26に誘電体28が
被覆された構成から成り、誘電体28は、第2図
及び第3図に詳細に示されるように、誘電体電極
14の金属電極12と対向する面にのみ形成さ
れ、金属電極12と反対側の誘電体電極14面に
は誘電体28が被覆されていない金属露出部14
aが形成されている。電極14には、交流電源3
0から10KHz、10KV(実効値)程度の高電圧高周
波電流が供給され、放電空間16に無声放電とし
て知られる安定なグロー状の放電が生起され、放
電空間において前述したブロア20によるガスレ
ーザ媒質の循環流と両電極12,14間の放電と
が直交する配置となり、この時のグロー放電エネ
ルギがガスレーザ媒質に与えられ、実施例におい
て炭酸ガス分子がレーザ励起され、前述した循環
流及び放電方向の両者と直交するすなわち光共振
器の光軸に対してレーザビームの励起が行なわ
れ、光共振器による共振増幅が行なわれた後その
一部が部分反射鏡24からレーザビーム32とし
て外部へ放出される。放電空間16におけるガス
レーザ媒質の温度上昇はレーザ発振のエネルギ効
率を低下させる原因となるので、放電空間16の
循環ガス流は熱交換器18にて冷却されかつブロ
ア20にて高速で循環されガスレーザ媒質の温度
上昇を一定値以下に抑制している。
The dielectric electrode 14 consists of a metal electrode 26 coated with a dielectric 28, and the dielectric 28 faces the metal electrode 12 of the dielectric electrode 14, as shown in detail in FIGS. 2 and 3. The exposed metal portion 14 is formed only on the surface of the dielectric electrode 14 opposite to the metal electrode 12 and is not coated with the dielectric material 28.
a is formed. The electrode 14 is connected to an AC power source 3.
A high voltage high frequency current of about 0 to 10 KHz and 10 KV (effective value) is supplied, and a stable glow-like discharge known as a silent discharge is generated in the discharge space 16, and the gas laser medium is circulated by the aforementioned blower 20 in the discharge space. The arrangement is such that the flow and the discharge between the electrodes 12 and 14 are perpendicular to each other, and the glow discharge energy at this time is given to the gas laser medium, and in the embodiment, carbon dioxide molecules are excited by the laser, and both the circulating flow and the discharge direction described above are A laser beam is excited with respect to the optical axis of the optical resonator, which is orthogonal to the optical axis of the optical resonator, and after resonance amplification is performed by the optical resonator, a part of the excitation is emitted from the partial reflection mirror 24 to the outside as a laser beam 32. . Since an increase in the temperature of the gas laser medium in the discharge space 16 causes a decrease in the energy efficiency of laser oscillation, the circulating gas flow in the discharge space 16 is cooled by a heat exchanger 18 and circulated at high speed by a blower 20 to reduce the energy efficiency of laser oscillation. temperature rise is suppressed below a certain value.

同様に誘電体電極14の温度上昇による誘電体
28の熱破壊を防止するために、誘電体電極14
には冷却装置が設けられ、図において電極14の
内部にはポンプ34から冷却器36及び純水器3
8を通つて冷却されかつ電気抵抗の増加された冷
却水が供給され、電極14の発熱が直接冷却水に
より冷却されている。
Similarly, in order to prevent thermal breakdown of the dielectric 28 due to temperature rise of the dielectric electrode 14,
is provided with a cooling device, and in the figure, inside the electrode 14, a pump 34, a cooler 36, and a deionizer 3 are installed.
Cooling water with increased electrical resistance is supplied through the electrode 8, and the heat generated by the electrode 14 is directly cooled by the cooling water.

第1図の無声放電式ガスレーザにおける高電圧
電流供給部の構造は、第2図に詳細に示されるよ
うに、金属電極12が接地線40を介して接地さ
れ、接地線40は絶縁ポート42により容器10
に絶縁保持されている。一方誘電体電極14には
高圧線44を介して交流電源30からの高電圧電
流が供給され、高圧線44は導線46が高耐電圧
の絶縁体48にて被覆された構造から成り、また
高圧線44は高圧ブツシング50により容器10
に絶縁保持されている。
As shown in detail in FIG. 2, the structure of the high voltage current supply section in the silent discharge type gas laser shown in FIG. Container 10
is kept insulated. On the other hand, the dielectric electrode 14 is supplied with a high voltage current from an AC power supply 30 via a high voltage line 44. The line 44 is connected to the container 10 by a high pressure bushing 50.
is kept insulated.

誘電体電極14の内部には冷却パイプ52から
冷却水が矢印Aで示されるように供給され、また
冷却パイプ54から矢印Bで示されるように冷却
水が排出され、両パイプ52及び54は絶縁ポー
ト42により容器10に絶縁保持されている。前
述した両パイプ52及び54は可撓性を有する高
耐電圧パイプから形成されている。
Cooling water is supplied to the inside of the dielectric electrode 14 from a cooling pipe 52 as shown by arrow A, and cooling water is discharged from a cooling pipe 54 as shown by arrow B. Both pipes 52 and 54 are insulated. It is insulated and held in the container 10 by the port 42. Both pipes 52 and 54 mentioned above are formed from flexible high voltage withstand pipes.

従来の無声放電式ガスレーザは以上の構成から
成り、以下に両電極12,14間に供給される高
電圧電流に基づく無声放電によるレーザ励起作用
を説明する。無声放電は電源12,14間に供給
される交流電圧に基づき放電空間16に誘電体2
8を介して生じる交流放電であり、電源電圧の各
印加周期の上昇過程において放電空間16の電圧
が上昇し、空間16内の電位差が放電開始電圧に
達するとパルス的放電が生じる。この放電により
誘電体28の表面には放電電流による電荷が蓄積
され、この結果、放電空間16の電圧が低下し
て、パルス放電が消滅する。以上のパルス放電が
電源電圧の各周期における上昇過程において繰返
され、通常の場合、交流電源の半サイクル中に数
回〜数十回の繰返しパルス放電が得られ、また極
性の反転する次の半サイクルに逆極性の同様のパ
ルス放電が繰返される。従つて、放電空間16へ
の放電電力供給は断続的な繰返しとなるが、レー
ザ励起及びレーザ発振出力はガスレーザ媒質中の
窒素がエネルギプールとして作用するために時間
的にほぼ一様の出力として得ることができる。
The conventional silent discharge type gas laser has the above-mentioned configuration, and the laser excitation effect by silent discharge based on the high voltage current supplied between the electrodes 12 and 14 will be explained below. Silent discharge occurs when a dielectric 2 is generated in a discharge space 16 based on an AC voltage supplied between power supplies 12 and 14.
The voltage in the discharge space 16 rises in the rising process of each application period of the power supply voltage, and when the potential difference in the space 16 reaches the discharge starting voltage, a pulsed discharge occurs. Due to this discharge, charges due to the discharge current are accumulated on the surface of the dielectric 28, and as a result, the voltage in the discharge space 16 decreases, and the pulse discharge disappears. The above pulse discharges are repeated during the rising process of each cycle of the power supply voltage, and in normal cases, pulse discharges are obtained several times to several tens of times during a half cycle of the AC power supply, and in the next half cycle when the polarity is reversed. Similar pulsed discharges of opposite polarity are repeated in the cycle. Therefore, although the discharge power supply to the discharge space 16 is repeated intermittently, the laser excitation and laser oscillation outputs are obtained as substantially uniform outputs over time because nitrogen in the gas laser medium acts as an energy pool. be able to.

以上の説明から明らかなように、無声放電によ
れば、誘電体電極14へは放電空間16の放電開
始電圧より大きな通常の場合2〜3倍程度の過電
圧が印加され、この状態においても安定した放電
を維持することが可能となる。
As is clear from the above explanation, according to silent discharge, an overvoltage that is usually two to three times higher than the discharge starting voltage of the discharge space 16 is applied to the dielectric electrode 14, and even in this state, the overvoltage is stable. It becomes possible to maintain discharge.

以上説明したように、高出力無声放電式ガスレ
ーザにおいては、誘電体電極14には高電圧電流
が供給されるので、その誘電体28は耐電圧及び
誘電率の両者を大きく設定しなければならない。
As explained above, in the high-output silent discharge gas laser, a high voltage current is supplied to the dielectric electrode 14, so the dielectric 28 must have both a high withstand voltage and a large dielectric constant.

しかしながら、従来装置においては、前述した
ように、誘電体電極14は放電空間16との対向
面にのみ誘電体28が被覆され、その外端部は金
属露出部14aとなつているので、必ずしも充分
な絶縁耐力を得ることができないという欠点があ
つた。すなわち、放電電力を増加するために交流
電源30の印加電圧を上昇させると、誘電体電極
14の誘電体28との境界に沿つた外端部沿面に
ストリーマ状の放電が発生するという問題があつ
た。
However, in the conventional device, as described above, the dielectric electrode 14 is coated with the dielectric material 28 only on the surface facing the discharge space 16, and the outer end thereof is the exposed metal portion 14a, so that the dielectric electrode 14 is not necessarily sufficiently covered. The drawback was that it was not possible to obtain a high dielectric strength. That is, when the applied voltage of the AC power source 30 is increased in order to increase the discharge power, a problem arises in that streamer-like discharge occurs along the outer edge of the dielectric electrode 14 along the boundary with the dielectric 28. Ta.

前述したストリーマ状放電は放電エネルギの局
部的集中すなわち局部的ガスレーザ媒質温度の上
昇に伴ない増加し、この結果、共振器内部におけ
るレージビームの吸収損失が著しく上昇し、レー
ザ発振エネルギ効率が低下するという欠点があつ
た。実験によれば、常温付近における吸収損失は
ガスレーザ媒質温度10℃の上昇に対して約2倍に
増加し、著しい温度依存性を有することが知られ
ている。
The streamer-like discharge described above increases with local concentration of discharge energy, that is, with an increase in local gas laser medium temperature, and as a result, the absorption loss of the laser beam inside the resonator increases significantly and the laser oscillation energy efficiency decreases. There was a drawback. According to experiments, it is known that absorption loss near room temperature increases approximately twice as much as the gas laser medium temperature rises by 10° C., and has a significant temperature dependence.

前述したストリーマ状放電が生じると、その放
電部において炭酸ガス分子の解離等が著しく盛ん
になり、この結果、レーザ発振の長時間安定度が
劣化するという欠点があつた。
When the aforementioned streamer-like discharge occurs, the dissociation of carbon dioxide gas molecules becomes extremely active in the discharge portion, resulting in a disadvantage that the long-term stability of laser oscillation deteriorates.

更に、従来装置においては、交流電源30の印
加電圧が著しく大きくなる大出力レーザ発振時に
おいて、誘電体電極14の金属露出部14aと接
地側金属電極12との間で火花放電破壊が生じる
という欠点があり、このような破壊事故を防止す
るためにガスレーザの出力を抑制しなければなら
なかつた。
Furthermore, the conventional device has the disadvantage that spark discharge destruction occurs between the exposed metal portion 14a of the dielectric electrode 14 and the ground side metal electrode 12 during high-output laser oscillation when the applied voltage of the AC power supply 30 becomes significantly large. In order to prevent such a destructive accident, the output of the gas laser had to be suppressed.

本発明は上記従来の課題に鑑みなされたもので
あり、その目的は、耐電圧及び誘電率の大きな良
好な特性を有する誘電体電極構造を提供すること
にある。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a dielectric electrode structure having good characteristics with high withstand voltage and dielectric constant.

上記目的を達成するために、本発明は、低電圧
側電極と対向する主要放電部が誘電体で被覆され
た誘電体電極を有し、両電極間に交流高電圧を印
加して放電空間のガスレーザ媒質を励起する無声
放電式ガスレーザにおいて、誘電体電極の主要放
電部以外を絶縁被膜にて被覆したことを特徴とす
る。
In order to achieve the above object, the present invention has a dielectric electrode in which the main discharge part facing the low voltage side electrode is covered with a dielectric material, and an AC high voltage is applied between the two electrodes to create a discharge space. A silent discharge gas laser that excites a gas laser medium is characterized in that a portion of a dielectric electrode other than the main discharge portion is covered with an insulating coating.

本発明において、誘電体電極の絶縁被膜は誘電
体とは異質あるいは同質のいずれでもよいが、実
質的に絶縁被膜部の誘電体層厚さを主要放電部に
おける誘電体の誘電体層厚さに比較して大きく設
定することが特徴である。
In the present invention, the insulating coating of the dielectric electrode may be different from or the same as the dielectric, but the dielectric layer thickness of the insulating coating portion is substantially equal to the dielectric layer thickness of the dielectric in the main discharge portion. The feature is that it is set relatively large.

以下図面に基づいて本発明の好適な実施例を説
明する。
Preferred embodiments of the present invention will be described below based on the drawings.

第4図には本発明に係るガスレーザの好適な実
施例が示され、第2図の従来装置と同一部材には
同一符号を付して説明を省略する。
FIG. 4 shows a preferred embodiment of the gas laser according to the present invention, and the same members as those in the conventional device shown in FIG. 2 are given the same reference numerals and their explanations will be omitted.

本発明において特徴的なことは、誘電体電極1
4の金属電極12と対向する主要放電部14b以
外の電極面が絶縁被膜56により被覆されている
ことであり、誘電体電極14の絶縁破壊が確実に
防止されている。実施例において、絶縁被膜56
は無声放電に必要な高誘電率とする必要はなく、
単なる耐電圧及び耐トラツキングの良好な絶縁材
から形成され、通常の場合、無機質セメントある
いは一部のエポキシ樹脂等から形成することが可
能である。
The characteristic feature of the present invention is that the dielectric electrode 1
The electrode surfaces other than the main discharge portion 14b facing the metal electrode 12 of No. 4 are covered with the insulating coating 56, and dielectric breakdown of the dielectric electrode 14 is reliably prevented. In the embodiment, the insulation coating 56
does not need to have the high dielectric constant required for silent discharge,
It is simply formed from an insulating material with good voltage resistance and tracking resistance, and can usually be formed from inorganic cement or some epoxy resin.

本発明に係る絶縁被膜56は一般の高電圧機器
に用いられる火花放電破壊防止用の絶縁物とは異
なり、絶縁被膜56の被覆された電極14自体は
誘電体電極として作用し、被覆部における単位面
積あたりの静電容量を実質的に小さくして主要放
電部14b以外への過度の電力集中を防止したも
のであり、この結果、従来のストリーマ状放電の
発生を確実に防止することが可能となる。
The insulating coating 56 according to the present invention is different from the insulating material for preventing spark discharge breakdown used in general high-voltage equipment, and the electrode 14 itself covered with the insulating coating 56 acts as a dielectric electrode, and the unit The capacitance per area is substantially reduced to prevent excessive concentration of power to areas other than the main discharge portion 14b, and as a result, it is possible to reliably prevent the occurrence of streamer-like discharge as in the past. Become.

即ち、放電電極面の放電電力密度は単位面積あ
たりの静電容量にほゞ比例し、言い換えると放電
電力密度は誘電体の厚さに逆比例するので、本発
明のように絶縁被膜(誘電体の一種)56を主要
放電部14bの絶縁被膜よりも厚く設ければ、こ
の主要放電部14b以外の放電電力密度は低下す
ることになり、その結果放電電力は主として主要
放電部14bに入ることになる。
In other words, the discharge power density on the discharge electrode surface is approximately proportional to the capacitance per unit area, or in other words, the discharge power density is inversely proportional to the thickness of the dielectric. If the insulating film 56 is provided thicker than the insulating coating of the main discharge part 14b, the discharge power density in areas other than the main discharge part 14b will decrease, and as a result, the discharge power will mainly enter the main discharge part 14b. Become.

従つて、本発明において、主要放電部14b以
外の部分の絶縁被膜56は誘電体28と同一部材
から形成し、かつその厚みを誘電体28の厚みよ
り大きくすることにより誘電率の小さい耐電圧及
び耐トラツキングの大きな絶縁被膜56を形成す
ることも可能である。
Therefore, in the present invention, the insulating coating 56 in the portion other than the main discharge portion 14b is formed from the same material as the dielectric 28, and its thickness is made larger than that of the dielectric 28, thereby achieving a withstand voltage and a low dielectric constant. It is also possible to form an insulating coating 56 with high tracking resistance.

以上のように、本発明によれば、誘電体電極1
4の主要放電部14bには誘電率の大きな絶縁体
28が被覆され、それ以外の電極部分には誘電率
の小さい単なる耐電圧及び耐トラツキングの大き
な絶縁被膜56が形成されることとなり、良好な
無声放電が得られるとともに高電圧印加によつて
も絶縁破壊の生じることのない電極構造を得るこ
とができる。すなわち、誘電体電極14の外端部
においては、従来のストリーマ状放電の発生が確
実に防止され、また、誘電体電極の金属露出部が
除去される結果、火花放電破壊による事故の発生
をも確実に防止することが可能となる。
As described above, according to the present invention, the dielectric electrode 1
The main discharge portion 14b of No. 4 is coated with an insulator 28 having a high dielectric constant, and the other electrode portions are simply formed with an insulating coating 56 having a low dielectric constant and high withstand voltage and tracking resistance. It is possible to obtain an electrode structure that allows silent discharge and does not cause dielectric breakdown even when high voltage is applied. That is, at the outer end of the dielectric electrode 14, the conventional streamer-like discharge is reliably prevented from occurring, and as the exposed metal portion of the dielectric electrode is removed, accidents due to spark discharge damage are prevented. This makes it possible to reliably prevent this.

以上の結果、本発明によれば、交流電源30の
印加電圧を大きく設定することができ、安定な高
出力レーザビームを得ることが可能となる。
As a result of the above, according to the present invention, the applied voltage of the AC power supply 30 can be set to a large value, and a stable high-output laser beam can be obtained.

更に、本発明によれば、ストリーマ状放電の除
去によつて誘電体28の劣化を防止し、熱破壊を
防ぎ電極寿命を著しく増加させることが可能とな
る。
Further, according to the present invention, by eliminating the streamer-like discharge, it is possible to prevent deterioration of the dielectric 28, prevent thermal breakdown, and significantly increase the life of the electrode.

更に、本発明によれば、ストリーマ状放電の発
生を防止した結果、発振効率の低下を防ぎ、長時
間安定したレーザ発振を行なうことが可能とな
る。
Further, according to the present invention, as a result of preventing the occurrence of streamer-like discharge, it is possible to prevent a decrease in oscillation efficiency and perform stable laser oscillation for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の無声放電式ガスレーザの一例を
示す概略構成図、第2図は第1図の要部電極構造
を示す断面図、第3図は第2図の―断面図、
第4図は本発明に係るガスレーザの好適な実施例
を示す要部断面図、第5図は第4図の―断面
図である。 各図中同一部材には同一符号を付し、12は金
属電極、14は誘電体電極、14aは金属露出
部、14bは主要放電部、16は放電空間、26
は金属電極、28は誘電体、30は交流電源、5
6は絶縁被膜である。
Fig. 1 is a schematic configuration diagram showing an example of a conventional silent discharge type gas laser, Fig. 2 is a cross-sectional view showing the main electrode structure of Fig. 1, Fig. 3 is a cross-sectional view of Fig. 2,
FIG. 4 is a cross-sectional view of a main part showing a preferred embodiment of the gas laser according to the present invention, and FIG. 5 is a cross-sectional view taken from FIG. The same members in each figure are given the same reference numerals, 12 is a metal electrode, 14 is a dielectric electrode, 14a is a metal exposed part, 14b is a main discharge part, 16 is a discharge space, 26
is a metal electrode, 28 is a dielectric, 30 is an AC power source, 5
6 is an insulating film.

Claims (1)

【特許請求の範囲】[Claims] 1 低電圧側電極と対向する主要放電部が誘電体
で被覆された誘電体電極を有し、両電極間に交流
高電圧を印加して放電空間のガスレーザ媒質を励
起する無声放電式ガスレーザにおいて、前記誘電
体電極における前記主要放電部以外の部分は、そ
の主要放電部を被覆した誘電体の厚さに比較して
大きな厚さを有する誘電体で被覆されていること
を特徴とする無声放電式ガスレーザ。
1. In a silent discharge gas laser, the main discharge part facing the low voltage side electrode has a dielectric electrode covered with a dielectric material, and in which an AC high voltage is applied between both electrodes to excite the gas laser medium in the discharge space, A silent discharge type characterized in that a portion of the dielectric electrode other than the main discharge portion is covered with a dielectric material having a thickness greater than that of the dielectric material covering the main discharge portion. gas laser.
JP6343679A 1979-05-23 1979-05-23 Silent discharge type gas laser Granted JPS55154790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6343679A JPS55154790A (en) 1979-05-23 1979-05-23 Silent discharge type gas laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6343679A JPS55154790A (en) 1979-05-23 1979-05-23 Silent discharge type gas laser

Publications (2)

Publication Number Publication Date
JPS55154790A JPS55154790A (en) 1980-12-02
JPS639395B2 true JPS639395B2 (en) 1988-02-29

Family

ID=13229214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6343679A Granted JPS55154790A (en) 1979-05-23 1979-05-23 Silent discharge type gas laser

Country Status (1)

Country Link
JP (1) JPS55154790A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267495A (en) * 1989-05-08 1991-11-28 Kido Kensetsu Kogyo Kk Shield excavator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205782A (en) * 1983-04-20 1984-11-21 Mitsubishi Electric Corp Silent discharge excitation type gas laser device
JPS60156765U (en) * 1984-03-27 1985-10-18 日本電気株式会社 Pulsed gas laser with built-in capacitor
JPH0770771B2 (en) * 1986-11-05 1995-07-31 三菱電機株式会社 Gas laser equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267495A (en) * 1989-05-08 1991-11-28 Kido Kensetsu Kogyo Kk Shield excavator

Also Published As

Publication number Publication date
JPS55154790A (en) 1980-12-02

Similar Documents

Publication Publication Date Title
US5479428A (en) Laser apparatus
US5719896A (en) Low cost corona pre-ionizer for a laser
JPS639395B2 (en)
JPS6310597B2 (en)
JPS639393B2 (en)
JPS6026310B2 (en) gas laser equipment
JPS6245717B2 (en)
JP3088579B2 (en) Laser device
JP4450980B2 (en) AC discharge gas laser oscillator
JP2578014Y2 (en) Dielectric plate of laser device
JP2013247261A (en) Gas laser oscillator
JPH01214184A (en) Pulse laser oscillation device
JPS61137381A (en) Silent discharge gas laser
JPS6346995B2 (en)
JPS6239555B2 (en)
JPH0225268B2 (en)
JP2714286B2 (en) Metal vapor laser equipment
JP3159528B2 (en) Discharge pumped excimer laser device
JPS5917871B2 (en) gas laser equipment
JPS6310915B2 (en)
JPH01108786A (en) Gas laser device
JPH05299730A (en) Laser apparatus
JPH01260871A (en) Method and apparatus for cooling dielectric electrode of silent discharge gas laser device
JPS6364065B2 (en)
Guo et al. Compact sealed-off TEA CO2 laser