JPS6383272A - Production of silicon carbide film - Google Patents

Production of silicon carbide film

Info

Publication number
JPS6383272A
JPS6383272A JP22775686A JP22775686A JPS6383272A JP S6383272 A JPS6383272 A JP S6383272A JP 22775686 A JP22775686 A JP 22775686A JP 22775686 A JP22775686 A JP 22775686A JP S6383272 A JPS6383272 A JP S6383272A
Authority
JP
Japan
Prior art keywords
acetylene
gas
silicon carbide
gaseous
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22775686A
Other languages
Japanese (ja)
Other versions
JPH0686659B2 (en
Inventor
Takao Kawamura
河村 孝夫
Naooki Miyamoto
宮本 直興
Hitoshi Takemura
仁志 竹村
Kokichi Ishiki
石櫃 鴻吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP22775686A priority Critical patent/JPH0686659B2/en
Publication of JPS6383272A publication Critical patent/JPS6383272A/en
Publication of JPH0686659B2 publication Critical patent/JPH0686659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce the title high-quality silicon carbide film at a low cost by using the gaseous acetylene obtained form dissolved acetylene and a silicon- contg. gas to form silicon carbide on a substrate. CONSTITUTION:The main valve 3 of a dissolved acetylene cylinder 1 filled with the mass and a solvent is opened to vaporize gaseous acetylene, and the gaseous acetylene is supplied to a mass flow controller 8 via a pressure regulator 5 and a purifier 7. Mean-while, the main valve 4 of a silane cylinder 2 is opened, and gaseous silane is supplied to a mass flow controller 9 via a pressure regulator 6. The controlled-flow gaseous acetylene and silane are mixed in a gas pipeline 16, and introduced into a reaction chamber 10. The gaseous mixture is decomposed by a glow discharge decomposition means, and amorphous silicon carbide film is formed on the substrate 11. Since the inexpensive dissolved acetylene is thus used, the production cost of alpha-SiC film is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアセチレン及びケイ素含有ガスを原料としたシ
リコンカーバイド膜の製法に係り、詳細にはアセチレン
生成用原料に溶解アセチレンを用いて低コスト化が達成
され且つ高品質なシリコンカーバイドが得られるように
なったシリコンカーバイド膜の製法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a silicon carbide film using acetylene and a silicon-containing gas as raw materials, and specifically, to reduce costs by using dissolved acetylene as a raw material for producing acetylene. The present invention relates to a method for manufacturing a silicon carbide film that achieves this and provides high quality silicon carbide.

〔従来技術およびその問題点〕[Prior art and its problems]

近年、薄膜生成技術の進展に伴って半導体特性を有する
シリコンカーバイド膜が生成されるようになり、この膜
がアモルファスシリコン膜に比べて大きなバンドギャッ
プをもつと共に耐熱性、耐熱衝撃性にも優れているので
短波長側で用いられる発光・受光素子として注目されて
いる。
In recent years, with the advancement of thin film production technology, silicon carbide films with semiconducting properties have been produced, and this film has a larger band gap than amorphous silicon films and has excellent heat resistance and thermal shock resistance. Therefore, it is attracting attention as a light-emitting/light-receiving device used on the short wavelength side.

このシリコンカーバイド膜は、例えばグロー放電分解法
により生成され、その生成用ガスはメタン、エタン、プ
ロパン、エチレンなどの炭素含有ガス、並びにシラン、
ジシランなどのケイ素含有ガスを組合わして用いられて
おり、これによってシリコンカーバイド(以下、SiC
と略す)半導体などが得られる。
This silicon carbide film is produced, for example, by a glow discharge decomposition method, and the production gas is a carbon-containing gas such as methane, ethane, propane, or ethylene, as well as silane,
It is used in combination with a silicon-containing gas such as disilane, which makes silicon carbide (SiC)
(abbreviated as ) semiconductors, etc. can be obtained.

しかしながら、上記ガスを用いてSiC半導体膜を形成
すると1μm/時以下という低い成膜速度となり、Si
C半導体を製作して実用化させるに当たっては高い成膜
速度が望まれる。例えば、電子写真感光用にアモルファ
スシリコンカーバイド(以下、a−3iCと略す)光導
電材料を用いた場合、その光導電層の厚みは約5〜30
μmにまで大きくなり、その要求は多大である。
However, when a SiC semiconductor film is formed using the above gas, the film formation rate is as low as 1 μm/hour or less.
In manufacturing C semiconductors and putting them into practical use, a high deposition rate is desired. For example, when an amorphous silicon carbide (hereinafter abbreviated as a-3iC) photoconductive material is used for electrophotography, the thickness of the photoconductive layer is approximately 5 to 30 mm.
The size has increased to μm, and the demands are enormous.

かかる要求に対して本発明者等は前記炭素含有ガスにア
セチレン(czuz)を用いると著しく高い成膜速度が
得られることを見い出し、これによって得られたa−3
iC光導電層は電子写真感光体として実用化できること
も知見した。
In response to such a demand, the present inventors have discovered that a significantly high film formation rate can be obtained by using acetylene (czuz) as the carbon-containing gas, and the a-3
It has also been found that the iC photoconductive layer can be put to practical use as an electrophotographic photoreceptor.

このような薄膜生成用アセチレンには高純度に精製され
ている必要があり、これには高純度アセチレンボンベ(
純度100χ・・・シックスナイン、また、分解爆発性
があるため充填圧は0.5Kg/cm2以下に設定され
る)を用いることができる。
Acetylene for producing such thin films must be purified to a high degree of purity, and this requires the use of high-purity acetylene cylinders (
A purity of 100x...69, and the filling pressure is set to 0.5 Kg/cm2 or less due to decomposition and explosiveness) can be used.

しかしながら、上記アセチレンボンへはメタン、エタン
などの高純度圧縮ボンベに比べて充填圧が格段に小さく
、常圧換算で比較した場合、そのガス容積が1/100
以下となり、これにより、消費されるボンベの数が著し
く多くなる。
However, the filling pressure of the above acetylene cylinder is much lower than that of high-purity compression cylinders such as methane and ethane, and when compared at normal pressure, the gas volume is 1/100
This significantly increases the number of cylinders consumed.

例えば、アセチレンとシランの混合ガスをグロー放電分
解して約25μmの厚みを持つa−3iC電子写真感光
体を製作した場合、477!容積のアセチレンボンベ1
本当たり約3〜5木の感光体ドラムが成膜できるにすぎ
なく、その結果、アセチレンボンベの取換え回数が多く
なって製造効率が著しく低下する。
For example, when an a-3iC electrophotographic photoreceptor with a thickness of approximately 25 μm is manufactured by glow discharge decomposition of a mixed gas of acetylene and silane, the result is 477! Volume of acetylene cylinder 1
Only about 3 to 5 photoreceptor drums can be deposited per book, and as a result, the acetylene cylinders have to be replaced frequently, resulting in a significant drop in production efficiency.

また、一般的に半導体薄膜を製作するに際して反応室に
導入されるガスの流量は精密に制御する必要があり、そ
のためにはガスボンベの充填圧(−次圧)を0.5Kg
/cm2以上に設定しなくてはならない。これによって
ガス導入系に接続されたマスフローコントローラを正常
に作動させてガスの流量を精密に制御することができる
In addition, when manufacturing semiconductor thin films, it is generally necessary to precisely control the flow rate of gas introduced into the reaction chamber, and for this purpose, the filling pressure (-subpressure) of the gas cylinder must be set to 0.5 kg.
/cm2 or higher. This allows the mass flow controller connected to the gas introduction system to operate normally and precisely control the gas flow rate.

しかしながら、上記アセチレンボンベの充填圧は0.5
Kg/cm”に満たないので所要の精密なガス流量に設
定することが困難である。
However, the filling pressure of the above acetylene cylinder is 0.5
Kg/cm", it is difficult to set the required precise gas flow rate.

即ち、このアセチレンボンベには元バルブと圧力調整器
が順次接続され、元バルブを開放して充−3= 填圧によってアセチレンガスを放出させ、更に圧力調整
器によって所要のガス圧に低下させて二次圧とすること
ができるが、−次圧が0.5Kg/cm”に満たないの
で、圧力調整器によって二次圧をそれ以下のガス圧に設
定することが困難となり、そのため、通常圧力調整器の
弁を全開にして二次圧を一次圧と同一にする。このよう
に17でアセチレンボンベを用いるとボンベ内の残余の
ガス量が減少するのに伴ってマスフローコントローラに
加わる圧力が低下し、これにより、マスフローコントロ
ーラによって正確且つ精密なガス流量制御が難しくなり
、その結果、所要の半導体特性を有する高品質なSiC
半導体が得られない。
That is, a main valve and a pressure regulator are connected to this acetylene cylinder in sequence, and the main valve is opened to release acetylene gas by charging pressure, and the pressure is further lowered to the required gas pressure by the pressure regulator. However, since the secondary pressure is less than 0.5 Kg/cm, it is difficult to set the secondary pressure to a gas pressure lower than that using a pressure regulator. Fully open the regulator valve to make the secondary pressure the same as the primary pressure.In this way, if an acetylene cylinder is used in step 17, the pressure applied to the mass flow controller will decrease as the amount of remaining gas in the cylinder decreases. However, this makes it difficult to accurately and precisely control the gas flow rate using a mass flow controller, and as a result, high-quality SiC with the required semiconductor properties cannot be used.
Semiconductors cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明者等は上記事情に鑑みて鋭意研究に努めた結果、
造船工業等でガス溶接或いは切断用ガスとして最も多用
されている低コストの溶解アセチレンがSiC膜生成用
アセチレン原料として用いられ得ることを見い出した。
In view of the above circumstances, the present inventors have made extensive research efforts and have found that
It has been found that low-cost dissolved acetylene, which is most commonly used as a gas welding or cutting gas in the shipbuilding industry, can be used as an acetylene raw material for producing SiC films.

従って本発明は上記知見に基づいて完成された=4− ものであり、その目的は高速成膜を達成したSiC膜の
製法を提供することにある。
Therefore, the present invention has been completed based on the above findings, and its purpose is to provide a method for manufacturing a SiC film that achieves high-speed film formation.

本発明の他の目的はSiC膜の炭素源に低コストの溶解
アセチレンを用いて原料コストを低減させると共に消費
させるボンベの数を少なくして作業能率を高め、これに
よって製造効率及び製造コストを改善したSiC膜の製
法を提供することにある。
Another object of the present invention is to use low-cost dissolved acetylene as a carbon source for SiC films to reduce raw material costs and reduce the number of cylinders consumed to increase work efficiency, thereby improving manufacturing efficiency and manufacturing costs. An object of the present invention is to provide a method for manufacturing a SiC film.

本発明の更に他の目的は薄膜生成用反応室へ導入される
アセチレンガスの流量を正確且つ精密に制御し、これに
よってSiC半導体特性を高めることができたSiC膜
の製法を提供することにある。
Still another object of the present invention is to provide a method for manufacturing a SiC film that can accurately and precisely control the flow rate of acetylene gas introduced into a reaction chamber for forming a thin film, thereby improving the SiC semiconductor properties. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、溶解アセチレンを出発原料にして得ら
れたアセチレンガス及びケイ素含有ガスから薄膜生成手
段によって基体上にSiCを生成するSiC膜の製法が
提供される。
According to the present invention, there is provided a method for producing a SiC film in which SiC is produced on a substrate by a thin film producing means from acetylene gas and silicon-containing gas obtained using dissolved acetylene as a starting material.

以下、本発明を、ドラム状基体の周面にグロー放電分解
法によってa−3iC膜を形成し、これによって電子写
真感光体ドラムを製作する場合を例にとって第1図によ
り詳細に説明する。
Hereinafter, the present invention will be described in detail with reference to FIG. 1, taking as an example the case where an a-3iC film is formed on the circumferential surface of a drum-shaped substrate by a glow discharge decomposition method, thereby producing an electrophotographic photosensitive drum.

図中、1は溶解アセチレンボンベ、2はシランボンベ(
純度100χのシランガスが充填されている)であり、
3.4はそれぞれ元バルブ、5,6はそれぞれの圧力調
整器、7は純化器、8,9はアセチレンガス及びシラン
ガスのそれぞれを所定の流量でもって反応室10へ供給
するためのマスフローコントローラであり、反応室IO
の内部にば成膜用ドラム基体11が基体支持台12の上
に載置されている。尚、13,14,15.16はそれ
ぞれガス配管である。
In the figure, 1 is a dissolved acetylene cylinder, 2 is a silane cylinder (
filled with silane gas of purity 100χ),
3.4 are respective original valves, 5 and 6 are respective pressure regulators, 7 is a purifier, and 8 and 9 are mass flow controllers for supplying each of acetylene gas and silane gas to the reaction chamber 10 at a predetermined flow rate. Yes, reaction chamber IO
A film-forming drum base 11 is placed on a base support 12 inside the drum. Note that 13, 14, 15, and 16 are gas pipes, respectively.

溶解アセチレンボンベ1は鉄製の容器に木炭・アスベス
ト混合物、硅酸カルシュラムなどの多孔質物(これはマ
スと呼ばれている)を均一に詰め、或いは固型化したも
のにアセトン(又はDMF  ・・・デメチルホルムア
マイド)等の溶剤をマスの多孔度に応じて適量浸潤させ
、更に精製乾燥させたアセチレンガスが充填されたもの
である。
Dissolved acetylene cylinder 1 is made by uniformly filling an iron container with a porous material (this is called a mass) such as a charcoal/asbestos mixture or calcium silicate, or solidifying the material and adding acetone (or DMF... The mass is infiltrated with an appropriate amount of a solvent such as demethylformamide depending on the porosity of the mass, and then filled with purified and dried acetylene gas.

このように溶解アセチレンボンへ1の内部には不安定な
アセチレンが燃焼分解しないようにマスと溶剤が充填さ
れており、マスは容器内部を無数の微少空間に細分し、
たとえ一部に燃焼分解を起こしでも速やかに分解生成物
を吸収し、分解が容器全般に伝播波及することを防止し
ており、一方、溶剤は分解熱を吸収したり、或いは分解
防止の安定剤としての作用も成している。
In this way, the inside of the dissolved acetylene bomb 1 is filled with mass and solvent to prevent unstable acetylene from burning and decomposing, and the mass subdivides the inside of the container into countless minute spaces.
Even if combustion decomposition occurs in some parts, it quickly absorbs the decomposition products and prevents the decomposition from propagating throughout the container.On the other hand, the solvent absorbs the decomposition heat or acts as a stabilizer to prevent decomposition. It also acts as a.

以上の如く、溶解アセチレンの安定性はマスと溶剤との
両者の完全な作用で安全が支えられている。
As described above, the stability of dissolved acetylene is supported by the complete action of both the mass and the solvent.

この溶解アセチレンボンベ1の充填圧(−次圧)は約1
0Kg/cm2であり、元バルブ3を開放するとアセチ
レンガスと共に溶剤も気化し、この溶剤混入ガスが圧力
調整器5によって0.5〜2.0Kg/cm2に設定さ
れ、ガス配管13を介して純化器7に通される。
The filling pressure (-next pressure) of this dissolved acetylene cylinder 1 is approximately 1
0 Kg/cm2, and when the main valve 3 is opened, the solvent is vaporized along with the acetylene gas, and this solvent-containing gas is set to 0.5 to 2.0 Kg/cm2 by the pressure regulator 5, and purified via the gas pipe 13. Passed through vessel 7.

この純度器7は上記溶剤混入ガス中のアセトンやDMF
を除外し、高純度のアセチレンに精製するものであり、
本例の電子写真感光体を製作するに当たってシソクスナ
インの高純度アセチレンガスが得られることを確認した
This purifier 7 uses acetone and DMF in the solvent-mixed gas.
is purified to high-purity acetylene.
In manufacturing the electrophotographic photoreceptor of this example, it was confirmed that high-purity acetylene gas of Sisoxnine could be obtained.

このようにして得られたアセチレンガスは、ガス配管1
4を介してマスフローコントローラ8に通じており、そ
して、このマスフローコントローラ8に加わるガスの圧
力(二次圧)は0.5〜2Kgの範囲内で一定値に設定
され、これにより、マスフローコントローラ8によって
アセチレンガスの流、  量を精密に制御することがで
きる。
The acetylene gas thus obtained is transferred to the gas pipe 1
4 to the mass flow controller 8, and the gas pressure (secondary pressure) applied to the mass flow controller 8 is set to a constant value within the range of 0.5 to 2 kg. The flow and amount of acetylene gas can be precisely controlled.

一方、元バルブ4を開放してシランガスボンベ2よりシ
ランガスを放出しく一次圧60Kg/cm2)、アセチ
レンガスと同様に圧力調整器6によってガス圧を0.5
〜2 Kg7cm2に設定し、マスフローコントローラ
9を通じてシランガスの流量も精密に制御できる。
On the other hand, the main valve 4 is opened to release silane gas from the silane gas cylinder 2 (primary pressure 60 kg/cm2), and the gas pressure is adjusted to 0.5 by the pressure regulator 6 in the same way as for acetylene gas.
~2 Kg7cm2, and the flow rate of silane gas can also be precisely controlled through the mass flow controller 9.

かくして、流量制御された上記アセチレンガス及びシラ
ンガスはガス配管16で混合されながら反応室10の内
部に導入され、反応室10に設けられたグロー放電分解
手段(図示せず)によって混合ガスが分解し、基板周面
にa−5iC膜が5〜20μm/時の成膜速度で形成さ
れる。
Thus, the acetylene gas and silane gas whose flow rates are controlled are introduced into the reaction chamber 10 while being mixed through the gas pipe 16, and the mixed gas is decomposed by glow discharge decomposition means (not shown) provided in the reaction chamber 10. , an a-5iC film is formed on the peripheral surface of the substrate at a deposition rate of 5 to 20 μm/hour.

上記の製法によれば、溶解アセチレンボンベの充填圧が
約10Kg/cm2と大きくなっており、そのために通
常用いられる47j2容積のボンへで比較した一 i 
− 場合、高純度アセチレンボンベに比べて常圧換算で10
0倍以上のアセチレンが充填されている。そこで、本発
明者等が約25μmの厚みを持つa−5iC電子写真感
光体を製作した場合、この4M容積の溶解アセチレンボ
ンベ1本当たり約300〜500本の感光体ドラムを成
膜することができ、その結果、製造効率を著しく高める
ことができる。
According to the above manufacturing method, the filling pressure of the molten acetylene cylinder is as high as approximately 10 kg/cm2, which is why the pressure of filling the molten acetylene cylinder is as high as approximately 10 kg/cm2.
− 10% compared to a high-purity acetylene cylinder when converted to normal pressure.
Filled with 0 times more acetylene. Therefore, if the present inventors manufactured an a-5iC electrophotographic photoreceptor with a thickness of approximately 25 μm, it would be possible to form approximately 300 to 500 photoreceptor drums per one 4M volume molten acetylene cylinder. As a result, manufacturing efficiency can be significantly improved.

尚、本例においては純化器により高純度アセチレンに精
製したが、溶剤の成分をSiC膜に含有させる目的で純
化器を用いなくてもよい。
In this example, the purified acetylene was purified using a purifier, but the purifier may not be used for the purpose of incorporating solvent components into the SiC film.

C発明の効果〕 以上の通り、本発明のSiC膜の製法によれば、ガス溶
接或いは切断用ガスとして多用さている低コストの溶解
アセチレンを用いてもSiC膜を大きな成膜速度で形成
することができ、これにより、消費されるボンベの数を
少なくして作業能率を高めることができ、その結果、製
造効率及び製造コストを改善したSiC膜の製法が提供
される。
C Effects of the Invention As described above, according to the method for producing a SiC film of the present invention, a SiC film can be formed at a high deposition rate even when using low-cost dissolved acetylene, which is often used as a gas for gas welding or cutting. As a result, the number of cylinders consumed can be reduced and working efficiency can be increased, thereby providing a method for manufacturing a SiC film that improves manufacturing efficiency and manufacturing cost.

また、本発明の製法によれば、SiC半導体膜などの高
純度SiCを薄膜生成技術によって形成するに当たって
、それに用いられるアセチレンガスの導入ガス流量を正
確且つ精密に制御することができ、これにより、高品質
なa−8iC半導体膜を形成することができ、その結果
、導電率、分光感度、光電変換特性等々の半導体特性を
所要のレベルにまで確実に高めることができる。
Further, according to the manufacturing method of the present invention, when forming high-purity SiC such as a SiC semiconductor film by thin film production technology, the flow rate of the acetylene gas introduced therein can be accurately and precisely controlled. A high-quality a-8iC semiconductor film can be formed, and as a result, semiconductor properties such as conductivity, spectral sensitivity, photoelectric conversion properties, etc. can be reliably improved to a required level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いられるグロー放電分解装
置の説明図である。 1・・・溶解アセチレンボンベ 2・・・シランボンベ 3.4・・・元バルブ 5.6・・・圧力調整器 7・・・純化器 8.9・・・マスフローコントローラ 特許出願人   (663)京セラ株式会社代表者 稲
盛 和犬
FIG. 1 is an explanatory diagram of a glow discharge decomposition apparatus used in an embodiment of the present invention. 1... Dissolved acetylene cylinder 2... Silane cylinder 3.4... Original valve 5.6... Pressure regulator 7... Purifier 8.9... Mass flow controller patent applicant (663) Kyocera Representative Wainu Inamori Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)溶解アセチレンを出発原料にして得られたアセチ
レンガス及びケイ素含有ガスから薄膜生成手段によって
基体上にシリコンカーバイドを生成することを特徴とす
るシリコンカーバイド膜の製法。
(1) A method for producing a silicon carbide film, characterized in that silicon carbide is produced on a substrate by a thin film production means from acetylene gas obtained using dissolved acetylene as a starting material and a silicon-containing gas.
(2)前記シリコンカーバイドがアモルファスシリコン
カーバイドであることを特徴とする特許請求の範囲第(
1)項記載のシリコンカーバイド膜の製法。
(2) Claim No. 1, characterized in that the silicon carbide is amorphous silicon carbide.
1) The method for producing a silicon carbide film described in section 1).
(3)前記アセチレンガスが溶解アセチレンより純化器
を介して精製されることを特徴とする特許請求の範囲第
(1)項記載のシリコンカーバイド膜の製法。
(3) The method for producing a silicon carbide film according to claim (1), wherein the acetylene gas is purified from dissolved acetylene through a purifier.
JP22775686A 1986-09-25 1986-09-25 Silicon carbide film manufacturing method Expired - Lifetime JPH0686659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22775686A JPH0686659B2 (en) 1986-09-25 1986-09-25 Silicon carbide film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22775686A JPH0686659B2 (en) 1986-09-25 1986-09-25 Silicon carbide film manufacturing method

Publications (2)

Publication Number Publication Date
JPS6383272A true JPS6383272A (en) 1988-04-13
JPH0686659B2 JPH0686659B2 (en) 1994-11-02

Family

ID=16865881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22775686A Expired - Lifetime JPH0686659B2 (en) 1986-09-25 1986-09-25 Silicon carbide film manufacturing method

Country Status (1)

Country Link
JP (1) JPH0686659B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168001B2 (en) * 2002-04-19 2012-05-01 Ulvac, Inc. Film-forming apparatus and film-forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168001B2 (en) * 2002-04-19 2012-05-01 Ulvac, Inc. Film-forming apparatus and film-forming method

Also Published As

Publication number Publication date
JPH0686659B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
US5910342A (en) Process for forming deposition film
US4168998A (en) Process for manufacturing a vapor phase epitaxial wafer of compound semiconductor without causing breaking of wafer by utilizing a pre-coating of carbonaceous powder
AU594107B2 (en) Method for preparation of multi-layer structure film
CN1007564B (en) Thin-film transistor
JP2016052980A (en) Silicon carbide crystal growth by silicon chemical vapor transport
JPS6063375A (en) Apparatus for producing deposited film by vapor phase method
JPS63286576A (en) Production of rigid carbon film
US6190725B1 (en) Coating method for the preparation of coated nuclear fuels with carbides borides or nitrides by using high temperature and high pressure combustion synthesis
JPS6383272A (en) Production of silicon carbide film
JPS5529155A (en) Semiconductor device
JP2002363751A (en) Method and device for producing single crystal silicon carbide thin film
JP2659400B2 (en) Formation method of carbon-containing silicon thin film
JPS60131970A (en) Formation of deposited film
JPS61247020A (en) Deposition film forming method
JPS63136514A (en) Manufacture of amorphous silicon carbide film
Pons et al. Silicon carbide growth: C/Si ratio evaluation and modeling
JPS5645897A (en) Manufacture of silicon carbide crystal
JPH02228475A (en) Production of silicon carbide film
JPS6082670A (en) Manufacture of silicon carbide film
JPS60100676A (en) Formation of deposited film
JPS5518024A (en) Vapor phase reactor
GB792274A (en) Bodies having films of carbon, boron and silicon deposited thereon and methods of making such deposits
JPS58172295A (en) Method for pulling up silicon single crystal
JPS60131971A (en) Formation of deposited film
JPS62202809A (en) Production of thermally decomposed graphite

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term