JPS6382360A - Refractoriness measurement by chemical composition of pottery stone - Google Patents

Refractoriness measurement by chemical composition of pottery stone

Info

Publication number
JPS6382360A
JPS6382360A JP61229305A JP22930586A JPS6382360A JP S6382360 A JPS6382360 A JP S6382360A JP 61229305 A JP61229305 A JP 61229305A JP 22930586 A JP22930586 A JP 22930586A JP S6382360 A JPS6382360 A JP S6382360A
Authority
JP
Japan
Prior art keywords
refractoriness
pottery
pottery stone
chemical composition
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61229305A
Other languages
Japanese (ja)
Inventor
Osamu Ishibashi
修 石橋
Kunio Kimura
邦夫 木村
Hiroshi Tateyama
博 立山
Kazuhiko Jinnai
和彦 陣内
Hideharu Hirosue
広末 英晴
Satoshi Nishimura
聡 西村
Kinue Tsunematsu
絹江 恒松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61229305A priority Critical patent/JPS6382360A/en
Publication of JPS6382360A publication Critical patent/JPS6382360A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To determine refractoriness without being affected by a measuring person and accuracy of reference Seger cone, by determining content ratio of components of chemical composition in pottery stone by chemical analysis, fluorescent X-ray analysis or the like to calculate a value of refractoriness in the form of temperature based on the results. CONSTITUTION:The refractoriness of pottery stone for porcelain is determined handily and accurately from the chemical composition thereof. Si, Al, Fe, Ca, Na and K are determined in respective content ratios for SiO2, Al2O3, Fe2O3, CaO, Na2O and K2O in pottery stone by chemical analysis, fluorescent X-ray analysis or the like. The formula is calculated by using the resulting values to determine the refractoriness Tsk in the form of temperature. This enables the mixing of various pottery stones to obtain a pottery stone blend with a desired refractoriness and composition easily.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は陶磁器用陶石の耐火度を、その化学組成から簡
便かつ精度良く測定する方法に関し、この本発明方法を
応用する事によって、何種類かの原料陶石を配合し、所
望する耐火度及び化学組成を持ち、製品用途に適合した
原料を調整する事が出来るものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for easily and accurately measuring the refractoriness of pottery stone from its chemical composition, and what can be achieved by applying the method of the present invention. By blending different types of raw pottery stone, it is possible to adjust the raw material to have the desired fire resistance and chemical composition, and to suit the product application.

〈従来の技術及びその問題点〉 陶磁器原料となる陶石の主要化学成分は、その中で高品
位陶石と称されるものが、SiOユ、^1203゜K2
Oから成っており、その耐火度は約5K26であるが、
それにCab、 Na2CI等の不純物が混入した低品
位陶石では、その耐火度は5K26〜12七相当の幅を
もって変化する。
<Conventional technology and its problems> Among the main chemical components of pottery stone, which is a raw material for ceramics, what is called high-grade pottery stone is SiOYU, ^1203゜K2.
It is made of O and has a fire resistance of about 5K26,
In addition, in the case of low-grade pottery stone mixed with impurities such as Cab and Na2CI, its refractory rating varies by a range equivalent to 5K26 to 127.

従来、日用食器、タイル、衛生陶器等を作成する陶石の
耐火度は、通常JIS M8512又はJIS R22
04に規定された方法に従って測定されている。しかし
ながら、これらの測定方法は次に示すような問題点、即
ち、(1)JIS R2204においては、試料を標準
網ふるい297μmを全通すべく粉砕するようになって
いるが、同一試料でも粉砕方法によりその粒度分布が著
しく異なるため、耐火度が数番異なる場合がある、(2
)上記の耐火度?J’A定方法においては、耐火度をゼ
ーゲールコーンの先端が受は台に接触するときにそれと
最も近似の変形状態を示す標準ゼーゲルコーンの番号で
表すとされているが高温状態における正確な観察は困難
であって、得られた耐火度は測定者や標準ゼーゲルコー
ンの精度に著しく左右される、等の問題点を有し、必ず
しも満足し得るものではない。
Conventionally, the fire resistance of pottery stone used to make everyday tableware, tiles, sanitary ware, etc. is usually JIS M8512 or JIS R22.
Measured according to the method specified in 04. However, these measurement methods have the following problems: (1) JIS R2204 requires that the sample be ground to pass through a standard mesh sieve of 297 μm; Because the particle size distribution is significantly different, the fire resistance may differ by several orders of magnitude (2
) Fire resistance above? In the J'A standard method, it is said that the refractory level is expressed by the standard Segel cone number, which indicates the deformation state most similar to that when the tip of the Segel cone comes into contact with the stand, but accurate observation under high temperature conditions is difficult. It is difficult to measure, and the obtained fire resistance is significantly dependent on the accuracy of the measurer and the standard Segel cone, and is not always satisfactory.

父上北方法による場合には、各別の陶石についての耐火
度は求まるが河種類かの陶石を混ぜ合わす場合にはその
都度、同様の測定を行なわなければならず、系統的な品
質管理の点でも問題があった。
When using the Chichijokita method, the fire resistance of each individual pottery stone can be determined, but when mixing pottery stones of different types, the same measurement must be performed each time, making systematic quality control difficult. There was also a problem with that.

〈問題点を解決する為の手段〉 本発明では上述の諸問題を解決し、簡便かつ精度が良い
方法を提供せんとするものであり、その要旨は化学分析
法、螢光X線分析法等により陶石中のS+02t At
、to3t Fe2O3p Cab、 Ha、O及びに
、0のそれぞれの含有割合(wt%)であるSt、^L
、 Fe、 CatHa及びKを求め、耐火度を温度に
変換した伯(”C)Tskを、 Tsk= 1585+0.549Sf+ 3.47^L
−41,9Fe−43,5Ca−44,0Na−19,
5Kによって求める陶石の耐火度測定法である。
<Means for Solving the Problems> The present invention aims to solve the above-mentioned problems and provide a simple and accurate method. S+02t At in pottery stone
, to3t Fe2O3p Cab, Ha, O, and 0, St, ^L, which are the respective content ratios (wt%)
, Fe, CatHa and K, and convert the refractory degree to temperature (C)Tsk, Tsk = 1585 + 0.549Sf + 3.47^L
-41,9Fe-43,5Ca-44,0Na-19,
This is a method for measuring the fire resistance of pottery stone determined by 5K.

〈作用〉 約200種類の陶石について、螢光X線分析法によって
、その陶石中に含有されている5fOLt^L、Oヨp
 Fe2O,p Cam、Ha、O及びに20の含有−
t%たる5LAlp Fes Cap Ha及びKをそ
れぞれ求めた。又同陶石についてそれぞれ、先に本件発
明者等が提供した(特開昭60−201243号、特願
昭60−211981号)方法による熱膨張計による耐
火度測定法に従って耐火度に相当する温度(℃)を求め
た。
<Effect> Approximately 200 types of pottery stones were analyzed using fluorescent X-ray analysis to determine the 5fOLt^L and Oyop contained in the pottery stones.
Fe2O, p Cam, Ha, O and 20 content -
t% of 5LAAlp Fes Cap Ha and K were determined respectively. In addition, the temperature corresponding to the refractory degree of each of the pottery stones was determined according to the method of measuring the refractory degree using a thermal dilatometer using the method previously provided by the present inventors (Japanese Unexamined Patent Publication No. 60-201243, Japanese Patent Application No. 60-211981). (°C) was determined.

この耐火度温度と、化学組成との関係から最小二乗法に
よって、 Tsk= 1585+ 0.549S(+ 3.47^
L−41,9Fe−43,5Ca −44.0Na −
19,5に一一−(1)が得られる。
Based on the relationship between this refractory temperature and the chemical composition, using the least squares method, Tsk = 1585 + 0.549S (+ 3.47^
L-41,9Fe-43,5Ca -44.0Na -
11-(1) is obtained at 19.5.

第1図に示すのは、上記の式(1)によって計算したT
skと、熱膨張計によって測定された耐火度温度との関
係を示すグラフであり、この第1図に示される両耐火度
の相関係数は0.984と良好であり、式(1)による
Tskは実測値に対して±40℃の小さな誤差範囲にあ
る。
Figure 1 shows the T calculated using equation (1) above.
This is a graph showing the relationship between sk and the refractory temperature measured by a thermal dilatometer, and the correlation coefficient between the two refractory degrees shown in FIG. Tsk is within a small error range of ±40°C with respect to the actual measurement value.

〈実施例〉 以下本発明をその実施例を示し詳述する。この実施例に
おいては、配合用の低品質の天草陶石12種類について
、上述の螢光X線分析法で化学組成を求め、その組成か
ら上記式(1)によつて求めたTskと、熱膨張計によ
って求めた耐火度温度TE及びJIS R2204によ
る耐火度温度とを比較した。その結果は下記第1表に示
す様に、本発明方法によって求めたTskが実測値とよ
く一致している事が判る。
<Examples> The present invention will be described in detail below by showing examples thereof. In this example, the chemical composition of 12 types of low-quality Amakusa pottery stone used for compounding was determined by the above-mentioned fluorescent X-ray analysis method, and from the chemical composition, Tsk determined by the above formula (1) and the thermal The refractory temperature TE determined by a dilatometer was compared with the refractory temperature according to JIS R2204. The results are shown in Table 1 below, and it can be seen that the Tsk determined by the method of the present invention is in good agreement with the actually measured value.

次に、タイルあるいは衛生陶器用の原料を目的としたA
1碍子用の原料を目的とし九B及びCの3種類の配合陶
石を得る為の配合割合を上記式(1)を用いた線形計画
法によって求め、その結果を下記第1表の右側に示す。
Next, A
1. The blending ratios for obtaining three types of blended pottery stones of 9B and C for the purpose of raw materials for insulators were determined by linear programming using the above formula (1), and the results are shown on the right side of Table 1 below. show.

この場合の条件として、まずA、B、Cの3種類とも耐
火度が5K18(Tsk=1500℃)以上、価格は最
低とし、かつそれぞれの化学成分の含有割合は第2表の
条件値に設定した。
The conditions in this case are that all three types, A, B, and C, have a fire resistance of 5K18 (Tsk = 1500℃) or higher, the price is the lowest, and the content ratio of each chemical component is set to the condition values in Table 2. did.

なお、第2表の空白の部分に関しては、特に条件を設け
なかった。この配合割合で配合した陶石の化学組成の計
算値と実測値とは第2表に示す様によく一致しており、
本発明による方法が有効であることが判る。
Note that no particular conditions were set for the blank areas in Table 2. As shown in Table 2, the calculated and measured chemical composition values of pottery stone mixed at this mixing ratio are in good agreement.
It can be seen that the method according to the invention is effective.

〈発明の効果〉 以上述べて来た本発明方法によれば、対象とする陶石な
直接高温まで昇温する必要がなく、測定者の個人的誤差
の少ない化学組成の定量結果からその陶石の耐火度が決
定される。そしてこの本発明方法によると各種の原料陶
石を混合してFfWする耐火度、組成の配合陶石を得る
事が容易で・あるので高品位陶石が枯渇化傾向にあり、
種々の陶石を各種配合して有効利用を図っている現状に
あっては特に有効な方法である。
<Effects of the Invention> According to the method of the present invention described above, there is no need to directly raise the temperature of the target ceramic stone to a high temperature, and the determination of the chemical composition of the ceramic stone with less personal error by the measurer is possible. The fire resistance is determined. According to the method of the present invention, it is easy to mix various raw pottery stones to obtain blended pottery stones with a fire resistance and composition that can be FfW, so high-grade pottery stones tend to be depleted.
This is a particularly effective method in the current situation where various types of pottery stones are mixed and used effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による式(1)から求めた耐火度温度(
Tsk)と、熱膨張計により求めた耐火度温度との関係
を示すグラフ。
Figure 1 shows the refractory temperature (
Graph showing the relationship between Tsk) and the refractory temperature determined by a thermal dilatometer.

Claims (1)

【特許請求の範囲】 1、化学分析法、螢光X線分析法等により陶石中のSi
O_2、Al_2O_3、Fe_2O_3、CaO、N
a_2O及びK_2Oのそれぞれの含有割合(wt%)
であるSi、Al、Fe、Ca、Na及びKを求め、耐
火度を温度に変換した値(℃)Tskを Tsk=1585+0.549Si+3.47Al−4
1.9Fe−43.5Ca−44.0Na−19.5K
によって求める陶石の耐火度測定法。
[Claims] 1. Si in pottery stone is determined by chemical analysis, fluorescent X-ray analysis, etc.
O_2, Al_2O_3, Fe_2O_3, CaO, N
Each content ratio (wt%) of a_2O and K_2O
Find Si, Al, Fe, Ca, Na, and K, and convert the refractory degree to temperature (℃) Tsk = 1585 + 0.549Si + 3.47Al-4
1.9Fe-43.5Ca-44.0Na-19.5K
A method for measuring the fire resistance of pottery stone.
JP61229305A 1986-09-26 1986-09-26 Refractoriness measurement by chemical composition of pottery stone Pending JPS6382360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61229305A JPS6382360A (en) 1986-09-26 1986-09-26 Refractoriness measurement by chemical composition of pottery stone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61229305A JPS6382360A (en) 1986-09-26 1986-09-26 Refractoriness measurement by chemical composition of pottery stone

Publications (1)

Publication Number Publication Date
JPS6382360A true JPS6382360A (en) 1988-04-13

Family

ID=16890056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61229305A Pending JPS6382360A (en) 1986-09-26 1986-09-26 Refractoriness measurement by chemical composition of pottery stone

Country Status (1)

Country Link
JP (1) JPS6382360A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518984A (en) * 1974-06-10 1976-01-24 Dokutooru Pee Kiraa Ag
JPS55121934A (en) * 1979-03-10 1980-09-19 Nihon Cement Alumina cement composition
JPS55154438A (en) * 1979-05-21 1980-12-02 Hitachi Ltd Method for absorptiometric analysis analyzing
JPS5638859U (en) * 1979-08-31 1981-04-11
JPS56151342A (en) * 1980-04-25 1981-11-24 Hitachi Ltd Analyzer utilizing light
JPS5727964A (en) * 1980-07-21 1982-02-15 Fukui Prefecture Manufacture of clay roof tile soil from acidic rock weathered matter as main raw material
JPS58109837A (en) * 1981-12-24 1983-06-30 Olympus Optical Co Ltd Compensating method of calibration curve
JPS58211663A (en) * 1982-06-02 1983-12-09 Hitachi Ltd Automatic analyzer
JPS60231455A (en) * 1984-04-28 1985-11-18 株式会社イナックス Refractoriness degree preparation of extrusion molding ceramic raw material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518984A (en) * 1974-06-10 1976-01-24 Dokutooru Pee Kiraa Ag
JPS55121934A (en) * 1979-03-10 1980-09-19 Nihon Cement Alumina cement composition
JPS55154438A (en) * 1979-05-21 1980-12-02 Hitachi Ltd Method for absorptiometric analysis analyzing
JPS5638859U (en) * 1979-08-31 1981-04-11
JPS56151342A (en) * 1980-04-25 1981-11-24 Hitachi Ltd Analyzer utilizing light
JPS5727964A (en) * 1980-07-21 1982-02-15 Fukui Prefecture Manufacture of clay roof tile soil from acidic rock weathered matter as main raw material
JPS58109837A (en) * 1981-12-24 1983-06-30 Olympus Optical Co Ltd Compensating method of calibration curve
JPS58211663A (en) * 1982-06-02 1983-12-09 Hitachi Ltd Automatic analyzer
JPS60231455A (en) * 1984-04-28 1985-11-18 株式会社イナックス Refractoriness degree preparation of extrusion molding ceramic raw material

Similar Documents

Publication Publication Date Title
US8304356B2 (en) Aluminosilicate glass and color adapting composition for ceramics
Jackson et al. Medieval and post-medieval glass technology: melting characteristics of some glasses melted from vegetable ash and sand mixtures
Boyd et al. The role of Sr 2+ on the structure and reactivity of SrO–CaO–ZnO–SiO 2 ionomer glasses
BRPI0802190B1 (en) COMPOSITION OF METAL ENAMEL AND ITS USE
Li et al. Structure of ZnO–Fe2O3–P2O5 glasses probed by Raman and IR spectroscopy
Hedges et al. Pre‐Islamic ceramic glazes at Kish and Nineveh in Iraq
JP2008247715A (en) Sorting method of granulated blast furnace slag for cement, and forming process of cement composition
JPH10506917A (en) Low melting temperature porcelain
Mirti et al. Technological features of Roman terra sigillata from Gallic and Italian centres of production
Yasukawa et al. Crystallinity Analysis of Glass‐Ceramics by the Rietveld Method
JPS6382360A (en) Refractoriness measurement by chemical composition of pottery stone
Beals et al. Low‐Expansion Cordierite Porcelains
JP6364918B2 (en) Blast furnace slag sorting method and blast furnace cement production method
Alaimo et al. Microchemical and microstructural characterisation of medieval and post-medieval ceramic glaze coatings
Neve et al. Development of novel dental cements. I. Formulation of aluminoborate glasses
Stokes et al. Investigation of the chemical solubility of mixed-alkali fluorcanasite forming glasses
BAN et al. Microstructure and homogeneity of dental porcelain frits
JPS62119455A (en) Refractory degree measurement of pottery stone
JP2008266088A (en) Glaze for roofing tile
Owen et al. Estimation of the bulk composition of fine‐grained media from microchemical and backscatter‐image analysis: Application to biscuit wasters from the Bow factory site, London
Kumar et al. In vitro Cytotoxicity, Apoptotic and Hemolysis Assay of Kalsilite‐Based Glass Ceramics for Dental Veneering Application
Beam Effect of opacifiers on fused viscosity of feldspathic glazes
Guo et al. A study of Dehua white porcelain in successive dynasties
KR102208096B1 (en) Buncheong Ceramic Composition and Manufacturing Method thereof
Lemieux Improved Spectrochemical Analysis of Alumina By Mineralized Calcination