JPS63818A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS63818A
JPS63818A JP14410686A JP14410686A JPS63818A JP S63818 A JPS63818 A JP S63818A JP 14410686 A JP14410686 A JP 14410686A JP 14410686 A JP14410686 A JP 14410686A JP S63818 A JPS63818 A JP S63818A
Authority
JP
Japan
Prior art keywords
powder
magnetic
solid powder
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14410686A
Other languages
Japanese (ja)
Inventor
Toshinobu Sueyoshi
俊信 末吉
Seiichi Asada
朝田 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP14410686A priority Critical patent/JPS63818A/en
Publication of JPS63818A publication Critical patent/JPS63818A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the electromagnetic characteristic and durability of a magnetic recording medium by specifying the average particle size of the total solid powder contained in a coating layer of the magnetic recording medium and the hydroxyl group concn. on the particle surface over the entire solid powder. CONSTITUTION:The average particle size of the total solid powder such as magnetic powder, polishing agent and lubricating agent to be incorporated into the magnetic layer is specified to <=0.5mum, and the hydroxyl group concn. of the particle surface over the entire part of the solid powder is specified within a 6.0X10<19>-1.2X10<21> pieces/g. The hydroxyl groups of the adequate concn. on the surface of the solid powder particles are thereby securely bonded with the functional group in a binder resin, by which the dispersibility, packability and compounding characteristics of the solid powder are satisfactorily improved. the magnetic recording medium having the improved electromagnetic characteristic and durability is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気記録媒体に関し、さらに詳しくは磁性層
、下塗層あるいはバンクコート層などの塗布層中に含ま
れる固形粉末の分散性、充填性および配向性が良好で電
磁気的特性などに優れた磁気記録媒体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to magnetic recording media, and more particularly to dispersibility and filling of solid powder contained in coating layers such as magnetic layers, undercoat layers, and bank coat layers. The present invention relates to a magnetic recording medium that has good properties, orientation, and electromagnetic properties.

〔従来の技術〕[Conventional technology]

磁気記録媒体は、通常、磁性粉末その他の研り荊、潤滑
剤などの固形粉末、結合剤成分、有機溶剤およびその他
の非固形成分などからなる磁性塗料、下塗層用塗料、バ
ンクコート要用塗料などをポリエステルフィルムなどの
基体上に塗布、乾燥してつくられ、電磁気的特性および
耐久性に優れたものが要求される。
Magnetic recording media usually require a magnetic coating consisting of magnetic powder or other abrasive powder, solid powder such as a lubricant, a binder component, an organic solvent, and other non-solid components, a coating for an undercoat layer, and a bank coat. It is made by applying paint or the like onto a substrate such as polyester film and drying it, and is required to have excellent electromagnetic properties and durability.

そのため、これら塗布層中に含まれる磁性粉末および研
暦剤、’tQ?’に剤などの固形粉末は、分散性、充填
性等に優れ、磁気記録媒体に優れた電磁気的特性および
耐久性を付与できるものが好ましく、これらの固形粉末
の分散性、充填性等を改善するため、たとえば、これら
磁性粉末、研磐剤、潤滑剤などの固形粉末の粒子表面に
親水性化合物を被着するか、または疎水性化合物を被着
するなどして適当量の水酸基を存在させ、結合剤樹脂の
官能基との間で強固な結合を起こさせて、これら固形粉
末の分散性、充填性等を高めることが行われている。
Therefore, the magnetic powder and abrasive agent contained in these coating layers, 'tQ? It is preferable that the solid powder such as the agent has excellent dispersibility and filling properties, and can impart excellent electromagnetic properties and durability to the magnetic recording medium, and improves the dispersibility and filling properties of these solid powders. To do this, for example, a suitable amount of hydroxyl groups can be made to exist by depositing a hydrophilic compound or a hydrophobic compound on the particle surface of solid powder such as magnetic powder, abrasive, or lubricant. The dispersibility, filling properties, etc. of these solid powders are improved by forming strong bonds with the functional groups of the binder resin.

〔発明が解決しようとする問題点] ところが、平均粒子径が0.5μrnを越える従来−般
に使用される磁性粉末、研麿剤、潤滑剤等の固形粉末を
用いる場合は、粉末粒子表面の水酸基濃度を高くするほ
ど、分散性、充裟性等が向上され、水酸基濃度が高すぎ
て、かえってこれら固形粉末の分散性、充填性等に支障
をきたすということもないが、塗布層の表面平滑性を良
好にし、電磁気的特性をより良好にするため、微細な固
形粉末を使用し、この微粉末粒子表面の水酸基濃度を、
従来−般に使用される平均粒子径が0.5μmを越える
固形粉末と同等にすると、微細な固形粉末粒子表面に存
在する水酸基の単位体績あたりの濃度が高くなりすぎて
、かえってこれら固形粉末の分散性、充填性等が低下す
る。そしてこの傾向はこれら固形粉末を微粒子化するほ
ど顕著で、平均粒子径が0.5μm以下の微粒子になる
と、これら固形粉末の分散性、充填性さらに配向性等に
支障が生じ、これを使用して得られる磁気記録媒体は、
電磁気的特性がむしろ低下し、耐久性も低下するという
難点がある。
[Problems to be solved by the invention] However, when using conventionally and commonly used solid powders such as magnetic powders, polishing agents, and lubricants with an average particle size exceeding 0.5 μrn, the surface of the powder particles The higher the hydroxyl group concentration, the better the dispersibility, filling properties, etc., and the hydroxyl group concentration will not be too high, which will actually impede the dispersibility, filling properties, etc. of these solid powders. In order to improve smoothness and improve electromagnetic properties, fine solid powder is used, and the hydroxyl group concentration on the surface of this fine powder particle is
Conventionally, if the average particle size exceeds 0.5 μm and is equivalent to that of conventionally used solid powders, the concentration per unit of hydroxyl groups present on the surface of fine solid powder particles will become too high, and these solid powders will The dispersibility, filling properties, etc. of This tendency becomes more pronounced as these solid powders become finer particles, and when the average particle size becomes finer particles of 0.5 μm or less, problems occur in the dispersibility, filling properties, and orientation of these solid powders, making it difficult to use them. The magnetic recording medium obtained by
There are disadvantages in that the electromagnetic properties are rather deteriorated and the durability is also reduced.

〔問題点を解決するための手段〕 この発明はかかる問題点を解消するため種々検討を行っ
た結果なされたもので、塗布層中に含有させる磁性粉末
および研屏剤、潤滑剤等の全固形粉末の平均粒子径を0
.5μm以下とし、かつこれら固形粉末全体の粒子表面
の水酸基の濃度を6.OX I Q 19〜1.2X 
1021個/gの範囲内にすることによって、微細な固
形粉末の分散性、充填性および配向性を充分に向上させ
、磁気記録媒体の電磁気的特性および耐久性を充分に向
上させたものである。
[Means for Solving the Problems] This invention was made as a result of various studies to solve the problems, and the present invention was made as a result of various studies to solve the problems. The average particle size of the powder is set to 0.
.. 5 μm or less, and the concentration of hydroxyl groups on the particle surface of the entire solid powder is 6. OXIQ 19~1.2X
By keeping the number within the range of 1021 pieces/g, the dispersibility, filling property, and orientation of the fine solid powder are sufficiently improved, and the electromagnetic properties and durability of the magnetic recording medium are sufficiently improved. .

この発明において使用される磁性粉末、研あ剤、潤滑剤
などの固形粉末は、固形粉末全体の平均粒子径が0.5
μm以下で、かつ固形粉末全体の粒子表面の水酸基の濃
度が6.Ox 1019〜1.2 X 1021f[I
/gの範囲内にあるものであることが好ましく、固形粉
末全体の平均粒子径が0.5μmより大きいものでは、
これらを例えば磁性層中に含有するような磁気記録媒体
においてはノイズを充分に小さくしたりすることができ
ず、また表面平滑性を充分に平滑にすることができない
。また、固形粉末全体の粒子表面の水酸基の濃度が6.
0X1019111i1/ gより低すぎると、結合剤
樹脂の官能基と充分に強固に結合させることができず、
反対に1.2x 1021i1i1/ gより高すぎる
と、多すぎる水酸基が磁性粉末、研暦剤、潤滑剤などの
固形粉末の分散性、充填性および配向性に好ましくない
作用を及ぼし、いずれの場合も所期の効果を充分に発揮
することができない。従って、塗布層中に含有させる固
形粉末は、全固形粉末の平均粒子径が0.5μm以下で
、かつ固形粉末全体の粒子表面の水酸基の濃度が(、Q
×I Q 19〜1.2X 1021 f固/gの範囲
内にあるものであることが好ましく、全固形粉末の平均
粒子径はさらに0.4μm以下とし、0.3μm以下に
するのがより好ましい。また、固形粉末全体の粒子表面
の水酸基の濃度はさらに7.5x l 019〜1.0
 X 10”?面/gの範囲内とし、7.5x 10”
 〜5.Ox 10”t[H/g)範囲内にするのがよ
り好ましい。このように塗布層中に含有させる磁性粉末
、研潜剤、潤滑剤などの全固形粉末の平均粒子径を0.
5μm以下とし、これらの固形粉末の全体の粒子表面の
水酸基濃度を6.0×1019〜1.2X 1021(
固/gの範囲内にすると、過度な水酸基が存在する場合
のように、かえって分散性、充填性および配向性が劣化
されるということもなく、これら固形粉末粒子表面の適
度な濃度の水酸基が結合剤樹脂中の官能基と強固に結合
して、これらの固形粉末の分散性、充填性および配向性
が充分に向上され、電磁気的特性および耐久性に優れた
磁気記録媒体が得られる。
The solid powder used in this invention, such as magnetic powder, abrasive, and lubricant, has an average particle size of 0.5 as a whole.
μm or less, and the concentration of hydroxyl groups on the particle surface of the entire solid powder is 6. Ox 1019~1.2 X 1021f[I
/g, and if the average particle size of the entire solid powder is larger than 0.5 μm,
In a magnetic recording medium containing these in the magnetic layer, for example, noise cannot be sufficiently reduced, and the surface smoothness cannot be made sufficiently smooth. In addition, the concentration of hydroxyl groups on the particle surface of the entire solid powder is 6.
If it is too low than 0X1019111i1/g, it will not be possible to bond sufficiently firmly with the functional group of the binder resin.
On the other hand, if it is too high than 1.2x 1021i1i1/g, too many hydroxyl groups will have an unfavorable effect on the dispersibility, filling property, and orientation of solid powders such as magnetic powders, polishing agents, and lubricants. The desired effect cannot be fully exerted. Therefore, the solid powder to be contained in the coating layer has an average particle diameter of 0.5 μm or less, and a concentration of hydroxyl groups on the particle surface of the entire solid powder (,Q
×I Q 19 to 1.2 . In addition, the concentration of hydroxyl groups on the particle surface of the entire solid powder is further 7.5x l 019 ~ 1.0
x 10”? within the range of surface/g, 7.5 x 10”
~5. It is more preferable that Ox 10"t [H/g) be within the range. In this way, the average particle diameter of all solid powders such as magnetic powder, abrasive agent, lubricant, etc. contained in the coating layer is 0.
5 μm or less, and the hydroxyl group concentration on the entire particle surface of these solid powders is 6.0×1019 to 1.2×1021 (
When the concentration of hydroxyl groups is within the solid/g range, the dispersibility, filling property, and orientation will not be deteriorated as would be the case if excessive hydroxyl groups are present, and an appropriate concentration of hydroxyl groups on the surface of these solid powder particles can be used. By strongly bonding with the functional groups in the binder resin, the dispersibility, filling properties, and orientation of these solid powders are sufficiently improved, and a magnetic recording medium with excellent electromagnetic properties and durability can be obtained.

このような平均粒子径が0.5μm以下の粒子の表面の
水酸基の濃度は、親水性化合物または疎水性化合物など
を被着することによって、6.0X1019〜1.2X
 102’ +固/gの範囲内とされる。
The concentration of hydroxyl groups on the surface of such particles with an average particle diameter of 0.5 μm or less can be increased from 6.0×1019 to 1.2× by coating with a hydrophilic compound or a hydrophobic compound.
It is assumed to be within the range of 102' + solid/g.

このように、これら固形粉末全体の粒子表面の水酸基の
濃度を調整するため、被着する親水性化合物としては、
たとえば、酸化アルミニウム、酸化ニッケル、酸化コバ
ルト、酸化クロム、酸化亜鉛、酸化チタンなどが挙げら
れる。これらの化合物の被着は、硫酸アルミニウム、硫
酸コバルト、硝酸ニッケル、塩化クロム、塩化亜鉛、塩
化チクンなどの水溶液中に固形粉末を分散させた後、ア
ルカリを添加して水酸化物沈澱として粒子表面に被着さ
せたり、アルカリ溶液を中和して固形分を粒子表面に被
着させ、次いで、100〜1000℃の温度で加熱する
などして行われる。
In this way, in order to adjust the concentration of hydroxyl groups on the particle surface of these solid powders as a whole, the hydrophilic compound to be coated is
Examples include aluminum oxide, nickel oxide, cobalt oxide, chromium oxide, zinc oxide, titanium oxide, and the like. Adhesion of these compounds is achieved by dispersing solid powders in an aqueous solution of aluminum sulfate, cobalt sulfate, nickel nitrate, chromium chloride, zinc chloride, chikum chloride, etc., and then adding an alkali to form a hydroxide precipitate on the particle surface. The solid content is deposited on the particle surface by neutralizing an alkaline solution, and then heated at a temperature of 100 to 1000°C.

また、疎水性化合物としては、たとえば、酸化ケイ素、
炭化水素、界面活性剤などが挙げられ、これらの被着は
、たとえば、水ガラスなどのケイ素化合物をアルカリ水
溶液に溶解し、この溶液中に固形粉末を分散させた後、
炭酸ガスを吹き込んだり、酸を添加するなどの方法で中
和して、これらの疎水性化合物の水和物として粒子表面
に被着し、次いで、100〜1000℃の温度で加熱し
疎水性化処理するなどして行われる。また、固形粉末の
表面に疎水性炭化水素あるいは界面活性剤等による表面
被7処理を行って疎水性化することも可能であるが、無
機物による処理の方がより好ましい。
In addition, examples of hydrophobic compounds include silicon oxide,
Examples include hydrocarbons, surfactants, etc., and these can be deposited by, for example, dissolving a silicon compound such as water glass in an alkaline aqueous solution, dispersing solid powder in this solution,
These hydrophobic compounds are neutralized by blowing in carbon dioxide or adding acid, and then adhered to the particle surface as hydrates of these hydrophobic compounds, and then heated at a temperature of 100 to 1000°C to make them hydrophobic. This is done by processing. It is also possible to make the surface of the solid powder hydrophobic by subjecting it to a surface treatment with a hydrophobic hydrocarbon or a surfactant, but treatment with an inorganic substance is more preferable.

上記の親水性化合物または疎水性化合物の被着は、被着
する固形粉末の粒子表面の水酸基濃度に応じて、いずれ
か−方あるいは両者を同時に被着してもよい。固形粉末
全体の粒子表面の水酸基の濃度は、これらの化合物の被
着量などによって調整され、親水性化合物が被着される
と固形粉末全体の粒子表面の水酸基の濃度が高くなり、
疎水性化合物が被着されると固形粉末全体のF、、′l
l裏表面水酸基の濃度が低くなる。
The above hydrophilic compound or hydrophobic compound may be applied either or both at the same time depending on the hydroxyl group concentration on the particle surface of the solid powder to be applied. The concentration of hydroxyl groups on the particle surface of the entire solid powder is adjusted by the amount of these compounds deposited, etc. When a hydrophilic compound is deposited, the concentration of hydroxyl groups on the particle surface of the entire solid powder increases,
When the hydrophobic compound is deposited, the F,,′l of the entire solid powder
l The concentration of hydroxyl groups on the back surface becomes lower.

このようにして、全体の粒子表面の水酸基の濃度を6.
0X 1019〜2.lX10211固/gの範囲内と
した平均粒子径が0.5μm以下の固形粉末は、特に限
定されるものではないが、強いて挙げるとすれば、たと
えば、磁性粉末としては、Fe、FCを主体として各種
金属を添加した全屈磁性粉末、CO% N iなどの全
屈磁性粉末、あるいはこれらの合金磁性粉末、r−Fe
203粉末、Fe3O4粉末、r−Fe203とf?e
304の中間酸化鉄粉末、CO含有r−Fe203粉末
、CO含有Fe3O4粉末、バリウムフェライト磁性粉
末、および各種金属を添加したバリウムフェライト磁性
粉末などが好適なものとして挙げられる。
In this way, the concentration of hydroxyl groups on the entire particle surface was reduced to 6.
0X 1019~2. Solid powders with an average particle size of 0.5 μm or less within the range of lX10211 solids/g are not particularly limited, but if forced to mention, for example, magnetic powders mainly include Fe and FC. Totally magnetic powders with various metals added, fully magnetically magnetic powders such as CO%Ni, or alloy magnetic powders of these, r-Fe
203 powder, Fe3O4 powder, r-Fe203 and f? e
Suitable examples include 304 intermediate iron oxide powder, CO-containing r-Fe203 powder, CO-containing Fe3O4 powder, barium ferrite magnetic powder, and barium ferrite magnetic powder added with various metals.

また、研磨剤、潤滑剤さらに帯電防止剤等のその他の固
形粉末としては、たとえば、α−Fe203粉末、Cr
2O3粉末、Al2O3粉末、Ba5O4粉末、CaC
O3粉末、M g O粉末、BacO3粉末、ZnO粉
末、Cu2O粉末、CuO粉末、Si3N+粉末、Si
C粉宋、T i 02粉末、M OS 2粉末、グラフ
ァイトおよびカーボンブランク等の炭素質粉末などが好
適なものとして挙げられる。
Other solid powders such as abrasives, lubricants, and antistatic agents include, for example, α-Fe203 powder, Cr
2O3 powder, Al2O3 powder, Ba5O4 powder, CaC
O3 powder, MgO powder, BacO3 powder, ZnO powder, Cu2O powder, CuO powder, Si3N+ powder, Si
Suitable examples include carbonaceous powders such as C powder, T i 02 powder, M OS 2 powder, graphite, and carbon blank.

この発明の磁気記録媒体を製造するには常法に準じて行
えばよく、例えば、前記の全固形粉末の平均粒子径が0
.5μm以下で、かつ固形粉末全体の粒子表面の水酸基
の濃度が6.OX 101g〜1.2×l Q 21個
/gの範囲内にある磁性粉末、研磨剤、潤滑剤などの固
形粉末を、結合剤樹脂、有機溶剤等とともに混合分散し
て磁性塗料または下塗層用塗料あるいはバックコート層
用塗料を凋製し、これをポリエステルフィルムなどの基
体上に、ロールコータ−など任意の塗布手段によって塗
布し、乾燥すればよい。
The magnetic recording medium of the present invention may be manufactured according to a conventional method. For example, if the average particle size of the all-solid powder is 0.
.. 5 μm or less, and the concentration of hydroxyl groups on the particle surface of the entire solid powder is 6. OX 101g - 1.2xl Q Solid powder such as magnetic powder, abrasive, lubricant, etc. within the range of 21 pieces/g is mixed and dispersed with binder resin, organic solvent, etc. to form a magnetic paint or undercoat layer. The coating material for the coating or the coating material for the backcoat layer may be prepared, coated on a substrate such as a polyester film using any coating means such as a roll coater, and dried.

ここに用いる結合剤樹脂としては、塩化ビニル−酢酸ビ
ニル系共重合体、ポリビニルブチラール樹脂、繊維素系
樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、イソ
シアネート化合物など従来汎用されている結合剤樹脂が
広く用いられる。
As the binder resin used here, conventionally widely used binder resins such as vinyl chloride-vinyl acetate copolymer, polyvinyl butyral resin, cellulose resin, polyurethane resin, polyester resin, and isocyanate compound are widely used. It will be done.

また、有機溶剤としては、トルエン、メチルイソブチル
ケトン、メチルエチルケトン、シクロヘキサノン、テト
ラヒドロフラン、酢酸エチルなど従来から汎用されてい
る有機溶剤が、単独または二種以上混合して使用される
Further, as the organic solvent, conventionally widely used organic solvents such as toluene, methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone, tetrahydrofuran, and ethyl acetate are used alone or in a mixture of two or more.

なお、磁性塗料または下学雇用塗料あるいはバックコー
ト層用塗料中には、通常使用されている各種添加剤、た
とえば、分散剤、潤Wl剤などを任意に添加使用しても
よい。
In addition, various commonly used additives such as dispersants, wetting agents, etc. may be optionally added to the magnetic paint, the lower grade paint, or the back coat layer paint.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 平均長径0.25μm、軸比(長径/短径)15/1の
ゲータイト粉末20gをI N  N a OH水l容
液21中に分散し、これに0.5モル/pの硫酸アルミ
ニウム25m1を加えて充分に分散しながら炭酸ガスを
吹き込み、ゲータイト粉末の表面にアルミナ水和物を被
着した。次いで、これをよく洗浄してから乾燥し、空気
中にて300℃で加熱焼成した。次に、この焼成後のア
ルミナ被着へマタイト粉末20gを11のIN−NaQ
l(水溶液中に分散し、1モル/!!のオルトケイ酸ソ
ーダ40mffを加えて攪拌した。充分に攪拌した後、
この懸濁液に炭酸ガスを吹き込み、pH10以下に中和
して、ヘマタイト粉末の粒子表面にアルミナ水和物およ
びケイ酸水和物の被膜を形成した。次いで、700℃の
温度で2時間加熱してケイ酸水和物の疎水性化処理を行
った。
Example 1 20 g of goethite powder with an average major axis of 0.25 μm and an axial ratio (major axis/minor axis) of 15/1 was dispersed in 21 liters of IN Na OH aqueous solution, and 0.5 mol/p of sulfuric acid was added to this. 25 ml of aluminum was added and carbon dioxide gas was blown into the mixture while thoroughly dispersing it, thereby depositing alumina hydrate on the surface of the goethite powder. Next, this was thoroughly washed, dried, and fired in air at 300°C. Next, 20 g of matite powder was added to the alumina coated with 11 IN-NaQ after firing.
1 (dispersed in an aqueous solution, 40 mff of 1 mol/!! sodium orthosilicate was added and stirred. After thorough stirring,
Carbon dioxide gas was blown into this suspension to neutralize it to pH 10 or less, thereby forming a film of alumina hydrate and silicic acid hydrate on the surface of the hematite powder particles. Next, the silicic acid hydrate was hydrophobized by heating at a temperature of 700° C. for 2 hours.

次いで、粒子表面にアルミナ水和物と疎水性化されたシ
リカ被膜とを形成したヘマタイト粉末を、水素気流中、
500℃で4時間加熱還元して、粒子表面にアルミナ被
膜および疎水性化されたシリカ被膜を有する金属鉄磁性
粉末を得た。この金属鉄磁性粉末は、保磁力が1620
エルステツド、飽和磁化量が121 emu/g、 B
ET法による比表面積は62+v?/gであった。また
、アルミナの被着量は、A I / F eの原子換算
重量比で5重量%、疎水性化されたシリカの被着量は、
Si/Feの原子換算重量比で2.5重量%であった。
Next, hematite powder with alumina hydrate and hydrophobized silica coating formed on the particle surface was heated in a hydrogen stream.
The particles were thermally reduced at 500° C. for 4 hours to obtain metal iron magnetic powder having an alumina coating and a hydrophobicized silica coating on the particle surface. This metallic iron magnetic powder has a coercive force of 1620
Oersted, saturation magnetization is 121 emu/g, B
The specific surface area by ET method is 62+v? /g. In addition, the amount of alumina deposited was 5% by weight in terms of AI/Fe atomic weight ratio, and the amount of hydrophobized silica deposited was:
The Si/Fe atomic weight ratio was 2.5% by weight.

さらに粒子表面の水酸基濃度は4.5t[liI/ n
 mであった。
Furthermore, the concentration of hydroxyl groups on the particle surface is 4.5t[liI/n
It was m.

このようにして得られた金属鉄磁性粉末を使用し、 金泥鉄磁性粉末        100重債部VAGH
(U、C,C社製、塩化ビ  10〃ニル−酢酸ビニル
−ビニルア ルコール共重合体) バンデフクスT−5201(大  6 〃ロ本インキ化
学工業社語、ポ リウレタン) ミリスチン酸           5 〃カーボンブ
ラック(平均粒子径  1 〃0.03μm、水酸基濃
度o、i個 / n m以下) メチルイソブチルケトン     85〃トルエン  
         85〃の組成からなる組成物を31
容量のスチール製ボールミル中に入れ、これを72時間
回転させ、よく分散させて磁性ペーストを調製した。そ
の後、この磁性ペーストに、トルエン4Qii部とコロ
ネートL(ロ本ポリウレタン工業社製、三官能性低分子
量イソシアネート化合物)2重量部をさらに加え、磁性
塗料を調製した。この磁性塗料を厚さ12μmのポリエ
ステルフィルム上に、乾Bf&の塗布厚が4μmとなる
ように塗布、乾燥し、鏡面加工処理を行った後、1/2
インチ幅に裁断して磁気テープをつくった。
Using the metal iron magnetic powder obtained in this way, gold mud iron magnetic powder 100 heavy bond part VAGH
(Manufactured by U, C, C Company, vinyl chloride 10-vinyl acetate-vinyl alcohol copolymer) Vandefuchs T-5201 (large 6 〃Bon Ink Kagaku Kogyo Co., Ltd., polyurethane) Myristic acid 5〃Carbon black (average Particle size 1 0.03 μm, hydroxyl group concentration o, i pieces/nm or less) Methyl isobutyl ketone 85 Toluene
A composition consisting of 85〃 composition is 31
The magnetic paste was prepared by placing the magnetic paste in a high capacity steel ball mill and rotating it for 72 hours to ensure good dispersion. Thereafter, 4 Qii parts of toluene and 2 parts by weight of Coronate L (a trifunctional low molecular weight isocyanate compound manufactured by Romoto Polyurethane Industries, Ltd.) were further added to this magnetic paste to prepare a magnetic paint. This magnetic paint was applied onto a polyester film with a thickness of 12 μm so that the coating thickness of dry Bf& was 4 μm, dried, mirror-finished, and then 1/2
I cut it into inch-wide pieces to make magnetic tape.

実施例2 平均長径0.05μm、板伏比(長径/短径)3/1、
保磁カフ50エルステツド、飽和磁化量55emu/g
、BET法による比表面積61m/gのバリウムフェラ
イト粉末100gを、lNNa0 H水溶液21中に懸
濁させよく分散させた。次いで、これに1モル/β溶ン
夜のオルトケイ酸ソーダ280mffを加えてよく攪拌
しながら炭酸ガスを通気し、溶液のpHを9以下にした
。これを水洗、乾燥後、700℃で2時間空気中で加熱
処理し、表面のケイ酸水和物を疎水性化処理した。この
ようにして得られたバリウムフェライト粉末は、保磁力
が750エルステ・7ド、飽和磁化量が52 emu/
 g 、 B ET法による比表面積が60m/gで、
疎水性化されたシリカの被着量は、Si/バリウムフェ
ライトの原子換算重量比で2.9重量%であった。さら
に粒子表面の水酸基濃度は6.8個/ n rdであっ
た。次いで、このようにして得られたバリウムフェライ
ト粉末を使用し、実施例1と同様にして磁気テープをつ
くった。
Example 2 Average major axis 0.05 μm, board ratio (major axis/minor axis) 3/1,
Retention cuff 50 oersted, saturation magnetization 55 emu/g
, 100 g of barium ferrite powder having a specific surface area of 61 m/g by the BET method was suspended and well dispersed in an IN Na0 H aqueous solution 21. Next, 280 mff of 1 mol/β-soluble sodium orthosilicate was added to the solution, and carbon dioxide gas was bubbled through the solution while stirring well to bring the pH of the solution to 9 or less. After washing with water and drying, this was heat-treated in air at 700° C. for 2 hours to make the silicic acid hydrate on the surface hydrophobic. The barium ferrite powder thus obtained has a coercive force of 750 oerste·7 de and a saturation magnetization of 52 emu/
g, B ET method specific surface area is 60 m/g,
The amount of hydrophobized silica deposited was 2.9% by weight in Si/barium ferrite atomic weight ratio. Furthermore, the concentration of hydroxyl groups on the particle surface was 6.8/nrd. Next, a magnetic tape was produced in the same manner as in Example 1 using the barium ferrite powder thus obtained.

比較例1 実施例1において、表面に被覆されたケイ酸水和物の疎
水性化処理を省いた以外は、実施例1と同様にして、保
磁力が1590エルステツド、飽和磁化量がl 20 
emu/ g、’ B ET法による比表面積が63t
+?/gで、アルミナの被着量がAl/Feの原子換算
重量比で5重量%、ケイ酸水和物の被着量がS i /
 F eの原子換算重量比で0.5重量%、粒子表面の
水酸基濃度が12.2(固/ n mの金属鉄磁性粉末
を得、磁気テープをつくった。
Comparative Example 1 A sample was prepared in the same manner as in Example 1, except that the hydrophobic treatment of the silicic acid hydrate coated on the surface was omitted, so that the coercive force was 1590 oersted and the saturation magnetization was l20
emu/g,'B Specific surface area by ET method is 63t
+? /g, the amount of alumina deposited is 5% by weight in terms of Al/Fe atomic weight ratio, and the amount of silicic acid hydrate deposited is S i /g.
Metallic iron magnetic powder with an atomic weight ratio of Fe of 0.5% by weight and a hydroxyl group concentration on the particle surface of 12.2 (hard/nm) was obtained, and a magnetic tape was made.

比較例2 実施例2において、ケイ酸水和物のバリウムフェライト
粉末粒子表面への被着およびケイ酸水和物の疎水性化処
理を省き、磁性塗料の組成において実施例2で使用した
磁性粉末に代えて、保磁力が750エルステツド、飽和
磁化量が54 emu/g、BET法による比表面積が
61m/gで、粒子表面の水酸基濃度が13.5f固/
 n mのバリウムフェライト粉末を使用した以外は、
実施例2と同様にして磁気テープをつくった。
Comparative Example 2 In Example 2, the adhesion of silicic acid hydrate to the surface of barium ferrite powder particles and the hydrophobic treatment of silicic acid hydrate were omitted, and the magnetic powder used in Example 2 was used in the composition of the magnetic paint. Instead, the coercive force is 750 oersted, the saturation magnetization is 54 emu/g, the specific surface area by BET method is 61 m/g, and the hydroxyl group concentration on the particle surface is 13.5 f/g.
Except that barium ferrite powder of nm was used.
A magnetic tape was produced in the same manner as in Example 2.

比較例3 実施例1において、平均長径0.25μm、軸比(長径
/短径)15/1のゲータイト粉末に代えて、平均長径
0.57μm、軸比15/1のゲータイト粉末を用いた
以外は、実施例1と同様にして保磁力が1100エルス
テツド、飽和磁化量が135emu/g、BET法によ
る比表面積が35m/gで、アルミナの被着量がA 1
 / F eの原子換算重量比で5重量%、疎水性化さ
れたシリカの被着量が3 i / F eの原子換算重
量比で0.7重量%、粒子表面の水酸基濃度が7.5(
円/ n mの金属鉄磁性粉末を得、磁気テープをつく
った。
Comparative Example 3 In Example 1, goethite powder with an average major axis of 0.57 μm and an axial ratio of 15/1 was used instead of the goethite powder with an average major axis of 0.25 μm and an axial ratio (major axis/minor axis) of 15/1. As in Example 1, the coercive force was 1100 oersted, the saturation magnetization was 135 emu/g, the specific surface area by BET method was 35 m/g, and the amount of alumina deposited was A1.
The atomic weight ratio of / Fe is 5% by weight, the amount of hydrophobized silica is 3 i / Fe, the atomic weight ratio is 0.7% by weight, and the hydroxyl group concentration on the particle surface is 7.5. (
A metal iron magnetic powder of yen/nm was obtained and a magnetic tape was made.

比較例4 実施例2において、平均長径0.O5μm、板状比(長
径/短径)3/l、保磁カフ50エルステツド、飽和磁
化ff155 emu/ g、 B ET法による比表
面[61m/gのバリウムフェライト粉末に代えて、平
均長径0.2μm、板状比3/1、保磁力が380エル
ステツド、飽和磁化m 56 emu/ g、BET法
による比表面積が28 rrr / gのバリウムフェ
ライトを用いた以外は実施例2と同様にして、保磁力が
390エルステンド、飽和磁化量が55 emu/ g
、 B ET法による比表面積が27m/gで、疎水性
化されたシリカの被、IFffiがSi/バリウムフェ
ライトの原子換算重量比で1重量%、粒子表面の水酸基
濃度が8.5(固/ n mのバリウムフェライト粉末
を得、磁気テープをつくった。
Comparative Example 4 In Example 2, the average major axis was 0. O 5 μm, plate ratio (major axis/minor axis) 3/l, coercive cuff 50 oersted, saturation magnetization ff155 emu/g, specific surface by BET method [instead of barium ferrite powder of 61 m/g, average major axis 0. Storage was carried out in the same manner as in Example 2, except that barium ferrite having a diameter of 2 μm, a plate ratio of 3/1, a coercive force of 380 oersted, a saturation magnetization of m 56 emu/g, and a specific surface area of 28 rrr/g by the BET method was used. Magnetic force is 390 Oerstend, saturation magnetization is 55 emu/g
, the specific surface area by the BET method is 27 m/g, the IFffi of the hydrophobized silica coating is 1% by weight in terms of Si/barium ferrite atomic weight ratio, and the hydroxyl group concentration on the particle surface is 8.5 (solid/ Barium ferrite powder of nm size was obtained and a magnetic tape was made.

各実施例および比較例で得られた磁気テープについて、
角型比、残留磁束密度、耐久性、磁性層の表面平滑性、
全固形粉末の平均粒子径および固形粉末全体の粒子表面
の水酸基の濃度を調べた。
Regarding the magnetic tapes obtained in each example and comparative example,
Squareness ratio, residual magnetic flux density, durability, surface smoothness of magnetic layer,
The average particle diameter of all solid powders and the concentration of hydroxyl groups on the particle surface of all solid powders were investigated.

角型比の測定は、実施例1.比較例1および3について
は水平方向の角型比を測定し、実施例2゜比較例2およ
び4については垂直方向の角型比を測定した。また耐久
性は市販VTRを使用し、−5℃の恒温室中で静止画像
百住を行った時の出力が3dB低下するまでの時間を測
定することにより判定した。さらに全固形粉末の平均粒
子径は、透過型電子顕微鏡により観察された1000固
の粒子の寸法を測定し、その平均値から求めた。また固
形粉末全体の粒子表面の水酸基の濃度は微量電器天秤を
用いて20℃におけろ水吸着等点線を測定し、BET式
により物理吸着水分量を測定して求めた。さらに表面平
滑性は、触針式粗さ計を使用し、触針速度0.06cm
/秒、カットオフ0 、08mmの条件下で磁性層の表
面粗さくC,L、A、)を測定し、実施例1を基準とし
て下記の式に従って算出される相対値で表面平滑性の良
否を判断した。
The squareness ratio was measured in Example 1. For Comparative Examples 1 and 3, the squareness ratio in the horizontal direction was measured, and for Example 2 and Comparative Examples 2 and 4, the squareness ratio in the vertical direction was measured. Furthermore, durability was determined by using a commercially available VTR and measuring the time until the output decreased by 3 dB when still images were viewed in a constant temperature room at -5°C. Further, the average particle diameter of the total solid powder was determined from the average value of the dimensions of 1000 solid particles observed using a transmission electron microscope. Further, the concentration of hydroxyl groups on the particle surface of the entire solid powder was determined by measuring the water adsorption isodotted line at 20° C. using a microelectronic balance, and measuring the amount of physically adsorbed water using the BET equation. Furthermore, the surface smoothness was measured using a stylus-type roughness meter at a stylus speed of 0.06 cm.
The surface roughness (C, L, A,) of the magnetic layer was measured under the conditions of 1/sec, cutoff 0, 08 mm, and the quality of the surface smoothness was determined by the relative value calculated according to the following formula based on Example 1. judged.

下記第1表はその結果である。Table 1 below shows the results.

〔発明の効果〕〔Effect of the invention〕

上記第1表から明らかなように、実施例1および2で1
4られた磁気テープは、いずれも比較例工ないし4で得
られた磁気テープに比して、角型比および残留磁束密度
が高く、耐久性がよくて、さらに表面平滑性もよく、こ
のことからこの発明で得られる磁気記録媒体は、磁性層
中に含まれる固形粉末の分肢性、充填性および配向性が
向上され、電磁気的特性および耐久性が一段と向上され
ていることがわかる。
As is clear from Table 1 above, in Examples 1 and 2, 1
All of the magnetic tapes obtained in Comparative Examples 4 and 4 had higher squareness ratios and residual magnetic flux densities, better durability, and better surface smoothness. It can be seen from the above that the magnetic recording medium obtained according to the present invention has improved branching properties, filling properties, and orientation of the solid powder contained in the magnetic layer, and has further improved electromagnetic properties and durability.

Claims (1)

【特許請求の範囲】[Claims] 1、基体上に固形粉末と固形粉末を分散結着する結合剤
成分とを含む塗布層を設けた磁気記録媒体において、塗
布層中に含まれる全固形粉末の平均粒子径が0.5μm
以下で、かつ固形粉末全体の粒子表面の水酸基の濃度が
6.0×10^1^9〜1.2×10^2^1個/gの
範囲内にあることを特徴とする磁気記録媒体
1. In a magnetic recording medium in which a coating layer containing a solid powder and a binder component for dispersing and binding the solid powder is provided on a substrate, the average particle diameter of all the solid powder contained in the coating layer is 0.5 μm.
A magnetic recording medium which is as follows, and the concentration of hydroxyl groups on the particle surface of the entire solid powder is within the range of 6.0×10^1^9 to 1.2×10^2^1/g.
JP14410686A 1986-06-20 1986-06-20 Magnetic recording medium Pending JPS63818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14410686A JPS63818A (en) 1986-06-20 1986-06-20 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14410686A JPS63818A (en) 1986-06-20 1986-06-20 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS63818A true JPS63818A (en) 1988-01-05

Family

ID=15354324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14410686A Pending JPS63818A (en) 1986-06-20 1986-06-20 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS63818A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084900A (en) * 2006-09-26 2008-04-10 Dowa Holdings Co Ltd Magnetic powder for coating type magnetic recording medium, its production process and magnetic recording medium
JP2012080116A (en) * 2011-11-30 2012-04-19 Dowa Holdings Co Ltd Magnetic powder for coating type magnetic recording medium, production method for the same and magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084900A (en) * 2006-09-26 2008-04-10 Dowa Holdings Co Ltd Magnetic powder for coating type magnetic recording medium, its production process and magnetic recording medium
JP2012080116A (en) * 2011-11-30 2012-04-19 Dowa Holdings Co Ltd Magnetic powder for coating type magnetic recording medium, production method for the same and magnetic recording medium

Similar Documents

Publication Publication Date Title
US4956220A (en) Magnetic recording medium
EP0660309B1 (en) Non-magnetic undercoat layer for magnetic recording medium, magnetic recording medium and non-magnetic particles
US6544647B1 (en) Non-magnetic composite particles, process for producing the same and magnetic recording medium using the same
US6432377B1 (en) Particles for non-magnetic undercoat layer of magnetic recording medium, method thereof and magnetic recording medium
JPS631003A (en) Magnetic powder
JPS63818A (en) Magnetic recording medium
US6569530B2 (en) Magnetic recording medium and magnetic composite particles or magnetic recording medium
JP3398404B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP2906075B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
US5552072A (en) Coated acicular fine particulate materials, processes for preparing same and use thereof
US6294242B1 (en) Magnetic recording medium
JPS60217529A (en) Magnetic powder for magnetic recording medium
JP3763353B2 (en) Hematite powder for nonmagnetic underlayer of magnetic recording medium, nonmagnetic underlayer and magnetic recording medium of magnetic recording medium using hematite powder for nonmagnetic underlayer
EP1253585A1 (en) Composite magnetic particles containing iron, process for producing the same and magnetic recording medium
JPH04228502A (en) Acicular metallic iron fine particle containing carbon, its production and magnetic paint composition and magnetic recording medium containing the particle
JP2002329310A (en) Surface reforming magnetic particle powder for magnetic recording medium, surface reforming filler material for magnetic recording medium and surface reforming nonmagnetic particle powder for nonmagnetic ground surface layer for magnetic recording medium as well as magnetic recording medium
JP3661738B2 (en) Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate
JP2002008915A (en) Composite magnetic grain powder for magnetic recording medium, its manufacturing method, and the magnetic recording medium
EP0941966B1 (en) Acicular hematite particles and magnetic recording medium
JP2001160212A (en) Non-magnetic particle powder for non-magnetic base layer of magnetic recording medium and magnetic recording medium
JP3398430B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP2965606B2 (en) Method for producing metal magnetic powder
JP4352270B2 (en) Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JPH10241148A (en) Magnetic recording medium
JP3661733B2 (en) Magnetic recording medium