JPS6374735A - Backup control method for continuously variable transmission - Google Patents

Backup control method for continuously variable transmission

Info

Publication number
JPS6374735A
JPS6374735A JP22014786A JP22014786A JPS6374735A JP S6374735 A JPS6374735 A JP S6374735A JP 22014786 A JP22014786 A JP 22014786A JP 22014786 A JP22014786 A JP 22014786A JP S6374735 A JPS6374735 A JP S6374735A
Authority
JP
Japan
Prior art keywords
control
continuously variable
variable transmission
sensor
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22014786A
Other languages
Japanese (ja)
Inventor
Takumi Honda
匠 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP22014786A priority Critical patent/JPS6374735A/en
Publication of JPS6374735A publication Critical patent/JPS6374735A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To enhance the reliability of start control and speed change control by sensing three independent numbers of revolutions within a continuously variable transmission and by enabling backup, in case any of these three number of revolutions signal systems is in failure, through the use of the other two number-of-revolutions signals under certain specified conditions. CONSTITUTION:In this continuously variable transmission, an electronic control device 60 controls a pulley control valve 43, a start control valve 45 and a direct coupling control valve 47, which are furnished to make speed change control of the stepless speed change device, start control of a starting clutch, and direct coupling control of a direct coupling clutch, respectively. Here the electronic control device 60 is so formed as to determine requisite control signals through input of signals given by an engine number-of-revolutions sensor 61, a car speed sensor 62, and a follower shaft number of revolutions sensor 63. When the sensor 61 (63) has encountered any failure during start control, start control is performed using output signal from the sensor 63 (61) as substitute. When the sensor 63 (62) has encountered any failure during speed change control, speed change control is made by using output signal from the sensor 62 (63) as substitute.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は無段変速機のバックアップ制御方法、特に発進
制御又は変速制御中の信号系の故障によるバックアンプ
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a backup control method for a continuously variable transmission, and more particularly to a backup amplifier method in response to a failure in a signal system during start control or shift control.

従来技術とその問題点 従来、電磁粉式クラッチや湿式多板クラッチ、あるいは
乾式クラッチなどのすべり式クラッチを発進クラッチと
して使用し、この発進クラッチとVベルト式無段変速装
置などの無段変速装置とを直列に接続した無段変速機が
、例えば特開昭59−69563号公報にて公知である
Conventional technology and its problems Conventionally, a slip clutch such as an electromagnetic powder clutch, a wet multi-disc clutch, or a dry clutch is used as a starting clutch, and this starting clutch is connected to a continuously variable transmission such as a V-belt continuously variable transmission. A continuously variable transmission in which these are connected in series is known, for example, from Japanese Patent Laid-Open No. 59-69563.

上記無段変速機の場合には、発進クラッチが無段変速装
置より上流側に設けられており、その発進制御および変
速制御に必要な信号は、エンジン回転数(イグニッショ
ンパルス)、スロットル開度(アクセルスイッチ)、車
速、シフトポジションなどである。特に回転数信号とし
ては、入力軸の回転数(エンジン回転数)と出力軸の回
転数(車速)の二つの信号が用いられている。
In the case of the above continuously variable transmission, the starting clutch is provided upstream of the continuously variable transmission, and the signals necessary for starting control and gear change control are the engine rotation speed (ignition pulse), throttle opening ( (accelerator switch), vehicle speed, shift position, etc. In particular, two signals are used as the rotational speed signal: the rotational speed of the input shaft (engine rotational speed) and the rotational speed of the output shaft (vehicle speed).

ところが、例えば樹脂製Vベルトやゴム製Vベルトのよ
うに引張駆動方式のVベルト式無段変速機の場合には、
走行中に急停止した時に無段変速装置が再発進可能な最
低速比に戻らない事態が生じることがあり、このように
最低速比以外の状態から発進しようとすると、エンジン
に大きな負荷が掛り、発進の円滑性が阻害されたりエン
ストを起こすおそれがある。そこで、無段変速装置の変
速比を常時確認するために、無段変速装置の入力回転数
、又は発進クラッチの出力回転数を検出するセンサを追
加し、常に円滑な発進を行うように制御することが好ま
しい。
However, in the case of a V-belt continuously variable transmission that uses a tension drive system, such as a resin V-belt or a rubber V-belt,
When the vehicle comes to a sudden stop while driving, the continuously variable transmission may not return to the minimum speed ratio at which it can restart the vehicle, and attempting to start from a state other than the minimum speed ratio places a large load on the engine. , there is a risk that the smooth start of the vehicle will be hindered or the engine will stall. Therefore, in order to constantly check the gear ratio of the continuously variable transmission, a sensor that detects the input rotation speed of the continuously variable transmission or the output rotation speed of the starting clutch is added, and the system is controlled to always perform a smooth start. It is preferable.

このように3個の回転数センサを設けた場合、もし発進
過程においていずれかの回転数センサが故障し、あるい
はその送信用ハーネスが断線したりすると、その瞬間に
検出信号が断たれ、正常な発進制御が不可能となる。同
様なことは変速過程においてもいえ、いずれかの回転数
センサ又はその送信用ハーネスが故障すると、正常な変
速制御を続行できなくなる。
If three rotation speed sensors are installed in this way, if one of the rotation speed sensors fails during the starting process or its transmission harness is disconnected, the detection signal will be cut off at that moment and the normal state will be interrupted. Start control becomes impossible. The same thing can be said in the gear shifting process; if any rotational speed sensor or its transmission harness fails, normal gear shifting control cannot be continued.

発明の目的 本発明はかかる問題点に鑑みてなされたもので、その目
的は、発進制御あるいは変速制御中において、3個の回
転数信号系のうち1個の信号系が故障した時、他の2個
の信号系で故障信号を補い、正常な発進制御又は変速制
御を続行できる無段変速機のバックアンプ制御方法を提
供することにある。
Purpose of the Invention The present invention has been made in view of the above-mentioned problems.The purpose of the present invention is to prevent the failure of one of the three rotational speed signal systems during start control or shift control. It is an object of the present invention to provide a back amplifier control method for a continuously variable transmission that can compensate for a fault signal using two signal systems and continue normal start control or shift control.

発明の構成 上記目的を達成するために、本発明は、伝達トルクを外
部より制御できるすべり式発進クラッチと、無段変速を
行う無段変速装置とを動力伝達経路中に直列に接続した
無段変速機において、入力軸の回転数、出力軸の回転数
、発進クラッチの入、出力回転数、無段変速装置の入、
出力回転数のうち、相互の回転比が固定されていない独
立な3個の回転数を検出し、発進制御中に発進クラッチ
の入、出力側の一対の回転数を除く他の1個の回転数信
号系が故障した時、又は変速制御中に無段変速装置の入
、出力側の一対の回転数を除く他の1個の回転数信号系
が故障した時、この故障した信号を他の回転数信号で代
用し、発進制御又は変速制御を続行し得るようにしたも
のである。
Structure of the Invention In order to achieve the above object, the present invention provides a continuously variable starting clutch that connects in series in a power transmission path a slip-type starting clutch that can control transmission torque from the outside and a continuously variable transmission that performs continuously variable speed. In a transmission, the rotation speed of the input shaft, the rotation speed of the output shaft, the engagement of the starting clutch, the output rotation speed, the engagement of the continuously variable transmission,
Of the output rotation speeds, three independent rotation speeds whose rotation ratios are not fixed are detected, and during start control, when the starting clutch is engaged, one rotation other than the pair of rotation speeds on the output side is detected. When a number signal system fails, or when one rotational speed signal system other than the pair of rotational speeds on the input and output sides of the continuously variable transmission fails during speed change control, this failed signal is transmitted to another The rotational speed signal is used as a substitute, and the start control or gear change control can be continued.

すなわち、3個の回転数センサのうち1個が故障しても
、一定の条件下で、他の2個のセンサによって発進制御
や変速制御を支障なく続行し得るようにバックアップす
るものである。
That is, even if one of the three rotational speed sensors fails, under certain conditions, the other two sensors provide backup so that start control and gear change control can be continued without any problem.

実施例の説明 第1図は本発明にかかる無段変速機の一例である直結機
構付■ベルト式無段変速機を示し、エンジン1のクラン
ク軸2はダンパ機構3を介して入力軸4に接続されてい
る。入力軸4上には湿式多板クラッチからなる直結クラ
ッチ5と、回転自在な直結駆動ギヤ6とが設けられてお
り、直結クラッチ5は後述する直結制御弁47によって
直結駆動時に直結駆動ギヤ6を入力軸4に対して連結す
るようになっている。入力軸4の端部には外歯ギヤ7が
固定されており、この外歯ギヤ7は無段変速装置10の
駆動軸1)に固定された内歯ギヤ8と噛み合い、入力軸
4の動力を減速して駆動軸1)に伝達している。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows a belt-type continuously variable transmission with a direct coupling mechanism, which is an example of a continuously variable transmission according to the present invention. It is connected. A direct coupling clutch 5 consisting of a wet multi-disc clutch and a rotatable direct coupling drive gear 6 are provided on the input shaft 4, and the direct coupling clutch 5 controls the direct coupling drive gear 6 during direct coupling drive by a direct coupling control valve 47, which will be described later. It is connected to the input shaft 4. An external gear 7 is fixed to the end of the input shaft 4, and this external gear 7 meshes with an internal gear 8 fixed to the drive shaft 1) of the continuously variable transmission 10, so that the power of the input shaft 4 is is decelerated and transmitted to the drive shaft 1).

無段変速装置10は駆動軸1)に設けた駆動側ブー1J
12と、従動軸13に設けた従動側プーリ14と、両ブ
ーり間に巻き掛けたVベルト15とで構成されている。
The continuously variable transmission 10 includes a drive-side boot 1J provided on the drive shaft 1).
12, a driven pulley 14 provided on the driven shaft 13, and a V-belt 15 wound between both the bobbins.

駆動側プーリ12は固定シープ12aと可動シーブ12
bとを有しており、可動シーブ12bの背後にはトルク
カム装置16と圧縮スプリング17とが設けられている
。上記トルクカム装置16は入力トルクに比例した推力
を発生し、圧縮スプリング17はVベルト15が弛まな
いだけの初期推力を発生し、これら推力によりVベルト
15にトルク伝達に必要なベルト張力を付与している。
The drive pulley 12 has a fixed sheave 12a and a movable sheave 12.
b, and a torque cam device 16 and a compression spring 17 are provided behind the movable sheave 12b. The torque cam device 16 generates a thrust proportional to the input torque, and the compression spring 17 generates an initial thrust sufficient to prevent the V-belt 15 from loosening, and these thrusts provide the V-belt 15 with belt tension necessary for torque transmission. ing.

一方、従動側ブー1月4も駆動側プーリ12と同様に、
固定シーブ14aと可動シーブ14bとを有しており、
可動シーブ14bの背後には変速比制御用の油圧室18
が設けられている。この油圧室18への油圧は後述する
プーリ制御弁43にて制御される。
On the other hand, the driven side boolean 4 is also similar to the driving side pulley 12.
It has a fixed sheave 14a and a movable sheave 14b,
Behind the movable sheave 14b is a hydraulic chamber 18 for controlling the gear ratio.
is provided. The hydraulic pressure to this hydraulic chamber 18 is controlled by a pulley control valve 43, which will be described later.

従動軸13の外周には中空軸19が回転自在に支持され
ており、従動軸13と中空軸19とは湿式多板クラッチ
からなる発進クラッチ20によって断続される。上記発
進クラッチ20への油圧は後述する発進制御弁45によ
って制御される。中空軸19には前進用ギヤ21と後進
用ギヤ22とが回転自在に支持されており、前後進切換
用ドッグクラッチ23によって前進用ギヤ21又は後進
用ギヤ22のいずれか一方を中空軸19と連結するよう
になっている。後進用アイドラ軸24には後進用ギヤ2
2に噛み合う後進用アイドラギヤ25と、別の後進用ア
イドラギヤ26とが固定されている。また、カウンタ軸
27には上記前進用ギヤ21と後進用アイドラギヤ26
とに同時に噛み合うカウンタギヤ28と、終減速ギヤ2
9とが固定されており、終減速ギヤ29はディファレン
シャル装置30のリングギヤ31に噛み合い、動力を出
力軸32に伝達している。
A hollow shaft 19 is rotatably supported on the outer periphery of the driven shaft 13, and the driven shaft 13 and the hollow shaft 19 are connected and connected by a starting clutch 20 consisting of a wet multi-disc clutch. The hydraulic pressure applied to the starting clutch 20 is controlled by a starting control valve 45, which will be described later. A forward gear 21 and a reverse gear 22 are rotatably supported on the hollow shaft 19, and a forward/reverse switching dog clutch 23 connects either the forward gear 21 or the reverse gear 22 to the hollow shaft 19. It is designed to be connected. The reverse gear 2 is attached to the reverse idler shaft 24.
A reverse idler gear 25 meshing with the reverse idler gear 26 and another reverse idler gear 26 are fixed. Further, the counter shaft 27 is provided with the forward gear 21 and the reverse idler gear 26.
The counter gear 28 and the final reduction gear 2 are simultaneously engaged with the
9 is fixed, and the final reduction gear 29 meshes with the ring gear 31 of the differential device 30 to transmit power to the output shaft 32.

上記構造の無段変速機において、直結クラッチ5、直結
駆動ギヤ6、カウンタギヤ28、終減速ギヤ29、ディ
ファレンシャル装置30は直結駆動経路を構成し、外歯
ギヤ7、内歯ギヤ8、無段変速装置10、発進クラッチ
20、前進用ギヤ21、カウンタギヤ28、終減速ギヤ
29、ディファレンシャル装置30は無段変速経路(前
進時)を構成している。そして、直結駆動経路における
入力軸4と出力軸32間の直結伝達比i。は、無段変速
経路における入力軸4と出力軸32間の最高速比i +
ainに比べてやや低速比側に設定されている。
In the continuously variable transmission having the above structure, the direct coupling clutch 5, the direct coupling drive gear 6, the counter gear 28, the final reduction gear 29, and the differential device 30 constitute a direct coupling drive path, and the external gear 7, the internal gear 8, the continuously variable transmission The transmission 10, the starting clutch 20, the forward gear 21, the counter gear 28, the final reduction gear 29, and the differential device 30 constitute a continuously variable transmission path (at the time of forward movement). And the direct coupling transmission ratio i between the input shaft 4 and the output shaft 32 in the direct coupling drive path. is the maximum speed ratio i + between the input shaft 4 and the output shaft 32 in the continuously variable transmission path
It is set at a slightly lower speed ratio than ain.

調圧弁40は油溜41からオイルポンプ42によって吐
出された油圧を調圧し、ライン圧としてプーリ制御弁4
32発進制御弁45及び直結制御弁47に出力している
。ブーり制御弁431発進制御弁45及び直結制御弁4
7はそれぞれソレノイド44.46.48を有しており
、電子制御装置60からソレノイドに入力される制御信
号によりライン圧を制御し、それぞれ従動側ブーIJ1
4の油圧室18と発進クラッチ20と直結クラッチ5と
に制御油圧を出力している。
The pressure regulating valve 40 regulates the hydraulic pressure discharged from the oil reservoir 41 by the oil pump 42, and outputs it as line pressure to the pulley control valve 4.
32 is outputted to the start control valve 45 and the direct connection control valve 47. Boolean control valve 431 Start control valve 45 and direct connection control valve 4
7 has solenoids 44, 46, and 48, respectively, and the line pressure is controlled by a control signal inputted to the solenoids from the electronic control device 60.
Control hydraulic pressure is output to the hydraulic chamber 18 of No. 4, the starting clutch 20, and the direct coupling clutch 5.

上記制御弁43.45.47の具体的構造は、例えば第
2図に示すようにスプール弁49と電磁弁50とを組合
せたものでもよく、あるいは第3図に示すようにボール
状弁体51で入力ボート52とドレンボート53とを選
択的に開閉し、出力ボート54の出力油圧を制御する3
ポ一ト式電磁弁単体で構成してもよい。いずれの場合も
、制御弁43,45.47をデユーティ制御すれば、デ
ユーティ比に比例した制御油圧を出力できるので、無段
変速装置10の変速制御、発進クラッチ20の発進制御
、直結クラッチ5の直結制御を自在に行うことができる
。なお、直結クラッチ5は単なる断続制御のみであるか
ら、デユーティ制御を行う必要はなく、0N10FF制
御のみでもよい。
The specific structure of the control valves 43, 45, 47 may be, for example, a combination of a spool valve 49 and a solenoid valve 50 as shown in FIG. 2, or a ball-shaped valve body 51 as shown in FIG. 3 which selectively opens and closes the input boat 52 and the drain boat 53 and controls the output hydraulic pressure of the output boat 54.
It may be constructed with a single point type solenoid valve. In either case, if the control valves 43, 45. Direct connection control can be performed freely. Note that since the direct coupling clutch 5 only performs on-off control, there is no need to perform duty control, and only 0N10FF control may be used.

第4図は電子制御装置60のブロック図を示し、図中、
61はエンジン回転数(入力軸4の回転数)を検出する
センサ、62は車速(出力軸32の回転数)を検出する
センサ、63は従動軸13の回転数を検出するセンサ、
64はP、R,N、D、Lの各シフト位置を検出するセ
ンサ、65はスロットル開度を検出するセンサであり、
上記エンジン回転数センサ61.車速センサ62.従動
軸回転数センサ63.シフト位置センサ64の各信号は
入力インターフェース66に入力され、スロットル開度
センサ65の信号はA/D変換器67でデジタル信号に
変換される。
FIG. 4 shows a block diagram of the electronic control device 60, and in the figure,
61 is a sensor that detects the engine rotation speed (the rotation speed of the input shaft 4), 62 is a sensor that detects the vehicle speed (the rotation speed of the output shaft 32), 63 is a sensor that detects the rotation speed of the driven shaft 13,
64 is a sensor that detects each shift position of P, R, N, D, L, 65 is a sensor that detects the throttle opening,
The engine speed sensor 61. Vehicle speed sensor 62. Driven shaft rotation speed sensor 63. Each signal from the shift position sensor 64 is input to an input interface 66, and the signal from the throttle opening sensor 65 is converted into a digital signal by an A/D converter 67.

6日は中央演算処理装置(CPU)、69はプーリ制御
弁431発進制御弁45および直結制御弁47を制御す
るためのプログラムやデータが格納されたり−ドオンリ
メモリ (ROM)、70は各センサから送られた信号
やパラメータを一時的に格納するランダムアクセスメモ
リ (RAM) 、71は出力インターフェースであり
、これらCP U68、ROM89、RAM70、出力
インターフェース71、上記入力インターフェース66
、上記A/D変換器67はバス72によって相互に連絡
されている。出力インターフェース71の出力は出力ド
ライバフ3を介して上記プーリ制御用ソレノイド4罎2 46および直結制御用ソレノイド48にデユーティ制御
信号として出力されている。
6 is a central processing unit (CPU), 69 is a memory (ROM) in which programs and data for controlling the pulley control valve 431, starting control valve 45 and direct connection control valve 47 are stored, and 70 is a memory sent from each sensor. Random access memory (RAM) 71 is an output interface for temporarily storing the input signals and parameters, and these CPU 68, ROM 89, RAM 70, output interface 71, and input interface 66
, the A/D converters 67 are interconnected by a bus 72. The output of the output interface 71 is output as a duty control signal to the pulley control solenoid 4246 and the direct connection control solenoid 48 via the output driver buffer 3.

第5図は電子制御装置60内に設定された発進特性の一
例を示し、円滑な発進性が得られるように入力回転数の
二乗にほぼ比例した特性を有している。なお、第5図の
縦軸はクラッチ油圧に代えて伝達トルクとしてもよく、
また発進制御弁45を第2図又は第3図のように構成し
た場合には、クラッチ油圧とデユーティ比とが比例する
ので、縦軸をデユーティ比としてもよい。発進クラッチ
20は、第5図の特性曲線により入力回転数の上昇につ
れてクラッチ油圧が上昇するようにすべり制御されるが
、例えばB点において発進クラッチ20の入、出力回転
数の差が設定値以下となった時、その時点で発進クラッ
チ20を完全係合させても殆どショックがなく、しかも
発進制御を短時間で完了できる。そのため、入、出力回
転数の差が設定値以下となった時には、第5図破線で示
すようにB点から即座に発進クラッチ20のクラッチ油
圧を最大Pmax  (デユーティ比100%)とし、
発進クラッチ20を完全係合させて発進制御を完了する
FIG. 5 shows an example of a starting characteristic set in the electronic control device 60, which has a characteristic that is approximately proportional to the square of the input rotation speed so that smooth starting performance can be obtained. Note that the vertical axis in Fig. 5 may be the transmission torque instead of the clutch oil pressure.
Furthermore, when the start control valve 45 is configured as shown in FIG. 2 or 3, the clutch oil pressure and the duty ratio are proportional, so the vertical axis may be taken as the duty ratio. The starting clutch 20 is slip-controlled so that the clutch oil pressure increases as the input rotation speed increases according to the characteristic curve shown in FIG. When this occurs, there is almost no shock even if the starting clutch 20 is fully engaged at that point, and the starting control can be completed in a short time. Therefore, when the difference between the input and output rotation speeds becomes less than the set value, the clutch oil pressure of the starting clutch 20 is immediately set to the maximum Pmax (duty ratio 100%) from point B, as shown by the broken line in FIG.
The starting clutch 20 is fully engaged to complete the starting control.

第6図は電子制御装置60内に設定された変速線図を示
し、図中i maxは最低速比、twinは最高速比、
ioは直結伝達比である。ここで、発進状態から走行状
態に移行するまでの動作を第6図について説明する。ま
ずスロットル開度を一定として発進する場合には、エン
ジン回転数が目標値(A点)に達するまでは発進クラッ
チ20を遮断し、A点に達した後は発進クラッチ20を
第5図の特性曲線に沿ってすべり制御し、B点に到達す
ると発進クラッチ20を完全係合させて発進制御から変
速制御へ移行する。変速制御においては、まず最低速比
の直線に沿って加速し、エンジン回転数がその時のスロ
ットル開度に応じた目標エンジン回転数N、の0点に到
達すると、変速領域に移行し、目標エンジン回転数を保
持しながら高速比側へ変速する。無段変速経路の変速比
が直結伝達比i。
FIG. 6 shows a speed change diagram set in the electronic control device 60, in which i max is the lowest speed ratio, twin is the highest speed ratio,
io is a direct transmission ratio. Here, the operation from the start state to the running state will be explained with reference to FIG. First, when starting with a constant throttle opening, the starting clutch 20 is disconnected until the engine speed reaches the target value (point A), and after reaching the point A, the starting clutch 20 is switched off as shown in FIG. Slip control is performed along the curve, and when point B is reached, the starting clutch 20 is fully engaged and the starting control is shifted to shift control. In shift control, the engine speed is first accelerated along the straight line of the lowest speed ratio, and when the engine speed reaches the 0 point of the target engine speed N, which corresponds to the throttle opening at that time, the shift region is entered and the target engine speed is Shift to a high speed ratio while maintaining the rotation speed. The gear ratio of the continuously variable transmission path is the direct transmission ratio i.

(D点)に達すると、発進クラッチ20を遮断するとと
もに直結クラッチ5を結合して直結駆動へ切り換え、以
後直結伝達比i。の直線に沿って走行する。直結駆動中
、無段変速装WIOは無負荷状態で空転する。
When reaching (point D), the starting clutch 20 is disconnected and the direct coupling clutch 5 is engaged to switch to direct coupling drive, and thereafter the direct coupling transmission ratio is set to i. travel along a straight line. During direct drive, the continuously variable transmission WIO idles under no load.

上記発進制御および変速制御は、センサ61〜65で検
出される信号に基づいて行われるが、特に回転数を検出
するセンサは従来と異なり3個設けられているので、従
来と比べて次のような違いがある。すなわち、従来の場
合にはエンジン回転数と車速のみが回転数信号として人
力されているに過ぎないので、発進過程においては無段
変速装置10の変速比を検出できず、無段変速装置10
が最低速比に戻っていない状態で発進を開始するような
事態が生じる場合がある。これでは発進の円滑性が狙害
されたり、最悪の場合にはエンストを起こすおそれがあ
る。また、第5図に示すような発進特性に沿った発進を
行おうとすれば、発進クラッチ20の入、出力回転数を
正確に検出しなければならないが、上記のようにエンジ
ン回転数と車速のみでは無段変速装置10の変速比の変
化やバラツキによって発進クラッチ200Å力回転数を
検出できず、一定の発進特性が得られない。これに対し
、本発明ではエンジン回転数と車速の他に、従動軸13
の回転数、即ち無段変速装置10の出力回転数(発進ク
ラッチ20の入力回転数と等しい)を検出しているので
、無段変速装置10の変速比は常時正確に検出でき、最
低速比以外からの発進を防止できる。また、従動軸回転
数によって発進クラッチ20の入力回転数が判るので、
常に第5図のような発進特性に一致させることが可能で
ある。
The above-mentioned start control and speed change control are performed based on the signals detected by the sensors 61 to 65, but in particular, three sensors for detecting the rotation speed are provided, unlike in the past, so the following There is a difference. That is, in the conventional case, only the engine rotation speed and vehicle speed are manually input as rotation speed signals, so the gear ratio of the continuously variable transmission 10 cannot be detected during the starting process, and the continuously variable transmission 10 cannot be detected.
A situation may occur in which the vehicle starts moving before the vehicle has returned to its lowest speed ratio. This could impair the smoothness of the vehicle's start, or in the worst case, cause the engine to stall. Furthermore, in order to start according to the starting characteristics shown in Fig. 5, it is necessary to accurately detect the engagement and output speed of the starting clutch 20, but as mentioned above, only the engine speed and vehicle speed are detected. In this case, the starting clutch 200A force rotation speed cannot be detected due to changes and variations in the gear ratio of the continuously variable transmission 10, and a constant starting characteristic cannot be obtained. On the other hand, in the present invention, in addition to the engine rotation speed and vehicle speed, the driven shaft 13
, that is, the output rotation speed of the continuously variable transmission 10 (equal to the input rotation speed of the starting clutch 20), the gear ratio of the continuously variable transmission 10 can be detected accurately at all times, and the lowest speed ratio It can prevent starting from outside. In addition, since the input rotation speed of the starting clutch 20 can be determined from the driven shaft rotation speed,
It is possible to always match the starting characteristics as shown in FIG.

ところで、エンジン回転数、車速および従動軸回転数を
検出する3個のセンサ61〜63のうち1 fllでも
故障したり、あるいはその信号配線が断線したりして信
号系が故障を起こすと、上記のような発進制御や変速制
御が不可能となる。そこで、本発明ではこのような故障
に対応するため、3個の回転数センサのうち1個が故障
しても、一定の条件下で、他の2個のセンサによって発
進制御や変速制御を支障なく続行し得るようにバックア
ンプするものである。
By the way, if one of the three sensors 61 to 63 that detects the engine speed, vehicle speed, and driven shaft speed fails, or its signal wiring is disconnected, causing a failure in the signal system, the above-mentioned Start control and gear change control such as these become impossible. Therefore, in the present invention, in order to deal with such failures, even if one of the three rotational speed sensors fails, under certain conditions, the other two sensors will interfere with the start control and gear change control. This is to back up the amplifier so that you can continue without any problems.

表、1はバックアップ制御の具体的方法を示している。Table 1 shows a specific method of backup control.

表、1 表、1において、Oは正常、×は故障、N inはエン
ジン回転数、N1は従動軸回転数、■は車速を示す。
Table 1 In Table 1, O indicates normality, × indicates failure, N in indicates engine rotation speed, N1 indicates driven shaft rotation speed, and ■ indicates vehicle speed.

表、1に示すバックアップ方法を説明すると、例えば発
進制御時にN inが故障した時には、(1)式のよう
にN0LITでバックアップできる。
To explain the backup method shown in Table 1, for example, when N in fails during start control, backup can be performed with N0LIT as shown in equation (1).

N1n=NMX imax X ia        
−(1)(1)式中、i maxは無段変速装置10の
最低速比、iaは減速ギヤ7.8のギヤ比である。
N1n=NMX imax Xia
-(1) In formula (1), i max is the lowest speed ratio of the continuously variable transmission 10, and ia is the gear ratio of the reduction gear 7.8.

また、発進制御時にNIIITが故障した時には、上記
とは逆にNloでバックアップできる。
Furthermore, if NIIIT fails during start control, it can be backed up by Nlo, contrary to the above.

i max      1a さらに発進制御時に■が故障すると、■=0となるので
、発進クラッチ20の入、出力回転数の差が常に設定値
より太き(なり、発進クラッチ20は完全係合すること
なく常時すべり制御される。
i max 1a Furthermore, if ■ fails during start control, ■ = 0, so the difference between the input and output rotation speeds of the starting clutch 20 is always larger than the set value (and the starting clutch 20 is not fully engaged). Slip is constantly controlled.

変速制御時にN、nが故障すると、無段変速装置10の
入力回転数が不明となるので、他の信号ではバックアッ
プできず、変速制御は行えない。
If N and n fail during shift control, the input rotational speed of the continuously variable transmission 10 becomes unknown, so it cannot be backed up with other signals and shift control cannot be performed.

また、変速制御時にN1)JTが故障すると、(3)式
のようにVでバンクアンプできる。
Also, if N1) JT fails during speed change control, bank amplification can be performed with V as shown in equation (3).

N[= V X i b             −
f3)(3)式中、ibは従動軸13から出力軸32ま
でのギヤ比である。
N [= V X i b −
f3) In formula (3), ib is the gear ratio from the driven shaft 13 to the output shaft 32.

さらに、変速制御時にVが故障した場合には、上記とは
逆にNゆでバックアップできる。
Furthermore, if V fails during speed change control, backup can be performed by boiling N, contrary to the above.

V=NIllIT×□           ・・・(
2)ib 直結制御時、即ち直結駆動から変速制御へ切り換える時
には、変速制御時と同様にN1nが故障するとバックア
ンプできないが、N[LITまたはVのいずれかが故障
した時にはバックアップできる。
V=NIllIT×□ ・・・(
2) During ib direct-coupling control, that is, when switching from direct-coupling drive to shift control, if N1n fails, back-up cannot be performed as in shift control, but backup is possible if either N[LIT or V fails.

第7図は発進時のバックアップ制御方法、第8図は変速
時のバックアップ制御方法を示す。
FIG. 7 shows a backup control method at the time of starting, and FIG. 8 shows a backup control method at the time of shifting.

第7図において、発進中のバックアップ制御がスタート
すると、N:n+ N1ff+ Vのいずれかが故障し
ているか否かを判別しく80)、故障していなければバ
ックアンプ制御を終了する。故障中であれば、どの信号
が故障したかを判別しく81)、N1nが故障した時に
は(1)式からI’lou’rを用いてバ・ツクアップ
しく82)、NIIITが故障した時には(2)式から
N1nを用いてバックアップしく83)、■が故障した
時にはすべり制御を続行する(84)。
In FIG. 7, when the backup control during the start of the vehicle starts, it is determined whether any of N:n+N1ff+V is out of order (80), and if it is not out of order, the back up amplifier control is ended. If there is a failure, determine which signal has failed81), if N1n fails, use I'lou'r from equation (1) to back up82), and if NIIIT fails, (2) ) From the equation, N1n is used for backup (83), and when (2) fails, slip control is continued (84).

第8図において、変速中のバックアップ制御がスタート
すると、N、n、 Na1T、  Vのいずれかが故障
しているか否かを判別しく85)、故障していなければ
バンクアンプ制御を終了する。故障中であれば、どの信
号が故障したかを判別しく86)、N inが故障した
時にはバンクアンプ不能であるため、車両を停止させ(
87)、N、:、Tが故障した時には(3)式から■を
用いてバックアップしく88)、■が故障した時には(
4)式からN力を用いてバックアップする(89)。
In FIG. 8, when backup control during gear shifting starts, it is determined whether any of N, n, Na1T, and V is in failure (85), and if not, bank amplifier control is terminated. If there is a failure, it is necessary to determine which signal has failed (86), and when the N in fails, the bank amplifier is not possible, so the vehicle must be stopped (86).
87), When N,:,T fails, use ■ from equation (3) to back up.88), When ■ fails, (
4) Back up using the N force from the equation (89).

なお、直結制御時のバックアップ制御は第8図と同様で
ある。
Note that backup control during direct connection control is the same as that shown in FIG. 8.

本発明において、発進クラッチ20としては湿式多板ク
ラッチに附らず電磁粉式クラッチや乾式クラッチも使用
できる。電磁粉式クラッチの場合には電流信号で直接伝
達トルクを制御できるので、発進制御弁が不要となり、
発進制御用の油圧回路を省略できる。
In the present invention, as the starting clutch 20, an electromagnetic powder type clutch or a dry type clutch can be used instead of a wet type multi-disc clutch. In the case of an electromagnetic powder clutch, the transmitted torque can be directly controlled by a current signal, eliminating the need for a start control valve.
The hydraulic circuit for start control can be omitted.

また、本発明の無段変速機はVベルト式無段変速機に限
らず、トロイダル形無段変速機などのトラクション駆動
式無段変速機も使用できる。
Further, the continuously variable transmission of the present invention is not limited to a V-belt type continuously variable transmission, but also a traction drive type continuously variable transmission such as a toroidal type continuously variable transmission.

さらに、発進クラッチを無段変速装置より下流側に設け
た場合に限らず、従来と同様に発進クラッチを無段変速
装置より上流に設けてもよい。
Furthermore, the starting clutch is not limited to the case where the starting clutch is provided downstream of the continuously variable transmission; the starting clutch may be provided upstream of the continuously variable transmission as in the conventional case.

発明の効果 以上の説明で明らかなように、本発明によれば無段変速
機内部の独立な3個の回転数を検出し、これら3個の回
転数信号系のいずれかが故障した時、一定の条件下で他
の2個の回転数信号によってバックアンプできるように
したので、発進制御および変速制御の信頼性が向上する
Effects of the Invention As is clear from the above explanation, according to the present invention, three independent rotational speeds inside the continuously variable transmission are detected, and when any of these three rotational speed signal systems fails, Since back-amplification can be performed using the other two rotational speed signals under certain conditions, the reliability of start control and gear change control is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用されるVベルト式無段変速機の一
例の概略図、第2図、第3図は制御弁の具体的構造図、
第4図は電子制御装置のブロック図、第5図は発進クラ
ッチの伝達トルク特性図、第6図は変速線図、第7図は
発進時のバックアンプ制御方法のフローチャート図、第
8図は変速時のバックアップ制御方法のフローチャート
図である。 1・・・エンジン、5・・・直結クラッチ、10・・・
無段変速装置、18・・・油圧室、20・・・発進クラ
ッチ、32・・・出力軸、43・・・プーリ制御弁、4
5・・・発進制御弁、47・・・直結制御弁、60・・
・電子制御装置、61・・・エンジン回転数センサ(入
力軸回転数センサ)、62・・・車速センサ、63・・
・従動輪回転数センサ。 出 願 人  ダイハツ工業株式会社 代 理 人  弁理士 筒井 秀隆 第1図 第2図         第314 第4図 第5図 第6図 車速 手続補正書 1、事件の表示 昭和61年特許願第220147号 2、発明の名称 無段変速機のバックアップ制御方法 3、補正をする者 事件との関係  特許出願人 住 所  大阪府池田市ダイハツ町1番1号名 称  
ダイハツ工業株式会社 代表者 江 口 友 紘 4、代理人〒550 住 所  大阪市西区西木町1−5−9産双西本町ビル
自発補正 7、補正の内容 明細書第7頁第7行において、「カウンタ軸27には上
記」の後に「直結駆動ギヤ6と」を挿入する。 以上
FIG. 1 is a schematic diagram of an example of a V-belt type continuously variable transmission to which the present invention is applied, FIGS. 2 and 3 are specific structural diagrams of a control valve,
Fig. 4 is a block diagram of the electronic control device, Fig. 5 is a transmission torque characteristic diagram of the starting clutch, Fig. 6 is a shift diagram, Fig. 7 is a flowchart of the back amplifier control method at the time of starting, and Fig. 8 is FIG. 3 is a flowchart of a backup control method during gear shifting. 1... Engine, 5... Direct clutch, 10...
Continuously variable transmission, 18... Hydraulic chamber, 20... Starting clutch, 32... Output shaft, 43... Pulley control valve, 4
5...Start control valve, 47...Direct connection control valve, 60...
・Electronic control device, 61...Engine rotation speed sensor (input shaft rotation speed sensor), 62...Vehicle speed sensor, 63...
- Driven wheel rotation speed sensor. Applicant Daihatsu Motor Co., Ltd. Agent Patent Attorney Hidetaka Tsutsui Figure 1 Figure 2 Figure 314 Figure 4 Figure 5 Figure 6 Vehicle Speed Procedure Amendment 1, Incident Indication Patent Application No. 220147 No. 2 of 1985, Title of the invention: Back-up control method for continuously variable transmission 3, relationship with the amended case Address of patent applicant: 1-1 Daihatsu-cho, Ikeda-shi, Osaka Name
Daihatsu Motor Co., Ltd. Representative: Tomo Hiro Eguchi 4, Agent Address: 550 Address: Sou Nishihonmachi Building, 1-5-9 Nishikicho, Nishi-ku, Osaka City Voluntary Amendment 7, page 7, line 7 of the statement of contents of the amendment, Insert "directly coupled drive gear 6" after "counter shaft 27 above". that's all

Claims (1)

【特許請求の範囲】[Claims] (1)伝達トルクを外部より制御できるすべり式発進ク
ラッチと、無段変速を行う無段変速装置とを動力伝達経
路中に直列に接続した無段変速機において、入力軸の回
転数、出力軸の回転数、発進クラッチの入、出力回転数
、無段変速装置の入、出力回転数のうち、相互の回転比
が固定されていない独立な3個の回転数を検出し、発進
制御中に発進クラッチの入、出力側の一対の回転数を除
く他の1個の回転数信号系が故障した時、又は変速制御
中に無段変速装置の入、出力側の一対の回転数を除く他
の1個の回転数信号系が故障した時、この故障した信号
を他の回転数信号で代用し、発進制御又は変速制御を続
行し得るようにした無段変速機のバックアップ制御方法
(1) In a continuously variable transmission in which a slip-type starting clutch that can externally control the transmitted torque and a continuously variable transmission device that performs continuously variable speed are connected in series in the power transmission path, the rotation speed of the input shaft, the output shaft Detects three independent rotation speeds whose rotation ratios are not fixed among the rotation speed of the starting clutch, engagement of the starting clutch, output rotation speed, engagement of the continuously variable transmission, and output rotation speed. When the starting clutch is turned on, one rotational speed signal system other than the pair of rotational speeds on the output side is out of order, or when the continuously variable transmission is turned on during shift control, and other than the pair of rotational speeds on the output side are turned on. A backup control method for a continuously variable transmission, in which when one rotational speed signal system of a continuously variable transmission fails, another rotational speed signal is substituted for the failed signal to continue start control or gear change control.
JP22014786A 1986-09-18 1986-09-18 Backup control method for continuously variable transmission Pending JPS6374735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22014786A JPS6374735A (en) 1986-09-18 1986-09-18 Backup control method for continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22014786A JPS6374735A (en) 1986-09-18 1986-09-18 Backup control method for continuously variable transmission

Publications (1)

Publication Number Publication Date
JPS6374735A true JPS6374735A (en) 1988-04-05

Family

ID=16746631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22014786A Pending JPS6374735A (en) 1986-09-18 1986-09-18 Backup control method for continuously variable transmission

Country Status (1)

Country Link
JP (1) JPS6374735A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260834A (en) * 1991-02-14 1992-09-16 Nissan Motor Co Ltd Failure judging device for vehicle system
JP2008039114A (en) * 2006-08-08 2008-02-21 Toyota Motor Corp Control device for automatic transmission for vehicle
EP1903262A1 (en) * 2006-09-20 2008-03-26 Honda Motor Co., Ltd Vehicle transmission
JP2008202677A (en) * 2007-02-20 2008-09-04 Fuji Heavy Ind Ltd Control device of automatic transmission
JP2008208988A (en) * 2007-01-31 2008-09-11 Yamaha Motor Co Ltd Vehicle, its control device, and vehicle abnormality detecting method
JP2017020578A (en) * 2015-07-10 2017-01-26 ジヤトコ株式会社 Controller of continuously variable transmission

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260834A (en) * 1991-02-14 1992-09-16 Nissan Motor Co Ltd Failure judging device for vehicle system
JP2008039114A (en) * 2006-08-08 2008-02-21 Toyota Motor Corp Control device for automatic transmission for vehicle
EP1903262A1 (en) * 2006-09-20 2008-03-26 Honda Motor Co., Ltd Vehicle transmission
US7862470B2 (en) 2006-09-20 2011-01-04 Honda Motor Co., Ltd. Vehicle transmission
JP2008208988A (en) * 2007-01-31 2008-09-11 Yamaha Motor Co Ltd Vehicle, its control device, and vehicle abnormality detecting method
JP2008202677A (en) * 2007-02-20 2008-09-04 Fuji Heavy Ind Ltd Control device of automatic transmission
JP2017020578A (en) * 2015-07-10 2017-01-26 ジヤトコ株式会社 Controller of continuously variable transmission

Similar Documents

Publication Publication Date Title
JPS6374732A (en) Speed change control device of continuously variable transmission
US20040110584A1 (en) System for preventing belt slip of belt-type continuosly variable transmission
JPS6374735A (en) Backup control method for continuously variable transmission
JPH084864A (en) Controller of continuously variable transmission
JP7169457B2 (en) VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
KR100249959B1 (en) Shift control device of cvt
JP2780448B2 (en) Transmission control device for continuously variable transmission
JP2652370B2 (en) Automatic clutch control system for vehicles
JPS63110044A (en) Control of starting clutch of automatic transmission
JPH01279155A (en) Device for controlling v-belt type continuously variable transmission
JPH084865A (en) Controller of continuously variable transmission
JPS63240436A (en) Reverse movement preventing device for vehicle
JP3036284B2 (en) Hydraulic control device for belt-type continuously variable transmission for vehicles
JPS63203438A (en) Detection of speed change ratio of continuously variable transmission
JPS63149234A (en) Control device for automatic starting clutch
JPS6280132A (en) Coast-down control method for v-belt type continuously variable transmission
JP2777712B2 (en) Start clutch control method
JPH084863A (en) Controller of continuously variable transmission
JPS6252268A (en) Shift-down control for v belt type continuously variable transmission
JPH0674843B2 (en) Continuously variable transmission for vehicles
JPH01108454A (en) Speed change control of v-belt type continuously variable transmission
JP2001330127A (en) Variable speed controller for continuously variable transmission
JPS63154434A (en) V-belt type continuously variable transmission for vehicle
JP3473168B2 (en) Failure determination method for lock-up function of hydraulic control AT
JPH0828678A (en) Lock-up control device of fluid coupling