JPS637378A - Production of material coated with hyperfine particle metal - Google Patents

Production of material coated with hyperfine particle metal

Info

Publication number
JPS637378A
JPS637378A JP15072486A JP15072486A JPS637378A JP S637378 A JPS637378 A JP S637378A JP 15072486 A JP15072486 A JP 15072486A JP 15072486 A JP15072486 A JP 15072486A JP S637378 A JPS637378 A JP S637378A
Authority
JP
Japan
Prior art keywords
transition metal
polymer material
compd
metal salt
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15072486A
Other languages
Japanese (ja)
Inventor
Yasuzo Uchida
内田 安三
Yoshiteru Kageyama
景山 芳輝
Hiroshi Yui
浩 由井
Yoshiaki Sawada
善秋 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP15072486A priority Critical patent/JPS637378A/en
Publication of JPS637378A publication Critical patent/JPS637378A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material

Abstract

PURPOSE:To produce a high-polymer material coated with an hyperfine particle metal having excellent electromagnetic characteristics by bringing a transition metal salt and transition metal carbonyl compd. into contact with each other on the surface of the high-polymer material at a specific temp. and dispersing and sticking the metallic particles of a specific grain size onto the surface thereof. CONSTITUTION:The surface of the org. or inorg. high-polymer material is subjected to an oxidation treatment at need and is then immersed into an aq. hydrochloric acid soln. of the transition metal salt so that the transition metal salt is stuck onto the surface thereof. Metal salts of Cu, Ni, Co, Pd, Fe, etc., are used for the transition metal salt. The high-polymer material is then brought into contact with the transition metal carboxyl compd. at <=120 deg.C to thermally decompose the metal carboxyl compd. and to disperse and stick the metallic particles having <=0.2mu average grain size onto the surface of the high-polymer material. The carbonyl compds. of metals such as Fe, Ni, Co, W, Mo, and Cr are used for the transition metal carboxyl compd. The high-polymer material on which the hyperfine particle metal is well dispersed and is stuck and held with the practicable strength is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電磁特性に優れた超微粒金属で被覆した高分
子材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a polymeric material coated with ultrafine metal particles having excellent electromagnetic properties.

〔従来の技術〕[Conventional technology]

鉄、コバルト、ニッケル等遷移金属の微粒子は、特異な
電磁特性を有するため電子部品材料等へ応用されている
Fine particles of transition metals such as iron, cobalt, and nickel have unique electromagnetic properties and are used in electronic component materials.

この微粒子を高分子材料の表面に分散付着させて実用材
料とする方法としては、例えば、金属微粒子を塗料に混
ぜて高分子材料表面に塗布したり、無電解メツキによる
金属微粒子の製造時に高分子を存在させてその表面に微
粒子を付着させる方法がある。
Methods for making practical materials by dispersing and adhering these fine particles to the surface of polymeric materials include, for example, mixing metal fine particles with paint and applying it to the surface of polymeric materials, or using electroless plating to manufacture polymeric fine particles. There is a method in which fine particles are attached to the surface of the particles.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来方法では金属微粒子が材料表面で凝
集して塊状に付着し、微粒子の特性が生かされなくなっ
たり、実用上十分な強度で付着保持されなかったり、ま
た、複雑な形状の高分子材料には適用が困難だったり、
あるいは、還元剤等の不純物が混入する等の問題や、求
める程の細かな金属微粒子とならないなどの欠点があっ
た。
However, with conventional methods, metal fine particles aggregate on the material surface and adhere in a lump, making it impossible to take advantage of the characteristics of the fine particles, or not being able to adhere and hold them with sufficient strength for practical use. is difficult to apply,
In addition, there are problems such as the contamination of impurities such as reducing agents, and disadvantages such as failure to obtain fine metal particles as desired.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、かかる問題点の解消を目的にして、高分子材
料表面で遷移金属カルボニル化合物を低温で反応させる
ことにより、この目的を達成し、かつ従来になく超微粒
の金属粒子を材料表面に分散付着させることが出来、こ
れによって優れた電磁特性が得られることを見い出して
為されたものである。
The present invention aims to solve these problems by reacting a transition metal carbonyl compound on the surface of a polymeric material at a low temperature, thereby achieving this objective and applying unprecedentedly ultrafine metal particles to the surface of the material. This was done after discovering that it is possible to deposit it in a dispersed manner and that this provides excellent electromagnetic properties.

すなわち、本発明は、[高分子材料の表面において、遷
移金属塩および遷移金属カルボニル化合物を120℃以
下で接触し、反応させて平均粒径。
That is, the present invention is directed to [a transition metal salt and a transition metal carbonyl compound are brought into contact with each other at 120° C. or lower on the surface of a polymeric material, and reacted to reduce the average particle size.

0.2ミクロン以下の金属粒子を該高分子材料の表面に
分散付着させることを特徴とする超微粒金属で被覆した
材料の製造方法」である。
A method for producing a material coated with ultrafine metal particles, which comprises dispersing and adhering metal particles of 0.2 microns or less onto the surface of the polymer material.

〔発明の効果〕〔Effect of the invention〕

本発明方法によって、超微粒金属が良く分散し、かつ実
用十分な強度で付着保持された高分子材料が低温での反
応で簡便に得られる。
By the method of the present invention, a polymer material in which ultrafine metal particles are well dispersed and adhered and held with sufficient strength for practical use can be easily obtained by reaction at a low temperature.

かかる方法は、粒状、繊維状、板状のほか、複雑な形状
の高分子材料にも適用することができる。
This method can be applied to polymer materials having complex shapes as well as particles, fibers, and plates.

得られた被覆材料は、金属粒子が超微粒子で均質に分散
されているため優れた電磁特性を有し、導電材料、磁性
材料、光学材料等への応用に存用である。
The obtained coating material has excellent electromagnetic properties because the metal particles are homogeneously dispersed as ultrafine particles, and is useful for applications such as conductive materials, magnetic materials, and optical materials.

〔作 用〕 本発明で使用される高分子材料は、有機系および無機系
高分子材料であり、粉末状、繊維状、板状等のいかなる
形状の高分子材料にも適用できる。
[Function] The polymeric materials used in the present invention are organic and inorganic polymeric materials, and can be applied to polymeric materials in any shape such as powder, fiber, plate, etc.

具体的には、バルブ、綿などの天然高分子;ポリオレフ
ィン、ポリアミドなどの熱可塑性樹脂;エポキシ樹脂、
不飽和ポリエステル等の熱硬化性樹脂;グラファイト、
炭素繊維等の炭素材料などがある。
Specifically, natural polymers such as valves and cotton; thermoplastic resins such as polyolefins and polyamides; epoxy resins,
Thermosetting resins such as unsaturated polyester; graphite,
Examples include carbon materials such as carbon fiber.

また、本発明で用いる遷移金属塩は、例えばCu。Further, the transition metal salt used in the present invention is, for example, Cu.

Ni、Go、Pd、Fe等の金属の塩であり、中でもN
i、Pdの塩が好ましい。
Salts of metals such as Ni, Go, Pd, Fe, etc. Among them, N
i, Pd salts are preferred.

さらに、本発明で用いる遷移金属カルボニル化合物は、
Fe、 Ni+ Co+ W+ Mo、 Cr等の金属
のカルボニル化合物である。これらは併用しても差し支
えない。
Furthermore, the transition metal carbonyl compound used in the present invention is
It is a carbonyl compound of a metal such as Fe, Ni+ Co+ W+ Mo, or Cr. These may be used in combination.

次に、上記の遷移金属塩および遷移金属カルボニル化合
物を高分子材料の表面で接触、反応させるには、−般に
は次の方法が好適である。
Next, the following method is generally suitable for bringing the above transition metal salt and transition metal carbonyl compound into contact and reacting on the surface of the polymeric material.

先ず、高分子材料の表面に遷移金属塩を付着せしめるが
、付着に先立ち、必要に応じて高分子材料表面に酸化処
理を行なう。この酸化処理は、たとえば硫酸酸性の重ク
ロム酸カリ溶液などで処理することにより行なわれる。
First, a transition metal salt is deposited on the surface of a polymeric material, but prior to the deposition, the surface of the polymeric material is oxidized if necessary. This oxidation treatment is carried out, for example, by treatment with a sulfuric acid acidic potassium dichromate solution.

この高分子材料を、塩化第1錫の塩酸酸性水溶液に浸漬
したのち、遷移金属塩の塩酸酸性水溶液に浸漬すること
によって表面に遷移金属塩を付着せしめる。
This polymeric material is immersed in an acidic hydrochloric acid aqueous solution of tinnous chloride, and then immersed in an acidic hydrochloric acid aqueous solution of a transition metal salt to adhere the transition metal salt to the surface.

次いで、遷移金属塩の付着された高分子材料を金属カル
ボニル化合物と接触させて金属カルボニル化合物を熱分
解する。
Next, the polymeric material to which the transition metal salt is attached is brought into contact with the metal carbonyl compound to thermally decompose the metal carbonyl compound.

この熱分解時の温度は、120℃以下、好ましくは10
0℃以下にすることが重要である。
The temperature during this thermal decomposition is 120°C or less, preferably 10°C or less.
It is important to keep the temperature below 0°C.

温度が120℃超過では高分子材料表面以外の反応器壁
などにも分解金属が析出したり、副反応による炭素が不
純物として生成したり、また、金属の平均粒子径も0.
2ミクロン(μ)より大となってしまう。
If the temperature exceeds 120°C, decomposed metals may precipitate on the walls of the reactor other than on the surface of the polymer material, carbon may be produced as impurities due to side reactions, and the average particle size of the metal may also be 0.
It becomes larger than 2 microns (μ).

上記の反応は、気相および触媒を使用した液相でも行な
える。液相で行なう場合は、トルエン、デカンなどの不
活性溶媒中に金属カルボニル化合物を溶解し、この溶液
に高分子材料を浸漬して分解反応を行なわせることがで
きる。
The above reactions can be carried out in the gas phase and also in the liquid phase using catalysts. When carrying out the decomposition reaction in a liquid phase, the metal carbonyl compound can be dissolved in an inert solvent such as toluene or decane, and the polymeric material can be immersed in this solution to carry out the decomposition reaction.

生成した超微粒子金属の酸化を防ぐために、必要に応じ
て酸化防止処理を行なう。これに有効な酸化防止剤はシ
ランカップリング剤である。シランカップリング剤の具
体例としてはビニルトリエトキシシラン、γ−メタクリ
ロキシプコビルトリメトキシシランなどのビニル系シラ
ン化合物;γ−アミノプロビルトリエトキシシラン、N
−フェニル−γ−アミノプロピルトリメトキシシランな
どのアミノ系シラン化合物;γ−グリシドキシプロビル
メチルジェトキシシランなどのエポキシ系シラン化合物
がある。これらのなかではアミノ系シランカップリング
剤が特に有効である。
In order to prevent the generated ultrafine metal particles from oxidizing, anti-oxidation treatment is performed as necessary. An effective antioxidant for this purpose is a silane coupling agent. Specific examples of silane coupling agents include vinyl silane compounds such as vinyltriethoxysilane and γ-methacryloxypcobyltrimethoxysilane; γ-aminoprobyltriethoxysilane, N
-Phenyl-γ-aminopropyltrimethoxysilane and other amino-based silane compounds; and γ-glycidoxypropylmethyljethoxysilane and other epoxy-based silane compounds. Among these, amino-based silane coupling agents are particularly effective.

酸化防止処理方法は、シランカップリング剤を気相また
は液相で前記の超微粒子金属被覆材料に50〜150℃
にて接触させることで行なうことができる。
The oxidation prevention treatment method involves applying a silane coupling agent to the ultrafine metal coating material in the gas phase or liquid phase at 50 to 150°C.
This can be done by contacting the

〔実施例〕〔Example〕

実施例1 厚さ100μのポリエチレンテレフタレート(PET)
フィルムの表面を予め重クロム酸溶液(KzCr2(h
 50 g S?a硫酸400ml、水6 Q 0m1
)で室温下に酸化処理し、次いで塩化第一錫溶液(Sn
Cffz 100 g、、HCj250mj!、水Il
)、塩化パラジウム溶液(pacx 20.5 g 、
 濃塩酸10m1、水41)に順次浸漬し、最後に50
℃で3時間乾燥して遷移金属処理を行なった。
Example 1 Polyethylene terephthalate (PET) with a thickness of 100μ
The surface of the film was coated with a dichromic acid solution (KzCr2(h
50g S? a Sulfuric acid 400ml, water 6Q 0ml
) at room temperature, and then oxidized with a stannous chloride solution (Sn
Cffz 100 g,,HCj250mj! , water Il
), palladium chloride solution (pacx 20.5 g,
Sequentially immersed in 10ml of concentrated hydrochloric acid, 41ml of water, and finally 50ml of water.
It was dried at ℃ for 3 hours and subjected to transition metal treatment.

次に、Fe(Co)sのトルエン5重世%溶液に上記処
理したPETフィルムを浸漬し、60℃で30分間加熱
した。この結果、該フィルムに分解したFeの超微粒子
が担持された。次いで、このフィルムをγ−アミノプロ
ピルトリエトキシシランのトルエン1重量%溶液に浸漬
し、80℃で1時間加熱して担持Feの酸化防止処理を
行なった。
Next, the above-treated PET film was immersed in a 5% solution of Fe(Co)s in toluene and heated at 60° C. for 30 minutes. As a result, ultrafine particles of decomposed Fe were supported on the film. Next, this film was immersed in a 1% by weight solution of γ-aminopropyltriethoxysilane in toluene and heated at 80° C. for 1 hour to prevent the supported Fe from oxidizing.

電子顕微鏡による表面の形態観察により、PETフィル
ム表面に平均粒径0.08μの球状超微粒子Feが均一
に分散して担持されていたのが判明した。
Observation of the surface morphology using an electron microscope revealed that spherical ultrafine particles Fe with an average particle size of 0.08 μm were uniformly dispersed and supported on the PET film surface.

得られた担持PETフィルムについて、振動試料型磁力
計により磁気特性を測定した。その結果は第1表の通り
The magnetic properties of the obtained supported PET film were measured using a vibrating sample magnetometer. The results are shown in Table 1.

実施例2 実施例1において、PETフィルムの代わりに炭素繊維
を用いた以外は実施例1と同様にして酸化防止処理まで
済ませた超微粒Fe担持炭素繊維を得た。
Example 2 Ultrafine Fe-supported carbon fibers were obtained in the same manner as in Example 1 except that carbon fibers were used instead of the PET film, including the antioxidant treatment.

このものの電子顕微鏡観察により、炭素繊維表面に平均
粒径0.1μの球状超微粒子Feが均一に分散して担持
されていたのが判明した。
Electron microscopic observation of this material revealed that spherical ultrafine particles Fe with an average particle size of 0.1 μm were uniformly dispersed and supported on the carbon fiber surface.

また、このものの磁気特性は第1表の通りであった。The magnetic properties of this product were as shown in Table 1.

比較例1 実施例1において、遷移金属塩処理を行なっていないP
ETフィルムを用いた以外は実施例1と同様にしてFe
 (Co) sの接触反応を行なった。
Comparative Example 1 P that was not subjected to transition metal salt treatment in Example 1
Fe was prepared in the same manner as in Example 1 except that the ET film was used.
A catalytic reaction of (Co)s was carried out.

結果は、該フィルム表面に分解Feは認められなかった
As a result, no decomposed Fe was observed on the surface of the film.

比較例2 実施例IのFe (CO) sの接触反応において、分
解温度を130℃に変更した外は、実施例1と同様に実
施した。
Comparative Example 2 The same procedure as in Example 1 was carried out except that the decomposition temperature in the catalytic reaction of Fe (CO) s in Example I was changed to 130°C.

この結果、PETフィルム表面および該フィルム表面以
外の反応器壁にも分解Feが生成した。
As a result, decomposed Fe was generated on the PET film surface and on the reactor wall other than the film surface.

PETフィルム表面の分解Feは、平均粒径0.8μの
球状微粒子であった。また、このものの磁気特性は第1
表の通りであった。
The decomposed Fe on the surface of the PET film was spherical fine particles with an average particle size of 0.8 μm. Also, the magnetic properties of this material are the first
It was as shown in the table.

第1表Table 1

Claims (1)

【特許請求の範囲】[Claims] 高分子材料の表面において、遷移金属塩および遷移金属
カルボニル化合物を120℃以下で接触し、反応させて
平均粒径0.2ミクロン以下の金属粒子を該高分子材料
の表面に分散付着させることを特徴とする超微粒金属で
被覆した材料の製造方法。
A transition metal salt and a transition metal carbonyl compound are brought into contact with each other at a temperature of 120°C or lower on the surface of a polymeric material, and the metal particles having an average particle size of 0.2 microns or less are dispersed and adhered to the surface of the polymeric material. A method for producing a material coated with a characteristic ultrafine metal.
JP15072486A 1986-06-27 1986-06-27 Production of material coated with hyperfine particle metal Pending JPS637378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15072486A JPS637378A (en) 1986-06-27 1986-06-27 Production of material coated with hyperfine particle metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15072486A JPS637378A (en) 1986-06-27 1986-06-27 Production of material coated with hyperfine particle metal

Publications (1)

Publication Number Publication Date
JPS637378A true JPS637378A (en) 1988-01-13

Family

ID=15503022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15072486A Pending JPS637378A (en) 1986-06-27 1986-06-27 Production of material coated with hyperfine particle metal

Country Status (1)

Country Link
JP (1) JPS637378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599083A (en) * 1993-12-17 1997-02-04 Mort; Christopher H. J. Projection apparatus
JP2008524010A (en) * 2004-12-17 2008-07-10 インテグラン・テクノロジーズ・インコーポレーテッド Articles containing fine-grained metal and polymer materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599083A (en) * 1993-12-17 1997-02-04 Mort; Christopher H. J. Projection apparatus
JP2008524010A (en) * 2004-12-17 2008-07-10 インテグラン・テクノロジーズ・インコーポレーテッド Articles containing fine-grained metal and polymer materials

Similar Documents

Publication Publication Date Title
US8591988B1 (en) Method of fabrication of anchored nanostructure materials
JP7105004B2 (en) Method of applying an ultra-fine phosphated crystalline coating
Chen et al. Electrodeposition of sol-enhanced nanostructured Ni-TiO2 composite coatings
Chen et al. A novel electroless plating of Ni–P–TiO2 nano-composite coatings
Pang et al. Preparation and characterization of electroless Ni–Co–P ternary alloy on fly ash cenospheres
Meng et al. Synthesis and characterization of Co/cenosphere core–shell structure composites
CN111069591A (en) Preparation method of nickel-cobalt alloy particle modified graphene micro-sheet wave-absorbing composite powder
WO2007119417A1 (en) Conductive powder plated by electroless plating and process for producing the same
Xu et al. Copper thin coating deposition on natural pollen particles
JPH01268764A (en) Antimicrobial pigment powder
JPS637378A (en) Production of material coated with hyperfine particle metal
US8974719B2 (en) Composite materials formed with anchored nanostructures
Sequeira Electrochemical synthesis of iron oxide nanoparticles for biomedical application
US20130130894A1 (en) Method Of Producing Catalytic Material For Fabricating Nanostructures
US10239046B2 (en) Nano-material
Singh et al. Glycerol mediated low temperature synthesis of nickel nanoparticles by solution reduction method
EP0925384B1 (en) Substrates seeded with precious metal salts, process for producing the same and their use
JPS63149383A (en) Production of material coated with hyperfine metal
RU2584288C2 (en) Synthesis of zero-valence transition metal nanoparticles with surface covalently modified with organic functional groups
WO2012072658A2 (en) Process for coating nanoparticles with metal by means of electroless deposition techniques
JPH06240309A (en) Hollow metal fine grain, metal grain group containing the fine grain and production thereof
JPS63274774A (en) Production of metal coated material
JPS6237301A (en) Production of metal holding particle
JPS6146553B2 (en)
JPH01317121A (en) Acicular antibacterial substance