JPS63149383A - Production of material coated with hyperfine metal - Google Patents

Production of material coated with hyperfine metal

Info

Publication number
JPS63149383A
JPS63149383A JP29638086A JP29638086A JPS63149383A JP S63149383 A JPS63149383 A JP S63149383A JP 29638086 A JP29638086 A JP 29638086A JP 29638086 A JP29638086 A JP 29638086A JP S63149383 A JPS63149383 A JP S63149383A
Authority
JP
Japan
Prior art keywords
polymer material
high polymer
particles
transition
hyperfine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29638086A
Other languages
Japanese (ja)
Inventor
Yasuzo Uchida
内田 安三
Yoshiteru Kageyama
景山 芳輝
Yoshiaki Sawada
善秋 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP29638086A priority Critical patent/JPS63149383A/en
Publication of JPS63149383A publication Critical patent/JPS63149383A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material

Abstract

PURPOSE:To obtain a material coated with hyperfine metal excellent in electromagnetic characteristics by allowing alcohols and transition metallic carbonyl compd. to react with transition metallic salt, dispersing and sticking the produced hyperfine metal particles having a specified particle diameter or below on the surface of high polymer material. CONSTITUTION:After subjecting the surface of organic-base and inorganic-base high polymer material to oxidizing treatment with a sulfuric acidic potassium bichromate soln., it is immersed into i.e. the hydrochloric acidic aq. soln. of stannous chloride. Then transition metal is stuck on the surface by means of such a method that the high polymer material obtained after the above-mentioned treatment is immersed into the hydrochloric acidic aq. soln. of transition metallic salt of Ni and Pd, etc. Thereafter the high polymer material stuck with transition metal is brought into contact with alcohols and metallic carbonyl compd. and metallic carbonyl compd. is thermally decomposed. The temp. of this thermal decomposition is <=200 deg.C and especially it is preferably <=120 deg.C. As a result, hyperfine particles which have high- performance magnetic characteristics and <=0.1mu primary particle diameter and are connected with a straight chain are dispersed and stuck on the surface of the high polymer material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電磁特性に優れた超微粒金属で被覆した高分
子材料の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a polymeric material coated with ultrafine metal particles having excellent electromagnetic properties.

〔従来の技術〕[Conventional technology]

鉄、コバルト、ニッケル等遷移金属の微粒子は、特異な
電磁特性を有するため電子部品材料等へ応用されている
Fine particles of transition metals such as iron, cobalt, and nickel have unique electromagnetic properties and are used in electronic component materials.

この微粒子を高分子材料の表面に分散付着させて実用材
料とする方法としては、例えば、金属微粒子を塗料に混
ぜて高分子材料表面に塗布したり、無電解メッキによる
金属微粒子の製造時に高分子を存在させてその表面に微
粒子を付着させる方法がある。
Methods for making practical materials by dispersing and adhering these fine particles to the surface of polymeric materials include, for example, mixing metal fine particles with paint and applying it to the surface of polymeric materials, or using electroless plating to manufacture polymeric fine particles. There is a method in which fine particles are attached to the surface of the particles.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来方法では金属微粒子が材料表面で凝
望して塊状に付着し、微粒子の特性が生かされなくなっ
たり、実用上十分な強度で付着保持されなかったり、ま
た、複雑な形状の高分子材料には適用が困難だったり、
あるいは、還元剤等の不純物が混入する等の問題や、求
める程の細かな金属微粒子とならないなどの欠点があっ
た。
However, with conventional methods, fine metal particles condense on the material surface and adhere in a lump, making it impossible to take advantage of the characteristics of the fine particles, or not being able to adhere and hold them with sufficient strength for practical use. is difficult to apply,
In addition, there are problems such as the contamination of impurities such as reducing agents, and disadvantages such as failure to obtain fine metal particles as desired.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、かかる問題点の解消を目的にして、高分子材
料表面で遷移金属カルボニル化合物を低温で反応させる
ことにより、この目的を達成し、かつ従来にな(超微粒
の金属粒子を材料表面に分散付着させることが出来、こ
れによって優れた電磁特性が得られることを見い出して
為されたものである。
The present invention aims to solve this problem by reacting a transition metal carbonyl compound on the surface of a polymeric material at a low temperature, and achieves this object by reacting a transition metal carbonyl compound on the surface of a polymeric material. This was done after discovering that it can be dispersed and adhered to the surface of the substrate, thereby providing excellent electromagnetic properties.

すなわち、本発明は、「高分子材料の表面において、遷
移金属塩とアルコール類および遷移金属カルボニル化合
物を接触し、反応させて1次粒子径0.1ミクロン(μ
)以下の金属粒子を咳高分子材料の表面に分散付着させ
ることを特徴とする超微粒金属で被覆した材料の製造法
」である。
That is, the present invention aims at "contacting and reacting a transition metal salt with an alcohol and a transition metal carbonyl compound on the surface of a polymeric material to form a primary particle size of 0.1 micron (μ
) A method for producing a material coated with ultrafine metal particles, which comprises dispersing and adhering the following metal particles to the surface of a cough polymer material.

〔発明の効果〕〔Effect of the invention〕

本発明方法によって、超微粒金属が良く分散し、かつ実
用十分な強度で付着保持された高分子材料が低温での反
応で簡便に得られる。
By the method of the present invention, a polymer material in which ultrafine metal particles are well dispersed and adhered and held with sufficient strength for practical use can be easily obtained by reaction at a low temperature.

かかる方法は、粒状、繊維状、板状のほか、複雑な形状
の高分子材料にも適用することができる。
This method can be applied to polymer materials having complex shapes as well as particles, fibers, and plates.

得られた被覆材料は、金属粒子が超微粒子で均一に分散
されているため優れた電磁特性を有し、導電材料、磁性
材料、光学材料等への応用に有用である。
The obtained coating material has excellent electromagnetic properties because the metal particles are uniformly dispersed as ultrafine particles, and is useful for applications such as conductive materials, magnetic materials, and optical materials.

〔作 用〕 本発明で使用される高分子材料は、有機系および無機系
高分子材料であり、粉末状、繊維状、板状等のいかなる
形状の高分子材料にも適用できる。
[Function] The polymeric materials used in the present invention are organic and inorganic polymeric materials, and can be applied to polymeric materials in any shape such as powder, fiber, plate, etc.

具体的には、バルブ、綿などの天然高分子;ポリオレフ
ィン、ポリアミドなどの熱可塑性樹脂;エポキシ樹脂、
不飽和ポリエステル等の熱硬化性樹脂;グラファイト、
炭素繊維等の炭素材料などがある。
Specifically, natural polymers such as valves and cotton; thermoplastic resins such as polyolefins and polyamides; epoxy resins,
Thermosetting resins such as unsaturated polyester; graphite,
Examples include carbon materials such as carbon fiber.

また、本発明で用いる遷移金属塩は、例えばCu、N1
% Co5Pd5 Fe等の金属の塩であり、中でもN
 t sPdの塩が好ましい。
Further, transition metal salts used in the present invention include, for example, Cu, N1
%Co5Pd5Fe and other metal salts, especially N
Salts of t sPd are preferred.

本発明で用いるアルコール類は、脂肪族飽和アルコール
、脂環式アルコール、芳香族アルコールのいずれも使用
可能である。具体的には、メチルアルコール、エチルア
ルコール、プロピルアルコール、ブチルアルコール、オ
クチルアルコール、ノリルアルコール、トリメチルシラ
ノール、エチレングリコール等がある。
As the alcohol used in the present invention, any of aliphatic saturated alcohols, alicyclic alcohols, and aromatic alcohols can be used. Specific examples include methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, octyl alcohol, noryl alcohol, trimethylsilanol, and ethylene glycol.

これらのアルコール類の添加量は、遷移金属カルボニル
化合物に対してモル比で0.1〜0.0001、好まし
くは0.05〜0.001の割合で添加することが望ま
しい。このモル比が0.1超過では反応物が凝集しやす
くなる傾向があり、また、0.0001未満では反応物
の一次粒子径が大きくなる傾向にある。
It is desirable that these alcohols be added in a molar ratio of 0.1 to 0.0001, preferably 0.05 to 0.001, relative to the transition metal carbonyl compound. If this molar ratio exceeds 0.1, the reactants tend to aggregate, and if it is less than 0.0001, the primary particle diameter of the reactants tends to increase.

さらに、本発明で用いる遷移金属カルボニル化合物は、
Fe5Ni、 Co、 W、、 MO% Cr等の金属
カルボニル化合物である。これらは併用しても差し支え
ない。
Furthermore, the transition metal carbonyl compound used in the present invention is
It is a metal carbonyl compound such as Fe5Ni, Co, W, MO% Cr. These may be used in combination.

次に、上記の遷移金属塩とアルコール類および遷移金属
カルボニル化合物を高分子材料の表面で接触、反応させ
るには、一般には次の方法が好適である。
Next, the following method is generally suitable for bringing the above-mentioned transition metal salt, alcohol, and transition metal carbonyl compound into contact and reacting on the surface of the polymeric material.

先ず、高分子材料の表面に遷移金属を付着せしめるが、
付着に先立ち、必要に応じて高分子材料表面に酸化処理
を行なうことができる。この酸化処理は、たとえば硫酸
酸性の重クロム酸カリ溶液などで処理することにより行
なわれる。
First, a transition metal is attached to the surface of a polymer material,
Prior to adhesion, the surface of the polymeric material can be oxidized if necessary. This oxidation treatment is carried out by treatment with, for example, a sulfuric acid acidic potassium dichromate solution.

この高分子材料を、塩化第1錫の塩酸酸性水溶液に浸漬
したのち、遷移金属塩の塩酸酸性水溶液に浸漬する方法
等によって表面に遷移金属を付着せしめることができる
A transition metal can be attached to the surface by a method such as immersing this polymer material in an acidic hydrochloric acid aqueous solution of tinnous chloride and then immersing it in an acidic hydrochloric acid aqueous solution of a transition metal salt.

次いで、遷移金属塩の付着された高分子材料とアルコー
ル類および金属カルボニル化合物を接触させて金属カル
ボニル化合物を熱分解する。この熱分解時の温度は、2
00℃以下、好ましくは150℃以下、特に好ましくは
120℃以下、にすることが好ましい。温度が200℃
超過では高分子材料表面以外の反応器壁などにも分解金
属が析出したり、副反応による炭素が不純物として生成
したり、また、生成金属の1次粒子径が0.1μより大
となってしまう傾向にある。
Next, the polymer material to which the transition metal salt is attached is brought into contact with the alcohol and the metal carbonyl compound to thermally decompose the metal carbonyl compound. The temperature during this thermal decomposition is 2
The temperature is preferably 00°C or lower, preferably 150°C or lower, particularly preferably 120°C or lower. temperature is 200℃
If the amount is exceeded, decomposed metals may precipitate on the reactor walls other than the surface of the polymer material, carbon may be produced as impurities due to side reactions, and the primary particle size of the produced metals may become larger than 0.1μ. There is a tendency to put it away.

上記の反応は、気相および液相でも行なうことができる
。液相で行なう場合は、トルエン、デカンなどの不活性
溶媒中にアルコール類および金属カルボニル化合物を溶
解し、この溶液に高分子材料を浸漬して分解反応を行な
わせることができる。
The above reactions can also be carried out in the gas phase and in the liquid phase. When carrying out the decomposition reaction in a liquid phase, the alcohol and the metal carbonyl compound can be dissolved in an inert solvent such as toluene or decane, and the polymeric material can be immersed in this solution to carry out the decomposition reaction.

この分解反応を磁場中で行なうと、後の実施例に示すよ
うに高性能の磁気特性を持つ直鎖連結した超微粒子が得
られて好ましい。
It is preferable to carry out this decomposition reaction in a magnetic field because linearly connected ultrafine particles having high performance magnetic properties can be obtained as shown in the later examples.

生成した超微粒子金属の酸化を防ぐために必要に応じて
酸化防止処理を行なうことができる。これに有効な酸化
防止剤はシランカップリング剤である。シランカップリ
ング剤の具体例としてはビニルトリエトキシシラン、γ
−メタクリロキシプロピルトリメトキシシランなどのビ
ニル系シラン化合物;γ−アミノプロピルトリメトキシ
シラン、N−フェニル−T−アミノプロピルトリメトキ
シシランなどのアミノ系シラン化合物;γ−グリシドキ
シプロピルメチルジェトキシシランなどのエポキシ系シ
ラン化合物がある。これらのなかではアミノ系シランカ
ップリング剤が特に有効である。
Antioxidation treatment can be performed as necessary to prevent oxidation of the produced ultrafine metal particles. An effective antioxidant for this purpose is a silane coupling agent. Specific examples of silane coupling agents include vinyltriethoxysilane, γ
- Vinyl silane compounds such as methacryloxypropyltrimethoxysilane; Amino silane compounds such as γ-aminopropyltrimethoxysilane and N-phenyl-T-aminopropyltrimethoxysilane; γ-glycidoxypropylmethyljethoxysilane There are epoxy-based silane compounds such as Among these, amino-based silane coupling agents are particularly effective.

酸化防止処理方法は、シランカップリング剤を気相また
は液相で前記の超微粒子金属被覆材料に50〜150℃
にて接触させることで行なうことができる。
The oxidation prevention treatment method involves applying a silane coupling agent to the ultrafine metal coating material in the gas phase or liquid phase at 50 to 150°C.
This can be done by contacting the

〔実施例〕〔Example〕

実施例1 厚さ100μのポリエチレンテレフタレート(PET)
フィルムの表面を予め重クロム酸溶液(KzCr20t
 50 g %濃硫酸400+alt、水600111
)で室温下に酸化処理し、次いで塩化第一錫溶液C3n
C1z 100 gSHCj250m11水if)、塩
化パラジウム溶液(PdCj! t O,5g 、濃塩
酸10−!、水41)に順次浸漬し、最後に50℃で3
時間乾燥して遷移金属処理を行なった。
Example 1 Polyethylene terephthalate (PET) with a thickness of 100μ
The surface of the film was coated with a dichromic acid solution (KzCr20t) in advance.
50 g % concentrated sulfuric acid 400+alt, water 600111
) at room temperature, and then a stannous chloride solution C3n
C1z 100 g SHCj 250 ml water if), palladium chloride solution (PdCj! t O, 5 g, concentrated hydrochloric acid 10-!, water 41), and finally immersed at 50 °C for 3
After drying for a few hours, transition metal treatment was performed.

次に、Fe (Go) sのトルエン5重量%溶液にエ
チルアルコールをFe (CO) sに対して0.2モ
ル%入れ、次いでこれに上記処理したPETフィルムを
浸漬し、60℃で30分間加熱した。この結果、該フィ
ルムに分解した鉄の超微粒子が担持された。次いで、こ
のフィルムをγ−アミノプロピルトリエトキシシランの
トルエン1重景%溶液に浸漬し、80℃で1時間加熱し
て担持鉄の酸化防止処理を行なった。
Next, ethyl alcohol was added to a 5% by weight solution of Fe (Go) s in toluene at 0.2 mol % based on Fe (CO) s, and the above-treated PET film was immersed therein for 30 minutes at 60°C. Heated. As a result, ultrafine particles of decomposed iron were supported on the film. Next, this film was immersed in a 1% solution of γ-aminopropyltriethoxysilane in toluene and heated at 80° C. for 1 hour to prevent oxidation of the supported iron.

電子顕微鏡による表面の形態観察により、PETフィル
ム表面に1次粒子径0.02μ程度の鉄超微粒子が網目
状に連結して担持されていたのが判明した。
Observation of the surface morphology using an electron microscope revealed that ultrafine iron particles with a primary particle diameter of about 0.02 μm were supported in a network-like manner on the surface of the PET film.

得られた担持PETフィルムについて、振動試料型磁力
計により磁気特性を測定した。その結果は第1表の通り
The magnetic properties of the obtained supported PET film were measured using a vibrating sample magnetometer. The results are shown in Table 1.

実施例2 実施例1におけるFe (Co) sの分解反応におい
て、PETフィルムに対して水平方向に1 、0000
 eの磁界をかけた状態でFe(Co)sの分解を行な
い、鉄超微粒子の担持を行なった。
Example 2 In the decomposition reaction of Fe (Co) s in Example 1, 1,0000 in the horizontal direction with respect to the PET film
Fe(Co)s was decomposed under a magnetic field of e, and ultrafine iron particles were supported.

次いで、このフィルムをγ−アミノプロピルトリエトキ
シシランのトルエン1重量%溶液に浸漬し、80℃で1
時間加熱して担持鉄の酸化防止処理を行なった。
Next, this film was immersed in a 1% by weight solution of γ-aminopropyltriethoxysilane in toluene and heated at 80°C for 1% by weight.
The supported iron was treated to prevent oxidation by heating for a certain period of time.

電子顕微鏡による表面の形態観察により、PETフィル
ム表面に1次粒子径0.02μ程度の鉄超微粒子が直鎖
状に連結して担持されていたのが判明した。このものの
磁気特性は第1表の通りであった。
Observation of the surface morphology using an electron microscope revealed that ultrafine iron particles with a primary particle diameter of about 0.02 μm were supported in a linear chain on the surface of the PET film. The magnetic properties of this product were as shown in Table 1.

実施例3 実施例1゛において、PETフィルムの代わりに炭素繊
維を用いた以外は実施例1と同様にして酸化防止処理ま
で済ませた鉄超微粒子担持炭素繊維を得た。
Example 3 Ultrafine iron particle-supporting carbon fibers were obtained in the same manner as in Example 1, except that carbon fibers were used instead of the PET film in Example 1, which had been subjected to anti-oxidation treatment.

このものの電子顕微鏡観察により、炭素繊維表面に1次
粒子径0.03μ程度の鉄超微粒子が綱目状に連結して
担持されているのが判明した。このものの磁気特性は第
1表の通りであった。
Electron microscopic observation of this material revealed that ultrafine iron particles with a primary particle diameter of approximately 0.03 μm were supported on the surface of the carbon fibers in a connected manner. The magnetic properties of this product were as shown in Table 1.

比較例1 実施例1において、遷移金属塩処理を行なっていないP
ETフィルムを用いた以外は実施例1と同様にしてFe
 (Co) s接触反応を行なった。結果は、該フィル
ム表面に鉄分解物は認められなかった。
Comparative Example 1 P that was not subjected to transition metal salt treatment in Example 1
Fe was prepared in the same manner as in Example 1 except that the ET film was used.
(Co)s catalytic reaction was performed. As a result, no iron decomposition product was observed on the surface of the film.

比較例2 実施例1において、エチルアルコールを添加しないでP
e (CO) sとPETフィルムとの反応を行なった
以外は実施例1と同様にして酸化防止処理まで済ませた
Comparative Example 2 In Example 1, P without adding ethyl alcohol
The same procedure as in Example 1 was carried out, except that e (CO) s and the PET film were reacted, and the anti-oxidation treatment was completed.

このものの電子顕微鏡観察により、1次粒子径0.15
μの鉄超微粒子が担持されているのが判明した。また、
このものの磁気特性は第1表の通りであった。
When observed with an electron microscope, the primary particle diameter was 0.15.
It was found that ultrafine iron particles of μ were supported. Also,
The magnetic properties of this product were as shown in Table 1.

第  1  表Table 1

Claims (1)

【特許請求の範囲】[Claims] 高分子材料の表面において、遷移金属塩とアルコール類
および遷移金属カルボニル化合物を接触し、反応させて
1次粒子径0.1μ以下の金属粒子を該高分子材料の表
面に分散付着させることを特徴とする超微粒金属で被覆
した材料の製造法。
The feature is that a transition metal salt, an alcohol, and a transition metal carbonyl compound are brought into contact with each other on the surface of a polymeric material, and reacted to cause metal particles with a primary particle diameter of 0.1μ or less to be dispersed and adhered to the surface of the polymeric material. A method of manufacturing a material coated with ultrafine metal particles.
JP29638086A 1986-12-12 1986-12-12 Production of material coated with hyperfine metal Pending JPS63149383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29638086A JPS63149383A (en) 1986-12-12 1986-12-12 Production of material coated with hyperfine metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29638086A JPS63149383A (en) 1986-12-12 1986-12-12 Production of material coated with hyperfine metal

Publications (1)

Publication Number Publication Date
JPS63149383A true JPS63149383A (en) 1988-06-22

Family

ID=17832798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29638086A Pending JPS63149383A (en) 1986-12-12 1986-12-12 Production of material coated with hyperfine metal

Country Status (1)

Country Link
JP (1) JPS63149383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759230A (en) * 1995-11-30 1998-06-02 The United States Of America As Represented By The Secretary Of The Navy Nanostructured metallic powders and films via an alcoholic solvent process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759230A (en) * 1995-11-30 1998-06-02 The United States Of America As Represented By The Secretary Of The Navy Nanostructured metallic powders and films via an alcoholic solvent process

Similar Documents

Publication Publication Date Title
US8591988B1 (en) Method of fabrication of anchored nanostructure materials
Chin et al. Large-scale synthesis of Fe3O4 nanosheets at low temperature
Pang et al. Preparation and characterization of electroless Ni–Co–P ternary alloy on fly ash cenospheres
Zhang et al. Engineering magnetic properties of Ni nanoparticles by non-magnetic cores
Ni et al. Novel hierarchical nanostructures of nickel: self-assembly of hexagonal nanoplatelets
Lee et al. Seed size-dependent formation of Fe3O4/MnO hybrid nanocrystals: selective, magnetically recyclable catalyst systems
JPWO2003019579A1 (en) Conductive paste, conductive film using the same, plating method, and method for manufacturing fine metal parts
JPWO2008032839A1 (en) Metal layer-coated substrate and method for producing the same
CN108435248B (en) Preparation and application of composite magnetic catalyst of magnetic solid sulfonic acid supported amino catalyst
WO2007119417A1 (en) Conductive powder plated by electroless plating and process for producing the same
JP2009539629A (en) Method for producing nanoparticles by chemical curing
EP2736052A1 (en) A metal and metal oxide material having an organic surface modification and manufacturing method therefor
KR100882095B1 (en) Method of surface treatment of metal particle using self assembly, metal particle thereby, making method of polymer solution containing the metal particle and coating steel panel thereby
JPS63149383A (en) Production of material coated with hyperfine metal
Wang et al. Surface thiolation of Al microspheres to deposite thin and compact Ag shells for high conductivity
Carla et al. Electrochemical characterization of core@ shell CoFe 2 O 4/Au composite
Sequeira Electrochemical synthesis of iron oxide nanoparticles for biomedical application
Safari et al. Supported polymer magnets with high catalytic performance in the green reduction of nitroaromatic compounds
US3859130A (en) Magnetic alloy particle compositions and method of manufacture
JPS637378A (en) Production of material coated with hyperfine particle metal
KR101807405B1 (en) Graphene coated mold for curved glass molding and manufacturing process therefor
JPH1160581A (en) Reaction reagent of gold ultrafine particle
CN107601467B (en) Preparation method of oil-soluble graphene quantum dots
KR101051254B1 (en) Method for producing chain metal powder, chain metal powder produced by the same, and anisotropic conductive film using the same
Nam et al. Multifunctional silver nanoparticles: Synthesis and applications