JPS6362762A - Thermal transfer recording material - Google Patents

Thermal transfer recording material

Info

Publication number
JPS6362762A
JPS6362762A JP20826986A JP20826986A JPS6362762A JP S6362762 A JPS6362762 A JP S6362762A JP 20826986 A JP20826986 A JP 20826986A JP 20826986 A JP20826986 A JP 20826986A JP S6362762 A JPS6362762 A JP S6362762A
Authority
JP
Japan
Prior art keywords
base material
fine powder
ferromagnetic fine
thickness direction
transfer recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20826986A
Other languages
Japanese (ja)
Inventor
Kiyoshi Watanabe
清 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP20826986A priority Critical patent/JPS6362762A/en
Publication of JPS6362762A publication Critical patent/JPS6362762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Impression-Transfer Materials And Handling Thereof (AREA)

Abstract

PURPOSE:To perform sharp printing using a reduced quantity of energy, by a method wherein a needle ferromagnetic fine powder is mixed with a base material, and the long axis of the needle ferromagnetic fine powder is oriented in the thickness direction of the base material to enhance heat conductivity of the base material in the thickness direction thereof. CONSTITUTION:As a needle ferromagnetic fine powder, a powder composed of nickel. cobalt or magnetite is used. The needle ferromagnetic fine powder 2a is mixed with a resin 2b and the resulting mixture is molded into a film shape to form a film 2c becoming the origin of a base material. During a time when the resin 2b has yet an internal flowability or in such a state that flowability is given to the film 2c by reheating after solidification, said film 2c is passed between the N-pole and S-pole of magnets 6 for orientation and the ferromagnetic fine powder 2a is oriented so that the long axis thereof turns in the thickness direction of the base material. Heat meltable or heat sublimable ink is applied to one surface of the film 2c to form a thermal transfer recording material 1. Since the heat conductivity of the base material 2 is high in the thickness direction thereof but is not especially high in the lateral or longitudinal direction thereof, the temp. of the ink layer becomes high at the part almost corresponding to a thermal head. Therefore, sharp printing becomes possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は感熱転写記録材に係わり、さらに詳しくはその
基材の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a thermal transfer recording material, and more particularly to improvement of its base material.

〔従来の技術〕[Conventional technology]

従来の感熱転写記録材は、第5図に示すように、ポリエ
ステルフィルムなどの樹脂フィルムからなる基材2の一
方の面に熱溶融性または熱昇華性のインク層3を設ける
ことによって作製されていた(例えば、特開昭55−3
919号公報)。
Conventional thermal transfer recording materials are produced by providing a heat-melting or heat-sublimating ink layer 3 on one side of a base material 2 made of a resin film such as a polyester film, as shown in FIG. (For example, JP-A-55-3
Publication No. 919).

そして、その使用は、第6図(a)に示すように、上記
感熱転写記録材1における基材2のインク層3を形成し
ていない側の面(以下、基材2の背面という)にサーマ
ルヘッド4を押し当て、通電して加熱し、インクl1i
3を部分的に溶融または昇華させ、該熔融または昇華し
たインクをそれに接する被転写11E5上に転写すると
いう態様で使用される。
As shown in FIG. 6(a), it is used on the side of the base material 2 of the thermal transfer recording material 1 on which the ink layer 3 is not formed (hereinafter referred to as the back surface of the base material 2). The thermal head 4 is pressed against it, heated by electricity, and the ink l1i
3 is partially melted or sublimated, and the melted or sublimated ink is transferred onto the transfer target 11E5 in contact with the ink.

ところで、上記のようにサーマルヘッド4を基材2の背
面に押し当てて、通電加熱した場合、基材として使用さ
れているポリエステルフィルムなどはその物理的性質が
等方性で方向性を有しないため、サーマルヘッド4から
の熱は、基材2の背面上であらゆる方向に均等に拡散し
て、インク層3の温度曲線は第6図(b)に示すように
なだらかな曲線となり、その中央部はほぼ確実に転写す
るものの、両端部では被転写紙5の表面状態やインク層
3の厚さその他の条件により転写したり、転写しなかっ
たりする。その結果、印字が不鮮明になったり、あるい
は印字エネルギーが無駄に消費されることとなった。
By the way, when the thermal head 4 is pressed against the back surface of the base material 2 and heated with electricity as described above, the physical properties of the polyester film used as the base material are isotropic and have no directionality. Therefore, the heat from the thermal head 4 is uniformly diffused in all directions on the back surface of the base material 2, and the temperature curve of the ink layer 3 becomes a gentle curve as shown in FIG. 6(b). Although some portions are almost certainly transferred, both end portions may or may not be transferred depending on the surface condition of the transfer paper 5, the thickness of the ink layer 3, and other conditions. As a result, the print becomes unclear or printing energy is wasted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は、上記従来製品が持っていた印字の不鮮明さ
や印字エネルギーが無駄に消費されるという問題点を解
決し、少ないエネルギーで鮮明な印字ができる感熱転写
記録材を提供することを目的とする。
The purpose of this invention is to solve the problems of the above-mentioned conventional products such as unclear printing and wasted printing energy, and to provide a thermal transfer recording material that can print clearly with less energy. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、基材中に針状の強磁性体微粉末を混在させ、
その針状強磁性体微粉末の長軸を基材の厚み方向に配向
させることにより、基材の厚み方向の熱伝導性を高めて
、上記目的を達成したものである。
The present invention mixes needle-shaped ferromagnetic fine powder in the base material,
By orienting the long axis of the acicular ferromagnetic fine powder in the thickness direction of the base material, the thermal conductivity in the thickness direction of the base material is increased, thereby achieving the above object.

すなわち、基材中に針状の強磁性体微粉末を混在させ、
その針状強磁性体微粉末の長袖を基材の厚み方向に配向
させると、強磁性体微粉末の熱伝導率が樹脂部分に比べ
てはるかに高いので、基材の厚み方向の熱伝導性は上記
強磁性体微粉末によって高くなり、その他の方向、つま
り基材の幅方向や長さ方向の熱伝導性より高(なる。そ
のため、この基材を用いた感熱転写記録材では、インク
層の加熱が従来のものに比べ°ζ、選択的かつ効率的に
できるようになり、その結果、切れの良い鮮明な印字が
少ないエネルギーで行えるようになる。
That is, by mixing needle-shaped ferromagnetic fine powder in the base material,
If the long sleeve of the acicular ferromagnetic fine powder is oriented in the thickness direction of the base material, the thermal conductivity of the ferromagnetic fine powder is much higher than that of the resin part, so the thermal conductivity in the thickness direction of the base material is increased. is high due to the ferromagnetic fine powder, and is higher than the thermal conductivity in other directions, that is, the width direction and length direction of the base material.Therefore, in thermal transfer recording materials using this base material, the ink layer heating can be done more selectively and efficiently than conventional methods, and as a result, sharp and clear printing can be done with less energy.

本発明において用いる厚み方向に針状の強磁性体微粉末
の長軸を配向させた基材は、例えば樹脂と針状の強磁性
体微粉末を混合して、フィルム状に成形し、その樹脂成
分が内部流動性を有する間あるいは固化後回加熱により
流動性を持たせた状態で、配向用磁石のN極とS極との
間を通すことによって作製される。
The base material used in the present invention, in which the long axis of acicular ferromagnetic fine powder is oriented in the thickness direction, can be obtained by, for example, mixing resin and acicular ferromagnetic fine powder, molding the mixture into a film, and using the resin. It is produced by passing the component between the north and south poles of an orientation magnet while the component has internal fluidity or after solidification and is given fluidity by heating a second time.

基材作製のための樹脂成分としては、例えばポリエステ
ル(ポリエチレンテレフタレートをいう)、ポリカーボ
ネート、ポリエチレン、ポリアミド、ポリイミドなどが
用いられる。
As the resin component for producing the base material, for example, polyester (referring to polyethylene terephthalate), polycarbonate, polyethylene, polyamide, polyimide, etc. are used.

一方、針状の強磁性体微粉末としては、例えばニッケル
、コバルト、マグネタイト(Fe304)、カンマ−ヘ
マタイトCr−Fe203)、コバルトフェライト(C
00・Fe203)、コバルト−ニッケル合金(Co−
Nf)、コバルト−リン合金(Co−P)、二酸化クロ
ム(Cr 02)、鉄(Fe)、バリウムフェライトな
どの強磁性体の針状微粉末が用いられる。
On the other hand, examples of acicular ferromagnetic fine powder include nickel, cobalt, magnetite (Fe304), comma-hematite Cr-Fe203), cobalt ferrite (C
00・Fe203), cobalt-nickel alloy (Co-
Acicular fine powders of ferromagnetic substances such as Nf), cobalt-phosphorous alloy (Co-P), chromium dioxide (Cr 02), iron (Fe), and barium ferrite are used.

本発明においては、基材の厚み方向の熱伝導性を高める
ために針状の強磁性体の微粉末を用いるが、その際にお
ける針状とは、文字どおりの針状のものだけではなく、
例えば円柱状、紡錘状など、球形ではなく、例えば長袖
の長さが短軸の長さの約3倍以上というようにその軸方
向の長さが均等でないものをすべて含んでいる。
In the present invention, acicular fine ferromagnetic powder is used to increase the thermal conductivity in the thickness direction of the base material, but the acicular shape in this case does not only mean the literal acicular shape.
For example, it includes all shapes that are not spherical, such as cylindrical or spindle shapes, and whose lengths in the axial direction are not equal, for example, the length of the long sleeve is about three times or more the length of the short axis.

上記のような針状の強磁性体微粉末は、磁石のN極とS
極との間に配置すると、その長袖方向が容易に磁化され
、長軸方向が磁石の橿方向に向(という性質をもってい
る。そのため、これを樹脂と混合して、フィルム状に成
形し、それをその樹脂成分が内部流動性を有する状態で
配向用磁石のNiとS極との間を通過させると、その長
軸方向が基材の厚み方向に配向するようになり、厚み方
向の熱伝導性を高めた基材が得られるようになる。
The needle-shaped ferromagnetic fine powder as described above is
When placed between the poles, the long sleeve direction is easily magnetized, and the long axis direction is directed toward the rod direction of the magnet.Therefore, it is mixed with resin and formed into a film, and then When passed between the Ni and S poles of the orientation magnet in a state where the resin component has internal fluidity, the long axis direction becomes oriented in the thickness direction of the base material, and heat conduction in the thickness direction is improved. A base material with improved properties can be obtained.

〔実施例〕〔Example〕

つぎに、本発明の実施例を図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図は本発明の感熱転写記録材の一実施例を模式的に
示す断面図であり、第2図(a)は第1図に示す感熱転
写記録材を通電加熱するときの状態を示す断面図であり
、第2図(b)は第2図(a)に示す状態で感熱転写記
録材を加熱したときのインク層の温度曲線を示す図であ
る。第3図および第4図は第1図に示す感熱転写記録材
に用いられている基材の作製中の状態を示す断面図であ
る。
FIG. 1 is a cross-sectional view schematically showing an embodiment of the thermal transfer recording material of the present invention, and FIG. 2(a) shows the state when the thermal transfer recording material shown in FIG. 1 is heated with electricity. FIG. 2(b) is a cross-sectional view showing the temperature curve of the ink layer when the thermal transfer recording material is heated in the state shown in FIG. 2(a). FIGS. 3 and 4 are cross-sectional views showing the state in which the base material used in the thermal transfer recording material shown in FIG. 1 is being manufactured.

第1図に示す感熱転写記録材の製造にあたっては、まず
第3図に示すように、樹脂2bに針状の強磁性体微粉末
2aを混合してフィルム状に成形し基材の元となるフィ
ルム2cを作製する。この時点では第3図に示すように
強磁性体微粉末2aはまだ特定の方向に配向していない
。本実施例においては、上記樹脂2bとしてはポリエス
テル(ポリエチレンテレフタレート)が用いられ、針状
の強磁性体微粉末2aとしてはニッケルの針状微粉末(
文字どおり針状のもの)が用いられている。
In manufacturing the thermal transfer recording material shown in FIG. 1, first, as shown in FIG. 3, needle-shaped ferromagnetic fine powder 2a is mixed with resin 2b and formed into a film to form the base material. A film 2c is produced. At this point, as shown in FIG. 3, the ferromagnetic fine powder 2a is not yet oriented in a specific direction. In this embodiment, polyester (polyethylene terephthalate) is used as the resin 2b, and acicular fine nickel powder (nickel) is used as the acicular ferromagnetic fine powder 2a.
(literally, needle-like) are used.

次に、このフィルム2cを樹脂2bがまだ内部流動性を
有する間あるいは固化後回加熱により流動性を持たすた
状態で、第4図に示すように配向用磁石6のN極とSl
iとの間を通過させる。それによって、強磁性体微粉末
2aはその長軸がフィルム2Cの厚み方向、つまり基材
2の厚み方向に向くように配向する。
Next, as shown in FIG. 4, this film 2c is placed between the N pole of the orientation magnet 6 and the Sl.
i. Thereby, the ferromagnetic fine powder 2a is oriented such that its long axis is directed in the thickness direction of the film 2C, that is, in the thickness direction of the base material 2.

このようにして強磁性体微粉末(本実施例ではニッケル
微粉末) 2aの長軸方向を厚み方向に配向させたフィ
ルム2cを基材とし、その一方の面に熱溶融性または熱
昇華性のインク(ただし、本実施例では後にその組成を
示すように熱熔融性のインクが用いられている)を常法
により塗布して感熱転写記録材を作製した。
The film 2c, in which the long axis direction of the ferromagnetic powder (nickel powder in this example) is oriented in the thickness direction, is used as a base material, and one surface of the film 2c is made of ferromagnetic powder (fine nickel powder in this example). A heat-sensitive transfer recording material was prepared by applying an ink (in this example, a heat-melting ink is used as the composition will be shown later) by a conventional method.

上記のようにして作製された感熱転写記録材を第1図に
示す、第1図において、2は基材で、3は熱熔融性のイ
ンク層であり、基材2は上記のようにフィルム2c中に
分散させた強磁性体機PI)末2aをその厚み方向に配
向させたものである。
The thermal transfer recording material produced as described above is shown in FIG. 1. In FIG. The ferromagnetic material PI) powder 2a dispersed in 2c is oriented in its thickness direction.

そして、この感熱転写記録材Iに、第2図(a)に示す
ように、サーマルヘッド4をその基材2の背面側から押
し当て、通電加熱したときのインク層3の温度曲線は第
2図(b)に示すとおりである。
Then, as shown in FIG. 2(a), the thermal head 4 is pressed onto this thermal transfer recording material I from the back side of the base material 2, and when the ink layer 3 is heated by electricity, the temperature curve of the ink layer 3 is a second curve. As shown in Figure (b).

すなわち、この!3熱転写記録材lでは、その基材2の
厚み方向の熱伝導率が高いので、サーマルヘッド4の熱
がインクN3に効率よく伝わり、また基材2の幅方向や
長さ方向の熱伝導率は従来と同程度であって特に高くは
ないので、幅方向や長さ方向への熱の分散が少ないため
、第2図(b)に示すように、インク層の温度はほぼサ
ーマルヘッドに対応する部分が高くなり、その結果、印
字の不確実な領域が狭くなり、鮮明な印字が可能になっ
た。また、インク層3への熱伝導性が良いため、従来に
比べて印加するエネルギーを小さくしても後記第1表に
示すように従来と同程度の転写面積が得られるようにな
った。
In other words, this! In the thermal transfer recording material 1, the heat conductivity of the base material 2 in the thickness direction is high, so the heat from the thermal head 4 is efficiently transmitted to the ink N3, and the heat conductivity of the base material 2 in the width direction and length direction is high. is about the same as the conventional one and not particularly high, so there is less heat dispersion in the width and length directions, so the temperature of the ink layer almost corresponds to that of the thermal head, as shown in Figure 2 (b). As a result, the uncertain area of printing becomes narrower and clearer printing becomes possible. Furthermore, since the thermal conductivity to the ink layer 3 is good, even if the applied energy is smaller than that of the conventional method, a transfer area comparable to that of the conventional method can be obtained as shown in Table 1 below.

上記本発明の感熱転写記録材と第5図に示すような構造
で基材2として通常のポリエステルフィルムを用いた従
来の感熱転写記録材を面積200μIfi X 200
μmのサーマルヘッドで印字したときの印字エネルギー
および転写面積を第1表に示す。
The above thermal transfer recording material of the present invention and a conventional thermal transfer recording material having a structure as shown in FIG.
Table 1 shows the printing energy and transfer area when printing with a μm thermal head.

なお、基材の厚みは両者とも6μmであり、インク層の
厚みは両者とも4μlであって、インクはカーボンブラ
ンク20重量部、カルナウバワックス20重量部、バラ
フィンワックス40重量部および石油樹脂20重量部か
らなる黒色の熱熔融性インク組成物からなるものである
The thickness of the base material is 6 μm in both cases, and the thickness of the ink layer is 4 μl in both cases. Parts by weight of a black hot-melt ink composition.

第      1      表 第1表に示すように、同面積のサーマルヘッドで印字し
たとき、本発明では転写面積のバラツキ範囲(つまり、
第1表の転写面積の欄における±で示される数値ンが従
来品に比べて小さく、しかも、それが少ない印字エネル
ギーで達成することができた。
Table 1 As shown in Table 1, when printing is performed with a thermal head of the same area, the present invention has a variation range of transfer area (that is,
The numerical value indicated by ± in the transfer area column of Table 1 was smaller than that of the conventional product, and moreover, it was possible to achieve this with less printing energy.

以上の結果から明らかなように、本発明によれば、従来
品に比べて、基材の厚み方向の熱伝導率が高く、その結
果、少ない印字エネルギーで、切れの良い鮮明な印字を
することが可能になった。
As is clear from the above results, according to the present invention, the thermal conductivity in the thickness direction of the base material is higher than that of conventional products, and as a result, sharp and clear printing can be performed with less printing energy. is now possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、基材中に針状の強磁
性体微粉末を混在させ、その強磁性体微粉末の長袖を基
材の厚み方向に配向させることにより、基材の厚み方向
の熱伝導性を高めて、少ない印字エネルギーで、切れの
良い鮮明な印字をすることができるようになった。
As explained above, in the present invention, needle-shaped ferromagnetic fine powder is mixed in the base material, and the long sleeve of the ferromagnetic fine powder is oriented in the thickness direction of the base material, thereby increasing the thickness of the base material. By increasing directional thermal conductivity, it is now possible to print sharp, clear characters with less printing energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の感熱転写記録材の一実施例を模式的に
示す断面図である。第2図(a)は第1図に示す感熱転
写記録材をサーマルヘッドで通電加熱するときの状態を
示す断面図で、第2図(b)は第2図(a)に示す状態
で感熱転写記録材を加熱したときのインク層の温度曲線
を示す図である。 第3図および第4図は第1図に示す感熱転写記録材に用
いられた基材の作製中の状態を示す断面図である。第5
図は従来の感熱転写記録材を示す断面図である。第6図
(a)は第5図に示す従来の感熱転写記録材をサーマル
ヘッドで通電加熱するときの状態を示す断面図であり、
第6図(b)は第6図(a)に示す状態で感熱転写記録
材を加熱したときのインク層の温度曲線を示す図である
。 1・・・感熱転写記録材、 2・・・基材、 2a・・
・針状の強磁性体微粉末、 3・・・インク層、 4・
・・サーマルへラド、 5・・・被転写紙 ■・・・感熱転写記録材 2・・・基材 2a・・・針状の強磁性体微粉末 3・・・インク層 4・・・サーマルヘッド 5・・・被転写紙        第 図 2図 (a (b ■・・・感熱転写記録材 2・・・基材 2a・・・針状の強磁性体微粉末 3・・・インク層 第 第 3図 4薗 5図 第  6 (a) 1・・・感熱転写記録材 2・・・基材 3・・・インク層 4・・・サーマルヘッド 5・・・被転写紙 (b) 温度(C)
FIG. 1 is a sectional view schematically showing an embodiment of the thermal transfer recording material of the present invention. FIG. 2(a) is a cross-sectional view showing the state when the thermal transfer recording material shown in FIG. 1 is heated with electricity by a thermal head, and FIG. 2(b) is a cross-sectional view showing the state when the thermal transfer recording material shown in FIG. FIG. 3 is a diagram showing a temperature curve of an ink layer when a thermal transfer recording material is heated. FIGS. 3 and 4 are cross-sectional views showing the state in which the base material used in the thermal transfer recording material shown in FIG. 1 is being manufactured. Fifth
The figure is a sectional view showing a conventional thermal transfer recording material. FIG. 6(a) is a cross-sectional view showing the state when the conventional thermal transfer recording material shown in FIG. 5 is heated with electricity by a thermal head.
FIG. 6(b) is a diagram showing the temperature curve of the ink layer when the thermal transfer recording material is heated in the state shown in FIG. 6(a). 1...Thermal transfer recording material, 2...Base material, 2a...
・Acicular ferromagnetic fine powder, 3... Ink layer, 4.
...Thermal helad, 5...Transfer paper ■...Thermal transfer recording material 2...Base material 2a...Acicular ferromagnetic fine powder 3...Ink layer 4...Thermal Head 5...Transfer paper Figure 2 (a (b)...Thermal transfer recording material 2...Base material 2a...Acicular ferromagnetic fine powder 3...Ink layer No. 3 Figure 4 Figure 5 Figure 6 (a) 1... Thermal transfer recording material 2... Base material 3... Ink layer 4... Thermal head 5... Transfer paper (b) Temperature (C )

Claims (1)

【特許請求の範囲】[Claims] (1)基材の一方の面に熱溶融性のインク層または熱昇
華性のインク層を設け、他方の面にサーマルヘッドを押
し当て、通電加熱することにより上記インク層を溶融ま
たは昇華させて被転写紙上に転写する感熱転写記録材に
おいて、基材中に針状の強磁性体微粉末を混在させ、そ
の強磁性体微粉末の長軸を基材の厚み方向に配向させて
、基材の厚み方向の熱伝導性を高めたことを特徴とする
感熱転写記録材。
(1) A heat-melting ink layer or a heat-sublimating ink layer is provided on one surface of the base material, a thermal head is pressed against the other surface, and the ink layer is melted or sublimated by heating with electricity. In thermal transfer recording materials that are transferred onto transfer paper, needle-shaped ferromagnetic fine powder is mixed in the base material, and the long axis of the ferromagnetic fine powder is oriented in the thickness direction of the base material. A thermal transfer recording material characterized by increased thermal conductivity in the thickness direction.
JP20826986A 1986-09-03 1986-09-03 Thermal transfer recording material Pending JPS6362762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20826986A JPS6362762A (en) 1986-09-03 1986-09-03 Thermal transfer recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20826986A JPS6362762A (en) 1986-09-03 1986-09-03 Thermal transfer recording material

Publications (1)

Publication Number Publication Date
JPS6362762A true JPS6362762A (en) 1988-03-19

Family

ID=16553444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20826986A Pending JPS6362762A (en) 1986-09-03 1986-09-03 Thermal transfer recording material

Country Status (1)

Country Link
JP (1) JPS6362762A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6649012B2 (en) 1999-12-17 2003-11-18 Polymatech Co., Ltd. Adhesion method and electronic component
JP2007230544A (en) * 2006-01-31 2007-09-13 Tokai Rubber Ind Ltd Sound absorbing body and sound absorbing structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6649012B2 (en) 1999-12-17 2003-11-18 Polymatech Co., Ltd. Adhesion method and electronic component
JP2007230544A (en) * 2006-01-31 2007-09-13 Tokai Rubber Ind Ltd Sound absorbing body and sound absorbing structure

Similar Documents

Publication Publication Date Title
EP0016960B1 (en) Anisotropic polymeric magnet in the tubular form and process for producing the same
JPS6362762A (en) Thermal transfer recording material
JPS61164215A (en) Manufacture of thin-walled cylindrical magnet
GB2205783A (en) Magnetic ink and method for printing with said ink
JP3774876B2 (en) Cylindrical radial anisotropic magnet forming device
JPS5849012B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JPS5849011B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JP2000081789A (en) Magnet roll
JPS62235703A (en) Anisotropic resin magnet
JPS6010862Y2 (en) thermal printer
JPS62168647A (en) Single roll device for cooling melt
JPS62232107A (en) Anisotropic resin magnet
JP3017570B2 (en) Plastic magnet roller and mold for manufacturing the same
JPS62218174A (en) Thermal transfer material
JPS629922A (en) Injection molding machine for anisotropic resin magnet
JPS61125010A (en) Method and device for manufacturing multipolar anisotropic cylindrical magnet
JPS5814052B2 (en) Magnetization method of anisotropic cylindrical magnet
JPH0470782A (en) Developing device
JPS62251109A (en) Molding orientation device
JPS6464208A (en) Manufacture of magnet roller
JPS62244682A (en) Ink medium
JPH05283258A (en) Manufacture of column or cylindrical resin-bonded magnet, and magnetic annealing apparatus, in magnetic field, used for it
JPS58187627U (en) Magnetic particle torque limiter
JPS59168620A (en) Die structure for injection molding in magnetic-field
JPH04122008A (en) Production method for anisotropic magnet roll