JPS59168620A - Die structure for injection molding in magnetic-field - Google Patents

Die structure for injection molding in magnetic-field

Info

Publication number
JPS59168620A
JPS59168620A JP4202183A JP4202183A JPS59168620A JP S59168620 A JPS59168620 A JP S59168620A JP 4202183 A JP4202183 A JP 4202183A JP 4202183 A JP4202183 A JP 4202183A JP S59168620 A JPS59168620 A JP S59168620A
Authority
JP
Japan
Prior art keywords
magnetic field
yokes
mold
magnetizing
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4202183A
Other languages
Japanese (ja)
Other versions
JPH0220131B2 (en
Inventor
Eisaku Fujimoto
栄作 藤本
Takahiro Motone
元根 隆博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4202183A priority Critical patent/JPS59168620A/en
Publication of JPS59168620A publication Critical patent/JPS59168620A/en
Publication of JPH0220131B2 publication Critical patent/JPH0220131B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To decrease the number of exciting coils disposed, and to take out a large number of multipolar anisotropic resin magnets in a die, a space thereof is limited, by devising the arrangement of magnetizing yokes for applying a multipolar magnetic field to a plurality of cavities in the die. CONSTITUTION:Magnetizing yokes 20 consisting of ferromagnetic substances are each dispoaed on the outer circumferences in the radial directions of several cavity 18 in succession at the phase angles of 90 deg.. Each end section of two magnetizing yokes 20a and 20d in the four magnetizing yokes is faced severally to adjacent cavities 18 and the yokes 20a and 20d function as common magnetizing yokes positioned in a die 16, and residual two magnetizing yokes 20d and 20c serve as independent magnetizing yokes extending to the outside of the die 16. Yokes 22 for field induction are each branched at the central sections in the common magnetizing yokes 20a, 20d, extend to the outside of the die 16, and are connected severally to connecting yokes 24, 24, thus forming a magnetic closed loop. Exciting coils 26 are arranged to the yokes 22 for field induction and the independent magnetizing yokes 20 in order to form magnetic fields in each cavity 18.

Description

【発明の詳細な説明】 この発明は、多極異方性樹脂磁石の多数個取りを可能と
した磁場射出成形用金型構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mold structure for magnetic field injection molding that enables the production of a large number of multipolar anisotropic resin magnets.

フェライト磁石粉末のような強磁性粉末を熱可塑性合成
樹脂(またはゴム)に混合し、所定形状に成形した後こ
れを着磁して等方性の樹脂磁石(またはゴム磁石)を製
造する方法は、既に広く知られ実用化されるに至ってい
る。近時、前記樹脂磁石の磁気特性を更に向」ニさせる
ために種々の研究がなされ、その研究の発展として、磁
石粉末の磁化容易軸を磁化方向に配向させて異方化する
技術の開発かなされている。この磁石を異方化する方法
としては、粒子に剪断応力を機械的に作用させたり、射
出成形金型に磁場を形成したりする方法があり、殊に後
者の方法が工業的に広〈実施化されている。
There is a method for manufacturing isotropic resin magnets (or rubber magnets) by mixing ferromagnetic powder such as ferrite magnet powder with thermoplastic synthetic resin (or rubber), molding it into a predetermined shape, and then magnetizing it. , has already come to be widely known and put into practical use. Recently, various studies have been carried out to further improve the magnetic properties of the resin magnets, and as a development of this research, it is possible to develop a technology to orient the axis of easy magnetization of magnet powder in the direction of magnetization, thereby making it anisotropic. has been done. Methods for making this magnet anisotropic include mechanically applying shear stress to the particles and forming a magnetic field in an injection mold.The latter method is especially widely used in industry. has been made into

これば、磁気異方性定数の大きい強磁性粉末と合成樹脂
との混合物を加熱溶融し、この溶融混合物を磁場形成し
た金型のキャビティに射出して、磁石粉末粒子の磁化容
易軸を前記磁場の作用下に−・定方向に配向させて、磁
気特性の優れた異方性樹脂磁石を製造するというもので
ある。
In this case, a mixture of a ferromagnetic powder with a large magnetic anisotropy constant and a synthetic resin is heated and melted, and this molten mixture is injected into a mold cavity in which a magnetic field is formed, so that the axis of easy magnetization of the magnet powder particles is aligned with the magnetic field. The method is to produce an anisotropic resin magnet with excellent magnetic properties by orienting it in a certain direction under the action of.

ところで、このいわゆる磁場射出成形により異方性樹脂
磁石を製造するに際して従来は、第1図に示すように、
金型に画成したキャビティ10の半径方向外周に[l極
の着磁ヨーク12が列内的に配設されるが、磁界発生用
の励磁コイル14は1つの着磁ヨークに対応的に1個必
要であった。このため、スペースが極めて限られた金型
中で、着磁ヨークに刻応的に71個の励磁コイルを組込
むことは機織構成的に限界かあり、従って1回の射出成
形で金型から多極異方性樹脂磁石の多数個取りをするこ
とは非ツ:(に困難であった。
By the way, when manufacturing anisotropic resin magnets by this so-called magnetic field injection molding, conventionally, as shown in Fig. 1,
L-pole magnetizing yokes 12 are arranged in a row on the radial outer periphery of a cavity 10 defined in the mold. It was necessary. For this reason, it is difficult to incorporate 71 excitation coils into the magnetizing yoke from time to time in a mold with extremely limited space. It was difficult to produce a large number of polar anisotropic resin magnets.

本発明は、磁場射出成形により多極異方付樹脂砂Xr〒
を製造する際に内在している前記難点に鑑み、これを克
服するべく案出されたものであって、金型中のt51数
のキャビティに多極磁界を印加するための着磁ヨークの
配列に工夫を加えることにより、従来着磁ヨークの極数
に対応してn個必要とさ」していた励磁コイルの配設数
を低減させ、スペースの限らAした金型に才jける多極
異方性樹脂磁石の多数個取りを実現し、併せて製造コス
トの減少および稼動効率の向上を図ることを目的とする
The present invention produces multipolar anisotropic resin sand Xr by magnetic field injection molding.
In view of the above-mentioned difficulties inherent in manufacturing a mold, the arrangement of magnetizing yokes was devised to overcome this problem, and the arrangement of magnetizing yokes was devised to apply a multipolar magnetic field to a cavity with a number of t51 in a mold. By adding ingenuity to this, the number of excitation coils that were conventionally required (n) corresponding to the number of poles of the magnetizing yoke has been reduced, and the number of excitation coils has been reduced, making it possible to create a multi-pole structure suitable for molds with limited space. The purpose is to realize the production of multiple anisotropic resin magnets, as well as to reduce manufacturing costs and improve operating efficiency.

前記目的を達成するため本発明に係る磁場射出成形用金
型構造は、金型に4つのキャビティを所定配列で両成し
、隣接し合うキャビティを金型内において磁気的に接続
する2つの共通着磁ヨークおよび−・端部を金型外方に
延出させた2つの独立着磁1−りの各端部を前記各キャ
ビティの内側に夫々所定の位相角で臨ませ、前記共通着
磁ヨークおよび独立着磁ヨークを磁界発生源に接続して
各キャビティに磁場を形成するよう構成したことを特徴
どする。
In order to achieve the above object, the mold structure for magnetic field injection molding according to the present invention has four cavities in a mold in a predetermined arrangement, and two common cavities that magnetically connect adjacent cavities within the mold. A magnetizing yoke and two independently magnetized ends each extending outward from the mold are faced inside each of the cavities at a predetermined phase angle, and the common magnetization is carried out. It is characterized in that the yoke and the independently magnetized yoke are connected to a magnetic field generation source to form a magnetic field in each cavity.

この場合、前記磁界発生源は」11通着磁ヨークから金
型外方へ導出した磁界誘導用ヨークとその両側に位置す
る一対の独立着磁ヨークの夫々に配設した励磁コイルで
構成され、磁界誘導用ヨークに配設された励磁コイルの
巻数は各独立着磁ヨークに配設された励磁コイルの巻数
の2倍に設定してオンけはりTi商である。
In this case, the magnetic field generation source is composed of a magnetic field inducing yoke led out from the 11 magnetizing yokes to the outside of the mold, and an excitation coil disposed in each of a pair of independent magnetizing yokes located on both sides of the yoke, The number of turns of the excitation coil disposed on the magnetic field induction yoke is set to twice the number of turns of the excitation coil disposed on each independent magnetization yoke, so that the number of turns of the excitation coil disposed on the magnetic field induction yoke is equal to the Ti quotient.

更に、前記磁界発生源は金型外方に延出している2つの
独立着磁ヨークの夫々に配設した励磁コイルで構成さJ
すると共にこの励磁コイルで発生した磁界は金型外方へ
導出した磁界誘導用ヨークを介して前記共通、?′i磁
ヨークに分配され、各励磁コイルの巻数比は1:1に設
定されるよう構成しても、同様に好結果か得られる。
Furthermore, the magnetic field generation source is composed of excitation coils disposed on each of two independent magnetizing yokes extending outward from the mold.
At the same time, the magnetic field generated by this excitation coil is transmitted to the common ? Even if the excitation coils are distributed over the magnetic yokes and the turns ratio of each excitation coil is set to 1:1, similarly good results can be obtained.

次に、本願の発明に係る磁場射出成形用金型構造に−)
き、好適な実施例を挙げて添付図面を参照しながら以下
許に111に説明する。第2図は本発明に係る金型構造
の第1実施例の平面図であって、参照符号1 (3は、
例えはオーステナイ1−系ステンレスの如き非磁性体を
材質とする磁場射出成形用金型を示し、この金型16の
分割平面内には所定配列で4つのキャビティ18a乃至
18dが画成されている。すなわち本実施例の場合、金
型16の分割平面に仮想的に設けた正方形の各頂点に夫
々のキャビティ18が位置するよう設定されて、合計4
つのキャビティが画成されている。
Next, regarding the magnetic field injection molding mold structure according to the invention of the present application-)
A preferred embodiment will be described below with reference to the accompanying drawings. FIG. 2 is a plan view of the first embodiment of the mold structure according to the present invention, with reference numeral 1 (3 is
For example, a magnetic field injection molding mold made of a non-magnetic material such as austenite 1-series stainless steel is shown, and four cavities 18a to 18d are defined in a predetermined arrangement within the dividing plane of this mold 16. . That is, in the case of this embodiment, each cavity 18 is set to be located at each vertex of a square virtually provided on the dividing plane of the mold 16, so that there are a total of 4 cavities 18.
two cavities are defined.

前記キャビティ18は、例えばモータ等の回転電機用ロ
ータを製造するのに適した円筒状に形成されており、各
キャビティ18の半径方向外周には、強磁性体からなる
着磁ヨーク20が夫々90゜の位相角で順次配設されて
いる。すなわち、キャビティ18当り4つの着磁ヨーク
20a乃至20bがその先端をキャビティ内に臨ませる
と共に、該ヨークの端面がキャビティ内周壁面の一部を
形成するようになっている。そして、各キャビティ18
に配設した4つの着磁ヨークの内2つの着磁1−り20
aおよび20dは、夫々隣接し合うキャビティ18に各
端部を臨ませかつ金型16内に位置する共通着磁ヨーク
となり、残りの2つの着磁ヨーク20bおよび20cは
、夫々前記共通着磁ヨーク20aおよび20dに対し夫
々29−0°の位相角て金型16外方に延出する独立の
着磁ヨークとなっている。例えば、第2図においてキャ
ビティ18aについて観察すれは、該キャビティ18a
に一端部を臨ませている着磁ヨーク20aは、前記キャ
ビティ18aの正方形の一方の辺方向に位置する隣接キ
ャビティ18bにその他端部を臨ませているから共通着
磁ヨークとなっている。同しくキャビティ18aに一端
部を臨ませている着磁ヨーク20dも、前記キャビティ
18aの正方形の他方の辺方向に位置する隣接キャビテ
ィ18dにその他端部を臨ませているから共通着磁ヨー
クとなっている。そして、キャビティ18aにおいて残
りの2つの着磁ヨーク20bおよび20cが、金型I6
外方に延出している独立着磁ヨークとなることは、先に
述べた通りである。
The cavities 18 are formed in a cylindrical shape suitable for manufacturing a rotor for a rotating electric machine such as a motor, and a magnetizing yoke 20 made of a ferromagnetic material is provided on the radial outer periphery of each cavity 18. They are arranged sequentially at a phase angle of °. That is, four magnetizing yokes 20a to 20b per cavity 18 have their tips facing into the cavity, and the end faces of the yokes form part of the inner peripheral wall surface of the cavity. And each cavity 18
Two of the four magnetizing yokes arranged in
a and 20d are common magnetizing yokes located in the mold 16 with respective ends facing the adjacent cavities 18, and the remaining two magnetizing yokes 20b and 20c are the common magnetizing yokes, respectively. They are independent magnetizing yokes that extend outward from the mold 16 at a phase angle of 29-0 degrees with respect to 20a and 20d, respectively. For example, what is observed about the cavity 18a in FIG.
The magnetizing yoke 20a, which has one end facing the cavity 18a, serves as a common magnetizing yoke because its other end faces the adjacent cavity 18b located on one side of the square of the cavity 18a. Similarly, the magnetizing yoke 20d, which has one end facing the cavity 18a, serves as a common magnetizing yoke because its other end faces the adjacent cavity 18d located on the other side of the square of the cavity 18a. ing. Then, in the cavity 18a, the remaining two magnetizing yokes 20b and 20c are attached to the mold I6.
As described above, it becomes an independently magnetized yoke that extends outward.

次に、金型16内に位置する前記共通着磁ヨーク20a
、20dには、夫々その中央部において磁界誘導用ヨー
ク22が分岐されて、前記金型16の外方へ延出してい
る。従って、この磁界誘導用ヨーク22は、第2図から
判明するように1例えば隣接し合うキャビティ18a、
18dから金型16の外方l\夫々延出する各独立着磁
ヨーク20c。
Next, the common magnetizing yoke 20a located inside the mold 16
, 20d, a magnetic field guiding yoke 22 is branched at the center thereof and extends outward from the mold 16. Therefore, as can be seen from FIG.
Each independent magnetizing yoke 20c extends outward from the mold 16 from 18d.

20cの中間に位置していることになる(換言すれば、
磁界誘導用ヨーク22は、金型16の外方にあって両側
に各独立着磁ヨーク20cを位置させているものである
)。また金型16の外方に延出している中間の磁界誘導
用ヨーク22の他端部は、その両側に位置する−・対の
独立着磁ヨーク20.20を直角に折曲して形成した連
結ヨーク24.24に夫々接続されて、第2図に示すよ
うに磁気閉ループを形成するようになっている。
20c (in other words,
The magnetic field guiding yoke 22 is located outside the mold 16 and has independent magnetizing yokes 20c located on both sides). The other end of the intermediate magnetic field guiding yoke 22 extending outward from the mold 16 is formed by bending a pair of independent magnetizing yokes 20 and 20 located on both sides at right angles. They are connected to connecting yokes 24, 24, respectively, to form a magnetic closed loop as shown in FIG.

このように構成される磁界誘導用ヨーク22と、独立着
磁ヨーク20には、各キャビティ18に磁場を形成する
ために、励磁コイル26が配設されている。すなわち、
第2図に示す実施例では、励磁コイル26は中間の磁界
誘導用ヨーク22およびのその両側に位置する一対の独
立着磁ヨーク20.20に夫々配設されるようになって
いる(この場合は、分割巻された励磁コイル2Gか各キ
ャビティ当り3個配設され、金型全体では12個あるこ
とになる)。各励磁コイル26は、キャビティ18に有
効な磁場を形成するために、1つの着磁ヨーク20につ
き少くとも7,000ガウス以上の起磁力をり、えるも
のであることが要求される。
An excitation coil 26 is disposed in the magnetic field induction yoke 22 and the independent magnetization yoke 20 configured as described above in order to form a magnetic field in each cavity 18 . That is,
In the embodiment shown in FIG. 2, the excitation coils 26 are disposed in the intermediate magnetic field induction yoke 22 and a pair of independent magnetization yokes 20, 20 located on both sides of the intermediate yoke 22 (in this case, In this case, three divided excitation coils (2G) are arranged for each cavity, and there are 12 in the entire mold). Each excitation coil 26 is required to have a magnetomotive force of at least 7,000 Gauss or more per magnetizing yoke 20 in order to form an effective magnetic field in the cavity 18 .

しかし磁界誘導用ヨーク22に配設された励磁コイル2
6が発生する磁界は、共通着磁ヨーク20a(または2
0d)の両端部に分配されるため、独立着磁ヨーク20
c(または20b)の励磁コイル26の起磁力の2倍の
1.4,000ガウス以上が必要どされる。従って、磁
界誘導用ヨーク22に配設された励磁コイル26の巻数
(例えば800ターン)は、各独立着磁ヨーク20に配
設された励磁コイル26の巻数(例えば400ターン)
の2倍に設定されている。
However, the excitation coil 2 disposed on the magnetic field induction yoke 22
The magnetic field generated by the common magnetizing yoke 20a (or 2
0d), so the independent magnetizing yoke 20
A magnetomotive force of 1.4,000 Gauss or more is required, which is twice the magnetomotive force of the excitation coil 26 (or 20b). Therefore, the number of turns (for example, 800 turns) of the excitation coil 26 disposed on the magnetic field induction yoke 22 is the same as the number of turns (for example, 400 turns) of the excitation coil 26 disposed on each independent magnetizing yoke 20.
is set to twice that of .

なお、第3図に本発明に係る磁場射出成形用金型構造の
第2実施例を示す。これは、励磁コイルの配設形態か第
1実施例と相違するだけで、他の構造は全く同しである
。すなわち本実施例では、励磁コイル26は名独立着磁
ヨーク20.20を直角に折曲して形成した連結ヨーク
24.2/Iの夫々に配設されていて、この2つの励磁
コイル26.26で発生した磁界を前記磁界誘導用ヨー
クを介して前記共通着磁ヨークに分配するようになっテ
イル。(この場合は、分割巻された励磁コイル26が各
キャビティ当り2個配設され、金型全体では8個あるこ
とになる)。このとき、各励磁コイル26は夫々少くと
も14,000ガウス以」二の起磁力を発生するものと
し、がっ各コイル巻数比は1:1(例えば1.000タ
ーンずつ)に設定されている。
In addition, FIG. 3 shows a second embodiment of a mold structure for magnetic field injection molding according to the present invention. This differs from the first embodiment only in the arrangement of the excitation coil, and the other structures are completely the same. That is, in this embodiment, the excitation coils 26 are disposed in each of the connecting yokes 24.2/I formed by bending the independent magnetization yokes 20.20 at right angles, and the excitation coils 26. The magnetic field generated at 26 is distributed to the common magnetizing yoke via the magnetic field inducing yoke. (In this case, two divided excitation coils 26 are arranged for each cavity, and there are eight in the entire mold). At this time, each excitation coil 26 shall generate a magnetomotive force of at least 14,000 Gauss or more, and the turns ratio of each coil is set to 1:1 (for example, 1.000 turns each). .

第2図および第3図に示す構成を有する金型の縦断面を
第4図に例示する。すなわち、円筒状キャビティ18の
開口部上方には、該開口部を開閉自在に閉塞する非磁性
体からなる可動金型28が昇降自在に配設されている。
FIG. 4 illustrates a longitudinal section of a mold having the configuration shown in FIGS. 2 and 3. That is, above the opening of the cylindrical cavity 18, a movable mold 28 made of a non-magnetic material that can freely open and close the opening is disposed so as to be movable up and down.

この可動金型28がキャビティ18の開口部に臨む部分
には、キャビティ内方に向けて若干突出する円錐台形状
の***部30が一体的に形成され、この***部3oに後
述する溶融混合物射出用のピンポインI・ゲート;(2
が垂直に穿設されている。また、可動金型28のに方に
は非磁性体からなる更に別の可動金型34が昇降自在に
配設され、可動金型28の頂部および可動金型34の合
わ廿境界面には、図示の如くランナ36が形成されると
共に、このランナ36は可動金型34に穿設したスプル
ー38およびノズル口40に連通接続している。なお、
各金型28および34を構成する非磁性体としては、例
えばオーステナイト系ステンレスが好適に使用される。
A raised part 30 in the shape of a truncated cone that slightly projects inward of the cavity is integrally formed in a portion of the movable mold 28 facing the opening of the cavity 18, and a molten mixture injection described later is formed on this raised part 3o. Pinpoint I gate for (2
are drilled vertically. Furthermore, another movable mold 34 made of a non-magnetic material is disposed on the side of the movable mold 28 so as to be able to move up and down. As shown in the figure, a runner 36 is formed, and this runner 36 is connected to a sprue 38 and a nozzle opening 40 formed in the movable mold 34. In addition,
As the non-magnetic material constituting each mold 28 and 34, for example, austenitic stainless steel is preferably used.

また円筒状キャビティ18の底部42を形成する金型1
6には、その底部中央において、後述する如くロータ回
転軸44を挿通するための貫通孔46が垂直に穿設され
ている。この場合1貫通孔46の内径は回転軸44の外
径に対し2/100乃至3/100程度の環状細隙が形
成されるよう予め寸法設定してあり、更に貫通孔46の
略中間から下方には大径の段イ」孔部48が一体的に形
成しである。
The mold 1 also forms the bottom part 42 of the cylindrical cavity 18.
A through hole 46 for inserting a rotor rotation shaft 44 therethrough is perpendicularly bored in the center of the bottom of the rotor 6 as described later. In this case, the inner diameter of the first through hole 46 is set in advance so that an annular slit of about 2/100 to 3/100 of the outer diameter of the rotating shaft 44 is formed, and furthermore, from approximately the middle of the through hole 46 downward A large-diameter stepped hole portion 48 is integrally formed in the bottom.

これは射出成形後にロータを脱型するに際し、回転軸4
4が貫通孔46内壁に接触する摩擦抵抗を軽減させるた
めである。また、前記中心貫通孔46の周囲に隣接して
複数の貫通孔50が穿設され(第5図)、この貫通孔5
0にノックアウトピン52が昇降自在に挿通され、キャ
ビティ18中に突出可能となっている。
This is done when removing the rotor from the mold after injection molding.
This is to reduce the frictional resistance caused by contact between the inner wall of the through hole 46 and the inner wall of the through hole 46. Further, a plurality of through holes 50 are bored adjacent to the periphery of the central through hole 46 (FIG. 5).
A knockout pin 52 is inserted through the hole 0 so as to be able to move up and down, and can protrude into the cavity 18.

なお、中心貫通孔46の外部開放端には、当板54を着
脱自在に位置させ、この当板54により回転軸44のキ
ャビティ中での位置規制をさせるのが好ましい。
Note that it is preferable that a stop plate 54 is removably positioned at the externally open end of the central through hole 46, and that the position of the rotary shaft 44 in the cavity is regulated by the stop plate 54.

本発明に係る磁場射出成形用金型構造は、このように構
成したから、第1実施例および第2実施例の何れの場合
も励磁コイル26を付勢して磁界を励起してやれば、該
磁界は各閉ループを介して着磁ヨーク20a乃至20d
に誘導され、該ヨーク先端を臨ませたキャビティ18に
有効磁場が形成される。
Since the magnetic field injection molding mold structure according to the present invention is configured as described above, in both the first embodiment and the second embodiment, if the excitation coil 26 is energized to excite the magnetic field, the magnetic field are the magnetizing yokes 20a to 20d via each closed loop.
, and an effective magnetic field is formed in the cavity 18 facing the tip of the yoke.

そこで、本発明に係る金型構造を使用して回転電機用磁
石ロータを製造する場合につき次間する。
Therefore, the following is a description of the case where a magnetic rotor for a rotating electric machine is manufactured using the mold structure according to the present invention.

先ず、第4図に示す如く円筒状キャビティ18の底部に
穿設した貫通孔46中に回転軸44を挿通して、該回転
軸44の軸心をキャビティ18の軸心と一致させる。こ
の場合、中心貫通孔46の下部開口を当板54により閉
塞することにより、回転軸44の端部はこの当板54に
当接して所定位置規制がなされ、従って回転軸44は常
に所定寸法長だけ該キャビティ18中に臨むようセット
されることになる。
First, as shown in FIG. 4, the rotating shaft 44 is inserted into the through hole 46 formed at the bottom of the cylindrical cavity 18, and the axis of the rotating shaft 44 is aligned with the axis of the cavity 18. In this case, by closing the lower opening of the center through hole 46 with the contact plate 54, the end of the rotating shaft 44 comes into contact with the contact plate 54 and is regulated in a predetermined position, so that the rotating shaft 44 always has a predetermined length. It is set so that it faces into the cavity 18.

次いで、磁気異方性定数の大きい強磁性粉末と合成樹脂
とからなる混合物を加熱溶融し、この溶融混合物を前記
可動金型34のノズル口40から注入し、スプルー36
およびピンポイントゲート32を介して円筒状キャビテ
ィ18中に射出する。
Next, a mixture consisting of a ferromagnetic powder with a large magnetic anisotropy constant and a synthetic resin is heated and melted, and this molten mixture is injected from the nozzle port 40 of the movable mold 34 and then passed through the sprue 36.
and inject into the cylindrical cavity 18 through the pinpoint gate 32.

また、これと同期して前述の如く励磁コイル26を付勢
し、前記着磁ヨーク20a乃至20dを介してキャビテ
ィ18に半径方向外方から強磁界を印加する。このよう
に磁石粉末と合成樹脂との混合物が溶融状態にあり、粉
子配列が固まっていない間に複数極の磁界が印加される
ことにより、粉末粉−fの磁化容易軸は磁化方向に配向
され、磁気特性の16れた多(耐異方性樹脂磁石(本実
施例の場合、回転?11機用の円筒形磁石ロータ)が得
られる。
In addition, in synchronization with this, the excitation coil 26 is energized as described above, and a strong magnetic field is applied from the outside in the radial direction to the cavity 18 via the magnetizing yokes 20a to 20d. In this way, when the mixture of magnet powder and synthetic resin is in a molten state and a multi-pole magnetic field is applied while the powder arrangement is not solidified, the axis of easy magnetization of powder powder -f is oriented in the magnetization direction. As a result, an anisotropy-resistant resin magnet (in the case of this example, a cylindrical magnet rotor for a rotary machine with 11 rotations) with magnetic properties of 16 is obtained.

このように本発明に係る金型構造によれば、着磁ヨ−り
の配列を工夫したことにより、従来は着磁ヨークの極数
Xキャビティ数だけ必要としていた励磁コイルの数を低
減させることできる。
As described above, according to the mold structure according to the present invention, by devising the arrangement of the magnetizing yokes, the number of excitation coils, which was conventionally required by the number of poles of the magnetizing yoke x the number of cavities, can be reduced. can.

すなわち、異方性樹脂磁石の4個取りに際し本来16個
必要であった励磁コイルの数を、第1実施例の場合は1
2個に、また第2実施例では8個に低減させることがで
き,限られた金型スペース内で各キャビティに容易に多
極磁界を印加して、多極異方化された樹脂磁石の4個取
りを実現し、併せて製造コストの減少と稼動効率の向上
を達成し得る等、多くの有益な効果を奏するものである
In other words, the number of excitation coils that was originally required to be 16 when producing four anisotropic resin magnets was reduced to 1 in the case of the first embodiment.
The number can be reduced to two, or to eight in the second embodiment, and a multipolar magnetic field can be easily applied to each cavity within a limited mold space to create a multipolar anisotropic resin magnet. This has many beneficial effects, such as realizing four-piece molding, reducing manufacturing costs, and improving operating efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術に係る磁場射出成形用金型により異方
性樹脂磁石を製造する際の着磁ヨークと励磁コイルとの
配設例を示す概略説明図、第2図は本発明に係る磁場射
出成形用金型構造の第1実施例の平面図、第3図は本発
明に係る金型構造の第2実施例の平面図、第4図は本発
明に係る磁場射出成形用金型構造の好適実施例の縦断面
図、第5図は第4図のΔ−A線横線面断面図る。 16・・・・金型     ]8・・・・キャビティ2
0a、20d・・・・共通着磁ヨーク20b、20c・
・・独立着磁ヨーク 22・・・磁界誘導用ヨーク 26・・・・励磁コイル 特許出願人  大同特殊鋼株式会社
FIG. 1 is a schematic explanatory diagram showing an example of the arrangement of a magnetizing yoke and an excitation coil when manufacturing an anisotropic resin magnet using a magnetic field injection mold according to the prior art, and FIG. FIG. 3 is a plan view of the first embodiment of the injection mold structure, FIG. 3 is a plan view of the second embodiment of the mold structure according to the present invention, and FIG. 4 is the magnetic field injection mold structure according to the present invention. FIG. 5 is a longitudinal cross-sectional view of a preferred embodiment of the present invention, and FIG. 5 is a cross-sectional view taken along the line Δ-A in FIG. 16... Mold] 8... Cavity 2
0a, 20d... Common magnetizing yoke 20b, 20c.
...Independent magnetizing yoke 22...Yoke 26 for magnetic field induction...Excitation coil patent applicant Daido Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)全型に4つのキャビティを所定配列で画成し、隣
接し合うキャビティを金型内において磁気的に接続する
2つの共通着磁ヨークおよび一端部を金型外方に延出さ
せた2つの独立着磁ヨークの各端部を前記各キャビティ
の内側に夫々所定の位相角で臨ませ、1)i記共通着磁
ヨークおよび独立着磁ヨークを磁界発生源に接続して各
キャビティに磁場を形成するよう構成したことを特徴と
する磁場射出成形用金型構造。
(1) All molds have four cavities defined in a predetermined arrangement, two common magnetizing yokes that magnetically connect adjacent cavities within the mold, and one end extending outside the mold. Each end of the two independent magnetizing yokes faces the inside of each cavity at a predetermined phase angle, and 1) the common magnetizing yokes and the independent magnetizing yokes described in i are connected to a magnetic field generation source to form each cavity. A mold structure for magnetic field injection molding, characterized in that it is configured to generate a magnetic field.
(2)前記磁界発生源は共通着磁1−夕から金型外方へ
導出した磁界誘導用ヨークとその両側に位置する一対の
独立着磁ヨークの夫々に配設した励磁コイルで構成され
、磁界誘導用ヨークに配設された励磁コイルの巻数は各
独立着磁ヨークに配設された励磁コイルの巻数の2倍に
設定されている特許請求の範囲第1項記載の磁場射出成
形用金型構造。
(2) The magnetic field generation source is composed of a magnetic field inducing yoke led out of the mold from a common magnetization source, and an excitation coil disposed in each of a pair of independent magnetization yokes located on both sides of the yoke, The magnetic field injection molding metal according to claim 1, wherein the number of turns of the excitation coil disposed on the magnetic field induction yoke is set to twice the number of turns of the excitation coil disposed on each independent magnetization yoke. Type structure.
(3)前記磁界発生源は金型外方に延出している2つの
独立着磁ヨークの夫々に配設した励磁コイルで構成され
ると共にこの励磁コイルで発生した磁界は金型外方へ導
出した磁界誘導用ヨークを介して前記共通着磁ヨークに
分配され、各励磁コイルの巻数比は1:1に設定されて
いる特許請求の範囲第1項記載の磁場射出成形用金型構
造。
(3) The magnetic field generation source is composed of excitation coils disposed on each of two independent magnetizing yokes extending outside the mold, and the magnetic field generated by the excitation coils is led out to the outside of the mold. 2. The mold structure for magnetic field injection molding according to claim 1, wherein the excitation coils are distributed to the common magnetizing yoke via the magnetic field induction yoke, and the turn ratio of each excitation coil is set to 1:1.
JP4202183A 1983-03-14 1983-03-14 Die structure for injection molding in magnetic-field Granted JPS59168620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4202183A JPS59168620A (en) 1983-03-14 1983-03-14 Die structure for injection molding in magnetic-field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4202183A JPS59168620A (en) 1983-03-14 1983-03-14 Die structure for injection molding in magnetic-field

Publications (2)

Publication Number Publication Date
JPS59168620A true JPS59168620A (en) 1984-09-22
JPH0220131B2 JPH0220131B2 (en) 1990-05-08

Family

ID=12624512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4202183A Granted JPS59168620A (en) 1983-03-14 1983-03-14 Die structure for injection molding in magnetic-field

Country Status (1)

Country Link
JP (1) JPS59168620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634606A (en) * 1986-06-25 1988-01-09 Denki Kagaku Kogyo Kk Die and method for performing injection molding and multipolar magnetization simultaneously

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634606A (en) * 1986-06-25 1988-01-09 Denki Kagaku Kogyo Kk Die and method for performing injection molding and multipolar magnetization simultaneously

Also Published As

Publication number Publication date
JPH0220131B2 (en) 1990-05-08

Similar Documents

Publication Publication Date Title
US5181971A (en) Magnet and method of manufacturing the same
US6713923B2 (en) Orientation device and magnetization device
US5145614A (en) Process for preparing magnet made of resin
JPS6150368B2 (en)
US4954800A (en) Magnet and method of manufacturing the same
JPS59168620A (en) Die structure for injection molding in magnetic-field
JPH01275113A (en) Manufacturing device for rotary plastic magnet
JP3545643B2 (en) Manufacturing method of magnet rotor
JPS63228707A (en) Manufacture of anisotropic multi-pole plastic magnet
JPH0629139A (en) Anisotropic resin magnet with functional member
JPH0624174B2 (en) Manufacturing method of cylindrical magnet
JPS55162204A (en) Manufacture of anisotropic cylindrical polymer magnet
JP2986929B2 (en) Mold for anisotropic resin magnet
JPS641288B2 (en)
JPS61208815A (en) Magnetic field generator
JPH0523307Y2 (en)
JPH02213108A (en) Manufacture of anisotropic multipole plastic magnet
JP2800458B2 (en) Magnetic forming equipment for anisotropic plastic magnets
JPH027856A (en) Manufacturing device for rotor of rotary electric machine
JPH071743B2 (en) Magnetic field molding equipment for resin magnets
JPS629922A (en) Injection molding machine for anisotropic resin magnet
JP2655949B2 (en) Method and apparatus for forming magnet roller
JPS59136053A (en) Method and equipment for manufacturing rotor for rotary electric machine
JPS6213015A (en) Manufacture of magnet
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor