JPS6362449B2 - - Google Patents

Info

Publication number
JPS6362449B2
JPS6362449B2 JP56107949A JP10794981A JPS6362449B2 JP S6362449 B2 JPS6362449 B2 JP S6362449B2 JP 56107949 A JP56107949 A JP 56107949A JP 10794981 A JP10794981 A JP 10794981A JP S6362449 B2 JPS6362449 B2 JP S6362449B2
Authority
JP
Japan
Prior art keywords
sio
sic
granules
carbon
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56107949A
Other languages
Japanese (ja)
Other versions
JPS589807A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56107949A priority Critical patent/JPS589807A/en
Publication of JPS589807A publication Critical patent/JPS589807A/en
Publication of JPS6362449B2 publication Critical patent/JPS6362449B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、SiO2粉末と炭素粉末を原料として
高純度のSiCを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high purity SiC using SiO 2 powder and carbon powder as raw materials.

高純度SiCの微粉は、焼結用原料、合成樹脂の
充填剤、金属工具の摩耗が発生し易い部分へのメ
ツキ等の利用が期待されており、Si3N4と共に現
在最も有望視されている材料である。
High-purity SiC powder is expected to be used as a raw material for sintering, as a filler in synthetic resins, and as a plating material for parts of metal tools that are prone to wear, and is currently considered the most promising material along with Si 3 N 4 . It is a material that has

従来、SiCの製法としては、 ケイ石(SiO2)とコークス(C)を混合してア
チソン炉(抵抗炉)で加熱する方法。
The conventional method for producing SiC is to mix silica stone (SiO 2 ) and coke (C) and heat the mixture in an Acheson furnace (resistance furnace).

ケイ石粉末と、ケイ石粉末に対し3倍モル以
上のカーボンとを混合造粒し、アチソン炉又
は、連続炉で加熱する方法。
A method in which silica powder is mixed and granulated with carbon in an amount more than 3 times the molar amount of the silica powder, and then heated in an Acheson furnace or a continuous furnace.

があり、いずれも次式に従つて反応し、SiCが生
成する。
Both react according to the following formula to produce SiC.

SiO2+3C=SiC+2CO ところで、上記ケイ石中には、通常Al2O3
Fe2O3等の不純物が合計で1%近く含有されてお
り、これ等不揮発性不純物が製品SiC中に濃縮蓄
積され、SiCの高純度化を妨げていた。
SiO 2 +3C=SiC+2CO By the way, the above silica stone usually contains Al 2 O 3 ,
Impurities such as Fe 2 O 3 were contained in a total of nearly 1%, and these nonvolatile impurities were concentrated and accumulated in the product SiC, hindering the high purity of SiC.

本発明は、SiO2とCとを用いてSiC化反応を段
階的に行なうことにより、SiO2中の不純物等を
もとのペレツト中に残留せしめ、高純度SiCを製
造する方法である。
The present invention is a method for producing high-purity SiC by performing a SiC conversion reaction stepwise using SiO 2 and C, thereby allowing impurities in SiO 2 to remain in the original pellet.

すなわち、本発明はSiO2粉末とC粉末とを混
合造粒し、それに炭素粒状物を配合して造粒物の
周囲に介在させ、これ等を非酸化性雰囲気下で加
熱することにより造粒物中のSiO2をCと反応さ
せて、SiO等からなる気相のシリコン酸化物にし
て造粒物外に放出し、このSiO等を炭素粒状物と
反応させてSiCとなし、造粒物中には不純物を残
留させ、この不純物が残留し、粉化した造粒物を
分離することにより、高純度SiCを製造する方法
である。
That is, in the present invention, SiO 2 powder and C powder are mixed and granulated, carbon granules are mixed therein and interposed around the granules, and these are heated in a non-oxidizing atmosphere to form granules. The SiO 2 in the material is reacted with C to form a gaseous silicon oxide consisting of SiO, etc. and released outside the granules, and this SiO, etc. is reacted with carbon particles to form SiC, forming the granules. This method produces high-purity SiC by leaving impurities inside and separating the powdered granules in which the impurities remain.

以下、本発明をさらに詳しく説明する。 The present invention will be explained in more detail below.

原料SiO2粉末は、通常ケイ石を粉砕して使用
に供する。粒度は、造粒物の強度及び反応性を高
めるため細い程よく、少なくとも74μ以下にする
必要がある。好ましくは44μ以下である。
The raw material SiO 2 powder is usually prepared by crushing silica stone. The particle size should be at least 74 μm or less, the finer the particle size, the better, in order to increase the strength and reactivity of the granulated product. Preferably it is 44μ or less.

炭素粉末は、石油コークス、石炭コークス、木
炭等殆どの炭材が使用でき、粒度はケイ石粉末と
同様である。
Most carbon materials such as petroleum coke, coal coke, and charcoal can be used as the carbon powder, and the particle size is similar to that of silica powder.

勿論、上記ケイ石と炭材は、混合粉砕してもよ
い。粉砕機は、いずれの場合においてもボールミ
ル、振動ミル、遠心ロールミル等が使用される。
Of course, the above-mentioned silica stone and carbonaceous material may be mixed and pulverized. In any case, a ball mill, a vibration mill, a centrifugal roll mill, etc. are used as the crusher.

混合粉末の造粒には、パンペレタイザー、マル
メライザー、プリケツトマシン等が使用され、そ
の際、澱粉、CMC、PVA、アラビヤゴム等の水
溶液を一次結合剤として使用してもよい。造粒物
の大きさは2〜10mmの範囲で選ぶのが適当であ
る。この範囲内で、残留する不純物の分離を考慮
して造粒物の周囲に配置される炭素粒状物の大き
さとの関連で5〜15mmの範囲で選定することが望
ましい。もし、造粒物の径が2mmφ以下となると
発生するCOガスの通気が悪く平衡移動則により
反応が妨げられ、また径が10mmφ以上だと造粒物
内部での反応速度が遅くなり、さらに気相のSiO
等が放出しにくくなる。
A pan pelletizer, marmerizer, preket machine, etc. are used for granulating the mixed powder, and in this case, an aqueous solution of starch, CMC, PVA, gum arabic, etc. may be used as a primary binder. It is appropriate to select the size of the granules within the range of 2 to 10 mm. Within this range, it is desirable to select a diameter in the range of 5 to 15 mm in relation to the size of the carbon granules placed around the granules, taking into account the separation of residual impurities. If the diameter of the granules is less than 2 mmφ, the ventilation of the generated CO gas will be poor and the reaction will be hindered due to the equilibrium transfer law, and if the diameter is more than 10 mmφ, the reaction rate inside the granules will slow down, and even more air will be generated. Phase SiO
etc. becomes difficult to release.

SiO2とCとの混合割合は重要で、先ず下に示
す第一段の反応式(1)によつて反応するので、
SiO2とCとを等モル混合して造粒する。
The mixing ratio of SiO 2 and C is important, as they react according to the first stage reaction formula (1) shown below.
SiO 2 and C are mixed in equimolar amounts and granulated.

SiO2+C=SiO+CO …(1) 一般にSiO2とCの反応は初めにSiOガス生成反
応が起るとされており、本発明においてSiO2
分はSiOを主体とする気相のシリコン酸化物(以
下SiOという)となつて造粒物外に放出されると
考えられる。上記造粒されるCは、SiO2と反応
してSiOを発生し不純物は大部分残留するので、
特に高純度の製品を望む場合を除き、高純度の必
要はない。しかし、0.1%程度の不純物、例えば
Na2O、K2O、MgO、Al2O3、TiO2等は混入する
と考えられる。シリカ粉末の不純物についても同
様である。
SiO 2 +C=SiO+CO...(1) It is generally believed that the reaction between SiO 2 and C initially involves a SiO gas production reaction, and in the present invention, the SiO 2 component is a gas phase silicon oxide ( It is thought that this is released outside the granules as SiO (hereinafter referred to as SiO). The granulated C reacts with SiO 2 to generate SiO, and most of the impurities remain.
High purity is not necessary unless a particularly high purity product is desired. However, impurities of around 0.1%, e.g.
It is thought that Na 2 O, K 2 O, MgO, Al 2 O 3 , TiO 2 and the like are mixed. The same applies to impurities in silica powder.

従つて、SiC製品を99.95%以上のような高純度
のものにするには、シリカの純度及び造粒物中の
炭材の純度を98%以上とする必要がある。また当
然粒状炭材も高純度にする必要があり、前記の製
品純度のものを得るには粒状炭材の純度を99.92
%以上とする。
Therefore, in order to make a SiC product with a high purity of 99.95% or higher, the purity of silica and the purity of the carbonaceous material in the granules must be 98% or higher. Naturally, it is also necessary to make the granular carbonaceous material highly pure, and in order to obtain the product purity mentioned above, the purity of the granular carbonaceous material must be 99.92.
% or more.

第一段階の反応((1)式の反応)によつて発生し
たSiOは、反応式(2)に示す第二段階の反応によつ
て、単味のC粒と反応してSiCを生ずる。
SiO generated in the first stage reaction (reaction of formula (1)) reacts with single C grains to produce SiC in the second stage reaction shown in reaction formula (2).

SiO+2C=SiC+CO …(2) この際、生成するSiCが高純度であるために
は、単味のC粒は高純度であることが必要であ
り、かつSiOの吸収がよく反応性の大きいものが
望ましい。従つて炭素粒状物は、気孔率が高く、
表面積が大きいものがよい。具体的には、木炭、
活性炭等あるいは、カーボンブラツク等の微粉炭
を造粒したものが好適である。比表面積で表わせ
ば100m2/g以上のものが望ましい。反応性から
は、黒鉛化度が低いものがよい。
SiO + 2C = SiC + CO ... (2) In this case, in order for the SiC to be produced to be of high purity, the simple C grains must be of high purity, and those that can absorb SiO well and have high reactivity. desirable. Therefore, carbon granules have high porosity and
One with a large surface area is good. Specifically, charcoal,
Activated carbon or granulated pulverized carbon such as carbon black is suitable. In terms of specific surface area, it is desirable to have a specific surface area of 100 m 2 /g or more. In terms of reactivity, it is preferable to use a material with a low degree of graphitization.

反応は、炭素粒状物の表面から次第に内部に向
つて進行する。従つて途中においては粒状物の表
面がSiCで覆われた状態が形成される。そして
SiOガスが充分存在しておれば最後には殆んど全
部をSiCとすることも可能と思われるが、実際に
は、SiOガスの通気性の問題等によりCは残留す
る。炭素粒状物の中心部まで反応させようとする
とSiOガスが捕捉されないで、系外に逸散する分
が生ずるので、むしろ炭素粒状物は過剰に用いる
ことが望ましい。SiCとCの分離は、例えばCを
含有するSiCを空気中で800℃、3時間程度保持
することによつて容易に酸化除去できる。これ等
のことから、炭素粒状物は、SiO21モルに対して
2〜5モルの範囲が適当である。
The reaction progresses gradually from the surface of the carbon particles toward the inside. Therefore, a state in which the surfaces of the particles are covered with SiC is formed in the middle. and
If enough SiO gas is present, it seems possible to make almost all of it SiC, but in reality, C remains due to problems such as the permeability of SiO gas. If an attempt is made to cause the reaction to reach the center of the carbon particles, the SiO gas will not be captured and some will escape out of the system, so it is preferable to use an excessive amount of the carbon particles. SiC and C can be easily separated by oxidation, for example, by holding SiC containing C in air at 800° C. for about 3 hours. For these reasons, it is appropriate that the amount of carbon particles be in the range of 2 to 5 moles per 1 mole of SiO 2 .

SiO2とCの造粒物と、炭素粒状物は、均一に
分散させ、次にこれを加熱する。加熱装置として
は、特に限定されるものでなく、非酸化性雰囲気
で加熱できるものであればよい。原料中心部に発
熱体を設け、その周囲を加熱する、SiC製造にお
いて用いられる所謂アチソン炉方式によつても可
能であるが、未反応原料が残らないように外周部
を反応させることが必要である。未反応原料と生
成物との分離が面倒となるからである。最も望ま
しい加熱炉は、例えば黒鉛円筒反応容器を縦に
し、その外側に黒鉛発熱体を配置し、容器の上部
より原料を装入し、下部より生成物を取出す方式
である。これによれば連続化が可能である。この
装置はシリカを原料とするβ−SiCの連続製造で
公知のものを用いることができる。発生するCO
ガスの回収、生成物導出部の気密機構は常法に従
つて設けられる。
The SiO 2 and C granules and the carbon granules are uniformly dispersed and then heated. The heating device is not particularly limited, and any device that can heat in a non-oxidizing atmosphere may be used. It is also possible to use the so-called Acheson furnace method used in SiC production, which places a heating element in the center of the raw material and heats the surrounding area, but it is necessary to react the outer periphery so that no unreacted raw material remains. be. This is because separation of unreacted raw materials and products becomes troublesome. The most desirable heating furnace is one in which, for example, a graphite cylindrical reaction vessel is placed vertically, a graphite heating element is placed outside the vessel, raw materials are charged from the top of the vessel, and products are taken out from the bottom. According to this, continuity is possible. As this device, a device known for continuous production of β-SiC using silica as a raw material can be used. CO generated
Gas-tight mechanisms for gas recovery and product outlet are provided in accordance with conventional methods.

反応域は、COガス等を含む非酸化性雰囲気で
あり、その温度は1600℃以上である。1600〜2000
℃の範囲においては、β−SiCが主に生成し、
2000℃以上では、α−SiCが生成する。α−SiC
が生成すると、製品はブロツク状に固まり、自然
落下が困難となる。従つて連続式は、α−SiCの
製造に対しては不適当である。
The reaction zone is a non-oxidizing atmosphere containing CO gas and the like, and its temperature is 1600°C or higher. 1600~2000
In the temperature range of ℃, β-SiC is mainly produced,
At temperatures above 2000°C, α-SiC is generated. α-SiC
When this occurs, the product hardens into blocks and becomes difficult to fall down naturally. Therefore, the continuous method is inappropriate for the production of α-SiC.

SiCは炭素粒状物の表面から生成し、内部に進
行するが、生成率に関係なく生成物の大きさは、
初めの炭素粒状物の大きさと同じである。そし
て、内部にCを含んだSiC粒状物はかなり強固で
あり、取扱中に壊れることがない。この性質を利
用して、SiCを分離回収することができる。ケイ
石造粒物は、SiO2とCが放出され、壊れ粉化す
るがSiCは初めに用いた炭素粒造物の大きさとな
つているので、粒度差によつて容易に分離するこ
とが出来る。
SiC is generated from the surface of carbon particles and progresses inside, but regardless of the generation rate, the size of the product is
It is the same size as the initial carbon granules. Furthermore, SiC granules containing carbon inside are quite strong and will not break during handling. Using this property, SiC can be separated and recovered. The silica granules break down into powder as SiO 2 and C are released, but since the SiC is the same size as the carbon granules used initially, it can be easily separated based on the difference in particle size.

以上述べた如く本発明の方法は、第一段階にお
いて、SiOを発生せしめ、第二段階で発生した
SiOと高純度のCとを反応せしめるので、高純度
SiCを容易に製造出来るものである。
As described above, the method of the present invention generates SiO in the first step, and generates SiO in the second step.
High purity due to the reaction between SiO and high purity C.
This allows SiC to be easily manufactured.

以下実施例により具体的に説明する。 This will be explained in detail below using examples.

実施例 1 44μ以下に粉砕したケイ石粉と集塵コークスを
等モル比で混合し、コンスターチをバインダーと
してパンペレタイザーで5mmφに混合造粒した。
Example 1 Silica stone powder crushed to 44 μm or less and dust-collected coke were mixed in an equimolar ratio, and the mixture was granulated to a size of 5 mm with a pan pelletizer using cornstarch as a binder.

次に高純度活性炭を3mmφに粒調整し、上記混
合造粒物中のシリカ1モルに対し2.5モルとなる
ように秤量し、両者を十分混合した。
Next, high-purity activated carbon was granulated to a diameter of 3 mm, weighed so that the amount was 2.5 mol per 1 mol of silica in the mixed granules, and the two were thoroughly mixed.

この混合物を竪形炉の炉頂よりフイードし、炉
下部よりベルトコンベアで生成物を抜出した。フ
イードした原料は、閉塞することなく自重により
順次降下した。反応条件は下記の如くである。
This mixture was fed from the top of the vertical furnace, and the product was extracted from the bottom of the furnace using a belt conveyor. The fed raw material gradually descended under its own weight without clogging. The reaction conditions are as follows.

反応温度 1800±20℃ 滞留時間 30分 発生したCOガスは、炉頂部で燃焼した。炉下
部より出る生成物中、上記混合ペレツトは粉化し
緑色を呈していた。また単味カーボン粒は、黄色
を呈し元の形状を保持していた。
Reaction temperature: 1800±20°C Residence time: 30 minutes The generated CO gas was combusted at the top of the furnace. In the product discharged from the lower part of the furnace, the mixed pellets were powdered and had a green color. Furthermore, the single carbon grains exhibited a yellow color and retained their original shape.

これ等のX線解析を行なつた結果、緑色部分
は、SiO2とβ−SiCの混合物であり、黄色部分
は、β−SiCであつた。
As a result of these X-ray analyzes, the green part was a mixture of SiO 2 and β-SiC, and the yellow part was β-SiC.

上記黄色部分のβ−SiCをボールミルで10時間
粉砕したところ、70%が1ミクロン以下になつ
た。
When the β-SiC in the yellow part was ground in a ball mill for 10 hours, 70% of it was reduced to 1 micron or less.

実施例 2 ケイ石(純度98%)及び木炭(固定炭素87%)
をボールミルで44μ以下に粉砕し、Cモル/SiO2
モル=1の割合で混合した。これにCMC水溶液
を加えてパンペレタイザーで44mmφに造粒した。
また44μ以下の石油コークスをパインダーにCMC
を用いてパンペレタイザーを用いて8mmφに造粒
した。
Example 2 Silica stone (98% purity) and charcoal (87% fixed carbon)
was ground to 44μ or less using a ball mill, and Cmol/SiO 2
They were mixed in a molar ratio of 1. A CMC aqueous solution was added to this, and the mixture was granulated to a diameter of 44 mm using a pan pelletizer.
In addition, CMC uses petroleum coke of 44 μ or less as a binder.
The pellets were granulated to a size of 8 mm using a pan pelletizer.

次に上記造粒物中のSiO21モルに対し上記8mm
φの炭材を2.5モルの割合で混合し、両者合せて
50Kgを黒鉛ルツボに入れ蓋をして、ルツボの周囲
も環元雰囲として、ルツボの外側より加熱し、内
容物を1800℃1時間保持した。冷却後取出した所
緑色粉とほぼ8mmφの黄色粒が得られ、両者は、
容易に分離できた。
Next, for 1 mole of SiO 2 in the granules, the above 8 mm
Mix φ carbon material at a ratio of 2.5 moles and combine both.
50 kg was placed in a graphite crucible, the lid was closed, and the crucible was heated from the outside to create a cyclic atmosphere around the crucible, and the contents were held at 1800°C for 1 hour. When taken out after cooling, green powder and yellow particles of approximately 8 mmφ were obtained, both of which were
It was easily separated.

この黄色粒を粉砕した後、空気中で800℃、1
時間保持して、未反応のCを除去した。その結果
純度99.8〜99.9%のβ−SiC19Kgが得られた。
After crushing these yellow grains, heat them in air at 800℃ for 1 hour.
The mixture was held for a certain period of time to remove unreacted C. As a result, 19 kg of β-SiC with a purity of 99.8 to 99.9% was obtained.

実施例 3 44μ以下に粉砕した珪石粉(SiO299.90%)と
44μ以下の高純度黒鉛粉(C 99.0%)を等モル
比で混合しデキストリンをバインダーに用いパン
ペレタイザーで5mmφに混合造粒し次にカーボン
ブラツク(C 99.95%)を3mmφに造粒し、上
記混合造粒物中のシリカ1モルに対し2.5モルに
なるよう評量し両者を十分混合した。
Example 3 Silica powder (SiO 2 99.90%) crushed to 44μ or less
High-purity graphite powder (C 99.0%) of 44 μ or less was mixed in an equimolar ratio and granulated using a pan pelletizer using dextrin as a binder to a size of 5 mm. Next, carbon black (C 99.95%) was granulated to a size of 3 mm. The amount was determined to be 2.5 mol per 1 mol of silica in the mixed granules, and the two were thoroughly mixed.

この混合物を竪型炉にて1800℃滞留時間1時間
で20日間連続製造した。生成物は混合ペレツトが
粉化し灰色を呈していた。また、粒状高純度炭材
は元の形状を保ち黄色を呈していた。これ等のX
線解析を行なつた結果灰色部はSiO2とβ−SiCの
混合物であり黄色部はβ−SiCであつた。
This mixture was continuously produced for 20 days in a vertical furnace at 1800°C for 1 hour. The mixed pellets were powdered and the product had a gray color. Furthermore, the granular high-purity carbonaceous material maintained its original shape and exhibited a yellow color. These X
As a result of line analysis, the gray part was a mixture of SiO 2 and β-SiC, and the yellow part was β-SiC.

更に黄色粒を1mm程度に粗砕し空気中800℃
2Hr保持し造粒物中心部の炭材を酸化させ水洗し
た後王水で洗浄した。得られたβ−SiCは純度
99.98%であり生産量は500Kg/20日であつた。
Furthermore, the yellow grains are crushed to about 1 mm and heated to 800℃ in air.
The granules were held for 2 hours to oxidize the carbonaceous material at the center of the granules, washed with water, and then washed with aqua regia. The purity of the obtained β-SiC
The production rate was 99.98% and the production amount was 500Kg/20 days.

なお、使用した炉のデイメーシヨンは、反応筒
内径:110mmφ、均熱長さ:400mmφ(at 1800℃)、
炉高さ:2000mm、炉径:1000mmφである。
The daymation of the furnace used was: reaction cylinder inner diameter: 110 mmφ, soaking length: 400 mmφ (at 1800℃),
Furnace height: 2000mm, furnace diameter: 1000mmφ.

Claims (1)

【特許請求の範囲】[Claims] 1 シリカ粉末と炭素粉末を混合造粒し、この造
粒物に粒状炭材を混合し、非酸化性雰囲気で1600
℃以上に加熱し、前記造粒物中のSiO2の大部分
をCと反応させて気体のシリコン酸化物にして造
粒物外に放出し、これを粒状炭材と反応させて
SiCとなし、このSiC含有生成物を前記造粒物の
反応残渣と分離することを特徴とする高純度SiC
の製造法。
1. Mix and granulate silica powder and carbon powder, mix granular carbonaceous material with this granulate, and heat at 1600 °C in a non-oxidizing atmosphere.
℃ or higher, most of the SiO 2 in the granules is reacted with C, converted into gaseous silicon oxide, and released outside the granules, which is then reacted with the granular carbonaceous material.
High-purity SiC characterized by separating the SiC-containing product from the reaction residue of the granules.
manufacturing method.
JP56107949A 1981-07-10 1981-07-10 Preparation of sic in high purity Granted JPS589807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56107949A JPS589807A (en) 1981-07-10 1981-07-10 Preparation of sic in high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56107949A JPS589807A (en) 1981-07-10 1981-07-10 Preparation of sic in high purity

Publications (2)

Publication Number Publication Date
JPS589807A JPS589807A (en) 1983-01-20
JPS6362449B2 true JPS6362449B2 (en) 1988-12-02

Family

ID=14472130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56107949A Granted JPS589807A (en) 1981-07-10 1981-07-10 Preparation of sic in high purity

Country Status (1)

Country Link
JP (1) JPS589807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027790A1 (en) * 2011-08-24 2013-02-28 太平洋セメント株式会社 Silicon carbide powder and method for producing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151014A (en) * 1984-12-24 1986-07-09 Ulvac Corp Production of ultrafine powder of metallic carbide
JPH01270507A (en) * 1988-04-20 1989-10-27 Nippon Light Metal Co Ltd Production of mixture comprising beta-type silicon carbide powder and whisker
US5080879A (en) * 1988-12-01 1992-01-14 Alcan International Limited Process for producing silicon carbide platelets and the platelets so produced
JP4869589B2 (en) * 2004-12-17 2012-02-08 株式会社Z・E・T Silicon carbide generating method and system
JP6184732B2 (en) * 2013-04-26 2017-08-23 株式会社トクヤマ Silicon carbide granules and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027790A1 (en) * 2011-08-24 2013-02-28 太平洋セメント株式会社 Silicon carbide powder and method for producing same
KR20140081784A (en) * 2011-08-24 2014-07-01 다이헤이요 세멘토 가부시키가이샤 Silicon carbride powder and method for producing same
JPWO2013027790A1 (en) * 2011-08-24 2015-03-19 太平洋セメント株式会社 Silicon carbide powder and method for producing the same
US9382121B2 (en) 2011-08-24 2016-07-05 Taiheiyo Cement Corporation Silicon carbide powder and method for producing same

Also Published As

Publication number Publication date
JPS589807A (en) 1983-01-20

Similar Documents

Publication Publication Date Title
US8470279B2 (en) High purity silicon-containing products and method of manufacture
US8048822B2 (en) Method for making silicon-containing products
CA1159630A (en) Process for the preparation of silicon from quartz and carbon in an electric furnace
US4217335A (en) Process for producing β-silicon carbide fine powder
US5070049A (en) Starting composition for the production of silicon carbide and method of producing the same
US2843458A (en) Process for producing silicon tetrachloride
JPS606908B2 (en) Method for producing active silicon carbide powder containing boron component
JPS6362449B2 (en)
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
NO150633B (en) PROCEDURE FOR THE PREPARATION OF TITANET TETRACHLORIDE BY CHLORATION IN A FLUIDIZED LAYER
US2681848A (en) Preparation of titanium monoxide
JPS60112610A (en) Preparation of silicon tetrachloride
JPH0253400B2 (en)
JPH0216270B2 (en)
JPS6358769B2 (en)
US3956454A (en) Process for producing aluminum trichloride
JPS60235706A (en) Continuous production of silicon ceramics powder
US2681847A (en) Thermal preparation of titanium monoxide
JPH0118005B2 (en)
US3218153A (en) Method of producing molded bodies for use in electric smelting furnaces
JPH0645449B2 (en) Method for producing silicon tetrachloride
KR100999401B1 (en) Fabrication Method of Fine Boron Carbide Powders by Self-propagating High-temperature Synthesis
JPH0643247B2 (en) Rice husk combustion ash composition and method for producing the same
JPS5836915A (en) Continuous manufacture of sic type substance
JPS5860609A (en) Preparation of high purity sic