JPH0253400B2 - - Google Patents

Info

Publication number
JPH0253400B2
JPH0253400B2 JP57002304A JP230482A JPH0253400B2 JP H0253400 B2 JPH0253400 B2 JP H0253400B2 JP 57002304 A JP57002304 A JP 57002304A JP 230482 A JP230482 A JP 230482A JP H0253400 B2 JPH0253400 B2 JP H0253400B2
Authority
JP
Japan
Prior art keywords
raw material
carbon
mixture
sio
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57002304A
Other languages
Japanese (ja)
Other versions
JPS58120599A (en
Inventor
Hajime Kato
Takao Ito
Yukihiko Miwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP57002304A priority Critical patent/JPS58120599A/en
Publication of JPS58120599A publication Critical patent/JPS58120599A/en
Publication of JPH0253400B2 publication Critical patent/JPH0253400B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Description

【発明の詳細な説明】 本発明はβ−炭化珪素ウイスカーを効率良く製
造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently producing β-silicon carbide whiskers.

従来β−炭化珪素ウイスカーの製造方法として
珪酸物質と炭素質物質とをモル比で0.8〜2.6程度
になるよう混合し、これを団塊状に成形し、非酸
化性雰囲気で灼熱して製造する方法が行われてい
る。この場合生成するSiCウイスカーは混合原料
の団塊物の表面や団塊物の間に生成するが、その
収率が悪いので、ウイスカーの製造方法としては
経済的でない。
A conventional method for producing β-silicon carbide whiskers is to mix a silicic acid material and a carbonaceous material at a molar ratio of about 0.8 to 2.6, form the mixture into a nodule shape, and scorch it in a non-oxidizing atmosphere. is being carried out. In this case, SiC whiskers are generated on the surface or between the nodules of the mixed raw materials, but the yield is low, so this is not an economical method for producing whiskers.

本発明者等はこの欠点を克服し、ウイスカーを
経済的に製造する方法について種々研究したとこ
ろ、微粉の珪酸物質と炭素または含炭素物質とを
特定割合に混合した混合物Aと微粉の炭素または
含炭素物質を、原料混合物A中のSiO2に対し特
定割合になるようにした原料Bとを作り、これら
両者を近接して配置し、両者を1300〜1600℃に加
熱すると原料混合物A内での反応により生成する
SiOは原料混合物Aよりガス化揮散して原料B中
の炭素と反応し針状のウイスカーが原料B内に収
率良く生成することを知見した。
The present inventors overcame this drawback and conducted various research on methods for producing whiskers economically, and found that a mixture A, which is a mixture of a finely divided silicic acid substance and carbon or a carbon-containing substance in a specific ratio, and a finely divided carbon or carbon-containing substance are mixed together. When a raw material B and a carbon material are made in a specific proportion to the SiO 2 in the raw material mixture A, and both are placed close to each other and heated to 1300 to 1600°C, the amount of carbon in the raw material mixture A is produced by reaction
It has been found that SiO is gasified and volatilized from raw material mixture A, reacts with carbon in raw material B, and acicular whiskers are generated in raw material B with good yield.

β−炭化珪素ウイスカーの生成機構の詳細は未
だ完全に解明されていないが、本発明において
は、原料混合物Aにおいて SiO2+C→SiO+CO (1) の反応によりSiOが生成する。このSiOガスは混
合物Aに近接して配置した原料Bに達し、原料B
において、 SiO+2C→SiC+CO (2) の反応によりSiCが生成し、次第にウイスカーに
成長するものと考えられる。
Although the details of the production mechanism of β-silicon carbide whiskers have not yet been completely elucidated, in the present invention, SiO is produced in raw material mixture A by the reaction of SiO 2 +C→SiO+CO (1). This SiO gas reaches the raw material B placed close to the mixture A, and the raw material B
It is thought that SiC is generated by the reaction of SiO+2C→SiC+CO (2) and gradually grows into whiskers.

本発明はこの知見に基づくものであつて、
SiO2:Cのモル比が1:1〜1:2になるよう
に微粉の珪酸物質と炭素または含炭素物質とを混
合した原料混合物Aと微粉の炭素または含炭素物
質よりなる原料Bとを、原料混合物A中のSiO2
モル数:原料B中のCモル数の比が1:2〜1:
10になるように両原料を近接して配置し、両者を
1300〜1600℃の温度範囲で非酸化性雰囲気中にお
いて加熱し、原料B内に炭化珪素ウイスカーを生
成させることを特徴とするβ−炭化珪素ウイスカ
ーの製造方法である。
The present invention is based on this knowledge, and
Raw material mixture A is a mixture of a finely divided silicic acid substance and carbon or a carbon-containing substance such that the molar ratio of SiO 2 :C is 1:1 to 1:2, and a raw material B is a mixture of a finely divided silicic acid substance and carbon or a carbon-containing substance. , SiO 2 in raw material mixture A
Number of moles: The ratio of the number of moles of C in raw material B is 1:2 to 1:
Arrange both raw materials close to each other so that the ratio is 10, and
This is a method for producing β-silicon carbide whiskers, which is characterized by generating silicon carbide whiskers in raw material B by heating in a non-oxidizing atmosphere in a temperature range of 1300 to 1600°C.

本発明において珪酸物質はアモルフアス質珪酸
でも結晶質珪酸でも使用されるが何れの場合でも
良質のものが好ましく、粒度は10μ以下程度のも
のが望ましい。また含炭素物質としては樹脂、樹
脂炭化物、セルローズなどの含炭素物質が使用さ
れる。これらの含炭素物質は非酸化性雰囲気にお
ける1300℃以上の加熱により何れも炭化されるの
で、この場合における炭素モル数は加熱後得られ
た炭化物のモル数より計算する。
In the present invention, the silicic acid substance used may be either amorphous silicic acid or crystalline silicic acid, but in either case, it is preferably of good quality, and the particle size is preferably about 10 μm or less. Further, as the carbon-containing substance, carbon-containing substances such as resin, resin carbide, cellulose, etc. are used. Since all of these carbon-containing substances are carbonized by heating at 1300° C. or higher in a non-oxidizing atmosphere, the number of moles of carbon in this case is calculated from the number of moles of carbide obtained after heating.

本発明において原料混合物A中のSiO2とCと
の混合割合は、SiO2:Cのモル比が1未満のと
きは未反応のSiO2が残り、モル比が2を越える
とSiOの生成よりもSiC粉末の生成が顕著になる
ので、1:1〜1:2とするのが好ましい。
In the present invention, the mixing ratio of SiO 2 and C in the raw material mixture A is such that when the molar ratio of SiO 2 :C is less than 1, unreacted SiO 2 remains, and when the molar ratio exceeds 2, SiO is more likely to be formed. The ratio is preferably 1:1 to 1:2 since the formation of SiC powder becomes noticeable.

本発明において原料混合物Aおよび原料Bは粉
末状態においても、また種々の形状に成形したも
のでも差支えない。次に原料混合物Aと原料Bと
を近接して配置するとは例えば後述の実施例1お
よび2に示すように成形した原料混合物Aと成形
した原料Bとを混合する場合または実施例3で示
すように原料混合物Aに近接して原料Bを層状に
交互に配置する場合、さらにまた原料混合物Aと
原料Bとを数cm程度離して配置しても良いという
意味である。要するに、SiO2とCとの混合物か
ら成る部分と、Cから成る部分が必ず存在する必
要がある。
In the present invention, raw material mixture A and raw material B may be in a powder state or molded into various shapes. Next, placing raw material mixture A and raw material B close to each other means, for example, when mixing molded raw material mixture A and molded raw material B as shown in Examples 1 and 2 below, or as shown in Example 3. This means that when the raw material B is arranged alternately in layers in the vicinity of the raw material mixture A, the raw material mixture A and the raw material B may also be arranged with a distance of about several centimeters. In short, there must be a portion made of a mixture of SiO 2 and C and a portion made of C.

このように原料をAとBとを2つに分けた理由
は、SiC+SiO2→2SiO+CなるSiCの分解反応を
防ぎ、SiCの生成効率を高めるためである。
The reason why the raw materials are divided into two, A and B, is to prevent the SiC decomposition reaction of SiC+SiO 2 →2SiO+C and to increase the production efficiency of SiC.

原料混合物Aと原料Bとの割合は、原料混合物
Aから生成するSiOの捕集を効果的にするため、
原料混合物A中のSiO2のモル数と原料B中のC
のモル数との比が1:2〜1:10になるように配
置することが好ましい。何故なら、原料混合物A
中のSiO2のモル数に対する原料B中のCのモル
比が2未満になると原料混合物Aから生成する
SiOが原料BのCに対して過剰になるため、SiO
の捕集効果が低下する。またこのモル比が10を越
えると残留するCが多くなる割りには捕集効果が
上がらないため、経済的でない。
The ratio of raw material mixture A and raw material B is set so that SiO generated from raw material mixture A can be effectively collected.
Number of moles of SiO 2 in raw material mixture A and C in raw material B
The arrangement is preferably such that the ratio to the number of moles of is 1:2 to 1:10. This is because raw material mixture A
It is produced from raw material mixture A when the molar ratio of C in raw material B to the number of moles of SiO 2 in it is less than 2.
Since SiO is in excess of C in raw material B, SiO
The collection effect of Moreover, if this molar ratio exceeds 10, the trapping effect will not increase even though the amount of residual C increases, which is not economical.

本発明において加熱は急激に行つてもまた緩か
に行つてもよいが、加熱温度は1300〜1600℃程度
で、加熱時間は例えば加熱温度が1500℃のとき数
10分程度で充分である。また加熱は炭素物質の酸
化を防止するためアルゴン、水素などのような非
酸化性雰囲気で行う。
In the present invention, the heating may be performed rapidly or slowly, but the heating temperature is approximately 1300 to 1600°C, and the heating time is, for example, several times when the heating temperature is 1500°C.
About 10 minutes is enough. Further, heating is performed in a non-oxidizing atmosphere such as argon or hydrogen to prevent oxidation of the carbon material.

本発明によれば反応終了後は原料混合物A中に
はSiCはほとんど生成されず、原料B中にのみβ
−SiCウイスカーが生成される。本発明により得
られるβ−SiCウイスカーは炭素物質と共存した
状態で得られ、また不純物を含有しているのが普
通であるので得られたβ−SiCウイスカーを空気
中で加熱して炭素物質を除去した後、更に酸処理
すればより高純度のものを得ることができる。
According to the present invention, after the completion of the reaction, almost no SiC is produced in the raw material mixture A, and only in the raw material B
-SiC whiskers are generated. The β-SiC whiskers obtained by the present invention are obtained in the coexistence of carbon substances, and usually contain impurities, so the β-SiC whiskers obtained by the present invention are heated in air to remove carbon substances. After removal, a product of higher purity can be obtained by further acid treatment.

本発明によれば簡単な操作で純度99%以上のβ
−SiCウイスカーを50%以上の収率で得ることが
できる。
According to the present invention, β with a purity of 99% or more can be obtained with simple operations.
-SiC whiskers can be obtained with a yield of 50% or more.

実施例 1 アミルフアスシリカ(純度99%)とカーボンブ
ラツク粉末(純度99%、粒度10μ以下)をポツト
ミル中でモル比1:1の割合に、30分間混合した
ものを粒径3mm程度に造粒し、原料混合物Aを造
つた。これとは別にカーボンブラツクを造粒し粒
径3mm程度の原料Bを造つた。
Example 1 Amylfous silica (purity 99%) and carbon black powder (purity 99%, particle size 10μ or less) were mixed in a pot mill at a molar ratio of 1:1 for 30 minutes to produce particles with a particle size of approximately 3 mm. The mixture was granulated to produce raw material mixture A. Separately, carbon black was granulated to produce raw material B having a particle size of about 3 mm.

このようにして得た造粒物を第1図に示すよう
に、反応容器に原料混合物A1.5に対し原料B1の
重量比で装入し、アルゴン雰囲気下で1500℃で1
時間加熱したところ原料B中のみにβ−SiCウイ
スカーが生成した。得られたβ−SiCウイスカー
を空気中で700℃で30分間加熱して炭素を消失せ
しめた後、塩酸処理したところ、純度99%以上の
β−SiCウイスカーを65%の収率で得た。
As shown in Figure 1, the granules thus obtained were charged into a reaction vessel at a weight ratio of 1.5 to 1.5 of the raw material mixture A and 1 of the raw material B, and heated at 1,500°C under an argon atmosphere.
When heated for a period of time, β-SiC whiskers were generated only in raw material B. The resulting β-SiC whiskers were heated in air at 700°C for 30 minutes to eliminate carbon, and then treated with hydrochloric acid, yielding β-SiC whiskers with a purity of 99% or higher at a yield of 65%.

比較例 上記実施例1で造つた原料混合物A造粒物と原
料造粒物とを重量比で1.5:1に混合したものを
ポツトミルで1時間粉砕し、SiOとCとの均一混
合物からなる粉体を得た。この粉体をアルゴン雰
囲気下で1500℃で1時間加熱処理して得た反応生
成物を空気中で600℃、30分間加熱後、塩酸処理
して得たものはβ−SiCウイスカーを約10%含ん
だ主にβ−SiC微粉からなるもので、SiC全体と
しての収率は52%、ウイスカーのみの収率は約5
%であつた。
Comparative Example A mixture of the raw material mixture A granules produced in Example 1 and the raw material granules at a weight ratio of 1.5:1 was pulverized in a pot mill for 1 hour to form a powder consisting of a homogeneous mixture of SiO and C. I got a body. The reaction product obtained by heating this powder at 1500℃ for 1 hour in an argon atmosphere was heated at 600℃ in air for 30 minutes, and then treated with hydrochloric acid, which contained approximately 10% β-SiC whiskers. It mainly consists of β-SiC fine powder, and the overall yield of SiC is 52%, and the yield of whiskers alone is about 5.
It was %.

実施例 2 アモルフアスシリカ(純度99%)とカーボンブ
ラツク粉末(純度99%、粒度10μ以下)ポツトミ
ル中でモル比1:1.2の割合に1時間混合したも
のを粒径5mm程度に造粒し、原料混合物Aを造つ
た。またこれとは別にカーボンブラツクを造粒
し、粒径5mm程度の原料Bを造つた。
Example 2 Amorphous silica (purity 99%) and carbon black powder (purity 99%, particle size 10μ or less) were mixed in a pot mill at a molar ratio of 1:1.2 for 1 hour and granulated to a particle size of approximately 5 mm. Raw material mixture A was made. Separately, carbon black was granulated to produce raw material B having a particle size of approximately 5 mm.

このようにして造つた造粒物を原料混合物A中
のSiO2のモル比と原料B中のCのモル数とが
1:4になるように実施例1と同様に反応容器に
装入し、水素雰囲気下で1480℃で100分間加熱し
たところ、原料B中のみにβ−SiCウイスカーが
生成した。得られたβ−SiCウイスカーを空気中
で750℃で40分間加熱して炭素を消失せしめた後、
塩酸処理したところ、純度98%以上のβ−SiCウ
イスカーを68%の収率で得た。
The granules thus produced were charged into a reaction vessel in the same manner as in Example 1, such that the molar ratio of SiO 2 in raw material mixture A and the number of moles of C in raw material B were 1:4. When heated at 1480° C. for 100 minutes in a hydrogen atmosphere, β-SiC whiskers were generated only in raw material B. After heating the obtained β-SiC whiskers in air at 750°C for 40 minutes to eliminate carbon,
When treated with hydrochloric acid, β-SiC whiskers with a purity of 98% or higher were obtained in a yield of 68%.

実施例 3 アモルフアスシリカ(純度99%)とカーボンブ
ラツク粉末(純度98.5%、粒度10μ以下)をモル
比で1:1の割合に配合し、ポツトミルで30分間
混合して原料混合物Aの粉末を造つた。これとは
別に無定形炭素(純度98.5%)の粉末(粒度10μ
以下)の原料Bを造つた。
Example 3 Amorphous silica (purity 99%) and carbon black powder (purity 98.5%, particle size 10μ or less) were blended in a molar ratio of 1:1 and mixed in a pot mill for 30 minutes to obtain raw material mixture A powder. I built it. Apart from this, amorphous carbon (purity 98.5%) powder (particle size 10 μ
Raw material B (below) was prepared.

このようにして造つた原料混合物Aと原料Bと
を原料混合物A中のSiO2モル数と原料B中のC
のモル数の比が1:5になるように実施例1と同
じ反応容器中に第2図に示す如く層状に交互に配
置し、アルゴン雰囲気下で1550℃で40分間加熱し
たところ、原料B中のみにβ−SiCウイスカーが
生成した。得られたβ−SiCウイスカーを空気中
で800℃で1時間加熱して炭素を消失せしめたと
ころβ−SiCウイスカーの収率は61%で純度は98
%であつた。次にこのSiCウイスカーを弗酸処理
したところ純度99.5%のβ−SiCウイスカーが得
られた。
The raw material mixture A and raw material B produced in this way are calculated based on the number of moles of SiO2 in raw material mixture A and C in raw material B.
As shown in Figure 2, they were arranged alternately in layers in the same reaction vessel as in Example 1 so that the molar ratio of B was 1:5, and heated at 1550°C for 40 minutes in an argon atmosphere. β-SiC whiskers were generated only in the inside. When the obtained β-SiC whiskers were heated in air at 800°C for 1 hour to eliminate carbon, the yield of β-SiC whiskers was 61% and the purity was 98%.
It was %. Next, when this SiC whisker was treated with hydrofluoric acid, β-SiC whisker with a purity of 99.5% was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1および2における反応容器の
原料混合物Aと原料Bの装入状態を示す模式断面
図であり、第2図は実施例3における反応容器の
原料混合物Aと原料Bの装入状態を示す模式断面
図である。 図において、1……原料混合物A、2……原料
Bである。
FIG. 1 is a schematic cross-sectional view showing the charging state of raw material mixture A and raw material B in the reaction vessels in Examples 1 and 2, and FIG. FIG. 3 is a schematic cross-sectional view showing a closed state. In the figure, 1... Raw material mixture A, 2... Raw material B.

Claims (1)

【特許請求の範囲】[Claims] 1 SiO2:Cのモル比が1:1〜1:2になる
ように微粉の珪酸物質と炭素または含炭素物質と
を混合した原料混合物Aと、微粉の炭素または含
炭素物質よりなる原料Bとを、原料混合物A中の
SiO2モル数:原料B中のCモル数の比が1:2
〜1:10になるように近接して配置し、両者を
1300〜1600℃の温度範囲で非酸化性雰囲気中にお
いて加熱し、原料B内に炭化珪素ウイスカーを生
成させることを特徴とするβ−炭化珪素ウイスカ
ーの製造方法。
1 Raw material mixture A, which is a mixture of a finely divided silicic acid substance and carbon or a carbon-containing substance such that the molar ratio of SiO 2 :C is 1:1 to 1:2; and a raw material B, which is made of a finely divided carbon or carbon-containing substance. and in raw material mixture A.
The ratio of the number of moles of SiO2 : the number of moles of C in raw material B is 1:2
Place them close to each other so that the ratio is ~1:10, and
A method for producing β-silicon carbide whiskers, which comprises heating in a non-oxidizing atmosphere in a temperature range of 1300 to 1600°C to generate silicon carbide whiskers in raw material B.
JP57002304A 1982-01-12 1982-01-12 Production of beta-silicon carbide whisker Granted JPS58120599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57002304A JPS58120599A (en) 1982-01-12 1982-01-12 Production of beta-silicon carbide whisker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57002304A JPS58120599A (en) 1982-01-12 1982-01-12 Production of beta-silicon carbide whisker

Publications (2)

Publication Number Publication Date
JPS58120599A JPS58120599A (en) 1983-07-18
JPH0253400B2 true JPH0253400B2 (en) 1990-11-16

Family

ID=11525617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57002304A Granted JPS58120599A (en) 1982-01-12 1982-01-12 Production of beta-silicon carbide whisker

Country Status (1)

Country Link
JP (1) JPS58120599A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212300A (en) * 1986-03-11 1987-09-18 Shin Etsu Chem Co Ltd Production of silicon carbide whisker
JPS63159299A (en) * 1986-12-20 1988-07-02 Kobe Steel Ltd Production of silicon carbide whisker
JPS63156100A (en) * 1986-12-17 1988-06-29 Kobe Steel Ltd Production of silicon carbide whisker
US4873070A (en) * 1986-12-17 1989-10-10 Kabushiki Kaisha Kobe Seiko Sho Process for producing silicon carbide whiskers
JPS63156099A (en) * 1986-12-17 1988-06-29 Kobe Steel Ltd Production of silicon carbide whisker
US5021230A (en) * 1987-04-22 1991-06-04 Krstic Vladimir D Method of making silicon carbide
JPH01131100A (en) * 1987-11-12 1989-05-23 Toyota Motor Corp Production of silicon carbide whisker
US5116679A (en) * 1988-07-29 1992-05-26 Alcan International Limited Process for producing fibres composed of or coated with carbides or nitrides
KR20040034968A (en) * 2002-10-17 2004-04-29 장영철 Method for Manufacturing Silicon Carbide Whisker Using Disposed Silicon Slurgy
JP2016098162A (en) * 2014-11-26 2016-05-30 太平洋セメント株式会社 Production method of reclaimed silicon carbide powder, and production method of silicon carbide single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932719A (en) * 1972-07-27 1974-03-26
JPS5016760A (en) * 1973-06-14 1975-02-21

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932719A (en) * 1972-07-27 1974-03-26
JPS5016760A (en) * 1973-06-14 1975-02-21

Also Published As

Publication number Publication date
JPS58120599A (en) 1983-07-18

Similar Documents

Publication Publication Date Title
US4500504A (en) Process for preparing silicon carbide whiskers
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JPH0253400B2 (en)
JPS6111886B2 (en)
JPS62241812A (en) Manufacture of silicon nitride
KR101549477B1 (en) Manufacturing Method of High Purity SiC Powder
JPS5839764B2 (en) Method for producing aluminum nitride powder
JPH0662286B2 (en) Method for producing silicon carbide
JPS58213617A (en) Production of titanium carbonitride powder
JPS6362449B2 (en)
JP3154773B2 (en) Method for producing particulate silicon carbide
JPH062565B2 (en) Method for producing silicon carbide
EP0179670A2 (en) Production of silicon carbide cobweb whiskers
JPH10203806A (en) Production of boron nitride powder
JPS6042164B2 (en) Powder manufacturing method
JPH0142886B2 (en)
JPS63147811A (en) Production of fine sic powder
JPS6126600A (en) Preparation of beta type silicon carbide whisker
JPH02180710A (en) Preparation of finely powdered alpha- or beta- silicon carbide
KR970001524B1 (en) Process for the preparation of silicon carbide powder
JPS5891027A (en) Manufacture of silicon carbide powder
JP2987426B2 (en) Manufacturing method of graphite
JP2719394B2 (en) Method for producing silicon carbide
JPS62128913A (en) Production of silicon carbide powder
JPH0313166B2 (en)