JPS6360501A - Positive characteristic thermistor - Google Patents

Positive characteristic thermistor

Info

Publication number
JPS6360501A
JPS6360501A JP20565986A JP20565986A JPS6360501A JP S6360501 A JPS6360501 A JP S6360501A JP 20565986 A JP20565986 A JP 20565986A JP 20565986 A JP20565986 A JP 20565986A JP S6360501 A JPS6360501 A JP S6360501A
Authority
JP
Japan
Prior art keywords
electrode
heat treatment
element body
present
coefficient thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20565986A
Other languages
Japanese (ja)
Inventor
淳 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP20565986A priority Critical patent/JPS6360501A/en
Publication of JPS6360501A publication Critical patent/JPS6360501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、正特性サーミスタ、詳しくは正特性サーミス
タの電極の組成に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a positive temperature coefficient thermistor, and more particularly to a composition of an electrode of a positive coefficient thermistor.

〈従来の技術〉 一般に、正特性サーミスタは、第1図に示すように、チ
タン酸バリウム系セラミックスのような半導体セラミッ
クス製の素体1の表面に、一対の電極2.2を形成し、
各電極2にリード3を取り付けるとともに、素体lおよ
び電極2を絶縁性コート4で外装した構造となっている
<Prior Art> In general, a positive temperature coefficient thermistor, as shown in FIG.
A lead 3 is attached to each electrode 2, and the element body 1 and the electrode 2 are coated with an insulating coat 4.

そして、正特性サーミスタのうちには、電極2がニッケ
ルメッキ膜で構成されるものがある。
Some positive temperature coefficient thermistors have electrodes 2 made of a nickel-plated film.

このような正特性サーミスタの製造に当たっては、無電
解メッキにより、素体1に電極2となるニッケルメッキ
膜が形成される。この無電解メッキの際、浴としては、
ニッケル塩溶液に、リンを含む還元剤(fことえば次亜
リン酸ナトリウム)を加えたものが使用される。そのた
め、ニッケルメッキ膜には、共析元素としてリンが含ま
れる。
In manufacturing such a positive temperature coefficient thermistor, a nickel plating film that will become the electrode 2 is formed on the element body 1 by electroless plating. During this electroless plating, the bath is
A nickel salt solution to which a phosphorus-containing reducing agent (for example, sodium hypophosphite) is added is used. Therefore, the nickel plating film contains phosphorus as a eutectoid element.

そして、素体Iにニッケルメッキ膜を形成したのち、雨
音の電気的接続を良好にするために、熱処理が施される
After forming a nickel plating film on the element body I, heat treatment is performed to improve the electrical connection of the rain sound.

〈発明か解決しようとする問題点〉 ところで、上記のように、リンを含むニッケルメッキ膜
で構成されfこ電極では、次のような問題があった。
<Problems to be Solved by the Invention> By the way, as mentioned above, the following problems occurred with the electrode made of a nickel plating film containing phosphorus.

■電極と素体との電気的接続を良好にするための熱処理
を、比較的高温(300〜400℃)で行なう必要があ
り、この高温の熱処理により、素体自体の特性が変動し
、所望の特性が得られなくなる。
■It is necessary to perform heat treatment at a relatively high temperature (300 to 400°C) to improve the electrical connection between the electrode and the element, and this high temperature heat treatment changes the characteristics of the element itself, resulting in desired characteristics cannot be obtained.

具体的には、素体の抵抗値および抵抗/温度特性は10
%以上増減し、また耐電圧は20%以上低下する。
Specifically, the resistance value and resistance/temperature characteristics of the element body are 10
% or more, and the withstand voltage decreases by 20% or more.

■また、前記の高温熱処理のため、ニッケルメッキ膜の
表面が酸化し、半田付着性が低下する。
(2) Furthermore, due to the above-mentioned high temperature heat treatment, the surface of the nickel plating film is oxidized and the solder adhesion is reduced.

半田付着面積は電極の表面全体の70%程度となる。The solder adhesion area is approximately 70% of the entire surface of the electrode.

■さらに、高温の熱処理のために、高温の熱源を必要と
し、省エネルギーの観点から好ましくない。
■Furthermore, high-temperature heat treatment requires a high-temperature heat source, which is unfavorable from an energy-saving perspective.

本発明は、上述の問題点に鑑みてなされたものであって
、電極と素体との電気的接続性を確保するための熱処理
を低温で行なえるようにして、素体の特性変化を抑制す
るとともに、電極への半田付着性を良好にし、かつ上記
熱処理のためのエネルギーの節減をはかることを目的と
する。
The present invention has been made in view of the above-mentioned problems, and allows heat treatment to be performed at low temperatures to ensure electrical connectivity between electrodes and the element body, thereby suppressing changes in the properties of the element body. At the same time, it is an object of the present invention to improve solder adhesion to electrodes and to save energy for the heat treatment.

〈問題点を解決するための手段〉 本発明は、上記の目的を達成するために、ホウ素を共析
元素とするニッケルメッキ膜の単一層により電極を構成
した。
<Means for Solving the Problems> In order to achieve the above object, the present invention constitutes an electrode with a single layer of a nickel plating film containing boron as the eutectoid element.

〈作用〉 上記構成の正特性サーミスタは、実験によれば、従来よ
りし低i!(200〜300°C)の熱処理て、電極と
素体との電気的接続性が確保された。これは、電極とし
てのニッケルメッキ膜に含まれるホウ素が電極全体の熱
伝導率を高めるため、と考えられる。
<Operation> According to experiments, the positive temperature coefficient thermistor with the above configuration has a lower i! Electrical connectivity between the electrode and the element body was ensured by heat treatment at (200 to 300°C). This is thought to be because boron contained in the nickel plating film as the electrode increases the thermal conductivity of the entire electrode.

また、ホウ素の酸化抑制効果、および低温での熱処理に
より、電極表面での酸化が減少し、電極の半田付着性が
向上した。
Furthermore, due to the oxidation suppressing effect of boron and the heat treatment at low temperatures, oxidation on the electrode surface was reduced and the solder adhesion of the electrode was improved.

〈実施例〉 以下、本発明を実施例に基づいて詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail based on examples.

本発明の正特性サーミスタは、基本的には従来の正特性
サーミスタと同一の構成を有するので、第1図により、
その構成を説明する。すなわち、本発明の正特性サーミ
スタは、素体Iと、電極2と、リード3と、絶縁性コー
ト4とを備える。
Since the positive temperature coefficient thermistor of the present invention basically has the same configuration as the conventional positive coefficient thermistor, as shown in FIG.
Its configuration will be explained. That is, the positive temperature coefficient thermistor of the present invention includes an element body I, an electrode 2, a lead 3, and an insulating coat 4.

素体lは、チタン酸バリウム系セラミックスのような半
導体セラミックスを含む京料を一定の形状に成型したの
ち、焼成したものである。
The element body 1 is obtained by molding Kyoto material containing semiconductor ceramics such as barium titanate ceramics into a certain shape and then firing it.

本発明の特徴とするところは、電極2の組成にある。す
なわち、電極2は、無電解メッキにより形成されたニッ
ケルメッキ膜の単一層で構成されており、このニッケル
メッキ膜の内部には、ニッケルとともに析出する元素と
してホウ素を含んでいる。
The feature of the present invention lies in the composition of the electrode 2. That is, the electrode 2 is composed of a single layer of a nickel plating film formed by electroless plating, and the inside of this nickel plating film contains boron as an element that precipitates together with nickel.

この電極2としてのニッケルメッキ膜は、ニッケル塩溶
液に、ホウ素を含む還元剤(たとえば、ジメチルアミン
ボロン)を加えて浴とし、この浴に、メッキ材料である
索体lを浸漬することによって、素体1表面に形成され
る。
The nickel plating film as the electrode 2 is prepared by adding a boron-containing reducing agent (for example, dimethylamine boron) to a nickel salt solution to form a bath, and immersing the plating material L in this bath. It is formed on the surface of the element body 1.

さらに素体lに電極2を形成したのち、両者に比較的低
、ML(200〜300℃)の熱処理を施し、両者の電
気的接続性を良好にする。そして、各電極2にリード3
を取り付けるとともに、素体lおよび電極2を絶縁性コ
ート4で外装して完成品とする。
Further, after forming the electrode 2 on the element body 1, both are subjected to a heat treatment at a relatively low ML (200 to 300° C.) to improve electrical connectivity between the two. Then, each electrode 2 has a lead 3
At the same time, the element body 1 and the electrode 2 are covered with an insulating coat 4 to form a completed product.

ところで、本発明を実施したものと従来品とを比較する
ために、電極2付き素体lについて、その熱処理温度と
電気的接続性との関係を実験により検査した。その結果
を第2図の線図に示す。
By the way, in order to compare the product according to the present invention with the conventional product, the relationship between the heat treatment temperature and the electrical connectivity of the element body 1 with the electrode 2 was examined through experiments. The results are shown in the diagram of FIG.

この線図では、横軸に熱処理温度(°C)をとり、縦軸
に、素体1と電極2との電気的接続性を示す値として、
素体l自体の抵抗値Roと電極2形成後の抵抗値Rとの
抵抗比R/Roをとり、点線で従来品を、また実線で本
発明実施品を示している。いうまでらなく、従来品は、
リンを含むニッケルメッキ膜で構成された電極2を有す
る正特性サーミスタである。
In this diagram, the horizontal axis shows the heat treatment temperature (°C), and the vertical axis shows the electrical connectivity between the element body 1 and the electrode 2.
The resistance ratio R/Ro between the resistance value Ro of the element body 1 itself and the resistance value R after the electrode 2 is formed is taken, and the dotted line indicates the conventional product, and the solid line indicates the product according to the present invention. Needless to say, conventional products
This is a positive temperature coefficient thermistor having an electrode 2 made of a nickel-plated film containing phosphorus.

この実験結果からら分かるように、従来品では、350
℃程度の高温て熱処理をしなければ、素体tと電極2と
の電気的接続性が確保されない(抵抗比R/Ro= 1
とならない)し、しかも、両者の電気的接続性が熱処理
温度に応じて変動する。これに対して、本発明実施品で
は、200°Cを若干越えた程度の低温での熱処理によ
り電気的接続性が確保され(抵抗比R/Ro= 1とな
り)、しかも熱処理温度がそれ以上になって乙、電気的
接続性は安定している。
As can be seen from this experimental result, the conventional product has a
Electrical connectivity between the element body t and the electrode 2 cannot be ensured unless heat treatment is performed at a high temperature of about ℃ (resistance ratio R/Ro=1
Furthermore, the electrical connectivity between the two varies depending on the heat treatment temperature. On the other hand, in the product implementing the present invention, electrical connectivity is ensured by heat treatment at a low temperature of slightly over 200°C (resistance ratio R/Ro = 1), and the heat treatment temperature is higher than that. Now, the electrical connectivity is stable.

このように、電気的接続性を良好にするための熱処理温
度が従来に比して低温で済むのは、ホウ素を含むニッケ
ルメッキ膜の熱伝導率が、リンを含むニッケルメッキ膜
より高く、素体1と電極2との境界面に処理熱が効率よ
く伝達されるため、と考えられる。
The reason why the heat treatment temperature required to improve electrical connectivity is lower than that of conventional methods is that the thermal conductivity of the nickel plating film containing boron is higher than that of the nickel plating film containing phosphorus. This is thought to be because the processing heat is efficiently transferred to the interface between the body 1 and the electrode 2.

また、素体lおよび素体lに電極2を形成したものにつ
いて、前記の電気的接続性以外の特性を実験により計測
して、本発明実施品と従来のものとを比較した。その結
果を別表に示す。この場合、素体Iに厚さ2μmのニッ
ケルメッキ模による電極2を形成したのち、250℃で
10分間、熱処理を行なった。なお、表中、放置後の抵
抗値は、試料を常温中で500時間放置したのち、計測
した。
In addition, properties other than the electrical connectivity described above were experimentally measured for the element body 1 and the element body 1 on which the electrode 2 was formed, and the products implementing the present invention and the conventional ones were compared. The results are shown in the attached table. In this case, after forming the electrode 2 with a nickel plating pattern having a thickness of 2 μm on the element I, heat treatment was performed at 250° C. for 10 minutes. In addition, in the table, the resistance value after standing was measured after the sample was left standing at room temperature for 500 hours.

この実験結果から明らかなように、熱処理により、従来
品では素体l自体の抵抗値が10%以上変動するのに対
して、本発明実施品では同変動率が5%以内に収まった
。また、抵抗/温度特性は、従来品では105以上変動
するのに対して、本発明実施品では、その変動か4%以
内に収まった。
As is clear from the results of this experiment, while in the conventional product the resistance value of the element 1 itself fluctuated by 10% or more due to heat treatment, in the product implementing the present invention, the same fluctuation rate was within 5%. Furthermore, while the resistance/temperature characteristics fluctuated by more than 105% in the conventional product, the variation was within 4% in the product implementing the present invention.

さらに、耐電圧は、従来品では20%以上変動するのに
対して、本発明実施品では、5%以下の変動率に収まっ
た。
Furthermore, while the withstand voltage fluctuated by 20% or more in the conventional product, the fluctuation rate in the product implementing the present invention was within 5%.

このように、充分な電気的接続性を得るための熱処理に
より、本発明実泡品では、特性の変化が少ないことが分
かる。
As described above, it can be seen that due to the heat treatment for obtaining sufficient electrical connectivity, the properties of the actual foamed product of the present invention undergo little change.

また、半田付着率においてら、本発明実施品の方か従来
品より良好で、信頼性の高い正特性サーミスタが得られ
ることが分かる。このように本発明実施品での半田付着
率が高いのは、熱処理温度が低温で、電極2表面での酸
化が進行しないことと、電極2に含まれろホウ素が酸化
を抑制することによる、と考えられる。
In addition, it can be seen that in terms of solder adhesion rate, the product implementing the present invention is better than the conventional product, and a highly reliable positive temperature coefficient thermistor can be obtained. The reason for the high solder adhesion rate of the product according to the present invention is that the heat treatment temperature is low and oxidation does not progress on the surface of the electrode 2, and that the boron contained in the electrode 2 suppresses oxidation. Conceivable.

さらに、本発明では、電極2形成後の抵抗値の経時変化
か少なく、この点からも、信頼性の高い正特性サーミス
タが得られることが分かる。
Furthermore, in the present invention, there is little change in the resistance value over time after the electrode 2 is formed, and from this point as well, it can be seen that a highly reliable positive temperature coefficient thermistor can be obtained.

〈発明の効果〉 以上のように、本発明によれば、素体と電極との電気的
接続性を確保するための熱処理が、従来に比べ、低温の
熱処理で済み、そのため、この熱処理に伴なう特性変化
や半田付着性の低下が抑制されろ。したがって、所望の
特性を有する正特性サーミスタが容易に製造することが
でき、しかも信頼性の高い正特性サーミスタが得られる
<Effects of the Invention> As described above, according to the present invention, the heat treatment for ensuring electrical connectivity between the element body and the electrode can be performed at a lower temperature than in the past. Changes in characteristics and deterioration in solder adhesion should be suppressed. Therefore, a positive temperature coefficient thermistor having desired characteristics can be easily manufactured, and a highly reliable positive coefficient thermistor can be obtained.

さらに、前記の熱処理には、従来のように高温を必要と
しないから、熱処理に要する熱エネルギーを節減するこ
とができ、省エネルギーに役立つ。
Furthermore, since the heat treatment does not require high temperatures unlike conventional methods, the thermal energy required for the heat treatment can be reduced, contributing to energy saving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は正特性サーミスタの断面図、第2図は本発明実
施品と従来品との熱処理による変化状態を示す線図であ
る。 1・・・素体、2・・・電極、3・・・リード、4・・
・絶縁性コート。
FIG. 1 is a cross-sectional view of a positive temperature coefficient thermistor, and FIG. 2 is a diagram showing changes in a product implementing the present invention and a conventional product due to heat treatment. 1...Element body, 2...Electrode, 3...Lead, 4...
・Insulating coat.

Claims (1)

【特許請求の範囲】[Claims] (1)ホウ素を共析元素とするニッケルメッキ膜の単一
層により電極を構成したことを特徴とする正特性サーミ
スタ。
(1) A positive temperature coefficient thermistor characterized in that its electrodes are constituted by a single layer of nickel plating film containing boron as the eutectoid element.
JP20565986A 1986-09-01 1986-09-01 Positive characteristic thermistor Pending JPS6360501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20565986A JPS6360501A (en) 1986-09-01 1986-09-01 Positive characteristic thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20565986A JPS6360501A (en) 1986-09-01 1986-09-01 Positive characteristic thermistor

Publications (1)

Publication Number Publication Date
JPS6360501A true JPS6360501A (en) 1988-03-16

Family

ID=16510559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20565986A Pending JPS6360501A (en) 1986-09-01 1986-09-01 Positive characteristic thermistor

Country Status (1)

Country Link
JP (1) JPS6360501A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294403A (en) * 1988-09-29 1990-04-05 Tdk Corp Thermistor for high temperature
WO2015002197A1 (en) * 2013-07-02 2015-01-08 日立金属株式会社 Ptc element and heat-generating module
WO2015115422A1 (en) * 2014-01-28 2015-08-06 日立金属株式会社 Ptc element and heating module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943062A (en) * 1972-08-30 1974-04-23
JPS54110139A (en) * 1978-02-16 1979-08-29 Matsushita Electric Ind Co Ltd Electroless nickel plating solution
JPS57148302A (en) * 1981-03-10 1982-09-13 Tdk Electronics Co Ltd Method of producing positive temperature coefficient thermistor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943062A (en) * 1972-08-30 1974-04-23
JPS54110139A (en) * 1978-02-16 1979-08-29 Matsushita Electric Ind Co Ltd Electroless nickel plating solution
JPS57148302A (en) * 1981-03-10 1982-09-13 Tdk Electronics Co Ltd Method of producing positive temperature coefficient thermistor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294403A (en) * 1988-09-29 1990-04-05 Tdk Corp Thermistor for high temperature
WO2015002197A1 (en) * 2013-07-02 2015-01-08 日立金属株式会社 Ptc element and heat-generating module
WO2015115422A1 (en) * 2014-01-28 2015-08-06 日立金属株式会社 Ptc element and heating module

Similar Documents

Publication Publication Date Title
JPS6360501A (en) Positive characteristic thermistor
JPH0249411A (en) Barium titanate semiconductor porcelain capacitor
JPS61254848A (en) Formation of electrode
JPS5817355Y2 (en) Ceramic hatsnet tie
JP2504182B2 (en) Solid electrolytic capacitor
JPS5885502A (en) Method of producing thick film varistor
JPS62242324A (en) Chip capacitor
CN217771482U (en) Heating element and aerosol generating device
JPS63246802A (en) Thermistor
JPS6288392A (en) Ceramic substrate
JPS62111402A (en) Thin film thermistor
JPH02166715A (en) Solid electrolytic capacitor
JPS62122104A (en) Electrode treatment of laminated chip varistor
JPH0316255Y2 (en)
JPS6322642Y2 (en)
JPS5884405A (en) Method of producing thin film thermistor
JPH0249410A (en) Strontium titanate semiconductor porcelain capacitor
JPH0322885Y2 (en)
JPS5858717A (en) Electronic part
JPS58216401A (en) Thermistor
JP2583571B2 (en) Method for producing oxide-based superconductor and substrate for producing superconductor
JPH0210801A (en) Manufacture of glass sealed thermistor
JPH01253205A (en) Thin film thermistor
JPH0110881Y2 (en)
JPS6066144A (en) Production of electrode of element for oxygen concentration detector