JPH0249410A - Strontium titanate semiconductor porcelain capacitor - Google Patents

Strontium titanate semiconductor porcelain capacitor

Info

Publication number
JPH0249410A
JPH0249410A JP19884788A JP19884788A JPH0249410A JP H0249410 A JPH0249410 A JP H0249410A JP 19884788 A JP19884788 A JP 19884788A JP 19884788 A JP19884788 A JP 19884788A JP H0249410 A JPH0249410 A JP H0249410A
Authority
JP
Japan
Prior art keywords
nickel
boron alloy
strontium titanate
tungsten
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19884788A
Other languages
Japanese (ja)
Inventor
Akira Nakachi
中地 章
Fumio Takeuchi
文雄 竹内
Michiaki Sakaguchi
坂口 道明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP19884788A priority Critical patent/JPH0249410A/en
Publication of JPH0249410A publication Critical patent/JPH0249410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To unnecessitate a heat treatment and to enhance both electric characteristics and solderability by a method wherein a nickel-tin-boron alloy or a nickel-tungsten-boron alloy is opposingly plated on the surface of a strontium titanate semiconductor porcelain capacitor. CONSTITUTION:A nickel-tin-boron alloy or a nickel-tungsten-boron alloy is opposingly plated on the surface of a strontium titanate semiconductor porcelain capacitor. The nickel-tin-boron alloy plating is formed by adding a stannic acid-gluconic acid complex, as a reducing agent, to the aqueous solution containing nickel salt, sodium borohydride or dimethylaminoborone. The nickel- tungsten-boron alloy plating is formed by adding a tungsten acid-glucoic acid complex, as a reducing agent, to an aqueous solution containing nickel salt, sodium borohydride or dimethylaminoborane. As a result, heat treatment is unnecessitated, and both the electric characteristics and the solderability of the title capacitor can be enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は無電解メッキ電極を有する還元再酸化型又は粒
界絶縁型チタン酸ストロンチウム系半導体磁器コンデン
サに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a reduction and reoxidation type or grain boundary insulated strontium titanate semiconductor ceramic capacitor having an electroless plated electrode.

(従来の技術) 従来より半導体磁器コンデンサの電極には、銀が専ら用
いられてきたが、銀が非オーム性を示すため半導体磁器
との間に新たな直列の容量を発生し、この直列容量によ
り、半導体磁器コンデンサとしての全体の容量を減少す
るという問題点かあった。この問題点を解決するにあた
って、特開昭53−96463号公報によれば、チタン
酸ストロンチウム系半導体磁器の表面に、オーム性接触
をする無電解ニッケルメッキ電極を対向させて付与し熱
処理を行うことが記載されている。
(Prior art) Silver has traditionally been used exclusively for the electrodes of semiconductor ceramic capacitors, but since silver exhibits non-ohmic properties, a new series capacitance is generated between the semiconductor ceramic capacitor and this series capacitance. Therefore, there was a problem in that the overall capacitance of the semiconductor ceramic capacitor was reduced. In order to solve this problem, according to Japanese Patent Application Laid-open No. 53-96463, electroless nickel plated electrodes that make ohmic contact are applied to the surface of strontium titanate-based semiconductor porcelain so as to face each other, and then heat treatment is performed. is listed.

(発明が解決しようとする課題) しかし、これらの半導体磁器の表面に無電解ニッケル電
極を有するコンデンサは、熱処理のために表面に酸化し
たニッケル層が形成されるために、リード線を直接半田
付けして接続させる場合、半田付は性の低下を来すこと
があった。このために、あらかじめニッケル電極上に銀
電極を重層付与する必要があり、製造工程が増えること
及び銀を使用するために、製造原価が高くなるという問
題点が生じた。
(Problem to be solved by the invention) However, in capacitors having electroless nickel electrodes on the surface of these semiconductor ceramics, an oxidized nickel layer is formed on the surface due to heat treatment, so lead wires cannot be directly soldered. If the connection is made by using the soldering method, the soldering performance may deteriorate. For this reason, it is necessary to layer a silver electrode on a nickel electrode in advance, which increases the number of manufacturing steps and increases the manufacturing cost due to the use of silver.

一方、ニッケルの酸化を防止して半田付は性を改良した
ニッケル・ボロン合金メッキが開発され、特開昭63−
60501号公報にチタン酸バリウム系半導体磁器より
なるサーミスタへの適用が開示されている。しかしなが
ら、このニッケル・ボロン合金無電解メッキ電極メッキ
にしても、メッキ後に200″C以上の熱処理をしなけ
れば、半導体磁器素体とメッキとの経時安定性を保持す
ることが出来ないという問題点をもっている。即ち、従
来の無電解メッキ法で半導体磁器素体に安定した電極を
形成するには、熱処理工程が不可欠で、そのための製造
設備、エネルギー、工数が、コストの増加及び歩留りの
低下を来していた。
On the other hand, a nickel-boron alloy plating was developed that prevented the oxidation of nickel and improved solderability.
60501 discloses application to a thermistor made of barium titanate semiconductor ceramic. However, even with this nickel-boron alloy electroless plating electrode plating, there is a problem that the stability of the semiconductor porcelain body and the plating over time cannot be maintained unless heat treatment is performed at 200"C or higher after plating. In other words, in order to form stable electrodes on semiconductor porcelain bodies using the conventional electroless plating method, a heat treatment process is essential, and the manufacturing equipment, energy, and man-hours required for this process increase costs and reduce yield. It was coming.

本発明は、熱処理工程を経なくてもコンデンサの諸性能
が従来法と同等以上の無電解メッキ電橋を有する還元再
酸化型又は粒界絶縁型チタン酸ストロンチウム系半導体
磁器コンデンサを得ることを目的とするものである。
The object of the present invention is to obtain a reduction-reoxidation type or grain boundary insulated strontium titanate semiconductor ceramic capacitor having an electroless plated bridge that has capacitor performance equivalent to or higher than conventional methods without going through a heat treatment process. That is.

(課題を解決するための手段) 本発明は、ニッケル・スズ・ボロン合金又はニッケル・
タングステン・ボロン合金の無電解メッキ電極を対向付
与させた還元再酸化型又は粒界絶縁型チタン酸ストロン
チウム系半導体磁器からなるコンデンサで、メッキ後の
熱処理が不要となるという極めて優れた効果を有するも
のである。本発明により、電極とリード線の半田付けが
容易でかつその経時安定性にも優れ、又従来の無電解ニ
ッケルメッキに優るとも劣らない電気特性を有し、さら
に製造工程において占める割合の大きな熱処理工程を省
略可能にしたコンデンサを提供することが出来るように
なった。
(Means for solving the problem) The present invention provides a nickel-tin-boron alloy or a nickel-tin-boron alloy.
A capacitor made of reduction/reoxidation type or grain boundary insulated strontium titanate semiconductor porcelain with opposing electroless plated electrodes of tungsten/boron alloy, which has the extremely excellent effect of eliminating the need for heat treatment after plating. It is. The present invention enables easy soldering of electrodes and lead wires, has excellent stability over time, and has electrical properties that are comparable to those of conventional electroless nickel plating. It is now possible to provide a capacitor that allows the process to be omitted.

本発明で使用するニッケル・スズ・ボロン合金メッキは
、ニッケル塩、ホウ水素化ナトリウムまたはジメチルア
ミンボランを含む水溶液に、還元剤としてスズ酸−グル
コン酸錯体を添加したものであり、還元再酸化型又は粒
界絶縁型チタン酸ストロンチウム系半導体磁器コンデン
サ素体の表面にニッケル・スズ・ボロンの三成分の合金
を析出する。
The nickel-tin-boron alloy plating used in the present invention is made by adding a stannic acid-gluconic acid complex as a reducing agent to an aqueous solution containing nickel salt, sodium borohydride, or dimethylamine borane, and is a reduction-reoxidation type. Alternatively, a three-component alloy of nickel, tin, and boron is deposited on the surface of a grain-boundary insulated strontium titanate semiconductor ceramic capacitor element.

また、本発明で使用するニッケル・タングステン・ボロ
ン合金メッキは、ニッケル塩、ホウ水素化ナトリウムま
たはジメチルアミンボランを含む水溶液に、還元剤とし
てタングステン酸−グルコン酸錯体を添加したものであ
り、還元再酸化型又は粒界絶縁型チタン酸ストロンチウ
ム系半導体磁器コンデンサ素体の表面にニッケル・タン
グステン・ボロンの三成分の合金を析出する。これらの
合金の成分、析出量により、還元再酸化型又は粒界絶縁
型チタン酸ストロンチウム系半導体磁器コンデンサ素体
との密着性及びそれと関連する電気特性、さらに半田付
は性が影響を受ける。
In addition, the nickel-tungsten-boron alloy plating used in the present invention is made by adding a tungstic acid-gluconic acid complex as a reducing agent to an aqueous solution containing nickel salt, sodium borohydride, or dimethylamine borane. A three-component alloy of nickel, tungsten, and boron is deposited on the surface of an oxidized or grain-boundary insulated strontium titanate semiconductor ceramic capacitor element. The components and amount of precipitation of these alloys affect the adhesion to the reduction-reoxidation type or grain boundary insulation type strontium titanate semiconductor ceramic capacitor body, the electrical properties related thereto, and the solderability.

(発明の効果) 以上のように、本発明の粒界に誘電体層を有するチタン
酸ストロンチウム系半導体磁器コンデンサは、表面にニ
ッケル・スズ・ボロン又はニッケル・タングステン・ボ
ロン合金メッキを対向付与してなることを特徴としてい
るために、メッキ析出後の熱処理が必要無くなり、製造
面において極めて優れている。又熱処理が必要な従来の
無電解ニッケル・ボロン合金メッキ法によるものと比較
して優るとも劣らない電気特性を存し、かつ電気特性と
半田付は性の経時安定性にも優れたものである。
(Effects of the Invention) As described above, the strontium titanate semiconductor ceramic capacitor of the present invention having a dielectric layer at the grain boundary is provided with nickel-tin-boron or nickel-tungsten-boron alloy plating on the surface. Because of this feature, there is no need for heat treatment after plating deposition, which is extremely superior in terms of manufacturing. In addition, it has electrical properties that are comparable to those made using the conventional electroless nickel-boron alloy plating method that requires heat treatment, and it also has excellent electrical properties and solderability over time. .

(実施例) 次に実施例によって本発明をさらに具体的に説明する。(Example) Next, the present invention will be explained in more detail with reference to Examples.

5rTi(h 100モル、Tie、 1モル、Nbz
Os  0.1モル、MnO□1モルからなる粉を、ポ
リビニールアルコール水溶液を加えて造粒し、1.Ot
/cm”の加圧で乾式プレスにより直径10+nmφ、
厚さ0.5 mmの円板状に成形した。この成形体を1
110°Cの温度で2時間焼成した後、水素15容量%
、窒素85容量%からなる還元性雰囲気で1400°C
の温度で2時間熱処理して、半導体磁器を得た。次に大
気中でBizfhとCuOからなるペーストを塗布した
後に、800〜1200°Cで2時間熱処理することに
より粒界に誘電体層を有するチタン酸ストロンチウム系
半導体磁器コンデンサ素体を製造した。次にこの半導体
磁器コンデンサ素体をフッ化水素酸と硝酸の混合水溶液
により表面エツチングし、超音波洗浄した後、塩酸酸性
第一スズ溶液からなるエンプレートセンシタイザ−43
2(メルラックス(株)の商品名)に浸漬して撹拌し、
取り出して水洗する。
5rTi (h 100 mol, Tie, 1 mol, Nbz
A powder consisting of 0.1 mol of Os and 1 mol of MnO□ was granulated by adding an aqueous polyvinyl alcohol solution, and 1. Ot
diameter 10+nmφ by dry pressing with pressure of /cm"
It was molded into a disk shape with a thickness of 0.5 mm. This molded body is 1
After calcination for 2 hours at a temperature of 110°C, 15% by volume of hydrogen
, 1400°C in a reducing atmosphere consisting of 85% nitrogen by volume.
A semiconductor ceramic was obtained by heat treatment at a temperature of 2 hours. Next, a paste consisting of Bizfh and CuO was applied in the atmosphere and then heat treated at 800 to 1200°C for 2 hours to produce a strontium titanate semiconductor ceramic capacitor body having a dielectric layer at the grain boundaries. Next, the surface of this semiconductor ceramic capacitor body was etched with a mixed aqueous solution of hydrofluoric acid and nitric acid, and after ultrasonically cleaning, an emplate sensitizer 43 made of an acidic stannous solution of hydrochloric acid was used.
2 (trade name of Merlux Co., Ltd.) and stirred,
Take it out and wash it with water.

次に、塩化パラジウム、水溶液からなるエンプレードア
クチベータ440(メルラックス(株)の商品名)に浸
漬撹拌した後、水洗する。次に無電解メッキ液であるエ
ンプレートNi 427(メルラックス(株)の商品名
)の100g#!に対して、5g#!のスズ酸−グルコ
ン酸錯体又はタングステン酸−グルコン酸錯体を混合し
た70°Cの溶液に30分間浸漬撹拌することにより、
半導体磁器コデンサ素体の全面にニッケル・スズ・ボロ
ン合金又はニッケル・タングステン・ボロン合金を析出
させた。分析の結果、ニッケル・スズ・ボロンの重量比
率は88/9/12、ニッケル・タングステン・ボロン
の重量比率は87/10/3であった。次に、これらの
円盤の周側面のニッケル・スズ・ボロン合金又はニッケ
ル・タングステン・ボロン合金を研磨して除去し、粒界
に誘電体層を有するチタン酸ストロンチウム系半導体磁
器コンデンサを得た。
Next, it is immersed and stirred in Emplaid Activator 440 (trade name of Merlux Co., Ltd.) consisting of an aqueous solution of palladium chloride, and then washed with water. Next, 100g of electroless plating solution Enplate Ni 427 (trade name of Merlux Co., Ltd.)! Against 5g#! By immersing and stirring for 30 minutes in a 70°C solution containing a mixture of stannic acid-gluconic acid complex or tungstic acid-gluconic acid complex,
A nickel-tin-boron alloy or a nickel-tungsten-boron alloy was deposited on the entire surface of a semiconductor ceramic codenser body. As a result of the analysis, the weight ratio of nickel, tin, and boron was 88/9/12, and the weight ratio of nickel, tungsten, and boron was 87/10/3. Next, the nickel-tin-boron alloy or the nickel-tungsten-boron alloy on the peripheral surfaces of these disks was removed by polishing to obtain a strontium titanate-based semiconductor ceramic capacitor having a dielectric layer at the grain boundaries.

又、比較例は、本発明と同一の方法によって得られた半
導体磁器素体に、無電解メッキ液にスズ酸−グルコン酸
錯体又はタングステン酸−グルコン酸錯体を混合しない
ことが実施例と違うだけで、残りの作業方法は、全て実
施例と同一の方法により、粒界に誘電体層を有するチタ
ン酸ストロンチウム系半導体磁器コンデンサ素体の全面
にニッケル・スズ・ボロン合金を析出させ、次に200
°Cで1時間熱処理し、最後に周側面のニッケル・スズ
・ボロン合金を研磨して除去したものを用いた。
In addition, the comparative example differs from the example in that the semiconductor ceramic body obtained by the same method as the present invention is not mixed with the stannic acid-gluconic acid complex or the tungstic acid-gluconic acid complex in the electroless plating solution. The rest of the work was carried out in the same manner as in the example, in which a nickel-tin-boron alloy was deposited on the entire surface of a strontium titanate semiconductor ceramic capacitor body having a dielectric layer at the grain boundaries, and then 200%
It was heat treated at °C for 1 hour, and the nickel-tin-boron alloy on the peripheral side was finally removed by polishing.

表中の測定値は、いずれも試料30個の平均値である。All measured values in the table are average values of 30 samples.

第1表から明らかなように、本発明のものでは、従来の
ものと変わらない電気特性及び半田付は性を有しながら
、かつそれらの経時安定性も優れていることが判明した
As is clear from Table 1, it was found that the products of the present invention had the same electrical properties and soldering properties as the conventional products, and were also superior in their stability over time.

Claims (1)

【特許請求の範囲】[Claims] 1.ニッケル・スズ・ボロン合金又はニッケル・タング
ステン・ボロン合金の無電解メッキ電極を有することを
特徴とする還元再酸化型又は粒界絶縁型チタン酸ストロ
ンチウム系半導体磁器コンデンサ。
1. A reduction and reoxidation type or grain boundary insulated strontium titanate semiconductor ceramic capacitor characterized by having an electroless plated electrode of a nickel-tin-boron alloy or a nickel-tungsten-boron alloy.
JP19884788A 1988-08-11 1988-08-11 Strontium titanate semiconductor porcelain capacitor Pending JPH0249410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19884788A JPH0249410A (en) 1988-08-11 1988-08-11 Strontium titanate semiconductor porcelain capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19884788A JPH0249410A (en) 1988-08-11 1988-08-11 Strontium titanate semiconductor porcelain capacitor

Publications (1)

Publication Number Publication Date
JPH0249410A true JPH0249410A (en) 1990-02-19

Family

ID=16397899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19884788A Pending JPH0249410A (en) 1988-08-11 1988-08-11 Strontium titanate semiconductor porcelain capacitor

Country Status (1)

Country Link
JP (1) JPH0249410A (en)

Similar Documents

Publication Publication Date Title
CN102376449B (en) Laminate type ceramic electronic component and manufacturing method therefor
JPH0249411A (en) Barium titanate semiconductor porcelain capacitor
US6452780B2 (en) Capacitor
JPH0249410A (en) Strontium titanate semiconductor porcelain capacitor
JPH0136243B2 (en)
JPH04293214A (en) Conductive paste for chip type electronic component
JPH0249402A (en) Barium titanate semiconductor porcelain thermistor
JPS634327B2 (en)
JPS634332B2 (en)
JPS6032340B2 (en) How to manufacture ceramic capacitors
US4131692A (en) Method for making ceramic electric resistor
JPS62242324A (en) Chip capacitor
JP2621211B2 (en) Method for manufacturing solid electrolytic capacitor
JPS5952827A (en) Method of forming electrodes of laminated ceramic condenser
JPS5969906A (en) Method of forming terminal electrode of laminated ceramic condenser
JPH0727803B2 (en) Electrode treatment method for laminated chip varistor
JPS63236785A (en) Electrode formation for ceramic electronic parts
JPH02283010A (en) Solid electrolytic capacitor
JPH03215916A (en) Method for formation of electrode and electronic part using it
JPS6360501A (en) Positive characteristic thermistor
JPH02106011A (en) Formation of electrode of porcelain semiconductor electronic component
JPS62242323A (en) Chip capacitor
JP2003231972A (en) Method for manufacturing electronic parts, and electronic parts
JPS634329B2 (en)
JPS646530B2 (en)