JPS6066144A - Production of electrode of element for oxygen concentration detector - Google Patents

Production of electrode of element for oxygen concentration detector

Info

Publication number
JPS6066144A
JPS6066144A JP58174914A JP17491483A JPS6066144A JP S6066144 A JPS6066144 A JP S6066144A JP 58174914 A JP58174914 A JP 58174914A JP 17491483 A JP17491483 A JP 17491483A JP S6066144 A JPS6066144 A JP S6066144A
Authority
JP
Japan
Prior art keywords
palladium
platinum
plating
electrode
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58174914A
Other languages
Japanese (ja)
Inventor
Takeshi Nishi
毅 西
Hideo Torii
秀雄 鳥井
Hideyuki Okinaka
秀行 沖中
Masahiko Eto
江藤 雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58174914A priority Critical patent/JPS6066144A/en
Publication of JPS6066144A publication Critical patent/JPS6066144A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts

Abstract

PURPOSE:To obtain an electrode of an element for an O2 concn. detector which has large power to carry Pt and economizes the amt. of the Pt to be used by coating a Pd soln. prepd. by dissolving Pd in water or an org. solvent on the surface of a sintered ceramic then plating chemically Pt on the Pd film resulting from a heat treatment of said coating then subjecting the plating to a heat treatment. CONSTITUTION:A soln. prepd. by dissolving palladium salt such as palladium chloride, palladium complex compd., org. metallic palladium, etc. in alcohol such as butanol, ethylene glycol or the like is coated on the inside and outside surfaces of a cylindrical sintered ceramic 1 which consists principally of zirconium oxide contg. slightly yttrium oxide and is sealed at one end. The coating is then calcined at about 600-1,200 deg.C in air. The surface thereof is then chemically plated at a room temp. by using a plating liquid consisting principally of platinum ammonia complex. The ceramic is thoroughly rinsed after plating and is heat-treated at 600-1,200 deg.C after drying to form platinum electrodes 2, 3. Conductive metallic terminals 4, 5 are connected thereto. The white electrodes which are thin and securely joined are thus relatively easily formed and the stable element for detecting O2 concn. is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は燃焼雰囲気中の酸素濃度を検出する酸素濃度検
出器用素子の電極の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing an electrode for an oxygen concentration detector element for detecting oxygen concentration in a combustion atmosphere.

従来例の構成とその問題点 従来、この種の酸素濃度検出器の原理となる方法には、
代表的なものに酸素イオン伝導性磁器であるZrOとY
OまたはZrO2とCaOからなる2 23 ジルコニア磁器を用いる方法、あるいは酸素不足型非化
学量論比化合物であるチタニア磁器を用いる方法がある
Conventional configuration and its problems Conventionally, the method that is the principle of this type of oxygen concentration detector includes:
Typical examples include ZrO and Y, which are oxygen ion conductive ceramics.
There is a method using 2 23 zirconia porcelain made of O or ZrO2 and CaO, or a method using titania porcelain which is an oxygen-deficient non-stoichiometric compound.

第1図はこのようなジルコニア焼結体磁器を用いた酸素
濃度検出器を示す断面図であり、片方の先端を封じた円
筒状のジルコニア焼結体磁器1の内、外表面に白金電極
2,3が形成され、その白金電極2.3が導電性金属端
子4.6と電気的導通を得るように接続されている。
FIG. 1 is a cross-sectional view showing an oxygen concentration detector using such zirconia sintered ceramic. Platinum electrodes 2 are placed on the inner and outer surfaces of the cylindrical zirconia sintered ceramic 1 with one end sealed. , 3 are formed, and their platinum electrodes 2.3 are connected to electrically conductive metal terminals 4.6.

このような構造の酸素濃度検出器において、焼結体磁器
1を約400C以上の温度に保ち、白金電極2.3をも
った前記磁器1の隔壁の両側を相異なる分圧をもった酸
素ガスに接触させると、この隔壁間に起電力を生じ、こ
れにより酸素濃度を検出することができる。ここ士導電
性金属端子4゜5間に生じる起電力Eは、 後者は前述したように7102多孔質焼結体磁器を用い
る方法である。この磁器は半導体的性質をもっており、
酸素ガス接触面に白金電極を形成すると、測定雰囲気中
の酸素分圧により、すみやかに、かつ大幅に電気抵抗値
が変化する性質がある。
In an oxygen concentration detector having such a structure, the sintered ceramic 1 is maintained at a temperature of about 400 C or higher, and oxygen gas with different partial pressures is applied to both sides of the partition wall of the porcelain 1 having platinum electrodes 2.3. When brought into contact with the barrier ribs, an electromotive force is generated between the partition walls, thereby allowing the oxygen concentration to be detected. The electromotive force E generated between the two conductive metal terminals is as follows: As mentioned above, the latter method uses 7102 porous sintered porcelain. This porcelain has semiconducting properties,
When a platinum electrode is formed on the oxygen gas contact surface, the electrical resistance value changes rapidly and significantly depending on the oxygen partial pressure in the measurement atmosphere.

第2図はこのようなT 102多孔質焼結体磁器を用い
た酸素濃度検出器の一例を示す断面図である。
FIG. 2 is a sectional view showing an example of an oxygen concentration detector using such T102 porous sintered ceramic.

アルミナ基板11の一表面上に、両面に白金電極12 
、13i有するT z 02多孔質焼結体磁器14設け
られており、白金電極12.13間の電気抵抗値Rば、 で表わされる。
On one surface of the alumina substrate 11, platinum electrodes 12 are placed on both sides.
, 13i, the electrical resistance value R between the platinum electrodes 12 and 13 is expressed as follows.

この両方法の酸素濃度検出器とも白金電極全必要とし、
共に白金電極は焼結体磁器とガス雰囲気の界面部に位置
する。この白金電極は、ガス雰囲気中の酸素分圧と焼結
体磁器中の酸素イオンの濃度平衡における酸素のやりと
りに直接関係する部分であるため、酸素濃度検出器のき
わめて重要な部分をなしている。
Both oxygen concentration detectors require platinum electrodes,
Both platinum electrodes are located at the interface between the sintered ceramic and the gas atmosphere. This platinum electrode is directly related to the exchange of oxygen in the concentration equilibrium between the oxygen partial pressure in the gas atmosphere and the oxygen ion concentration in the sintered ceramic, so it is an extremely important part of the oxygen concentration detector. .

従来、このような構造を有する酸素濃度検出器の白金電
極の製造方法としては、白金溶液の熱分解を用いる方法
と、めっきによる方法などが一般的であった。
Conventionally, methods for manufacturing platinum electrodes for oxygen concentration detectors having such a structure include a method using thermal decomposition of a platinum solution and a method using plating.

しかしながら、前者の場合、きわめて多孔性の電極が形
成されるため電極表面での電気導通を得るには白金が多
量に必要であること、¥1:た後者の場合には均一に化
学めっきするための前処理として行う焼結体磁器表面を
活性化する工程が非常に複雑であること、および白金電
極の焼結体磁器表面への相持が弱いなどの欠点があり、
このためより相持力が強く、かつ白金の使用量の少ない
酸素濃度検出器の電極の製造方法の確立が必要であった
However, in the former case, a highly porous electrode is formed and a large amount of platinum is required to obtain electrical conduction on the electrode surface. The process of activating the sintered porcelain surface as a pretreatment is very complicated, and the platinum electrode has weak adhesion to the sintered porcelain surface.
For this reason, it was necessary to establish a method for manufacturing electrodes for oxygen concentration detectors that has stronger reciprocity and uses less platinum.

発明の目的 本発明はこのような点に鑑みてなされたものであり、前
記のような従来の欠点を除去した酸素濃度検出器用素子
の電極の製造方法を得ることを目的とし、比較的簡単に
、かつ高価な白金の使用量を少なくした相持力の強い白
金電極による酸素濃度検出器を提供しようとするもので
ある。
Purpose of the Invention The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing an electrode for an oxygen concentration detector element that eliminates the above-mentioned conventional drawbacks, and which is relatively simple. The present invention aims to provide an oxygen concentration detector using a platinum electrode with a strong cohesive force and using a reduced amount of expensive platinum.

発明の構成 この目的を達成するために本発明の電極の製造方法は、
パラジウム塩類、パラジウム錯化合物または有機金属パ
ラジウムの少なくとも一つを水または有機溶剤に溶解し
て作成したパラジウム溶液をtソ素濃度検出器を形成す
る焼結体磁器に塗布した後、熱処理1iして前記焼結体
磁器表面にパラジウム膜層を形成し、このパラジウム膜
上に白金の化学めっきを殉した後、eooC〜1200
Cの温度で熱処理することを特徴とするものである。こ
こで、前者の熱処理は塩化パラジウムまたはパラジウム
錯化物などが熱分解して金属パラジウムが生成する温度
以上で行われ、用いるパラジウム溶液の種類によりその
熱処理温度はそれぞれ異なるが、およそ4oOC〜80
0C以上900Cまでの温度である。また、この焼結体
磁器の表面に汚いパラジウム膜層の形成を行う工程は後
に続く化学めっきの活性化工程も兼ねておシ、この上に
電気的導通を得るために白金の化学めっきを行うことを
容易にする。そして、後者の熱処理は得られためっき白
金膜の強度を上げる目的で行われるものである。
Structure of the Invention In order to achieve this object, the method for manufacturing an electrode of the present invention is as follows:
A palladium solution prepared by dissolving at least one of palladium salts, palladium complex compounds, or organometallic palladium in water or an organic solvent is applied to the sintered porcelain forming the oxide concentration detector, and then heat-treated 1i. After forming a palladium film layer on the surface of the sintered ceramic and performing chemical plating of platinum on the palladium film, eooC~1200
It is characterized by heat treatment at a temperature of C. Here, the former heat treatment is performed at a temperature higher than the temperature at which palladium chloride or palladium complexes are thermally decomposed to produce metallic palladium, and the heat treatment temperature varies depending on the type of palladium solution used, but is approximately
The temperature is from 0C to 900C. In addition, the step of forming a dirty palladium film layer on the surface of the sintered porcelain also serves as the activation step for the chemical plating that follows, and on top of this, chemical plating of platinum is applied to obtain electrical conductivity. make things easier. The latter heat treatment is performed for the purpose of increasing the strength of the plated platinum film obtained.

なお、本発明で用いるパラジウム溶液の成分となるパラ
ジウム塩類、パラジウム錯化合物−1へは有機金属パラ
ジウムとしては、塩化パラジウム。
In addition, palladium chloride is used as organometallic palladium for palladium salts and palladium complex compound-1 which are components of the palladium solution used in the present invention.

硝酸パラジウムなどのパラジウム化合物が使用できる。Palladium compounds such as palladium nitrate can be used.

丑た、有機溶剤としては、2−ブタノール。The organic solvent is 2-butanol.

エチレングリコールやn−ブチルカルピトールなどの多
くのアルコール系やエーテル系のものが使用できる。さ
らに、用いるパラジウム溶液の一度は、それぞれのパラ
ジウム化合物の種類にかかわらず、パラジウム化合物1
g/10〜100m1が適している。
Many alcohols and ethers such as ethylene glycol and n-butylcarpitol can be used. Furthermore, once the palladium solution used is 1 palladium compound, regardless of the type of each palladium compound,
g/10-100ml is suitable.

本発明の製造方法は、酸素濃度検出器を構成する焼結体
磁器表面にパラジウム膜を熱分解法により形成するため
、めっき法に比較して密着性の良好な電極となる特徴が
ある。さらに、この上にめっき法によって白金電極全形
成するため、熱分解法のみで形成する場合に比べて非常
に少量の白金で電気的な導通を得ることが可能となる。
The manufacturing method of the present invention is characterized by forming a palladium film on the surface of the sintered ceramic constituting the oxygen concentration sensor by a thermal decomposition method, resulting in an electrode with better adhesion compared to a plating method. Furthermore, since the platinum electrodes are entirely formed on this by plating, it is possible to obtain electrical continuity with a much smaller amount of platinum than in the case of forming only by thermal decomposition.

したがって、比較的少ない白金量で相持力に擾れ、安定
な特性をもつ酸素濃度検出器の白金電極が形成できる。
Therefore, it is possible to form a platinum electrode for an oxygen concentration detector that has stable characteristics due to the coercive force with a relatively small amount of platinum.

なお、本発明において化学めっきヲ施した後、めっき白
金膜の強度を上げる目的で、6oOC〜12oOCの温
度で熱処理を行っているが、これは温度が6oOCより
低いと強固な膜を形成することができず、逆に12oo
Cより高いと熱によって白金膜が劣化するため好ましく
ないことによる。
In addition, in the present invention, after chemical plating is applied, heat treatment is performed at a temperature of 6oOC to 12oOC in order to increase the strength of the plated platinum film, but this is because a strong film is formed when the temperature is lower than 6oOC. 12oo on the contrary.
This is because if it is higher than C, the platinum film will deteriorate due to heat, which is not preferable.

実施例の説明 以下、本発明を実施例に基いて具体的に説明する。Description of examples Hereinafter, the present invention will be specifically explained based on Examples.

(実施例1) 酸化イツトリウムをわずかに含んだ(8モル%)酸化ジ
ルコニウムを主成分とする第1図に示す構造の酸素濃度
検出器の焼結体磁器1の内側表面。
(Example 1) The inner surface of a sintered ceramic 1 of an oxygen concentration sensor having the structure shown in FIG. 1, the main component of which is zirconium oxide containing a slight amount of yttrium oxide (8 mol %).

外側表面に塩化パラジウム1.0g全2−ブタノール5
0 mlに溶解したパラジウム溶液を塗布し、これを空
気中600t:’で焼成した。
Palladium chloride 1.0g total 2-butanol 5 on the outside surface
A palladium solution dissolved in 0 ml was applied and fired in air at 600 t:'.

さらに、この上に白金アンモニア錯体を主成分としため
っき液を用いて室温にて化学めっきすることにより、焼
結体磁器10表面に白金膜厚1.0μmの電極膜を形成
した。そして、化学めっきを行った後、白金膜を十分に
水洗し、乾燥した。続いて、10ooCで1時間空気中
で熱処理し、焼結体磁器1の表面に白金電極2,3を形
成した。
Furthermore, an electrode film having a platinum film thickness of 1.0 μm was formed on the surface of the sintered ceramic 10 by chemically plating it at room temperature using a plating solution containing a platinum-ammonia complex as a main component. After chemical plating, the platinum film was thoroughly washed with water and dried. Subsequently, heat treatment was performed in air at 10 ooC for 1 hour to form platinum electrodes 2 and 3 on the surface of the sintered ceramic 1.

このようにして作成した酸素濃度検出器全以下に示す可
燃性ガス中にさらし、導電性金属端子4゜6の間に発生
する起電力を測定した。すなわち、酸素ガス0.8容量
係と残部窒素ガスとからなる基本ガス(流量2000 
ml 7分)に水素ガスを種々の割合(流量10,20
,25,30,35,40゜50 、60ml/分)で
混合して被測定ガスを調整した。これを600Cに加熱
燃焼させ、燃焼後のガスをそのまま酸素濃度検出器の外
面電極に接触させながら流して、この検出器に発生する
起電力を測定した。なお、焼結体磁器1の内面電極には
参照ガスとしての大気が接している。
The oxygen concentration detector thus prepared was exposed to the flammable gas shown below, and the electromotive force generated between the conductive metal terminals 4.degree.6 was measured. That is, the basic gas (flow rate 2000
ml 7 minutes) and hydrogen gas at various ratios (flow rate 10, 20
, 25, 30, 35, 40°50, 60ml/min) to prepare the gas to be measured. This was heated to 600C and combusted, and the gas after combustion was allowed to flow as it was while contacting the outer electrode of an oxygen concentration detector, and the electromotive force generated in this detector was measured. Note that the inner surface electrode of the sintered ceramic 1 is in contact with the atmosphere as a reference gas.

すなわち、H2+02.P1/Zro2−Y203/P
t。
That is, H2+02. P1/Zro2-Y203/P
t.

02なる構成の濃淡電池を形成して、水素量を変化させ
ることにより、そのときに発生する起電力全測定した。
A concentration cell having a configuration of 02 was formed and the amount of hydrogen was varied, and the total electromotive force generated at that time was measured.

第3図に測定結果を示す。第3図よりこの酸素濃度検出
器の配電力は、燃焼後の被測定ガス中に酸素が存在しは
じめる状態にある酸素/水素のモル比が0.6付近にお
いてするどい立ち上がりを示し、はぼ理論通りの特性を
示していることが解る。
Figure 3 shows the measurement results. From Figure 3, the power distribution of this oxygen concentration detector shows a sharp rise when the molar ratio of oxygen/hydrogen is around 0.6, which is the state where oxygen begins to exist in the gas to be measured after combustion. It can be seen that it shows the characteristics of the street.

(実施例2) 第2図に示す構造において、 200mmX 160m
m X 0.3 +nmの大きさのアルミナ基板11の
上に、塩化パラジウム1.6g’i2−ブタノール50
 ralに溶解した塩化パラジウム溶液を塗布し、これ
を空気中700Cで焼成した。この上に白金アンモニア
錯体を主成分としためっき液を用いて室温で化学メッキ
することにより、表面に1.0μm電極膜を形成した。
(Example 2) In the structure shown in Fig. 2, 200 mm x 160 m
On an alumina substrate 11 with a size of m x 0.3 + nm, palladium chloride 1.6 g'i2-butanol 50
A solution of palladium chloride dissolved in RAL was applied, and this was fired at 700C in air. A 1.0 μm electrode film was formed on the surface by chemical plating at room temperature using a plating solution containing a platinum ammonia complex as a main component.

そして、化学めっきを行つ7jl、白金膜を十分に水洗
し乾燥した。こうしてアルミナ基板11上に白金電極1
2を形成した。
Then, the platinum film was thoroughly washed with water and dried. In this way, the platinum electrode 1 is placed on the alumina substrate 11.
2 was formed.

さらに、その上に酸化チタンの多孔質焼結体磁器14を
平均20μmの厚さになるように形成した。さらに、そ
の上に前記と同様の操作により、厚さ1.0μmの白金
電極13を形成し、十分に水洗し、乾燥した。
Further, porous sintered ceramic 14 of titanium oxide was formed thereon to have an average thickness of 20 μm. Further, a platinum electrode 13 having a thickness of 1.0 μm was formed thereon by the same operation as described above, thoroughly washed with water, and dried.

このようにして得られた検出器を空気中1o○OCで1
時間、熱処理し、酸素濃度検出器を作成した。
The detector obtained in this way was
After heat treatment for several hours, an oxygen concentration detector was created.

この酸素濃度検出器を前記実施例1で用いたものと同様
の酸素、窒素、水素ガスからなる400Cに加熱された
被測定ガス中におき、その抵抗値を測定した。第4図に
その測定結果を示す。第4図よりこの酸素濃度検出器の
抵抗値は、酸素/水素のモル比が0.5付近においてす
るどい立ち上がりを示しており、はぼ理論通りの特性を
示していることが解る。
This oxygen concentration detector was placed in a gas to be measured which was heated to 400C and consisted of oxygen, nitrogen, and hydrogen gases similar to those used in Example 1, and its resistance value was measured. Figure 4 shows the measurement results. From FIG. 4, it can be seen that the resistance value of this oxygen concentration detector shows a sharp rise when the oxygen/hydrogen molar ratio is around 0.5, and exhibits characteristics that are in accordance with theory.

発明の効果 以上の説明から明らかなように、本発明の製造方法は、
従来のめっき法のように複雑な活性工程をもたず、しか
も従来のめつき法と同様のわずかな量の白金で十分な特
性をもつ安定な電極を製造できるものである。したがっ
て、本発明の製造方法を用いることにより、白金電極全
比較的簡単に形成でき、かつ高価な白金の使用量を少な
くすることができる。
Effects of the Invention As is clear from the above explanation, the manufacturing method of the present invention has the following effects:
Unlike conventional plating methods, this method does not require a complicated activation process, and can produce stable electrodes with sufficient properties using only a small amount of platinum, as in conventional plating methods. Therefore, by using the manufacturing method of the present invention, the entire platinum electrode can be formed relatively easily, and the amount of expensive platinum used can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明方法を説明するための一般
的な酸素濃度検出器の例を示す断面図、第3図は本発明
方法の実施例1によシ得られた電極を用いて構成された
第1図の検出器の起電力特性を示す図、第4図は本発明
方法の実施例2によシ得られた電極を用いて構成された
第2図の検出器の電気抵抗特性を示す図である。 1・・・・・・ジルコニア焼結体磁器、2,3・・・・
・・白金電極、4,5・・・・・・電極端子、11・・
・・・・アルミナ基板、12,13・・・・・・白金電
極、14・・・・・・酸化チタン多孔質焼結体磁器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 4 第2図 第3図 →C酸素7ボ季9容量比 第4図 →(m素/#)容を比 峠水@11ス淡■(−一り
1 and 2 are cross-sectional views showing an example of a general oxygen concentration detector for explaining the method of the present invention, and FIG. 3 is a cross-sectional view showing an example of a general oxygen concentration detector for explaining the method of the present invention. FIG. 4 shows the electromotive force characteristics of the detector shown in FIG. 2, which is constructed using the electrode obtained in Example 2 of the method of the present invention. FIG. 3 is a diagram showing resistance characteristics. 1...zirconia sintered porcelain, 2,3...
...Platinum electrode, 4,5... Electrode terminal, 11...
...Alumina substrate, 12,13...Platinum electrode, 14...Titanium oxide porous sintered ceramic. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 4 Figure 2 Figure 3 → C Oxygen 7 Bo Season 9 Volume Ratio Figure 4 → (m elements/#)

Claims (1)

【特許請求の範囲】[Claims] パラジウム塩類、パラジウム錯化合物または有機金属パ
ラジウムの少なくとも一つを水または有機溶剤に溶解し
て作成したパラジウム溶液全酸素濃度検出器を形成する
焼結体磁器に塗布した後、熱処理を施して前記焼結体磁
器表面にパラジウム膜層を形成し、このパラジウム膜層
上に白金の化学めっきを箔した後、600C〜1200
Cの温度で熱処理することを特徴とする酸素濃度検出器
用素子の電極の製造方法。
A palladium solution prepared by dissolving at least one of palladium salts, palladium complex compounds, or organometallic palladium in water or an organic solvent is applied to the sintered porcelain that forms the total oxygen concentration detector, and then heat-treated to remove the sintered material. After forming a palladium film layer on the surface of the solid porcelain and applying platinum chemical plating on the palladium film layer, the temperature is set at 600C to 1200C.
1. A method for manufacturing an electrode for an oxygen concentration detector element, characterized by heat treatment at a temperature of C.
JP58174914A 1983-09-20 1983-09-20 Production of electrode of element for oxygen concentration detector Pending JPS6066144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58174914A JPS6066144A (en) 1983-09-20 1983-09-20 Production of electrode of element for oxygen concentration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58174914A JPS6066144A (en) 1983-09-20 1983-09-20 Production of electrode of element for oxygen concentration detector

Publications (1)

Publication Number Publication Date
JPS6066144A true JPS6066144A (en) 1985-04-16

Family

ID=15986906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58174914A Pending JPS6066144A (en) 1983-09-20 1983-09-20 Production of electrode of element for oxygen concentration detector

Country Status (1)

Country Link
JP (1) JPS6066144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118760A (en) * 1987-10-31 1989-05-11 Toshiba Corp Sensor
JP2020101446A (en) * 2018-12-21 2020-07-02 株式会社Soken Ammonia sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692448A (en) * 1979-12-26 1981-07-27 Ngk Spark Plug Co Ltd Sensor of protective device for gas burner
JPS57192853A (en) * 1981-05-25 1982-11-27 Toyota Central Res & Dev Lab Inc Oxygen concentration detection element and oxygen concentration detector using it
JPS57207856A (en) * 1981-06-16 1982-12-20 Matsushita Electric Ind Co Ltd Preparation of electrode for gaseous oxygen detection element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692448A (en) * 1979-12-26 1981-07-27 Ngk Spark Plug Co Ltd Sensor of protective device for gas burner
JPS57192853A (en) * 1981-05-25 1982-11-27 Toyota Central Res & Dev Lab Inc Oxygen concentration detection element and oxygen concentration detector using it
JPS57207856A (en) * 1981-06-16 1982-12-20 Matsushita Electric Ind Co Ltd Preparation of electrode for gaseous oxygen detection element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118760A (en) * 1987-10-31 1989-05-11 Toshiba Corp Sensor
JP2020101446A (en) * 2018-12-21 2020-07-02 株式会社Soken Ammonia sensor

Similar Documents

Publication Publication Date Title
US4136000A (en) Process for producing improved solid electrolyte oxygen gas sensors
JPH03130657A (en) Oxygen sensor
JPS6343706B2 (en)
JPH0418261B2 (en)
JPS6066144A (en) Production of electrode of element for oxygen concentration detector
JPH0351753A (en) Limiting current sensor for measuring partial pressure of oxygen gas
JPH033181B2 (en)
JP2000019152A (en) Hydrogen gas sensor
KR100631276B1 (en) pH sensing electrode having a solid-state electrolyte layer and pH measuring system containing same
JP2920109B2 (en) Nitrogen oxide sensor and method of manufacturing the same
JPS6036950A (en) Electrochemical cell and its production
US20040226832A1 (en) Methods of making gas sensors and sensors formed therefrom
JPH0147740B2 (en)
JP2591383B2 (en) Oxygen concentration detecting element and method of manufacturing the same
JPH02193053A (en) Exhaust gas sensor and manufacture thereof
JPH02269948A (en) Sensor for combustion control
JPH0862168A (en) Nitrogen oxide detecting device
JPS60115844A (en) Production of combustion detecting element
JPS6034062B2 (en) Air fuel ratio detection device
JP3516488B2 (en) Nitrogen oxide sensor
Liu et al. Impedance Characteristics of Anodic Oxide Films Formed on NiAl in Molten Na2 CO 3
JPH03165253A (en) Oxygen sensor
JPH02311751A (en) Oxygen sensor
JP3344606B2 (en) NOx gas sensing element and method of manufacturing the same
JPS59109854A (en) Manufacture of wide-range air fuel ratio sensor