JPS6358319B2 - - Google Patents

Info

Publication number
JPS6358319B2
JPS6358319B2 JP55077367A JP7736780A JPS6358319B2 JP S6358319 B2 JPS6358319 B2 JP S6358319B2 JP 55077367 A JP55077367 A JP 55077367A JP 7736780 A JP7736780 A JP 7736780A JP S6358319 B2 JPS6358319 B2 JP S6358319B2
Authority
JP
Japan
Prior art keywords
vacuum
assembled
degree
manufacturing
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55077367A
Other languages
Japanese (ja)
Other versions
JPS576195A (en
Inventor
Genbee Kawaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7736780A priority Critical patent/JPS576195A/en
Publication of JPS576195A publication Critical patent/JPS576195A/en
Publication of JPS6358319B2 publication Critical patent/JPS6358319B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は真空断熱容器等の真空構造体を製造す
る方法に関し、詳しくは真空構造体を組立てる部
材を前処理した後、加工および組立てを行なう真
空構造体の製造方法に関するものである。 真空断熱層を有する断熱容器や、それ自体内部
を真空にされる真空容器、または真空断熱を利用
した断熱パネル等の真空構造体は、鋼板、ステン
レス板等の材料を、製作すべき構造体にあわせて
寸法切りし、円筒状その他の形状に加工し、溶接
等によつて組立てた後、真空引きを行なう。真空
断熱体の場合には一般にパーライト等が充填され
た後真空引きされる。然しながら、この真空引き
作業は鋼板、ステンレス板、あるいは充填された
パーライト等から水分やガス成分が徐々に放出さ
れるため、必要とする真空度を得るまでに極めて
長時間を要し、小型のものでも1週間、特に、大
型のものでは全体を加熱することが困難なため、
1ケ月以上を要することも珍しくない。 本発明は真空断熱体の製造におけるこのような
問題を解決するものであつて、各種部材を加工し
組立てた後真空引きする真空構造体の製造方法に
おいて、真空部の形成に使用する部材を、加熱下
で真空による脱ガス処理を行なつた後、加工・組
立てを行なうことを特徴とする真空構造体の製造
方法である。即ち、素材状態の鋼材等の部材を、
好ましくは寸法切りをした後に、円筒形に加工す
る前に平板の状態で真空加熱炉中に入れ、加熱真
空脱ガス処理を施し、次いでこれを必要な形状、
例えば円筒状に加工し、製品として組立てたの
ち、従来通り真空引きを行なつて、真空構造体、
例えば真空断熱容器とするものである。 本発明の方法によれば、脱ガス処理をされる材
料は円筒形等に加工されていないので、加熱炉中
に一度に多量の材料を収容して脱ガス処理をする
ことができる。また、この様な前処理を施した素
材は、その後、加工・組立てに際して空気に触れ
ても、ガス成分の素材への侵入の深さが浅いの
で、組立後の真空引きに要する時間が著しく短縮
される。 部材の脱ガス処理は真空加熱炉によつて行な
う。加熱は通常85〜600℃で、脱ガス処理は炉内
の真空度が少くとも0.1トール、好ましくは10-3
トール以下に達するまで行なう。真空断熱層に充
填されるパーライト等の充填材も蓋付きドラム中
に入れた状態で同様に脱ガス処理される。 脱ガス処理の終了した後は、真空状態のまま冷
却し、冷却後乾燥ガスを導入して常圧とする。冷
却された部材は直ちに加工・組立て工程に移され
ることが好ましい。然しながら脱ガス処理された
部材が短時間に加工・組立てに付されない場合
は、相当期間の保存も可能である。この場合には
脱ガス処理された部材を乾燥雰囲気内で保存する
必要がある。組立て後の真空引きに影響の大きい
のは部材に吸着ないしは吸収された水分であつ
て、本発明によつて脱ガス処理された素材は水分
を排除した環境下に置くことによつて、1ケ月程
度の保存でもなお本発明の効果を期待し得る。保
存のための雰囲気の湿度は低いほどよいが、水分
量が1000ppm(容積)以下であることが好ましい。
また長期の保存では酸素の影響も生ずるので、乾
燥窒素下に保存すればなお良好である。パーライ
ト等の充填材は脱ガス処理後、容器を密閉するこ
とによつて有効に保存し得る。 なお真空構造体の組立ての際に熔接部にガスの
巻込みが生じ、組立て後の真空引きにはこの熔接
部からの脱ガスも問題になるが、組立てられた真
空構造体中の熔接部は限定されており、その大部
分は外部からの加熱が可能であり、それによつて
脱ガスを早めることができ、本発明の効果を致命
的に阻害することはない。 本発明によつて製造される真空構造体は、組立
て後の真空引きの時間が著しく短縮されるのみな
らず、部材の深部に含有されたガスが予め除去さ
れているので、完成後の真空度の低下が極めて少
なく、従つて通常真空部内に封入しておくゲツタ
ーの量も少なくすることができ、長期にわたつて
必要な真空度を維持することができる。 以下、本発明による真空構造体の製造方法を真
空断熱容器の製造に適用した実施例の効果を比較
例を挙げて説明する。 実施例及び比較例として製造された実験用真空
断熱容器は第1図に示す魔法瓶形の容器で、すべ
てステンレス(sus304)板で構成されており、用
いられたステンレス板の厚さはネツクチユーブ2
が0.15mm厚である以外はすべて2mm厚である。内
槽は内径D2=212.3mm、高さL3=465mmであり、外
槽は内径D3=263.4mm、高さL1=646mmである。ネ
ツクチユーブ2は直径D1=50.8mmで、長さL2
155mmであり、取付金具1および6でそれぞれ外
槽上部鏡板5および内槽上部鏡板7に取付けられ
ている。外槽胴板8と内槽胴板9との間隔D4
23.55mmである。外槽上部鏡板5には内径12mmの
真空引口3が取付けられており、その内側開口部
には金網4が張られている。この金網は本容器を
組立てる際に外槽下部鏡板11を残して他をすべ
て熔接してから、容器を倒立して内外槽間にパー
ライト13を充填するとき、パーライトが真空引
口より洩れないためのものであり、従つて、組立
て後の真空引の際にもパーライトの吸出しを防止
する。パーライトを充填した後、外槽下部鏡板を
熔接し、更にサポート12が取付けられる。パー
ライトは住友パーライト社製の真空断熱グレート
を用いた。 上記実験用真空断熱容器の材料を9台分用意
し、そのうち6台分の材料を真空加熱処理炉内で
脱ガス処理(以下、真空加熱処理という)に付
し、残り3台分はそのまま組立てた。 真空加熱処理炉は試料室600mmφ×1000mmの円
筒形で、断熱材はカオウール・ブランケツトを用
い、容量15KW、電熱加熱で、最高600℃まで温
度調節可能である。本実験においては炉内温度は
350℃に設定した。本実験で用いた排気設備は真
空機工(株)製VPC−250型真空排気ユニツトを用
い、その実効排気能力は120/sec、到達真空度
はコールドトラツプ併用時で7×10-7トールであ
る。 前記6台分の材料は、鏡板は市販のプレス品を
用い、所要部分に穴あけ加工したものを、胴板は
寸法切りした平板の状態で、また、ネツクチユー
ブはネツクチユーブ取付金具を上下共ネツクチユ
ーブに銀ろう付した状態で、パーライトはステン
レス製バツトに入れた状態で、それぞれ6台分全
部を前記真空加熱炉に収納した。 油回転ポンプを始動して、真空加熱炉の加熱ヒ
ーターに通電し、通電後55分で設定温度350℃に
達した。スタート後4時間10分で炉内圧が0.1ト
ールとなつたので拡散ポンプを始動し、スタート
後6時間45分で6×10-3トール(350℃)に達し
たので加熱を停止した。真空引きを続けて一晩放
置し、翌朝(スタート後20時間)には炉内温度が
55℃、真空度が3.5×10-6トールとなつていたの
で、乾燥窒素ガスを炉内に導入して炉の扉を開い
た。 このようにして得られた真空加熱処理材料のう
ち3台分の材料は厚手のポリエチレンシートで作
つた袋内にシリカゲル乾燥剤と共に封入し、木箱
に入れて保存し、20日間経過後開封して組立加工
に入つた。 真空加熱処理した他の3台分の材料は、炉から
取出されると直ちに、他の真空加熱処理を受けな
かつた3台分と共に組立加工された。 以上の各3台よりなる3群、即ち、真空加熱処
理後直ちに組立てたもの(A群)、真空加熱処理
後20日間保管後組立てたもの(B群)、および全
く真空加熱処理を行なわなかつたもの(C群)の
計9個の組立てられた容器は、それぞれ組立てら
れると直ちに第2図の如き装置で真空引きされ
た。 真空排気ユニツト21(真空機工(株)製VPC−
250型)は油回転ポンプ22および油拡散ポンプ
23よりなり、これに真空引きの主管24が接続
され、主管24には多数の枝管25が設けられて
いる。枝管25には真空弁26を介して真空ゴム
管27が取付けられており、このゴム管27に真
空引きすべき容器30が接続される。真空引きさ
れる容器は真空引き口3に電離真空計(日本真空
(株)製GI−TL2、測定範囲1×10-2〜1×10-7トー
ル)の検出部29を取付けた上、真空弁28を介
して前記枝管25の真空ゴム管27に接続され
る。なお、主管24にはピラニ真空計(日本真空
(株)製GP−ls型、測定範囲20〜0.001トール)の検
出部が取付けられている。 真空引きは真空度が5×10-5トールに達するま
で行ない、この真空度に達したら真空弁28を閉
じることにより真空封じ切りを行なう。但し真空
加熱処理を行なわなかつたC群の3台に対しては
真空引きで5×10-5トールに達した後も、それま
での真空引きに要した時間だけ更に真空引きを続
けた後真空封じ切りを行なつた。これは従来の真
空引きにおいては、予定真空度に達してから直ち
に封じ切つたのでは、真空封じ切り後直ちに真空
度の低下を生じて、実用価値のないことが経験上
明らかであるからである。 前記A、B、Cの3群の容器につきそれぞれ各
群の組立て終了後直ちにその群の3台全部を第2
図に示すように真空排気ユニツト21に接続して
同時に室温で真空引きした。真空引き終了後に真
空封じ切りを行なつた時点から30分、12時間、お
よび24時間の時点で各容器の真空度を検出部29
で電離真空計により測定した。また、その後に各
容器に5Kgの液体窒素を充填し、口を開放のまま
液体窒素の蒸発速度を測定した。この蒸発速度は
液体窒素が全量蒸発するまでの平均蒸発速度であ
る。 各群についての測定値は表に示すとおりであ
る。表から明かなように組立て材料に対して真空
加熱処理を行なわなかつたC群の容器において
は、真空引きにおいて真空度が5×10-5トールに
達するのに96時間を要したが、真空加熱処理され
た材料から組立てられたA群およびB群はそれぞ
れ8時間および25時間ですでに5×10-5トールの
真空度に達した。更に、C群については一般に行
なわれてい
The present invention relates to a method of manufacturing a vacuum structure such as a vacuum insulation container, and more particularly to a method of manufacturing a vacuum structure in which members for assembling the vacuum structure are pretreated and then processed and assembled. Vacuum structures such as insulated containers with a vacuum insulation layer, vacuum containers whose interiors are evacuated, or insulated panels that utilize vacuum insulation are manufactured by using materials such as steel plates and stainless steel plates as the structure to be manufactured. After cutting to size, processing into cylindrical or other shapes, and assembling by welding or the like, vacuuming is performed. In the case of a vacuum insulator, it is generally filled with pearlite or the like and then evacuated. However, this vacuuming process gradually releases water and gas components from the steel plate, stainless steel plate, or filled pearlite, so it takes an extremely long time to obtain the required degree of vacuum, and small However, it is difficult to heat the whole thing for a week, especially if it is a large one.
It is not uncommon for it to take more than a month. The present invention solves such problems in manufacturing vacuum insulation bodies, and in a method for manufacturing a vacuum structure in which various members are processed and assembled and then evacuated, the members used to form the vacuum section are This method of manufacturing a vacuum structure is characterized by performing processing and assembly after performing a degassing treatment using a vacuum under heating. In other words, members such as steel in the raw state,
Preferably, after cutting to size and before processing into a cylindrical shape, the flat plate is placed in a vacuum heating furnace, heated and vacuum degassed, and then shaped into the required shape.
For example, after processing into a cylindrical shape and assembling it as a product, vacuuming is performed as usual to create a vacuum structure.
For example, it is a vacuum insulated container. According to the method of the present invention, since the material to be degassed is not processed into a cylindrical shape or the like, a large amount of material can be housed in the heating furnace at one time and degassed. In addition, even if materials subjected to such pretreatment are exposed to air during processing and assembly, the depth of gas components entering the material is shallow, so the time required for vacuuming after assembly is significantly shortened. be done. The degassing treatment of the member is performed in a vacuum heating furnace. Heating is usually between 85 and 600°C, and degassing is carried out at a furnace vacuum of at least 0.1 Torr, preferably 10 -3
Continue until it reaches below the toll. A filler such as perlite that is filled in the vacuum insulation layer is also degassed in the same manner while being placed in a drum with a lid. After the degassing process is completed, it is cooled in a vacuum state, and after cooling, dry gas is introduced to bring the pressure to normal pressure. Preferably, the cooled member is immediately transferred to the processing and assembly process. However, if the degassed components are not processed or assembled within a short period of time, they can be stored for a considerable period of time. In this case, it is necessary to store the degassed member in a dry atmosphere. Moisture adsorbed or absorbed by the components has a large effect on vacuuming after assembly, and the material degassed by the present invention can be kept in an environment that excludes moisture for one month. Even with a certain degree of preservation, the effects of the present invention can still be expected. The lower the humidity of the atmosphere for storage, the better; however, it is preferable that the moisture content is 1000 ppm (by volume) or less.
Furthermore, since long-term storage may be affected by oxygen, it is better to store it under dry nitrogen. Fillers such as perlite can be effectively preserved by sealing the container after degassing. Note that when assembling a vacuum structure, gas entrainment occurs in the welded part, and gas degassing from the welded part becomes a problem when vacuuming after assembly, but the welded part in the assembled vacuum structure Most of them can be heated externally, which can speed up degassing and will not fatally impede the effects of the present invention. The vacuum structure manufactured by the present invention not only significantly shortens the evacuation time after assembly, but also reduces the vacuum level after completion because the gas contained in the deep part of the member is removed in advance. Therefore, the amount of getter normally sealed in the vacuum section can be reduced, and the necessary degree of vacuum can be maintained for a long period of time. Hereinafter, the effects of an example in which the method for manufacturing a vacuum structure according to the present invention is applied to manufacturing a vacuum insulation container will be explained by giving a comparative example. The experimental vacuum insulated containers manufactured as Examples and Comparative Examples were thermos flask-shaped containers shown in Figure 1, and were made entirely of stainless steel (sus304) plates, and the thickness of the stainless steel plates used was that of net tube 2.
All are 2mm thick except for 0.15mm thick. The inner tank has an inner diameter D 2 =212.3 mm and a height L 3 =465 mm, and the outer tank has an inner diameter D 3 =263.4 mm and a height L 1 =646 mm. Network tube 2 has a diameter D 1 = 50.8 mm and a length L 2 =
155 mm, and is attached to the outer tank upper end plate 5 and the inner tank upper end plate 7 with mounting brackets 1 and 6, respectively. The distance D 4 between the outer tank body plate 8 and the inner tank body plate 9 is
It is 23.55mm. A vacuum outlet 3 having an inner diameter of 12 mm is attached to the upper end plate 5 of the outer tank, and a wire mesh 4 is stretched over the inner opening thereof. This wire mesh is used to prevent perlite from leaking from the vacuum outlet when assembling the container, leaving the outer tank lower end plate 11 and welding everything else, then turning the container upside down and filling the space between the inner and outer tanks with pearlite 13. Therefore, the pearlite is prevented from being sucked out even when vacuuming is performed after assembly. After filling with pearlite, the lower end plate of the outer tank is welded, and the support 12 is further attached. As perlite, a vacuum insulation grate manufactured by Sumitomo Perlite Co., Ltd. was used. Materials for the above-mentioned experimental vacuum insulated containers were prepared for 9 units, and the materials for 6 of them were subjected to degassing treatment (hereinafter referred to as vacuum heat treatment) in a vacuum heat treatment furnace, and the remaining 3 units were assembled as they were. Ta. The vacuum heat treatment furnace has a cylindrical sample chamber with a diameter of 600 mm x 1000 mm, uses Kao wool blanket as insulation material, has a capacity of 15 KW, and can control the temperature up to a maximum of 600℃ using electric heating. In this experiment, the furnace temperature was
The temperature was set at 350°C. The exhaust equipment used in this experiment was a VPC-250 type vacuum exhaust unit manufactured by Shinku Kiko Co., Ltd., and its effective exhaust capacity was 120/sec, and the ultimate vacuum level was 7 × 10 -7 Torr when used with a cold trap. be. The materials for the above 6 units are as follows: The head plate is a commercially available pressed product with holes drilled in the required areas, the body plate is a flat plate cut to size, and the network tube is a silver plate with the network tube mounting brackets attached to both the top and bottom of the network tube. In the brazed state, the perlite was placed in stainless steel vats, and all six units of each were stored in the vacuum heating furnace. The oil rotary pump was started and electricity was applied to the heater of the vacuum heating furnace, and the set temperature was reached to 350°C in 55 minutes after electricity was applied. 4 hours and 10 minutes after the start, the pressure inside the furnace reached 0.1 torr, so the diffusion pump was started, and 6 hours and 45 minutes after the start, it reached 6 x 10 -3 torr (350°C), so heating was stopped. Continue vacuuming and leave it overnight, and the next morning (20 hours after starting) the temperature inside the furnace will drop.
Since the temperature was 55°C and the degree of vacuum was 3.5×10 -6 Torr, dry nitrogen gas was introduced into the furnace and the door of the furnace was opened. Three vacuum heat-treated materials obtained in this way were sealed together with a silica gel desiccant in a bag made of thick polyethylene sheet, stored in a wooden box, and opened after 20 days. I then started assembly. The other three vacuum-heat treated materials were immediately assembled from the furnace with the other three non-vacuum heat-treated materials. There are three groups of each of the above three units: those assembled immediately after vacuum heat treatment (group A), those assembled after storage for 20 days after vacuum heat treatment (group B), and those that were not vacuum heat treated at all. Immediately after each of the nine assembled containers (Group C) was assembled, it was evacuated using the apparatus shown in FIG. Vacuum exhaust unit 21 (VPC manufactured by Shinku Kikou Co., Ltd.)
250 type) consists of an oil rotary pump 22 and an oil diffusion pump 23, to which a main pipe 24 for evacuation is connected, and the main pipe 24 is provided with a large number of branch pipes 25. A vacuum rubber tube 27 is attached to the branch pipe 25 via a vacuum valve 26, and a container 30 to be evacuated is connected to this rubber tube 27. The container to be evacuated has an ionization vacuum gauge (Japan Vacuum) installed at the vacuum port 3.
GI-TL 2 (manufactured by Co., Ltd., measurement range 1 x 10 -2 to 1 x 10 -7 Torr) is installed with a detection unit 29 and connected to the vacuum rubber pipe 27 of the branch pipe 25 via a vacuum valve 28. be done. In addition, the main pipe 24 is equipped with a Pirani vacuum gauge (Japan Vacuum
A detection unit of GP-LS type manufactured by Co., Ltd., measuring range 20 to 0.001 torr) is installed. Evacuation is continued until the degree of vacuum reaches 5×10 −5 Torr, and when this degree of vacuum is reached, the vacuum valve 28 is closed to shut off the vacuum. However, for the three units in Group C that were not subjected to vacuum heat treatment, even after the vacuum reached 5 × 10 -5 Torr, the vacuum was continued for the time required for the previous vacuum, and then the vacuum was removed. I made a seal. This is because it is clear from experience that in conventional evacuation, if the vacuum is closed immediately after reaching the predetermined degree of vacuum, the degree of vacuum will immediately drop after the vacuum is shut off, which is of no practical value. Immediately after completing the assembly of each group of containers in the three groups A, B, and C, all three containers in that group are moved to the second container.
As shown in the figure, it was connected to a vacuum evacuation unit 21 and evacuated at room temperature at the same time. The detection unit 29 detects the degree of vacuum in each container at 30 minutes, 12 hours, and 24 hours after the vacuum sealing was completed after evacuation.
It was measured using an ionization vacuum gauge. After that, each container was filled with 5 kg of liquid nitrogen, and the evaporation rate of the liquid nitrogen was measured with the mouth open. This evaporation rate is the average evaporation rate until the entire amount of liquid nitrogen evaporates. Measured values for each group are shown in the table. As is clear from the table, it took 96 hours for the vacuum degree to reach 5 x 10 -5 Torr in the containers of group C, in which the assembled materials were not subjected to vacuum heat treatment, but Groups A and B assembled from the treated material already reached a vacuum of 5×10 -5 Torr after 8 and 25 hours, respectively. Furthermore, for group C, it is not generally done.

【表】【table】

【表】 る追加真空引きを行なつたにも拘らず、真空封じ
切り後30分で真空度の急激な低下が見られ、真空
計の検出限界の1×10-2トールをオーバースケー
ルしてしまつた。一方、A群、B群にあつてはこ
のような追加真空引きはないにも拘らず、真空封
じ切り後24時間でも充分な真空度を維持し、真空
度の低下が殆どないことが認められた。液体空気
を充填した時に示す真空度も、また液体空気の蒸
発速度の値からも、本発明のA群、B群の断熱性
はC群とは明らかに差があることが示されてい
る。 また、真空加熱処理した材料を乾燥雰囲気下で
20日間保管した後組立てたB群の容器についてい
えば、真空加熱処理した直後に組立てたA群の容
器に比較して、真空引き時間および真空封じ切り
後の真空度が若干劣る傾向があるが、C群よりは
遥かに優れており、特に液体空気の蒸発速度で示
されるように、実用的な断熱性能ではA群とほぼ
同等であり、本発明の方法において部材を真空加
熱による脱ガス処理に付することが極めて優れた
効果を有し、その効果は保存性のあることを示し
ている。 一般に、組立てられた容器の真空引きに際して
は、容器を加熱して行なうことが効果的であるが
大型容器については全体を加熱することは実際上
不可能な場合が多い。上記実験では、このような
大型容器を想定して真空引きに際しては、容器の
加熱を行なわなかつたものである。従来、大型容
器の真空引きには極めて長時間を要し、しかも真
空封じ切り後も真空度の低下が大きく、それを防
止するために多量のゲツターを真空部に予め封入
しておく必要があり、なおかつ、必要な真空度を
回復させるために度々再真空引きを行なう場合が
多かつた。 それに対して本発明の方法によつて組立てられ
た容器は、真空引きに際して容器の加熱ができな
い場合でも、短時間で必要な真空度が得られ、そ
の真空度はその後の低下が極めて少ない。 本発明の方法は、真空構造体の製造に当つて、
組立て加工前の素材の状態で真空加熱処理を行な
うため、一度に大量の材料を処理することがで
き、組立て後の真空引きの時間が大巾に短縮さ
れ、かつ、得られた製品の真空度の低下が極めて
小さいので、予め封入するゲツター量も不要か、
あるいは少量で充分であり、再真空引きの手間も
殆ど不要となる。即ち、本発明の方法は製作期間
を大巾に短縮するのみならず、それに要する労
力、エネルギーも大巾に節減され、しかも優れた
真空度の真空構造体を得ることのできる画期的な
方法である。
[Table] Despite additional vacuuming, the degree of vacuum decreased rapidly 30 minutes after the vacuum was shut off, overscaling the vacuum gauge's detection limit of 1×10 -2 Torr. Shimatsuta. On the other hand, in the case of Groups A and B, even though there was no such additional evacuation, a sufficient degree of vacuum was maintained even 24 hours after the vacuum was shut off, and it was observed that there was almost no decrease in the degree of vacuum. Ta. It is shown that the insulation properties of Groups A and B of the present invention are clearly different from Group C, both from the degree of vacuum exhibited when filled with liquid air and from the value of the evaporation rate of liquid air. In addition, vacuum heat-treated materials can be used in a dry atmosphere.
Regarding Group B containers assembled after being stored for 20 days, the evacuation time and degree of vacuum after vacuum sealing tend to be slightly inferior compared to Group A containers assembled immediately after vacuum heat treatment. , is far superior to Group C, and is almost equivalent to Group A in terms of practical insulation performance, especially as shown by the evaporation rate of liquid air. This shows that it has an extremely excellent effect when exposed to water, and that the effect is long-lasting. Generally, when vacuuming an assembled container, it is effective to heat the container, but in many cases it is practically impossible to heat the entire large container. In the above experiment, assuming such a large container, the container was not heated during evacuation. Conventionally, it took an extremely long time to vacuum a large container, and the degree of vacuum decreased significantly even after the vacuum was sealed. To prevent this, it was necessary to seal a large amount of getter in the vacuum section in advance. Moreover, in many cases, re-evacuation was often performed in order to restore the necessary degree of vacuum. On the other hand, with the container assembled by the method of the present invention, even if the container cannot be heated during evacuation, the necessary degree of vacuum can be obtained in a short time, and the degree of vacuum decreases very little thereafter. The method of the present invention includes the following steps in manufacturing a vacuum structure:
Since vacuum heat treatment is performed on the raw material before assembly, a large amount of material can be processed at once, the time required for vacuuming after assembly is greatly reduced, and the vacuum degree of the resulting product is improved. Since the decrease in the amount of getter is extremely small, there may be no need to pre-enclose the amount of getter.
Alternatively, a small amount is sufficient, and the effort of re-evacuating is almost unnecessary. In other words, the method of the present invention is an epoch-making method that not only greatly shortens the manufacturing period, but also greatly reduces the amount of labor and energy required for it, and can also provide a vacuum structure with an excellent degree of vacuum. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の効果を立証する実験に用いら
れた真空断熱容器の構造を示す断面図である。第
2図は実験に用いられた真空引き装置を示す概念
図である。図示された要部と符号との対応は次の
とおりである。 1,6……ネツクチユーブ取付金具、2……ネ
ツクチユーブ、3……真空引き口、4……金網、
5,7,10,11……鏡板、8……外槽胴板、
9……内槽胴板、12……サポート、13……パ
ーライト、21……真空排気ユニツト、22……
油回転ポンプ、23……油拡散ポンプ、24……
主管、25……枝管、26,28……真空弁、2
7……真空ゴム管、29……電離真空計検出部、
30……真空容器、31……ピラニ真空計検出
部。
FIG. 1 is a sectional view showing the structure of a vacuum insulation container used in experiments to prove the effects of the present invention. FIG. 2 is a conceptual diagram showing the evacuation device used in the experiment. The correspondence between the main parts illustrated and the symbols is as follows. 1, 6...Network tube mounting bracket, 2...Network tube, 3...Vacuum opening, 4...Wire mesh,
5, 7, 10, 11... End plate, 8... Outer tank body plate,
9... Inner tank body plate, 12... Support, 13... Pearlite, 21... Vacuum exhaust unit, 22...
Oil rotary pump, 23...Oil diffusion pump, 24...
Main pipe, 25... Branch pipe, 26, 28... Vacuum valve, 2
7... Vacuum rubber tube, 29... Ionization vacuum gauge detection section,
30... Vacuum container, 31... Pirani vacuum gauge detection section.

Claims (1)

【特許請求の範囲】 1 各種部材を加工し組立てた後真空引きする真
空構造体の製造方法において、真空部の形成に使
用する部材を、加熱下で真空による脱ガス処理を
行なつた後、加工・組立てを行なうことを特徴と
する真空構造体の製造方法。 2 部材を予め寸法切りして脱ガス処理を行な
う、特許請求の範囲第1項に記載の方法。 3 加熱を85〜600℃の温度で行なう、特許請求
の範囲第1項または第2項に記載の方法。 4 真空による脱ガス処理を、少なくとも0.1〜
0.001トールの真空度になるまで行なう、特許請
求の範囲第1項ないし第3項のいずれかに記載の
方法。 5 各種部材を加工し、組立てた後真空引きする
真空構造体の製造方法において、真空部の形成に
使用される部材が加熱下に真空による脱ガス処理
されたもので、かつ、水分が1000ppm(容積)以
下の雰囲気下に保管されたものであることを特徴
とする真空構造体の製造方法。
[Claims] 1. In a method for manufacturing a vacuum structure in which various members are processed and assembled and then evacuated, the members used to form the vacuum section are degassed by vacuum under heating, and then A method for manufacturing a vacuum structure, characterized by processing and assembling it. 2. The method according to claim 1, wherein the member is cut to size in advance and subjected to degassing treatment. 3. The method according to claim 1 or 2, wherein the heating is carried out at a temperature of 85 to 600°C. 4 Perform vacuum degassing treatment to at least 0.1~
The method according to any one of claims 1 to 3, which is carried out until a degree of vacuum of 0.001 Torr is achieved. 5. In a method for manufacturing a vacuum structure in which various parts are processed, assembled, and then evacuated, the parts used to form the vacuum section must be degassed under vacuum under heating, and have a moisture content of 1000 ppm ( 1. A method for manufacturing a vacuum structure, characterized in that the structure is stored in an atmosphere below (volume):
JP7736780A 1980-06-09 1980-06-09 Manufacturing method of vacuume structure Granted JPS576195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7736780A JPS576195A (en) 1980-06-09 1980-06-09 Manufacturing method of vacuume structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7736780A JPS576195A (en) 1980-06-09 1980-06-09 Manufacturing method of vacuume structure

Publications (2)

Publication Number Publication Date
JPS576195A JPS576195A (en) 1982-01-13
JPS6358319B2 true JPS6358319B2 (en) 1988-11-15

Family

ID=13631929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7736780A Granted JPS576195A (en) 1980-06-09 1980-06-09 Manufacturing method of vacuume structure

Country Status (1)

Country Link
JP (1) JPS576195A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145328U (en) * 1983-03-16 1984-09-28 タイガー魔法瓶株式会社 Metal vacuum double container
JPS6047430U (en) * 1983-09-07 1985-04-03 タイガー魔法瓶株式会社 Metal vacuum double container
JPS60116945U (en) * 1984-01-13 1985-08-07 タイガー魔法瓶株式会社 liquid container
JPS61290295A (en) * 1985-06-17 1986-12-20 株式会社クボタ Pre-treatment method of powdered body for vacuum heat-insulating material

Also Published As

Publication number Publication date
JPS576195A (en) 1982-01-13

Similar Documents

Publication Publication Date Title
US5826780A (en) Vacuum insulation panel and method for manufacturing
US9157230B2 (en) Vacuum insulated panels of arbitrary size and method for manufacturing the panels
JPH08159377A (en) Vacuum heat insulator
US5544490A (en) Device for maintaining a vacuum in a thermally insulating jacket and method of making such device
US2164143A (en) Insulation
CN104203372B (en) Gas absorption device and its ducted body of storage
US2939811A (en) Heat-insulating units for refrigerator cabinets
JPS586112B2 (en) Cryogenic storage container and manufacturing method
JPH0326320B2 (en)
JPS6358319B2 (en)
KR960700651A (en) Insulated electric heating pot and its manufacturing method
EP0468124A1 (en) Method of manufacturing multiple plate panel incorporating granular silica aerogels
KR100253841B1 (en) Termally insulating jacket and related process
US4667390A (en) Vacuum insulation system method of manufacture
JPH09506317A (en) Vacuum stabilizer and manufacturing method thereof
JPS6392897A (en) Isothermal structure
JPH0684798B2 (en) Method for accommodating adsorbent in the insulating space of a vacuum-insulated double-walled container for storing low-boiling liquefied gas and vacuum-insulated double-walled container
JPH09210290A (en) Method and device for manufacturing evacuated insulator
JP2694565B2 (en) Method for manufacturing vacuum insulation structure
US5911336A (en) Vacuum stabilizer and method for the manufacture thereof
JPH07269780A (en) Vacuum heat insulating body and manufacture thereof
JPH0592136A (en) Adsorbent packing bag and production thereof
JP2721996B2 (en) Vacuum generation method
JPH07293783A (en) Heat insulating material and heat insulating box using it
JPH08291965A (en) Vacuum thermal insulating material