JPS6355370B2 - - Google Patents

Info

Publication number
JPS6355370B2
JPS6355370B2 JP60037400A JP3740085A JPS6355370B2 JP S6355370 B2 JPS6355370 B2 JP S6355370B2 JP 60037400 A JP60037400 A JP 60037400A JP 3740085 A JP3740085 A JP 3740085A JP S6355370 B2 JPS6355370 B2 JP S6355370B2
Authority
JP
Japan
Prior art keywords
temperature
heat
steel
heat insulation
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60037400A
Other languages
Japanese (ja)
Other versions
JPS61199513A (en
Inventor
Osamu Terada
Shigetaka Uchida
Tsutomu Wada
Koichi Ozawa
Takumasa Terauchi
Isao Taniguchi
Akio Kodoi
Shunichi Sugyama
Masahiro Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP60037400A priority Critical patent/JPS61199513A/en
Publication of JPS61199513A publication Critical patent/JPS61199513A/en
Publication of JPS6355370B2 publication Critical patent/JPS6355370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/008Heat shields
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は高温鋼材用搬送テーブルに取付けら
れた保温カバーの改良に関する。 〔従来の技術〕 近年、鋼材の保有する熱エネルギを有効利用し
ようとする立場から、連続鋳造機と圧延機とを結
ぶ鋼材の直接熱間圧延の実用化が図られている。
この直接熱間圧延法では特に鋼材の温度降下をで
きる限り少なくすることが望まれるため、高温鋼
材を運ぶ搬送テーブルの回りには鋼材保温用の保
温カバーが取付けられている。 該保温カバーの構成は主としてセラミツクフア
イバ、耐火レンガ等の断熱材が多く使用されてい
る。これは高温鋼材の輻射熱により、保温カバー
自体を昇温し、昇温された保温カバーの輻射熱を
再び高温鋼材に返すことにより保温を行なうこと
をねらいとしている。 〔発明が解決しようとする問題点〕 しかし、以上のような構成では、鋼材が保温カ
バー内に長時間滞留する場合は問題がないが、該
鋼材が間欠的に搬送されたり、高速で搬送される
場合には、保温カバー自体が昇温する間がなく、
このような方法では大きな保温効果は期待できな
かつた。 本発明は以上の問題を解決するためなされたも
ので、保温カバーの材質、構成を変え、鋼材が間
欠的、又は高速で搬送される場合でも効率の良い
保温ができるようにしようとするものである。 〔問題点を解決しようとする手段〕 以下本発明につき説明する。 上述の搬送テーブルにおいて、材料搬送の極め
て間欠的且つ高速な場所では、通常材料の滞留時
間が10秒以内と非常に短かい。そのため、上述の
ようにセラミツクフアイバ等で構成される輻射型
保温カバーでは第2図に示すように十分な保温効
果が得られない。 一方、反射板等を用いて保温カバーの被保温材
側の表層を高反射率にしてやると、高温鋼材から
発せられた輻射熱を時間に関係なく反射して高温
鋼材に返すことが可能になる。そのため、同図で
示されるように10秒以内の材料滞留時間では、実
線で示された反射型保温カバーの方が、破線で示
される輻射型保温カバーに比べ保温特性に優れて
いる。従つて上記のような材料搬送の極めて間欠
的且つ高速な場所でも大きな保温効果を得ること
ができる。 しかしながら、通常この様な搬送ラインでは、
ロール冷却水の蒸発等により雰囲気が悪く、しか
も搬送される鋼材が1100℃前後の高温であるた
め、ライントラブルにより該ラインがストツプし
たときは、保温カバーの鋼材側表層面の温度は
900℃近くまであがり、高温腐蝕が進行しやすい。
従つて常時保温カバーの表層を高反射率に保持し
ておくことは困難である。特に保温カバー表層の
酸化による反射率低下が問題となる。 そこで本発明者等は高反射率を示し、且つ上記
のような高温悪雰囲気下でも耐高温腐蝕性に優れ
ており、更に高温での大気中酸化に安定な材質に
つき調べて、保温カバーの反射材として用いるこ
ととした。 まず、保温カバー反射面の表面性状は当然反射
率にも影響を与えるため、反射面は耐高温腐蝕性
に優れ、且つ上記雰囲気に含まれる成分下での侵
蝕深さも深くならない材質のものが好ましい。高
温腐蝕については、各種の腐蝕形態(高温酸化、
高温硫化、高温浸炭、高温窒化、高温ハロゲン腐
蝕及びHot Corrosion)があるが、該高温腐蝕に
対する抵抗性(耐高温腐蝕性)は一般に表層のオ
キサイド層が安定で且つバリヤ効果が十分である
程良い結果を示すと考えられている。下記第1表
は各元素が各高温腐蝕につきどのように反応する
かを示す。
[Industrial Field of Application] The present invention relates to an improvement of a heat-insulating cover attached to a conveying table for high-temperature steel materials. [Prior Art] In recent years, direct hot rolling of steel materials that connects a continuous casting machine and a rolling mill has been put into practical use in order to effectively utilize the thermal energy possessed by steel materials.
In this direct hot rolling method, it is particularly desirable to minimize the temperature drop of the steel material, so a heat insulating cover for keeping the steel material warm is attached around the conveyance table that transports the high temperature steel material. The heat insulating cover is mainly made of a heat insulating material such as ceramic fiber or refractory brick. The purpose of this is to raise the temperature of the thermal cover itself using the radiant heat of the high-temperature steel material, and then return the heated radiant heat from the thermal cover to the high-temperature steel material to maintain heat. [Problems to be Solved by the Invention] However, with the above configuration, there is no problem when the steel remains in the heat insulating cover for a long time, but when the steel is transported intermittently or at high speed. In this case, there is no time for the heat insulating cover itself to rise in temperature, and
A large heat retention effect could not be expected with such a method. The present invention was made to solve the above problems, and aims to change the material and structure of the heat insulation cover so that efficient heat retention can be achieved even when steel materials are transported intermittently or at high speed. be. [Means for solving the problems] The present invention will be explained below. In the above-mentioned conveying table, the residence time of the material is usually very short, less than 10 seconds, in places where the material is conveyed very intermittent and at high speed. Therefore, as shown in FIG. 2, a sufficient heat insulation effect cannot be obtained with the radiation type heat insulation cover made of ceramic fiber or the like as described above. On the other hand, if the surface layer of the insulation cover on the side of the heat-insulated material is made to have a high reflectance using a reflector or the like, it becomes possible to reflect the radiant heat emitted from the high-temperature steel material and return it to the high-temperature steel material regardless of the time. Therefore, as shown in the figure, when the material residence time is 10 seconds or less, the reflective heat-retaining cover shown by the solid line has better heat retention characteristics than the radiant-type heat-retaining cover shown by the broken line. Therefore, a great heat retention effect can be obtained even in places where material transport is extremely intermittent and at high speeds as described above. However, normally in such a conveyor line,
The atmosphere is bad due to evaporation of roll cooling water, etc., and the steel material being conveyed is at a high temperature of around 1100°C, so when the line is stopped due to line trouble, the temperature of the surface layer on the steel material side of the insulation cover will decrease.
The temperature reaches nearly 900℃, and high-temperature corrosion tends to progress.
Therefore, it is difficult to maintain the surface layer of the heat retaining cover at a high reflectance at all times. In particular, a decrease in reflectance due to oxidation of the surface layer of the heat insulation cover is a problem. Therefore, the present inventors investigated materials that exhibit high reflectance, have excellent high-temperature corrosion resistance even under the above-mentioned high-temperature adverse atmosphere, and are stable against atmospheric oxidation at high temperatures. I decided to use it as a material. First, since the surface quality of the reflective surface of the thermal cover naturally affects the reflectance, it is preferable that the reflective surface be made of a material that has excellent high-temperature corrosion resistance and will not become corroded deeply under the components contained in the above atmosphere. . Regarding high-temperature corrosion, various forms of corrosion (high-temperature oxidation,
High-temperature sulfidation, high-temperature carburization, high-temperature nitriding, high-temperature halogen corrosion, and hot corrosion), but the resistance to high-temperature corrosion (high-temperature corrosion resistance) is generally better as long as the surface oxide layer is stable and the barrier effect is sufficient. It is believed to show results. Table 1 below shows how each element reacts to each type of high temperature corrosion.

〔実施例〕〔Example〕

以上本発明の実施例につき説明する。 第4図は連続鋳造機100から圧延機101へ
と続く間に直接熱間圧延を行なう2HOT圧延機間
の設備の概要を示している。即ち、上記連続鋳造
機100から出てきた高温鋼材は、搬送テーブル
で圧延機101へ運ぶ間に該搬送テーブルの周り
を囲み#1乃至#10と続く保温カバー1により保
温せしめられる。 これらの保温カバー1は第5図に示すようなカ
バー開閉装置102により、搬送テーブルを構成
する各ローラ103の上に据え付けられるもので
ある。 #1乃至#10の保温カバー1は第1図aに示す
本発明の一実施例に係る保温カバーを使用した。
即ち、該保温カバー1はカバー母材10の被保温
鋼材側表層に30μのCrメツキ11を施する共に、
該母材10にステンレス側を被保温鋼材側に向け
た6.0mmの板厚のクラツド鋼板を用いた。更に同
じく#1乃至#10の保温カバー1として同図bに
示すようなカバー母材10に上記と同じくクラツ
ド鋼板を用い、その被保温鋼材側に20μのNiメツ
キ12をして更にその表層に30μのCrメツキ11
を施したものも使用した。 下記第4表に本発明者らが試験した構成別特性
比較結果を示す。
The embodiments of the present invention will be described above. FIG. 4 shows an outline of the equipment between two HOT rolling mills that directly performs hot rolling between the continuous casting machine 100 and the rolling mill 101. That is, while the high-temperature steel material coming out of the continuous casting machine 100 is transported to the rolling mill 101 by the transport table, it is kept warm by the heat insulating covers 1 that surround the transport table and continue from #1 to #10. These heat retaining covers 1 are installed on each roller 103 constituting the conveyance table by a cover opening/closing device 102 as shown in FIG. As the heat-insulating covers 1 of #1 to #10, heat-insulating covers according to an embodiment of the present invention shown in FIG. 1a were used.
That is, the heat insulating cover 1 has a 30 μm Cr plating 11 applied to the surface layer of the cover base material 10 on the side of the steel material to be insulated, and
As the base material 10, a 6.0 mm thick clad steel plate with the stainless steel side facing the steel material to be insulated was used. Furthermore, as the heat insulation covers 1 of #1 to #10, the cover base material 10 as shown in FIG. 30μ Cr plating 11
Also used were those treated with Table 4 below shows the results of comparison of characteristics by structure tested by the present inventors.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように本発明の構成による保
温カバーによれば、高温鋼材を高速且つ間欠的に
運ぶ搬送ラインでも鋼材の輻射熱をCrメツキ表
面で反射して該鋼材に返すことにより十分な保温
効果を達成することができるという優れた効果を
有しており、鋼材の直接熱間圧延の実施の際極め
て優れた効果を発揮することができる。
As explained above, according to the heat insulating cover configured according to the present invention, even on a conveyance line that transports high-temperature steel materials at high speed and intermittently, the radiant heat of the steel material is reflected on the Cr plating surface and returned to the steel material, thereby achieving sufficient heat retention effect. It has the excellent effect of being able to achieve the following, and can exhibit extremely excellent effects when performing direct hot rolling of steel materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは第1発明及び第2発明の実施例
を示す説明図、第2図は輻射型及び反射型保温カ
バーの保温特性を示すグラフ図、第3図は水冷ボ
ツクス型保温カバーの一例を示す概略図、第4図
は本発明の実施例を適用した直接熱間圧延設備の
概要を示す構成図、第5図は本実施例における保
温カバーとその開閉装置の構成を示す説明図であ
る。 図中、1は保温カバー、10は母材、11は
Crメツキ、12はNiメツキ、100は連続鋳造
機、101は圧延機、102はカバー開閉装置、
103はローラ、110は水冷ボツクス型保温カ
バーを各示す。
Figures 1a and b are explanatory diagrams showing embodiments of the first and second inventions, Figure 2 is a graph showing the heat retention characteristics of radiant and reflective heat covers, and Figure 3 is a water-cooled box type heat retainer cover. A schematic diagram showing an example, FIG. 4 is a configuration diagram showing an overview of a direct hot rolling facility to which an embodiment of the present invention is applied, and FIG. 5 is an explanation showing the configuration of a heat insulation cover and its opening/closing device in this embodiment. It is a diagram. In the figure, 1 is a heat insulation cover, 10 is a base material, and 11 is a
Cr plating, 12 Ni plating, 100 continuous casting machine, 101 rolling machine, 102 cover opening/closing device,
Reference numeral 103 indicates a roller, and reference numeral 110 indicates a water-cooled box type heat insulating cover.

Claims (1)

【特許請求の範囲】 1 高温鋼材用搬送テーブルに取付けられた保温
カバーにおいて、該保温カバー母材の被保温鋼材
側表層に5〜30μのCrメツキを施すと共に、保温
カバー母材に3.0〜6.0mm板厚のステンレス鋼板又
は、ステンレス側を被保温鋼材側に向けた同板厚
のクラツド鋼板を用いたことを特徴とする高温鋼
材用搬送テーブルに取付けられた保温カバー。 2 高温鋼材用搬送テーブルに取付けられた保温
カバーにおいて、該保温カバー母材の被保温鋼材
側の内層にNiメツキを施すと共に、その表層に
5〜30μのCrメツキを施し、更に前記保温カバー
母材に3.0〜6.0mm板厚のステンレス鋼板又は、ス
テンレス側を被保温鋼材側に向けた同板厚のクラ
ツド鋼板を用いたことを特徴とする高温鋼材用搬
送テーブルに取付けられた保温カバー。
[Scope of Claims] 1. In a heat insulation cover attached to a conveying table for high-temperature steel materials, the surface layer of the heat insulation cover base material on the side of the steel material to be insulated is plated with 5 to 30μ of Cr, and the heat insulation cover base material is plated with Cr of 3.0 to 6.0μ. A heat insulating cover attached to a transfer table for high-temperature steel material, characterized by using a stainless steel plate with a thickness of mm or a clad steel plate of the same thickness with the stainless steel side facing the steel material to be insulated. 2. In the heat insulation cover attached to the transfer table for high-temperature steel materials, Ni plating is applied to the inner layer of the heat insulation cover base material on the side of the steel material to be insulated, and 5 to 30μ Cr plating is applied to the surface layer. A heat insulating cover attached to a transfer table for high-temperature steel material, characterized in that a stainless steel plate with a thickness of 3.0 to 6.0 mm or a clad steel plate of the same thickness with the stainless steel side facing the steel material to be insulated is used as the material.
JP60037400A 1985-02-28 1985-02-28 Heat insulating cover attached to transporting table for high temperature steel stock Granted JPS61199513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60037400A JPS61199513A (en) 1985-02-28 1985-02-28 Heat insulating cover attached to transporting table for high temperature steel stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60037400A JPS61199513A (en) 1985-02-28 1985-02-28 Heat insulating cover attached to transporting table for high temperature steel stock

Publications (2)

Publication Number Publication Date
JPS61199513A JPS61199513A (en) 1986-09-04
JPS6355370B2 true JPS6355370B2 (en) 1988-11-02

Family

ID=12496475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60037400A Granted JPS61199513A (en) 1985-02-28 1985-02-28 Heat insulating cover attached to transporting table for high temperature steel stock

Country Status (1)

Country Link
JP (1) JPS61199513A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8690526B2 (en) 2008-12-18 2014-04-08 Openhydro Ip Limited Hydroelectric turbine with passive braking
US8864439B2 (en) 2006-07-14 2014-10-21 Openhydro Ip Limited Tidal flow hydroelectric turbine
US8872371B2 (en) 2009-04-17 2014-10-28 OpenHydro IP Liminted Enhanced method of controlling the output of a hydroelectric turbine generator
US8933598B2 (en) 2009-09-29 2015-01-13 Openhydro Ip Limited Hydroelectric turbine with coil cooling
US9054512B2 (en) 2008-12-19 2015-06-09 Openhydro Ip Limited Method of installing a hydroelectric turbine generator
US9234492B2 (en) 2010-12-23 2016-01-12 Openhydro Ip Limited Hydroelectric turbine testing method
US9236725B2 (en) 2009-09-29 2016-01-12 Openhydro Ip Limited Hydroelectric turbine cabling system
US9284709B2 (en) 2007-04-11 2016-03-15 Openhydro Group Limited Method of installing a hydroelectric turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717036B2 (en) * 1990-05-14 1995-03-01 新日本製鐵株式会社 Panel board for steel structure exterior with excellent corrosion resistance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8864439B2 (en) 2006-07-14 2014-10-21 Openhydro Ip Limited Tidal flow hydroelectric turbine
US9284709B2 (en) 2007-04-11 2016-03-15 Openhydro Group Limited Method of installing a hydroelectric turbine
US8690526B2 (en) 2008-12-18 2014-04-08 Openhydro Ip Limited Hydroelectric turbine with passive braking
US9054512B2 (en) 2008-12-19 2015-06-09 Openhydro Ip Limited Method of installing a hydroelectric turbine generator
US8872371B2 (en) 2009-04-17 2014-10-28 OpenHydro IP Liminted Enhanced method of controlling the output of a hydroelectric turbine generator
US8933598B2 (en) 2009-09-29 2015-01-13 Openhydro Ip Limited Hydroelectric turbine with coil cooling
US9236725B2 (en) 2009-09-29 2016-01-12 Openhydro Ip Limited Hydroelectric turbine cabling system
US9234492B2 (en) 2010-12-23 2016-01-12 Openhydro Ip Limited Hydroelectric turbine testing method

Also Published As

Publication number Publication date
JPS61199513A (en) 1986-09-04

Similar Documents

Publication Publication Date Title
JPS6355370B2 (en)
JPS6036856B2 (en) Insulated roll
JPH0133533B2 (en)
JPH01130802A (en) Method for continuously manufacturing thin sheet of hard-to-work material
JPS5939455A (en) Roll for conveying high-temperature slab
JPS6362588B2 (en)
JPH05123731A (en) Heat dissipation preventing method for high temperature steel stock end part
JP2936655B2 (en) Vacuum furnace
JPS58120731A (en) Continuous annealing furnace for electrical steel plate
JPS6040584Y2 (en) Hearth roller for heating furnace
JPS6334723Y2 (en)
JPH05125539A (en) Device for cooling steel strip in continuous steel strip plasma treating apparatus
US6023048A (en) Cooling furnaces for strip products
ARUTIUNOV et al. Properties of titanium at temperatures above 1000 K(Electroconductivity, thermal conductivity and diffusivity, specific heat and emissivities of Ti at 1000-1700 K)
JPS6261763A (en) Radiation heat reflecting and heat insulating method
JP2001123230A (en) Steel strip passing method in continuous heat treatment
JPS54133459A (en) Rolling method for thin clad sheet
JPS62151255A (en) Roll for conveying high temperature slab
JP2003213323A (en) Conveying roller, conveying tray and heat treatment furnace
JPS6142300Y2 (en)
SU476330A1 (en) The method of processing metals
SU1083052A1 (en) Heating furnace bottom beam
JPS62188724A (en) Roll for heat treating furnace
Ortmanns et al. Continuous Annealing--Some Plant Options
JPS5448628A (en) Manufacture of ferrite stainless steel pieces