JPS6355359A - Engine intake temperature controller - Google Patents

Engine intake temperature controller

Info

Publication number
JPS6355359A
JPS6355359A JP61196795A JP19679586A JPS6355359A JP S6355359 A JPS6355359 A JP S6355359A JP 61196795 A JP61196795 A JP 61196795A JP 19679586 A JP19679586 A JP 19679586A JP S6355359 A JPS6355359 A JP S6355359A
Authority
JP
Japan
Prior art keywords
exhaust
intake air
engine
heat exchange
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61196795A
Other languages
Japanese (ja)
Inventor
Toru Kosuda
小須田 通
Yasuo Kondo
近藤 靖男
Toshihiko Ito
猪頭 敏彦
Kenji Oshima
健司 大島
Tatsuyoshi Shiyuku
珠玖 達良
Shigetomi Kobayashi
小林 茂富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP61196795A priority Critical patent/JPS6355359A/en
Publication of JPS6355359A publication Critical patent/JPS6355359A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To enable quick temperature rise of engine cooling water, by interrupting intake air or exhaust gas flow into a heatexchange chamber in a heatexchanger for heating the intake air of diesel engine by the heat of exhaust gas when the engine load is heavy. CONSTITUTION:An intake tube 2 from an air-cleaner 5 is coupled to an intake manifold 11 of a diesel engine 1, and a heatexchanger 4 is coupled between an exhaust manifold 12 and an exhaust tube 3. The heatexchanger 4 is concen tric double tube type heatexchanger where its inner tube 41 is coupled between the exhaust manifold 12 and the exhaust tube 3 and an outer tube thereof 42 is coupled to a bypass tube 21 branched from the intake tube 2. A changeover valve 6 for selectively opening/closing the bypath 21 and the intake tube 2 is provided at the downstream side opening of the bypass tube 21. Under heavy load of engine, said changeover valve 6 is closed by means of a computer 7 based on detection values from an intake temperature sensor 81, a water temper ature sensor 82, an accelerator opening sensor 84, a rotation sensor 83, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はエンジン吸気温度の制御装置に関し、特にディ
ーぜルエンジンの暖房装置に使用して好適なエンジン吸
気温度の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an engine intake air temperature control device, and more particularly to an engine intake air temperature control device suitable for use in a diesel engine heating system.

[従来の技術] 現在ガソリンエンジン車の車両暖房は、安全性と効率性
の観点より温水式ヒータが主流となっている。温水式ヒ
ータはエンジンで熱交換して昇温した冷却水をヒータコ
アに供給して、全肉に導入する空気を加温するものであ
る。
[Prior Art] Currently, hot water type heaters are the mainstream for vehicle heating in gasoline engine vehicles from the viewpoints of safety and efficiency. The hot water type heater heats the air that is introduced into the whole meat by supplying cooling water that has been heated through heat exchange with the engine to the heater core.

ところで、ディーゼルエンジンにおいては吸入空気量は
負荷の軽重に無関係にほぼ一定であり、出力調整は専ら
供給燃料量の増減により行なっている。したがって、軽
負荷運転時には燃費が良いことともあいまってシリンダ
内温度が充分高くなら゛ず、冷却水の加温が不充分とな
る。
Incidentally, in a diesel engine, the amount of intake air is almost constant regardless of the lightness or weight of the load, and output adjustment is performed exclusively by increasing or decreasing the amount of supplied fuel. Therefore, during light load operation, the temperature inside the cylinder does not become high enough, even though fuel efficiency is good, and the cooling water is insufficiently heated.

そこで、バス等の大型車両では、従来、燃料の一部を燃
焼せしめて室内導入空気を加温する燃焼式ヒータを設け
ている。
Therefore, large vehicles such as buses have conventionally been equipped with a combustion heater that burns a portion of the fuel to heat the air introduced into the room.

[発明が解決しようとする問題点] しかしながら、上記燃焼式ヒータは燃費が悪化するのは
もちろん、コストも高く、しかも小型車に搭載するのは
困難であるという間m点がある。
[Problems to be Solved by the Invention] However, the above-mentioned combustion type heater has disadvantages in that it not only has poor fuel efficiency but also is expensive and is difficult to install in a small car.

本発明はかかる問題点に鑑み、特にディーゼルエンジン
車において、安価で、燃費の悪化もなく、かつ小型車に
も設置可能な温水式ヒータを実現できるエンジン吸気温
度の制御311装置を提供することを目的とする。
In view of these problems, it is an object of the present invention to provide an engine intake air temperature control device that is inexpensive, does not cause deterioration in fuel efficiency, and can be installed in small cars, especially in diesel engine cars. shall be.

[問題点を解決するための手段] 本発明の構成を第1図で説明すると、制御装置は熱交換
器4と制御手段7を具備している。熱交5換器4はディ
ーゼルエンジン1への吸気と該ディーゼルエンジン1か
らの排気を熱交換室を介して流通せしめて、排気熱によ
り上記吸気を加温する。
[Means for Solving the Problems] The configuration of the present invention will be explained with reference to FIG. 1. The control device includes a heat exchanger 4 and a control means 7. The heat exchanger 4 causes the intake air to the diesel engine 1 and the exhaust air from the diesel engine 1 to flow through a heat exchange chamber, and warms the intake air with exhaust heat.

制御手段7は上記ディーゼルエンジン1の負荷が小さい
場合には上記吸気および排気を上記熱交換室へ流通せし
め、ディーゼルエンジン1の負荷が大きい場合には上記
吸気および排気のいずれかの熱交換器への流通を停止す
る。
The control means 7 causes the intake air and exhaust air to flow to the heat exchange chamber when the load of the diesel engine 1 is small, and causes the intake air and exhaust air to flow to one of the heat exchangers when the load of the diesel engine 1 is large. distribution will be stopped.

[効果] 上記構成の制御装置によれば、エンジン冷却水の昇温が
不充分になり勝ちなディーゼルエンジンの低負荷運転時
にはエンジン吸気を熱交換器に流通せしめ、該熱交換器
を流通するエンジン排気の熱により上記吸気を加温する
ようになしたから、エンジンのシリンダ内温度は充分に
上昇し、これによりエンジン冷却水の速やかな加温がな
される。
[Effect] According to the control device having the above configuration, engine intake air is made to flow through the heat exchanger during low-load operation of the diesel engine where the temperature of the engine cooling water is likely to be insufficiently raised, and the engine air flowing through the heat exchanger is Since the intake air is heated by the heat of the exhaust gas, the internal temperature of the cylinder of the engine is sufficiently increased, thereby quickly heating the engine cooling water.

かくして、エンジンの低負荷運転時にも充分な車両暖房
が可能となる。
In this way, sufficient vehicle heating is possible even when the engine is operating at a low load.

本発明は車外に放出していた排気熱の一部を利用するも
のであるから、暖房用に燃料を消費することはなく、燃
費を悪化廿しめることがない。
Since the present invention utilizes a portion of the exhaust heat that was released outside the vehicle, fuel is not consumed for heating, and fuel efficiency does not deteriorate.

また、本発明はディーゼルエンジン近傍に熱交換器を設
けるのみで小型かつ安価に実現できる。
Further, the present invention can be realized in a small size and at low cost simply by providing a heat exchanger near the diesel engine.

[実施例] 第1図において、ディーゼルエンジン1の吸気マニホー
ルド11にはエアクリーナ5より至る吸気管2が接続さ
れ、一方、排気マニホールド12には排気管3との間に
熱交換器4が接続しである。
[Example] In FIG. 1, an intake pipe 2 leading from an air cleaner 5 is connected to an intake manifold 11 of a diesel engine 1, and a heat exchanger 4 is connected between an exhaust manifold 12 and an exhaust pipe 3. It is.

熱交換器4は同心二車管よりなる公知の向流型熱交換器
であり、その内管41が上記排気マニホールド12と排
気管3の間に接続しである。吸気管2からは途中バイパ
ス管21が分岐せしめており、該バスパス管21は上記
熱交換器4の外管42に接続されてこれと連通し、再び
吸気管2の下流側に戻っている。そして、上記バイパス
管21の下流側開口にはこれと吸気管2を選択的に開閉
する切換弁6が設けである。
The heat exchanger 4 is a known countercurrent type heat exchanger consisting of two concentric tubes, and an inner tube 41 thereof is connected between the exhaust manifold 12 and the exhaust pipe 3. A bypass pipe 21 branches off from the intake pipe 2 midway, and the bus pass pipe 21 is connected to and communicates with the outer pipe 42 of the heat exchanger 4, and returns to the downstream side of the intake pipe 2 again. A switching valve 6 for selectively opening and closing the bypass pipe 21 and the intake pipe 2 is provided at the downstream opening of the bypass pipe 21.

上記切換弁6はアクチュエータ61により作動せしめら
れ、該アクチュエータ61には制御手段たるコンピュー
タ7により開閉信号が送出される。
The switching valve 6 is operated by an actuator 61, and an opening/closing signal is sent to the actuator 61 by a computer 7 serving as a control means.

図中、81は吸気温センサ、82は水温センサ、83は
エンジン回転数検出センサ、84はアクセル開度センサ
、85は大気温センサであり、これら各センサは上記コ
ンピュータ7に入力接続されている。またコンピュータ
7には回路の排気温センサが接続しである。なお、上記
エンジン回転数センサ83はエンジンと一体回転する歯
車831の回転歯の通過を検出するものでおる。
In the figure, 81 is an intake air temperature sensor, 82 is a water temperature sensor, 83 is an engine rotation speed detection sensor, 84 is an accelerator opening sensor, and 85 is an atmospheric temperature sensor, and each of these sensors is input and connected to the computer 7. . Further, an exhaust temperature sensor of the circuit is connected to the computer 7. The engine rotation speed sensor 83 detects the passage of rotating teeth of a gear 831 that rotates integrally with the engine.

切換弁6が開放状態(図示の状態)ではバイパス管21
が導通し、吸気は熱交換器4の内管41と外管42間を
通ってエンジン1に供給される。
When the switching valve 6 is in the open state (the state shown in the figure), the bypass pipe 21
conducts, and intake air is supplied to the engine 1 through between the inner pipe 41 and the outer pipe 42 of the heat exchanger 4.

吸気は上記熱交換器4を流通する際に内管41内を流通
する高温の排気により加温される。切換弁6の閉鎖時に
は吸気はバイパス管21を通ることなくエンジン1に直
接供給される。
When the intake air flows through the heat exchanger 4, it is heated by high-temperature exhaust gas flowing through the inner pipe 41. When the switching valve 6 is closed, intake air is directly supplied to the engine 1 without passing through the bypass pipe 21.

加温された吸気が供給されるとエンジン1のシリンダ内
温度は急速に上昇する。エンジン冷却水に伝達される熱
但はシリング内温度と冷却水温度の差にほぼ比例するか
ら、冷却水は急速に温められる。
When the heated intake air is supplied, the temperature inside the cylinder of the engine 1 rises rapidly. Since the heat transferred to the engine coolant is approximately proportional to the difference between the internal temperature of the cylinder and the coolant temperature, the coolant is rapidly heated.

コンピュータ7は以下の各条件が全て満足された場合に
のみ切換弁6を開放する。
The computer 7 opens the switching valve 6 only when all of the following conditions are satisfied.

(1)エンジン負荷が設定値以下 (2)エンジン回転数が設定値以下 (3)冷却水温が上限値以下 (4)排気温か上限値以下 (5)吸気温が上限値以下 エンジン負荷の大小はアクセル開度により検出する。エ
ンジン負荷が小さい場合には前述の如く冷却水の加温が
不充分となるため切換弁6を開放する。一方、エンジン
負荷が大きい場合には吸気の加熱を行なうと、熱膨張に
よりエンジン1に供給される吸気量(重量)は減少する
から未燃分が増加し、出力の低下および排出スモーク濃
度の上昇を生じる。そこでこの場合には切換弁6を閉じ
る。 エンジン回転数については、回転数が増大すると
これに伴なってシリンダ内温度は急上昇するから、吸気
を加熱することなく充分な冷却水温の上昇が図られ、し
たがって、この場合にも切換弁6は閉じられる。
(1) Engine load is below the set value (2) Engine speed is below the set value (3) Cooling water temperature is below the upper limit (4) Exhaust temperature is below the upper limit (5) Intake temperature is below the upper limit Engine load size is detected by the accelerator opening. When the engine load is small, the switching valve 6 is opened because heating of the cooling water is insufficient as described above. On the other hand, when the engine load is large and the intake air is heated, the amount (weight) of the intake air supplied to the engine 1 decreases due to thermal expansion, so unburned air increases, resulting in a decrease in output and an increase in exhaust smoke concentration. occurs. Therefore, in this case, the switching valve 6 is closed. Regarding the engine speed, as the engine speed increases, the temperature inside the cylinder rises rapidly, so the cooling water temperature is sufficiently increased without heating the intake air. Therefore, in this case as well, the switching valve 6 Closed.

上記条件(3)〜(5)はいずれも安全上の観点より設
けるものでおり、冷却水温が高い場合にはエンジンのオ
ーバヒートを防止するために、また排気温があまりに高
い場合には吸気音の過昇を防止するためにそれぞれ切換
弁6を閉じ、ざらに吸気音が過度に上昇した場合にも切
換弁6を閉じる。
Conditions (3) to (5) above are all established from a safety perspective, to prevent engine overheating when the cooling water temperature is high, and to reduce intake noise when the exhaust temperature is too high. The switching valves 6 are closed in order to prevent excessive rise, and the switching valves 6 are also closed when the intake noise rises excessively.

上8i実施例において、大気温を検知したのは大気温が
非常に低い場合には冷却水温の上昇が遅いので、切換弁
6を開放する上記条件(1)、(2)の各設定値を上方
へ移動して切換弁6の開放時間を長くするものである。
In the above 8i embodiment, the atmospheric temperature was detected because the cooling water temperature rises slowly when the atmospheric temperature is very low. It moves upward to lengthen the opening time of the switching valve 6.

以上の如く、本発明によれば、車外に放出していた排気
熱の一部を吸気へ還流せしめて冷却水を加温するから、
暖房用に燃料を消費することがなく、投首容易で小型か
つ安価である。
As described above, according to the present invention, part of the exhaust heat released outside the vehicle is returned to the intake air to warm the cooling water.
It does not consume fuel for heating, is easy to hang, is small, and is inexpensive.

なお、上記実施例において、切換弁6の開放条件のうち
(2)〜(5〉特には必要としない。
In the above embodiment, conditions (2) to (5) for opening the switching valve 6 are not particularly required.

第2図には本発明の他の実施例を示す。図において、熱
交換器4は排気管3に設けたバイパス管31に取付けて
おる。すなわら、熱交換器4は内管41が上記バイパス
管31に接続してあり、外管42には吸気管2が連通し
ている。そして、切換弁6はバイパス管31の上流側開
口に設けである。
FIG. 2 shows another embodiment of the invention. In the figure, the heat exchanger 4 is attached to a bypass pipe 31 provided in the exhaust pipe 3. That is, in the heat exchanger 4, an inner pipe 41 is connected to the bypass pipe 31, and an outer pipe 42 is connected to the intake pipe 2. The switching valve 6 is provided at the upstream opening of the bypass pipe 31.

本実施例の如く熱交換器4内への排気の流通を制御する
ようになしても上記実施例と同様の効果がある。
Even if the flow of exhaust gas into the heat exchanger 4 is controlled as in this embodiment, the same effects as in the above embodiment can be obtained.

上記各実施例では公知の二重管熱交換器を使用したが、
以下に説明する熱交換器によればより効率的な熱交換が
なされる。
In each of the above embodiments, a known double tube heat exchanger was used.
The heat exchanger described below allows more efficient heat exchange.

第3図、第4図には本発明の第3の実施例を示し、熱交
換器4は断面長円形のハウジング401を有する。ハウ
ジング401の前後端は縮径してそれぞれ排気流入口4
02および排気流出口403としである。ハウジング4
01内には前後の仕切壁404.405に区画されて熱
交換室406が形成され、上記両仕切壁404.405
間には熱交換室406を貫通して多数の排気流通管40
7が設りて必る。熱交換室406には吸気流入口408
および吸気流出口409が設【づられ、また熱交換u4
06内には両側壁より交互に他方の側壁近くに至る隔壁
410が設けである。
3 and 4 show a third embodiment of the present invention, in which the heat exchanger 4 has a housing 401 having an oval cross section. The front and rear ends of the housing 401 are reduced in diameter to form exhaust inlet ports 4, respectively.
02 and exhaust outlet 403. housing 4
01 is divided into front and rear partition walls 404 and 405 to form a heat exchange chamber 406, and both partition walls 404 and 405
A large number of exhaust flow pipes 40 pass through the heat exchange chamber 406 in between.
7 is required. The heat exchange chamber 406 has an intake inlet 408
and an air intake outlet 409 are provided, and a heat exchanger u4
06 is provided with partition walls 410 that alternately extend from both side walls to near the other side wall.

かかる構造の熱交換器によれば、高温の排気が流れる多
数の排気流通管407の外面を吸気が蛇行して流れるこ
とにより効率の良い加熱が行なわれる。
According to the heat exchanger having such a structure, efficient heating is performed by the intake air flowing in a meandering manner on the outer surfaces of the large number of exhaust gas flow pipes 407 through which high-temperature exhaust gas flows.

第5図、第6図には本発明の第4の実施例を示す。断面
長円形のハウジング401内には前後の仕切壁404.
405に区画されて熱交換室406が形成され、該熱交
換室406よりハウジング401外へ排気流入口402
と排気流出口403が突出している。ハウジング401
の端面と各仕切壁404.405間には吸気流入口40
8および吸気流出口409が開口しており、上記両仕切
壁404.405間には熱交換室406を貫通して多数
の吸気流通管411が設けである。
5 and 6 show a fourth embodiment of the present invention. Inside the housing 401, which has an oval cross section, there are front and rear partition walls 404.
A heat exchange chamber 406 is formed by dividing the heat exchange chamber 405 into an exhaust inlet 402 from the heat exchange chamber 406 to the outside of the housing 401.
The exhaust outlet 403 protrudes. Housing 401
An intake inlet 40 is provided between the end face of the partition wall 404 and each partition wall 404, 405.
8 and an air intake outlet 409 are open, and a large number of air intake flow pipes 411 are provided between the partition walls 404 and 405, passing through the heat exchange chamber 406.

排気は流入口402より熱交換室406内に流入し、流
通管411を流通する吸気を効率的に加熱する。この時
、熱交換室406は拡張型消音器として作用し、排気音
を低減せしめる。
The exhaust gas flows into the heat exchange chamber 406 through the inlet 402 and efficiently heats the intake air flowing through the flow pipe 411. At this time, the heat exchange chamber 406 acts as an expanded muffler to reduce exhaust noise.

第7図は本発明の第5の実施例を示す。図において、切
換弁6は真空切換弁62に連結されたアクチュエータ6
1により作動せしめられる。すなわち、アクチュエータ
61はダイヤフラム611とセットスプリング612を
有し、真空切換弁62により選択的に背圧室613に供
給される真空圧ないし大気圧に応じてダイヤフラム61
1が変形移動して、切換弁6を作動せしめる。本実施例
にcI3いては熱交換器4は排気マニホールドを兼ねて
いる。その詳細を第8図に示す。
FIG. 7 shows a fifth embodiment of the invention. In the figure, the switching valve 6 is an actuator 6 connected to a vacuum switching valve 62.
1 is activated. That is, the actuator 61 has a diaphragm 611 and a set spring 612.
1 deforms and moves to operate the switching valve 6. In this embodiment, the heat exchanger 4 in cI3 also serves as an exhaust manifold. The details are shown in FIG.

図において、ハウジング401内には上側仕切壁404
A、404Bと下側仕切壁405間にそれぞれ熱交換室
406A、406Bが形成され、熱交換室406Aの上
部には吸気流入口408が設けられるとともに熱交換室
406Bの上部には吸気流出口409が設けである。そ
して、上記両熱交換至406A、406Bはこれらの下
部で連通している。
In the figure, there is an upper partition wall 404 inside the housing 401.
Heat exchange chambers 406A and 406B are formed between A and 404B and the lower partition wall 405, respectively, and an intake inlet 408 is provided in the upper part of the heat exchange chamber 406A, and an intake outlet 409 is provided in the upper part of the heat exchange chamber 406B. is the provision. The two heat exchangers 406A and 406B communicate with each other at their lower portions.

上記仕切壁404A、404Bと仕切壁405間には熱
交換室406A、406Bを貫通して多数の排気流通管
407が設けである。そして、仕切壁404Aの上方に
はエンジンの第1シリンダおよび第2シリンダに至る排
気流入口412A、412Bが設けられ、仕切壁404
Bの上方には第3シリンダおよび第4シリンダに至る排
気流入口4120,412Dが設けである。仕切壁40
5の下方には排気流出口403が設けられ、これに排気
管3(第7図)が接続される。
A large number of exhaust gas flow pipes 407 are provided between the partition walls 404A, 404B and the partition wall 405, passing through the heat exchange chambers 406A, 406B. Exhaust inflow ports 412A and 412B leading to the first and second cylinders of the engine are provided above the partition wall 404A.
Exhaust inflow ports 4120 and 412D leading to the third and fourth cylinders are provided above B. Partition wall 40
An exhaust outlet 403 is provided below the exhaust pipe 5, to which the exhaust pipe 3 (FIG. 7) is connected.

吸気は二つの熱交換室4.06A、406Bを流通する
間に排気流通管407を流れる高温の排気により効率的
に加熱される。本実施例の熱交換器4は排気マニホール
ドを兼ねているから、設置スペースを節約してエンジン
に直接取付けることができ、しかもバイパス管21(第
7図)の配管長を短くできるから、加温後の吸気の温度
低下も小さくなる。
The intake air is efficiently heated by the high temperature exhaust gas flowing through the exhaust flow pipe 407 while flowing through the two heat exchange chambers 4.06A and 406B. Since the heat exchanger 4 of this embodiment also serves as an exhaust manifold, it can be installed directly to the engine, saving installation space.Moreover, the length of the bypass pipe 21 (Fig. 7) can be shortened, so that the heat exchanger 4 can be heated. The subsequent temperature drop in the intake air also becomes smaller.

第9図、第10図には本発明の第6の実施例を示し、排
気マニホールドを兼ねる熱交換器の他の例を示ヂ。図に
おいて、ハウジング401内には仕切壁404.405
間に熱交換室406が形成され、該熱交換室406内に
は多数の吸気流通管411が貫設されるとともに、熱交
換室406の両側壁からは交互に他の側壁近くに至る隔
壁410が設けである。そして、熱交換室406の上部
には第1ないし第4のシリンダに至る排気流入口412
 A 、  412 B 、  412 C、412D
 が設【プられ、熱交換室の下部には排気流出口403
が設けである。
9 and 10 show a sixth embodiment of the present invention, and show another example of a heat exchanger that also serves as an exhaust manifold. In the figure, there are partition walls 404 and 405 in the housing 401.
A heat exchange chamber 406 is formed in between, and a large number of intake air flow pipes 411 are installed inside the heat exchange chamber 406, and partition walls 410 alternately extend from both side walls of the heat exchange chamber 406 to near other side walls. is the provision. In the upper part of the heat exchange chamber 406, an exhaust inlet 412 leading to the first to fourth cylinders is provided.
A, 412B, 412C, 412D
An exhaust outlet 403 is installed at the bottom of the heat exchange chamber.
is the provision.

高温の排気は熱交換室406内を蛇行して流通し、この
間に吸気流通管411内を流れる吸気を効率良く加温す
る。本実施例によっても上記第5の゛実施例と同様の効
果がある。
The high-temperature exhaust gas flows in a meandering manner within the heat exchange chamber 406, and efficiently heats the intake air flowing through the intake air distribution pipe 411 during this time. This embodiment also has the same effects as the fifth embodiment.

第11図ないし第13図には本発明の第7の実施例を示
し、第11図は熱交換器の縦断面図、第12図はその横
断面図、第13図は第11図の水平断面図であり、排気
マニホールドを兼ねる熱交換器の伯の実施例を示す。熱
交換器の形式としていわゆる隔板式熱交換器を使用した
もので、構成として、ハウジング401内には仕切壁4
04.405間に熱交換室406が形成され、該熱交換
室406内には複数の断面長円形の吸気流通管420が
置設されている(第12図)。吸気流通管420内部に
はフィン421が管壁に接触するように設けである。又
、各吸気流通管420の間の排気流路には吸気流通管4
20の外壁どうしに接触するようにフィン422が設け
ておる(第13図)。この実施例では排気流路方向と吸
気流路方向は直交しておりいわゆる直交流式のものであ
る。
11 to 13 show a seventh embodiment of the present invention, in which FIG. 11 is a longitudinal cross-sectional view of the heat exchanger, FIG. 12 is a cross-sectional view thereof, and FIG. 13 is a horizontal cross-sectional view of the heat exchanger. FIG. 2 is a cross-sectional view showing an embodiment of a heat exchanger that also serves as an exhaust manifold. This heat exchanger uses a so-called diaphragm type heat exchanger, and has a partition wall 4 inside the housing 401.
A heat exchange chamber 406 is formed between 04 and 405, and a plurality of intake flow pipes 420 having an oval cross section are installed within the heat exchange chamber 406 (FIG. 12). Fins 421 are provided inside the intake air flow pipe 420 so as to contact the pipe wall. In addition, an intake flow pipe 4 is provided in the exhaust flow path between each intake flow pipe 420.
Fins 422 are provided so as to contact the outer walls of 20 (FIG. 13). In this embodiment, the direction of the exhaust flow path and the direction of the intake flow path are perpendicular to each other, which is a so-called cross-flow type.

そして、熱交換室406の上部には第1ないし第4のシ
リンダに至る排気流入口412(412A〜412D>
が設けられ、熱交換室の下部には排気流出口403が設
けである。
In the upper part of the heat exchange chamber 406, there are exhaust inlets 412 (412A to 412D) leading to the first to fourth cylinders.
An exhaust outlet 403 is provided at the bottom of the heat exchange chamber.

高温の排気は熱交換室406内の吸気流通管420外壁
間に設けたフィン422の隙間を流れる。
The high-temperature exhaust gas flows through the gaps between the fins 422 provided between the outer walls of the intake air flow pipe 420 in the heat exchange chamber 406 .

一方、吸気流通管420の内部では吸気が吸気流通管4
20内部のフィン421の隙間を流れるため、高温の排
気ガスにて吸気を効率良く加温することができ、熱交換
器を小型化することができる。
On the other hand, inside the intake air circulation pipe 420, the intake air
Since the exhaust gas flows through the gaps between the fins 421 inside the exhaust gas 20, the intake air can be efficiently heated with high-temperature exhaust gas, and the heat exchanger can be downsized.

尚本実施例では、直交流式の熱交換器としたが、並流、
向流式の熱交換器としても良い。又、排気側のフィン4
21を無くしても良い。
In this example, a cross-flow type heat exchanger was used, but parallel flow,
A countercurrent heat exchanger may also be used. Also, the fin 4 on the exhaust side
21 may be omitted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す制御装置の全体構
成図、第2図は本発明の第2の実施例を示す制御装置の
全体構成図、第3図、第4図は本発明の第3の実施例を
示し、第3図は熱交換器の縦断面図、第4図はその横断
面で、第3図のIV−1v線m1面図、第5図、第6図
は本発明の第4の実施例を示し、第5図は熱交換器の縦
断面図、第6図はその横断面図で、第5図のVl −V
l線断面図、第7図、第8図は本発明の第5の実施例を
示し、第7図は制御装置の全体構成図、第8図は熱交換
器の縦断面図、第9図、第10図は本発明の第6の実施
例を示し、第9図は熱交換器の縦断面図、第10図はそ
の横断面図で第9図のX−X線断面図、第11図ないし
第13図は本発明の第7の実施例を示し、第11図は熱
交換器の縦断面、第12図はその横断面図、第13図は
その水平横断面で、第11図のxm−xm線断面図であ
る。 1・・・・・・ディーゼルエンジン 2・・・・・・吸気管 3・・・・・・排気管 4・・・・・・熱交換器 41・・・・・・内管 42・・・・・・外管 406.406A、406B・・・・・・熱交換室40
7・・・・・・排気流通管 410・・・・・・隔壁 411・・・・・・吸気流通管 412.412A、412B、412C1412D・・
・・・・排気流入口 第1図 83′1 第2図 第3図 第4図 第5図 第6回 第7図 第8図 第9図 第10図 第11図 第12図 第13図
FIG. 1 is an overall configuration diagram of a control device showing a first embodiment of the present invention, FIG. 2 is an overall configuration diagram of a control device showing a second embodiment of the invention, and FIGS. 3 and 4 are Embodiment 3 of the present invention is shown, FIG. 3 is a longitudinal sectional view of the heat exchanger, FIG. The figure shows a fourth embodiment of the present invention, FIG. 5 is a longitudinal cross-sectional view of the heat exchanger, and FIG. 6 is a cross-sectional view thereof.
7 and 8 show a fifth embodiment of the present invention, FIG. 7 is an overall configuration diagram of a control device, FIG. 8 is a vertical sectional view of a heat exchanger, and FIG. , FIG. 10 shows a sixth embodiment of the present invention, FIG. 9 is a longitudinal cross-sectional view of the heat exchanger, FIG. 10 is a cross-sectional view thereof, and FIG. 11 to 13 show a seventh embodiment of the present invention, in which FIG. 11 is a longitudinal cross-section of a heat exchanger, FIG. 12 is a cross-sectional view thereof, and FIG. 13 is a horizontal cross-section thereof. It is a sectional view taken along the line xm-xm. 1... Diesel engine 2... Intake pipe 3... Exhaust pipe 4... Heat exchanger 41... Inner pipe 42... ... Outer pipe 406.406A, 406B ... Heat exchange chamber 40
7... Exhaust flow pipe 410... Partition wall 411... Intake flow pipe 412.412A, 412B, 412C1412D...
...Exhaust inflow port Fig. 1 83'1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13

Claims (7)

【特許請求の範囲】[Claims] (1)ディーゼルエンジンへの吸気と該ディーゼルエン
ジンからの排気を熱交換壁を介して流通せしめて、排気
熱により上記吸気を加温する熱交換器と、上記ディーゼ
ルエンジンの負荷が小さい場合には上記吸気および排気
を上記熱交換室へ流通せしめ、ディーゼルエンジンの負
荷が大きい場合には上記吸気および排気のいずれかの熱
交換室への流通を停止する制御手段とを具備するエンジ
ン吸気温度の制御装置。
(1) A heat exchanger that circulates intake air to a diesel engine and exhaust air from the diesel engine through a heat exchange wall and heats the intake air with exhaust heat, and when the load of the diesel engine is small, Engine intake air temperature control comprising control means for causing the intake air and exhaust air to flow to the heat exchange chamber, and for stopping the flow of the intake air and exhaust air to either of the heat exchange chambers when the load of the diesel engine is large. Device.
(2)上記熱交換器は多数の排気流通管が貫通する熱交
換室を有し、熱交換室内にはこれを流通する上記吸気を
蛇行せしめる隔壁を設けた特許請求の範囲第1項記載の
エンジン吸気温度の制御装置。
(2) The heat exchanger has a heat exchange chamber through which a large number of exhaust gas flow pipes pass, and a partition wall is provided in the heat exchange chamber to cause the intake air flowing through the heat exchange chamber to meander. Control device for engine intake air temperature.
(3)上記熱交換器は多数の吸気流通管が貫通する熱交
換室を有し、該熱交換室はこれに接続される排気管に比
して径を大きくなして、拡張型消音器とした特許請求の
範囲第1項記載のエンジン吸気温度の制御装置。
(3) The heat exchanger has a heat exchange chamber through which a large number of intake air flow pipes pass, and the heat exchange chamber has a diameter larger than that of the exhaust pipe connected to it, so that it can be used as an expandable silencer. An engine intake air temperature control device according to claim 1.
(4)上記熱交換器は上記ディーゼルエンジンの各シリ
ンダの排気管を集合連結する排気流入口を有して、上記
熱交換器と排気マニホールドを一体となした特許請求の
範囲第1項記載のエンジン吸気温度の制御装置。
(4) The heat exchanger has an exhaust inlet that collectively connects the exhaust pipes of each cylinder of the diesel engine, so that the heat exchanger and the exhaust manifold are integrated. Control device for engine intake air temperature.
(5)上記熱交換器は排気流入口に連通する多数の排気
流通管が貫通する熱交換室を具備している特許請求の範
囲第4項記載のエンジン吸気温度の制御装置。
(5) The engine intake temperature control device according to claim 4, wherein the heat exchanger includes a heat exchange chamber through which a large number of exhaust gas flow pipes communicate with the exhaust gas inlet.
(6)上記熱交換器を隔板式熱交換器となした特許請求
の範囲第1項あるいは第4項記載のエンジン吸気温度の
制御装置。
(6) The engine intake air temperature control device according to claim 1 or 4, wherein the heat exchanger is a diaphragm heat exchanger.
(7)上記熱交換器は上記ディーゼルエンジンの各シリ
ンダの排気管を集合連結する排気流入口と、該排気流入
口に連通し、かつ排気を蛇行流通せしめる隔壁を設けた
熱交換室とを具備し、上記熱交換室に吸気流通管を貫設
した特許請求の範囲第1項記載のエンジン吸気温度の制
御装置。
(7) The heat exchanger includes an exhaust inlet that collectively connects the exhaust pipes of each cylinder of the diesel engine, and a heat exchange chamber that communicates with the exhaust inlet and is provided with a partition wall that allows the exhaust to flow in a meandering manner. An engine intake air temperature control device according to claim 1, wherein an intake air flow pipe is provided through the heat exchange chamber.
JP61196795A 1986-08-22 1986-08-22 Engine intake temperature controller Pending JPS6355359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61196795A JPS6355359A (en) 1986-08-22 1986-08-22 Engine intake temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61196795A JPS6355359A (en) 1986-08-22 1986-08-22 Engine intake temperature controller

Publications (1)

Publication Number Publication Date
JPS6355359A true JPS6355359A (en) 1988-03-09

Family

ID=16363774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61196795A Pending JPS6355359A (en) 1986-08-22 1986-08-22 Engine intake temperature controller

Country Status (1)

Country Link
JP (1) JPS6355359A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016538475A (en) * 2013-09-03 2016-12-08 フランク ジャスパー ピーティーワイ リミテッド Fuel systems and components
CN113417777A (en) * 2021-07-31 2021-09-21 重庆长安汽车股份有限公司 Engine air inlet heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016538475A (en) * 2013-09-03 2016-12-08 フランク ジャスパー ピーティーワイ リミテッド Fuel systems and components
CN113417777A (en) * 2021-07-31 2021-09-21 重庆长安汽车股份有限公司 Engine air inlet heating device

Similar Documents

Publication Publication Date Title
US5205484A (en) Cooling system for a water cooled internal combustion engine for vehicle having an air conditioning apparatus
JP2000186639A (en) Intake manifold of engine air having built-in intermediate cooler
EP0911503B1 (en) Internal combustion engine having combustion heater
BRPI0620525A2 (en) egr exhaust three way heat exchanger system
JP3185581B2 (en) Internal combustion engine cooling system
US6926074B2 (en) Exhaust gas cooler
JP2000045770A (en) Internal combustion engine having burning heater
JP3558016B2 (en) Internal combustion engine having a combustion heater
CN201318232Y (en) Engine fuel carburetor
CN202280504U (en) Engine cooling system
JPS6355359A (en) Engine intake temperature controller
CN111255595B (en) Engine system and vehicle with low pressure EGR
JPS61149790A (en) Heat exchanger for vehicle mounted heater
JP2005016477A (en) Exhaust heat recovery device for internal combustion engine
JPH0849606A (en) Exhaust gas refluxing device
CN114991932A (en) Vehicle and engine thereof
JP2705389B2 (en) Engine cooling system
JPH0338412Y2 (en)
JPH0310337Y2 (en)
JPH051616Y2 (en)
JPH025059Y2 (en)
JPH0526253Y2 (en)
JPS60259521A (en) Heating device for vehicle
JPS6012725Y2 (en) Combustion type heater for vehicle heating system
JP2734695B2 (en) Internal combustion engine cooling system