JPS6352087B2 - - Google Patents

Info

Publication number
JPS6352087B2
JPS6352087B2 JP58191546A JP19154683A JPS6352087B2 JP S6352087 B2 JPS6352087 B2 JP S6352087B2 JP 58191546 A JP58191546 A JP 58191546A JP 19154683 A JP19154683 A JP 19154683A JP S6352087 B2 JPS6352087 B2 JP S6352087B2
Authority
JP
Japan
Prior art keywords
less
deep drawing
rolled steel
steel sheet
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58191546A
Other languages
Japanese (ja)
Other versions
JPS6082617A (en
Inventor
Takashi Obara
Susumu Sato
Minoru Nishida
Norisuke Takasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19154683A priority Critical patent/JPS6082617A/en
Publication of JPS6082617A publication Critical patent/JPS6082617A/en
Publication of JPS6352087B2 publication Critical patent/JPS6352087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は深絞り用高張力冷延鋼板の製造方法に
係り、特に耐2次加工脆性がすぐれ、かつ亜鉛含
有塗料等の焼付処理後もストレツチヤーストレイ
ンの発生しない深絞り用鋼板の製造方法に関す
る。 最近自動車の燃比、安全性、耐久性を改善する
ため高張力鋼板が必要とされている。従来自動車
用鋼板は主として低炭素鋼を素材として箱焼鈍法
により製造されていたが、近年連続焼鈍技術の発
達にともないTi、Nb等の炭窒化物形成元素を含
んだ極低炭素鋼を素材とした深絞り用鋼板が連続
焼鈍法によつて製造されるようになつてきた。そ
のほか更にこのような鋼に強化元素であるPを
0.020%以上添加した深絞り用高張力鋼板も開発
されてきた。 しかし、Pを添加し、かつ絞り性を向上させる
ことを目的として炭窒化物形成元素を添加した鋼
は、しばしば2次加工脆性と呼ばれる深絞り加工
後の著しい脆化現象が観察される。このような2
次加工脆化を防止するためには、時効指数が2〜
3Kgf/mm2程度になるよう固溶Cを鋼板中に残留
させればよいことが知られている。 一方、自動車用鋼板に対する耐食性向上の要求
はますます強くなる傾向にあり、その解決法の一
つとして亜鉛含有塗料等を塗装焼付処理し、その
後プレス加工する方法が実施されている。その
際、鋼板は270℃以上に約1分間加熱処理される。
しかし、上記の如く2次加工脆性を防止するため
時効指数を2Kgf/mm2以上にした鋼板を焼付塗装
処理後のプレス加工に供するとストレツチヤース
トレインが発生する。 そのため、2次加工脆性を起こさず、かつ上記
の如き焼付塗装処理等を行つても全くストレツチ
ヤーストレインが発生しない完全非時効の深絞り
用高張力冷延鋼板の開発が強く要望されていた。 本発明の目的は、上記従来技術に対する要望に
こたえ、耐2次加工脆性、耐時効性が共にすぐれ
た深絞り用高張力冷延鋼板の製造方法を提供する
にある。 本発明の要旨とするところは次のとおりであ
る。すなわち、重量比にて、C:0.004%以下 Si:1.0%以下 Mn:1.0%以下 P:0.020〜0.120% Al:0.01〜0.1% を含み、更にTi、Nbの中から選ばれた1種また
は2種を合計で0.1%以下を含有し、残部がFeお
よび、不可避的不純物より成る鋼を連続焼鈍する
深絞り用高張力冷延鋼板の製造方法において、熱
延時の巻取温度CT(℃)と焼鈍後の鋼板に残留す
る固溶元素CおよびNの鉄に対する原子比の総量
X(ppm)との関係が下記(1)式を満足することを
特徴とする深絞り用高張力冷延鋼板の製造方法で
ある。 CT/150−3.67≦logX≦1 ……(1) 本発明はPおよび炭窒化物形成元素を含有する
極低炭素鋼において、2次加工脆化を防止し、か
つ完全非時効化するために、巻取温度と侵入型固
溶元素の量を特定範囲に限定したのである。 本発明の深絞り用高張力冷延鋼板の化学成分の
限定理由について説明する。 C: Cは0.004%を越えて含有すると、深絞り性を
劣化させるので上限を0.004%とした。 Si: Siは強度を増加させる成分として有効である
が、1.0%を越すと表面処理皮膜特にZn,Alその
他合金溶融めつき金属の密着性が劣化するので上
限を1.0%に限定した。 Mn: Mnは不純物のSによる熱間割れを防止すると
共に強度を増加させる成分として有効であるが、
1.0%を越すと脱ガス作業が困難になり、かつ合
金コストが高くなるので1.0%以下に限定した。 P: Pは主要な強化成分であるが、0.020%未満で
はその効果が不十分であり、0.120%を越すと鋼
板が硬質となりすぎるので、0.020〜0.120%の範
囲に限定した。 Al: Alは脱酸元素として添加されるが、0.01%未満
では脱酸が不安定となるので下限を0.01%とし、
0.10%を越して添加することは脱酸上必要がない
ので上限を0.10%とした。 Ti、Nb: Ti、Nbはいずれも炭窒化物形成元素であり、
C、Nを固定し時効性を改善し、材質を向上させ
る作用を有するが、単独もしくは合計で0.1%を
越すとその効果が飽和し、また鋼板の表面性状を
劣化させるので単独もしくは合計の上限を0.1%
に限定した。 次に上記の限定成分を有する冷延鋼板におけ
る、本発明で最も重要な2次加工脆性およびスト
レツチヤーストレインの発生におよぼす巻取温度
と固溶C、N量との関係について説明する。 本発明者らは多くの実験を行つた結果、調質圧
延後、亜鉛含有塗料等の鋼板焼付塗装処理時に鋼
板が270℃程度に短時間加熱されてもストレツチ
ヤーストレインが実用上問題がない程度に軽減さ
れるためには、鋼板に固溶しているC、N等の元
素の総量Xが鉄に対する原子比で10ppm以下にす
る必要のあることを見いだした。すなわち、
logX≦1(ここでXは原子比で単位ppm)と限定
する必要がある。特に全くストレツチヤーストレ
インを発生させないようにするためには固溶元素
の鉄に対する原子比の総和を5ppm以下にするの
が望ましい。 一方、NbやTiを添加した極低炭素鋼を連続焼
鈍することによつて製造された深絞り用鋼板の2
次加工脆性については、従来PとCの含有量のみ
が検討されている。例えば特公昭55−58333にて
開示されている技術のように連続焼鈍した極低炭
素鋼においては、2次加工脆性を完全に防止する
ためには固溶Cが10ppm以上必要であることが知
られている。更にPが高い高強力鋼板の場合の2
次加工脆性を防止するためには、より多くの固溶
Cが必要であるとされている。しかし、当然のこ
とながら脆化防止のために固溶Cを10ppm以上に
すると時効劣化を生じ、到底焼付塗装処理後のプ
レス加工には耐えられない。 本発明者らは、2次加工脆化の原因および発生
傾向について多くの実験を重ね検討した結果、巻
取温度を低くすれば非常に微量の固溶元素の存在
によつて、2次加工脆化が完全に防止できるとの
知見を得た。すなわち、C、N等の固溶元素の固
溶量が異なる種々の極低炭素鋼を巻取温度を変え
て巻取り、その熱延鋼帯に冷延、連続焼鈍を施
し、製造した冷延鋼板の2次加工脆化およびスト
レツチヤーストレインの発生を調査した。結果を
巻取温度CT(℃)と鋼板に残留する固溶元素C+
Nの鉄に対する原子比との関係で添付図面に示し
た。なお図中の記号は第1表のとおりである。
The present invention relates to a method for manufacturing a high-strength cold-rolled steel sheet for deep drawing, and in particular, a method for manufacturing a steel sheet for deep drawing that has excellent resistance to secondary work brittleness and does not generate stretcher strain even after baking treatment with zinc-containing paint, etc. Regarding. Recently, high-strength steel sheets are needed to improve fuel efficiency, safety, and durability of automobiles. Conventionally, steel sheets for automobiles were mainly manufactured using low-carbon steel as a material using the box annealing method, but in recent years, with the development of continuous annealing technology, ultra-low carbon steel containing carbonitride-forming elements such as Ti and Nb has been used as a material. Steel sheets for deep drawing have come to be manufactured by continuous annealing. In addition, P, a strengthening element, is added to such steel.
High-strength steel sheets for deep drawing with additions of 0.020% or more have also been developed. However, in steels to which P is added and carbonitride-forming elements are added for the purpose of improving drawability, a remarkable embrittlement phenomenon called secondary work embrittlement is often observed after deep drawing. 2 like this
In order to prevent subsequent processing embrittlement, the aging index must be between 2 and 2.
It is known that it is sufficient to allow solid solution C to remain in the steel sheet to a level of about 3 kgf/mm 2 . On the other hand, the demand for improved corrosion resistance of automotive steel sheets tends to become stronger, and one of the solutions to this problem is to apply a paint-baking treatment with zinc-containing paint, etc., and then press-work the steel sheets. At that time, the steel plate is heated to 270°C or higher for about 1 minute.
However, as mentioned above, when a steel plate with an aging index of 2 Kgf/mm 2 or more is subjected to press processing after baking treatment to prevent secondary work brittleness, stretcher strain occurs. Therefore, there has been a strong demand for the development of a completely non-aging, high-strength cold-rolled steel sheet for deep drawing that does not cause secondary work brittleness and does not generate any stretcher strain even when subjected to the above-mentioned baking coating treatment. . An object of the present invention is to provide a method for producing a high-strength cold-rolled steel sheet for deep drawing that has excellent resistance to secondary work brittleness and aging resistance, in response to the above-mentioned demands for the prior art. The gist of the present invention is as follows. That is, in terms of weight ratio, it contains C: 0.004% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.020~0.120%, Al: 0.01~0.1%, and further contains one selected from Ti, Nb, or In a method for manufacturing high-strength cold-rolled steel sheets for deep drawing, in which steel containing 0.1% or less of these two types in total and the balance consisting of Fe and unavoidable impurities is continuously annealed, the coiling temperature CT (°C) during hot rolling is A high-strength cold-rolled steel sheet for deep drawing, characterized in that the relationship between the total amount X (ppm) of the atomic ratio of solid solution elements C and N to iron remaining in the steel sheet after annealing satisfies the following formula (1). This is a manufacturing method. CT/150−3.67 ≦log The winding temperature and the amount of interstitial solid solution elements were limited to specific ranges. The reason for limiting the chemical composition of the high-strength cold-rolled steel sheet for deep drawing of the present invention will be explained. C: If C exceeds 0.004%, deep drawability deteriorates, so the upper limit was set at 0.004%. Si: Si is effective as a component that increases strength, but if it exceeds 1.0%, the adhesion of the surface treatment film, especially to hot-dipped metals such as Zn, Al, and other alloys, deteriorates, so the upper limit was limited to 1.0%. Mn: Mn is effective as a component that prevents hot cracking due to impurity S and increases strength.
If it exceeds 1.0%, degassing becomes difficult and the alloy cost increases, so it was limited to 1.0% or less. P: P is a main reinforcing component, but its effect is insufficient if it is less than 0.020%, and the steel plate becomes too hard if it exceeds 0.120%, so it is limited to a range of 0.020 to 0.120%. Al: Al is added as a deoxidizing element, but if it is less than 0.01%, deoxidizing becomes unstable, so the lower limit is set at 0.01%.
Since adding more than 0.10% is not necessary for deoxidation, the upper limit was set at 0.10%. Ti, Nb: Both Ti and Nb are carbonitride forming elements,
It has the effect of fixing C and N, improving aging properties, and improving material quality, but if the amount exceeds 0.1% alone or in total, the effect will be saturated and the surface quality of the steel plate will deteriorate, so the upper limit for each alone or in total should be set. 0.1%
limited to. Next, a description will be given of the relationship between the coiling temperature and the amount of solid solute C and N, which affects the occurrence of secondary work brittleness and stretcher strain, which are most important in the present invention, in a cold rolled steel sheet having the above-mentioned limiting components. As a result of many experiments, the inventors have found that stretcher strain does not cause any practical problems even if the steel sheet is heated to about 270℃ for a short period of time during baking treatment with zinc-containing paint after temper rolling. It has been found that in order to reduce this to a certain degree, the total amount X of elements such as C and N dissolved in the steel sheet needs to be 10 ppm or less in terms of atomic ratio to iron. That is,
It is necessary to limit logX≦1 (here, X is an atomic ratio in units of ppm). In particular, in order to prevent any stretcher strain from occurring, it is desirable that the total atomic ratio of solid solution elements to iron be 5 ppm or less. On the other hand, two deep drawing steel sheets manufactured by continuous annealing of ultra-low carbon steel added with Nb and Ti.
Regarding subsequent processing embrittlement, only the contents of P and C have been studied so far. For example, it is known that in continuously annealed ultra-low carbon steel as disclosed in Japanese Patent Publication No. 55-58333, 10 ppm or more of solid solution C is required to completely prevent secondary work brittleness. It is being 2 in the case of high-strength steel plate with even higher P
It is said that more solid solution C is required to prevent subsequent processing embrittlement. However, as a matter of course, if the solute C content is increased to 10 ppm or more in order to prevent embrittlement, aging deterioration will occur, and the material will not be able to withstand press processing after the baking coating process. The present inventors conducted many experiments and investigated the causes and tendency of secondary work embrittlement, and found that if the winding temperature is lowered, secondary work embrittlement will be embrittled due to the presence of very small amounts of solid solution elements. We obtained the knowledge that this can be completely prevented. That is, cold-rolled steel strips are produced by winding various ultra-low carbon steels with different amounts of solid-solute elements such as C and N at different coiling temperatures, and then subjecting the resulting hot-rolled steel strips to cold rolling and continuous annealing. The occurrence of secondary processing embrittlement and stretcher strain in steel sheets was investigated. The results are shown as the coiling temperature CT (℃) and the solid solution element C+ remaining in the steel sheet.
The relationship with the atomic ratio of N to iron is shown in the attached drawing. The symbols in the figure are as shown in Table 1.

【表】 添付図面において、斜線部の範囲は2次加工脆
化およびストレツチヤーストレインが発生してい
ない。 この理由については必ずしも明確ではないが、
Pの偏析は高温巻取後に鋼板が高温に保持される
ことにより助長され、その影響が冷間圧延、再結
晶焼鈍の過程を経ても強く残存することに起因す
ると考えられる。 添付図面の結果から、本発明においては熱延時
の巻取温度CT(℃)と焼鈍後の鋼板に残留する固
溶元素CおよびNの鉄に対する原子比の総量X
(ppm)との関係が下記(1)式を満足する如く限定
した。 CT/150−3.67≦log1≦1 ……(1) 実施例 第2表に示す化学成分を有する供試材を底吹転
炉で溶製し、真空脱ガス処理を施して連続鋳造し
た鋼片を温度1100℃に加熱し、同じく第2表に示
す熱延条件で熱間圧延し、続いて酸洗した後、圧
下率75%の冷延を施して板厚0.7mmとし、次に均
熱温度800℃にて連続焼鈍を行い、平均冷却速度
15℃/secで冷却した。この焼鈍冷延板を
[Table] In the attached drawings, secondary work embrittlement and stretcher strain do not occur in the shaded area. The reason for this is not necessarily clear, but
This is thought to be due to the fact that the segregation of P is promoted by keeping the steel plate at a high temperature after high-temperature coiling, and its influence strongly remains even after the processes of cold rolling and recrystallization annealing. From the results shown in the attached drawings, in the present invention, the coiling temperature CT (°C) during hot rolling and the total atomic ratio X of solid solution elements C and N to iron remaining in the steel sheet after annealing are determined.
(ppm) is limited so that the relationship with (ppm) satisfies the following equation (1). CT/150−3.67≦log1≦1 ……(1) Example A steel billet made by melting a test material having the chemical composition shown in Table 2 in a bottom blowing converter, subjecting it to vacuum degassing treatment, and continuously casting it. was heated to a temperature of 1100°C, hot rolled under the hot rolling conditions shown in Table 2, followed by pickling, cold rolled at a reduction rate of 75% to a thickness of 0.7 mm, and then soaked. Continuous annealing at a temperature of 800℃, average cooling rate
Cooled at 15°C/sec. This annealed cold rolled sheet

【表】 圧下率0.8%で調質圧延し、その後、亜鉛含有塗
装を施し、270℃で1分間の熱処理を行つた。こ
れらの製品板の機械試験値、固溶元素量および深
絞り加工性を調査し、その結果を第3表に示し
た。なお、供試材No.1、4、5は熱延の巻取温度
が高く、また供試材No.11は炭窒化物形成元素を含
有せず、いずれも本発明の限定条件を満足しない
比較例である。 第3表から、本発明例は比較例と異なり、いず
れも亜鉛含有塗装処理後もストレツチヤーストレ
インが全く発生せず2次加工割れを生じないこと
がわかる。 本発明は上記実施例からも明らかな如く、連続
焼鈍する深絞り用高張力冷延鋼板の成分を限定
し、熱延時の巻取温度と焼鈍後の鋼板に残留する
固溶元素CおよびNの鉄に対する原子比の総量X
との関係を限定することにより、耐2次加工脆性
にすぐれ、かつ亜鉛含有塗料等の焼付処理後もス
トレツチヤーストレインを発生しない深絞り用高
張力冷延鋼板を製造することができた。
[Table] Skin pass rolling was carried out at a rolling reduction of 0.8%, followed by zinc-containing coating and heat treatment at 270°C for 1 minute. The mechanical test values, solute element content, and deep drawing workability of these product plates were investigated, and the results are shown in Table 3. In addition, sample materials No. 1, 4, and 5 have high hot-rolling temperatures, and sample material No. 11 does not contain carbonitride-forming elements, and none of them satisfy the limiting conditions of the present invention. This is a comparative example. From Table 3, it can be seen that, unlike the comparative examples, the invention examples do not exhibit any stretcher strain or secondary processing cracks even after the zinc-containing coating treatment. As is clear from the above examples, the present invention limits the components of a high-strength cold-rolled steel sheet for deep drawing that is continuously annealed. Total amount of atomic ratio to iron
By limiting the relationship between the two, it was possible to produce a high-strength cold-rolled steel sheet for deep drawing that has excellent resistance to secondary work brittleness and does not generate stretcher strain even after baking treatment with zinc-containing paint or the like.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は巻取温度と固溶元素CおよびNの鉄
に対する原子比の総量が冷延鋼板の2次加工脆化
およびストレツチヤーストレイン発生におよぼす
影響を示した関係図である。
The attached drawing is a relationship diagram showing the influence of the coiling temperature and the total atomic ratio of solid solution elements C and N to iron on secondary work embrittlement and stretcher strain generation of a cold rolled steel sheet.

Claims (1)

【特許請求の範囲】 1 重量比にて、C:0.004%以下 Si:1.0%以下 Mn:1.0%以下 P:0.020〜0.120% Al:0.01〜0.1% を含み、更にTi,Nbの中から選ばれた1種また
は2種を合計で0.1%以下を含有し、残部がFeお
よび、不可避的不純物より成る鋼を連続焼鈍する
深絞り用高張力冷延鋼板の製造方法において、熱
延時の巻取温度CT(℃)と焼鈍後の鋼板に残留す
る固溶元素CおよびNの鉄に対する原子比の総量
X(ppm)との関係が下記(1)式を満足することを
特徴とする深絞り用高張力冷延鋼板の製造方法。 CT/150−3.67logX1 ……(1)
[Claims] 1 Contains, in weight ratio, C: 0.004% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.020 to 0.120%, Al: 0.01 to 0.1%, and further selected from Ti and Nb. In a method for manufacturing high-strength cold-rolled steel sheets for deep drawing, which involves continuous annealing of steel containing 0.1% or less of one or two of the above-mentioned types, with the balance consisting of Fe and unavoidable impurities, the coiling during hot rolling is For deep drawing, characterized in that the relationship between the temperature CT (℃) and the total amount X (ppm) of the atomic ratio of solid solution elements C and N to iron remaining in the steel plate after annealing satisfies the following formula (1) A method for producing high-strength cold-rolled steel sheets. CT/150−3.67logX1……(1)
JP19154683A 1983-10-13 1983-10-13 Production of high tensile cold rolled steel plate for deep drawing Granted JPS6082617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19154683A JPS6082617A (en) 1983-10-13 1983-10-13 Production of high tensile cold rolled steel plate for deep drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19154683A JPS6082617A (en) 1983-10-13 1983-10-13 Production of high tensile cold rolled steel plate for deep drawing

Publications (2)

Publication Number Publication Date
JPS6082617A JPS6082617A (en) 1985-05-10
JPS6352087B2 true JPS6352087B2 (en) 1988-10-18

Family

ID=16276470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19154683A Granted JPS6082617A (en) 1983-10-13 1983-10-13 Production of high tensile cold rolled steel plate for deep drawing

Country Status (1)

Country Link
JP (1) JPS6082617A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530338B2 (en) * 1987-08-31 1996-09-04 住友金属工業株式会社 High strength cold rolled steel sheet with good formability and its manufacturing method
JP4938701B2 (en) * 2008-02-18 2012-05-23 日新製鋼株式会社 Manufacturing method of pre-coated steel sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192225A (en) * 1981-05-20 1982-11-26 Kawasaki Steel Corp Production of drawable cold-rolled steel sheet having baking-hardenability
JPS5884928A (en) * 1981-11-16 1983-05-21 Nippon Steel Corp Production of high-strength cold-rolled steel plate for deep drawing having excellent nonaging property, secondary workability and curing performance for baked paint

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192225A (en) * 1981-05-20 1982-11-26 Kawasaki Steel Corp Production of drawable cold-rolled steel sheet having baking-hardenability
JPS5884928A (en) * 1981-11-16 1983-05-21 Nippon Steel Corp Production of high-strength cold-rolled steel plate for deep drawing having excellent nonaging property, secondary workability and curing performance for baked paint

Also Published As

Publication number Publication date
JPS6082617A (en) 1985-05-10

Similar Documents

Publication Publication Date Title
US4473414A (en) High tensile strength cold rolled steel sheets and high tensile strength hot-dip galvanized steel sheets
EP0120976A1 (en) Process for manufacturing cold-rolled steel for deep drawing
JPH0747797B2 (en) Steel plate for enamel having excellent scabbing resistance, bubble resistance, black spot defect resistance and press formability, and method for producing the same
JPS5942742B2 (en) High strength cold rolled steel plate for deep drawing with low yield ratio
JP3347151B2 (en) Manufacturing method of low yield ratio cold rolled high strength steel sheet with excellent corrosion resistance
JPH024657B2 (en)
JPH0123530B2 (en)
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JPH0567684B2 (en)
JPH0676618B2 (en) Manufacturing method of steel plate for DI can with excellent stretch flange formability
JP3719025B2 (en) Cold-rolled steel sheet for deep drawing with excellent fatigue resistance
JPS6352087B2 (en)
JP3336079B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and chemical conversion property and method for producing the same
JPS63134645A (en) Steel sheet for di can excellent in stretch-flange formability
JPH05331593A (en) Hot rolled steel plate for porcelain enameling increasing strength after firing of porcelain enameling and its production
JP3282887B2 (en) Thin steel sheet excellent in deep drawability and weldability and method for producing the same
JP2755014B2 (en) Method for producing high-strength cold-rolled steel sheet for deep drawing with excellent secondary work brittleness resistance
JPH07102344A (en) Continuously annealed cold rolled steel sheet well balanced between deep drawability and resistance to deep drawing brittleness
JP2827740B2 (en) Method for producing steel sheet with excellent fatigue characteristics and deep drawability
JP3043901B2 (en) Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability
JPS633930B2 (en)
JPS6013052A (en) Cold rolled steel sheet for extremely deep drawing
JP3309396B2 (en) High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same
JPS639579B2 (en)
JPS5817811B2 (en) Fukashiboriseino Sugretakouchiyouriyoreienkohanno Seizouhouhou