JPH0676618B2 - Manufacturing method of steel plate for DI can with excellent stretch flange formability - Google Patents

Manufacturing method of steel plate for DI can with excellent stretch flange formability

Info

Publication number
JPH0676618B2
JPH0676618B2 JP63006934A JP693488A JPH0676618B2 JP H0676618 B2 JPH0676618 B2 JP H0676618B2 JP 63006934 A JP63006934 A JP 63006934A JP 693488 A JP693488 A JP 693488A JP H0676618 B2 JPH0676618 B2 JP H0676618B2
Authority
JP
Japan
Prior art keywords
less
temperature
processing
steel
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63006934A
Other languages
Japanese (ja)
Other versions
JPH01184229A (en
Inventor
邦明 丸岡
彪 河野
康彦 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63006934A priority Critical patent/JPH0676618B2/en
Publication of JPH01184229A publication Critical patent/JPH01184229A/en
Publication of JPH0676618B2 publication Critical patent/JPH0676618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はDI缶(Draw & Ironed Can)用鋼板に関し、DI
加工後の伸びフランジ成形性に優れ、DI加工が容易であ
り、DI加工後の塗装焼付時に硬化することによって耐圧
強度が向上するDI缶用鋼板に関するものである。
TECHNICAL FIELD The present invention relates to a steel sheet for DI cans (Draw & Ironed Can), and
The present invention relates to a steel sheet for a DI can, which has excellent stretch flange formability after processing, is easy to perform DI processing, and has improved pressure resistance by hardening during baking after painting.

(従来の技術) 鋼板に錫めっきを施したブリキ鋼板あるいはクロム酸処
理を施したティン・フリー・スチールのごとき表面処理
鋼板が食缶やエアゾール缶、イージーオープン缶に多用
されている。
(Prior Art) Surface-treated steel sheets such as tin steel sheets plated with tin or tin-free steel treated with chromic acid are often used for food cans, aerosol cans, and easy-open cans.

これら表面処理鋼板は近年多段絞り加工あるいはDI加工
(Draw & Ironing加工すなわち深絞り加工後にしごき
加工が施される)など、きびしい加工が行なわれるよう
になり、単に耐食性のみならず、優れた加工性をも要求
されるようになっている。
In recent years, these surface-treated steel sheets have undergone severe processing such as multi-step drawing processing or DI processing (drawing & ironing processing, that is, ironing processing after deep drawing processing), resulting in superior workability as well as corrosion resistance. Is also required.

DI缶の製缶加工は、鋼板をポンチとダイスを用いて浅絞
りしてカップを成形後、このカップの側壁の厚さよりク
リアランスが小さいポンチとダイスを用いて側壁をしご
き引伸し、側壁の厚さを減少させることにより所定深さ
の容器(カップ)を成形し、さらにカップ端に蓋を巻締
めるためのフランジ出し加工が行なわれる。
The process of making a DI can is as follows: After forming a cup by shallow-drawing a steel plate with a punch and a die, the punch and die with a clearance smaller than the thickness of the side wall of the cup are used to draw and stretch the side wall to obtain the thickness of the side wall. Is reduced to form a container (cup) having a predetermined depth, and flange forming is performed for winding the lid around the end of the cup.

DI缶用鋼板に要求される特性としては、まずDI加工時の
加工性がよく、かじりの発生がなく加工エネルギーが小
さいこと、および缶体として耐圧強度が高いことが要求
される。
The characteristics required for a steel sheet for DI cans are that they have good workability during DI processing, that there is no galling, that the processing energy is small, and that the can body has high pressure resistance.

かかるDI缶用材料としては、従来は、例えばB添加Alキ
ルド鋼の箱焼鈍したもの(特開昭53−48913)、Cu添加
低炭素鋼を箱焼鈍したもの(特公昭52−16965)のよう
にほとんど箱焼鈍材が適用されていた。それは箱焼鈍材
の方が伸び、深絞り性に優れており、一般にDI加工用途
にも適していると考えられていたからである。
Conventionally, such a material for DI can is, for example, a box-annealed B-added Al-killed steel (JP-A-53-48913) or a box-annealed Cu-added low carbon steel (JP-B-52-16965). The box annealed material was applied to almost all. This is because the box-annealed material has a better elongation and deep drawability, and is generally considered to be suitable for DI processing applications.

特に、DI缶の成形加工では伸びフランジ成形性の良いこ
とはきわめて重要視され、その不良率は数10ppm以下に
抑える必要がある。そのため鋼板として伸び、r値の優
れた箱焼鈍材が従来から適用されていた。
Particularly in the molding process of DI cans, it is extremely important to have good stretch flange moldability, and the defect rate must be suppressed to several tens of ppm or less. Therefore, a box annealed material which has a good r-value and has been used as a steel sheet has been conventionally used.

(発明が解決しようとする問題点) 一方近年DI缶は板厚がますます薄手化されつつあり、耐
圧強度を高めることの要求も非常に強くなりつつある。
(Problems to be solved by the invention) On the other hand, in recent years, the thickness of DI cans has become thinner and thinner, and the demand for higher pressure resistance has also become extremely strong.

缶体の耐圧強度は(板厚)×(強度)で決り、薄手化
するには素材強度を高める必要があるが、箱焼鈍材は一
般に軟質であり、薄手化への対応が難しい。強度の向上
を図ろうとすれば強化元素を添加し比較的高合金の成分
にする必要があり、この場合にはDI加工性が劣化する問
題がある。また鋼板を高強度化するDI加工時にかじりが
発生しやすくなり、また加工エネルギーも増加する欠点
が生ずる。
The pressure resistance of the can is determined by (plate thickness) 2 × (strength), and it is necessary to increase the material strength in order to make it thinner, but the box annealed material is generally soft and it is difficult to cope with thinning. In order to improve the strength, it is necessary to add a strengthening element to make it a component of a relatively high alloy, and in this case, there is a problem that DI processability deteriorates. In addition, galling is likely to occur during DI processing for strengthening a steel sheet, and processing energy is disadvantageously increased.

最近では、DI缶用鋼板を連続焼鈍にて製造することが検
討されているが、DI加工時のフランジ成形の小さいクラ
ックの発生防止を満足し得るまでに至らず、またかじり
発生も散見される。
Recently, it has been considered to manufacture a steel sheet for DI cans by continuous annealing, but it is not enough to prevent the occurrence of small cracks in the flange forming during DI processing, and galling is also scattered. .

本発明の目的は、伸びフランジ成形性に優れ、かじりが
発生せずDI加工が容易でありかつDI加工後の耐圧強度の
高いDI缶用容器材料を提供することにある。
An object of the present invention is to provide a container material for a DI can which has excellent stretch flange formability, does not cause galling, is easy to perform DI processing, and has high pressure resistance after DI processing.

(問題点を解決するための手段) 本発明者らは、DI缶に要求される諸特性について種々研
究した結果、DI缶用鋼板については、DI成形性およびDI
缶の実用特性を総合すると、箱焼鈍材よりも、むしろ鋼
板の強度、結晶粒度、析出物寸法を特定した連続焼鈍材
の方が優れていることを新規に知見し、本発明を完成し
たものである。
(Means for Solving Problems) As a result of various studies on various properties required for DI cans, the present inventors have found that with regard to steel plates for DI cans, DI formability and DI
Comprehending the practical properties of cans, it was found that the continuous annealed material in which the strength, grain size and precipitate size of the steel sheet are specified is superior to the box annealed material, and the present invention has been completed. Is.

本発明者らはまずDI加工後の伸びフランジ成形性につい
て深く研究した結果、DI加工後すなわち著しい加工後の
伸びフランジ成形性は鋼板そのものの伸びフランジ成形
性と異なり、むしろ従来の知見とは逆に、鋼板の抗張力
が42kgf/mm2以下、結晶粒度番号が8.5〜11.5、0.02μm
以上0.40μm以下の平均寸法のMnSおよび0.005μm以上
0.20μm以下の平均寸法のAlNの析出物組織を有し、C:
0.0040〜0.0600%、Mn:0.05〜0.50%、P:0.02%以下、
S:0.015%以下、酸可溶Al:0.020〜0.100%、N:0.0070%
以下、ただし、〔Mn重量%〕と〔P重量%〕との間に 10〔P重量%〕−0.03≦〔Mn重量%〕≦20〔P重量%〕
+0.14 なる関係を有する鋼成分の連続焼鈍材の方が、固溶Cを
有するにもかかわらずDI加工後の伸びフランジ成形性の
優れていることを新規に知見した。
The present inventors first deeply studied the stretch-flange formability after DI processing, and as a result, the stretch-flange formability after DI processing, that is, after remarkable processing is different from the stretch-flange formability of the steel sheet itself, which is rather contrary to conventional findings. In addition, the tensile strength of steel plate is 42 kgf / mm 2 or less, grain size number is 8.5-11.5, 0.02 μm
Above 0.40μm average size MnS and above 0.005μm
It has an AlN precipitate structure with an average size of 0.20 μm or less, and C:
0.0040-0.0600%, Mn: 0.05-0.50%, P: 0.02% or less,
S: 0.015% or less, acid-soluble Al: 0.020 to 0.100%, N: 0.0070%
Below, however, between [Mn wt%] and [P wt%] 10 [P wt%]-0.03 ≤ [Mn wt%] ≤ 20 [P wt%]
It was newly discovered that the continuous annealed material having a steel component having a relationship of +0.14 is superior in stretch flange formability after DI processing despite having solid solution C.

さらに本発明者らは、上記のような特性の製品板を、該
成分を有する低炭素Alキルド鋼片を熱間圧延し、600〜7
10℃の温度で巻き取り、冷間圧延し、次いで連続焼鈍法
により、再結晶温度以上850℃以下の温度で5秒〜3分
間の再結晶焼鈍を行ったのち、5〜250℃/秒の冷却速
度で冷却し、300〜500℃の温度で30〜180秒の過時効処
理を施すことによって工業的に製造することが可能であ
ることをも新規に知見した。
Further, the present inventors hot-rolled a product plate having the above characteristics to a low carbon Al-killed steel slab containing the component to obtain 600 to 7
It is wound at a temperature of 10 ° C., cold-rolled, and then subjected to a continuous annealing method at a temperature of not less than recrystallization temperature and not more than 850 ° C. for 5 seconds to 3 minutes, and then at 5 to 250 ° C./second. It was also newly found that it can be industrially manufactured by cooling at a cooling rate and subjecting it to an overaging treatment at a temperature of 300 to 500 ° C for 30 to 180 seconds.

該連続焼鈍材では、DI加工後施される塗装焼付によって
缶体の強度が著しく上昇し、その結果、耐圧強度も上昇
する(以下この特性をBH性と称する)ことを本発明者ら
は見出した。すなわち箱焼鈍材より軟質の該連続焼鈍材
を使用することによりDI加工時はやわらかく従ってDI加
工性にすぐれ、塗装焼付後耐圧強度が箱焼鈍材以上にで
きるという優れた特徴が得られることが判明した。この
ことは、素材強度が同一であれば缶体の耐圧強度は連続
焼鈍材の方が高くできることを意味するもので、この工
業的価値は非常に大きい。
The inventors have found that in the continuous annealed material, the strength of the can body is remarkably increased by the coating baking performed after DI processing, and as a result, the pressure resistance strength is also increased (hereinafter, this characteristic is referred to as BH property). It was That is, by using the continuous annealing material that is softer than the box annealed material, it was found that the excellent characteristics that it is soft during DI processing and therefore has excellent DI machinability and that the pressure resistance after baking is greater than that of the box annealed material can be obtained. did. This means that if the material strength is the same, the pressure resistance strength of the can body can be made higher in the continuous annealed material, and this industrial value is very large.

以下本発明を詳細に説明する。The present invention will be described in detail below.

まず製品板(鋼板)の抗張力について第1図を参照し説
明する。抗張力が大きいとDI加工時の成形荷重および成
形エネルギーが大きくなって加工しにくく、またかじり
が発生しやすくなるので、その上限を42kgf/mm2とす
る。好ましい範囲は抗張力40kgf/mm2以下である。
First, the tensile strength of the product plate (steel plate) will be described with reference to FIG. If the tensile strength is large, the molding load and molding energy during DI processing will be large, making it difficult to process and causing galling easily. Therefore, the upper limit is 42 kgf / mm 2 . A preferred range is a tensile strength of 40 kgf / mm 2 or less.

第1図はC:0.0040〜0.080%、Mn:0.15〜0.60%、P:0.00
6〜0.030%、S:0.005〜0.015%、酸可溶Al:0.005〜0.07
0%、N:0.0070%以下の鋼を真空溶解炉で溶製し、実験
室パイロットラインにて製造したDI加工用鋼板につい
て、製品板の抗張力とDI試験成形機における全成形エネ
ルギー、成形後塗装焼付処理を行ったDI缶の耐圧強度の
関係を焼鈍方法との関連で示す。
Fig. 1 shows C: 0.0040 to 0.080%, Mn: 0.15 to 0.60%, P: 0.00
6-0.030%, S: 0.005-0.015%, acid-soluble Al: 0.005-0.07
For DI steel sheets produced in a laboratory pilot line by melting 0%, N: 0.0070% or less steel in a vacuum melting furnace, tensile strength of product sheet, total forming energy in DI test forming machine, coating after forming The relationship between the pressure resistance of the baked DI can and the annealing method is shown.

第1図からわかるように、抗張力が42kgf/mm2を越える
と全成形エネルギーが著しく上昇し、かじりが多発する
結果、DI加工が困難となる。全成形エネルギーを安定し
て低く抑えるためには、抗張力を40kgf/mm2以下、降伏
点を36kgf/mm2以下、より好ましくは抗張力37kgf/mm2
下、降伏点30kgf/mm2以下にすることが好ましい。
As can be seen from FIG. 1, when the tensile strength exceeds 42 kgf / mm 2 , the total molding energy rises remarkably, and galling occurs frequently, which makes DI processing difficult. To reduce the total molding energy stably, the tensile strength 40 kgf / mm 2 or less, the yield point 36 Kgf / mm 2 or less, more preferably a tensile strength 37 kgf / mm 2 or less, be below the yield point 30 kgf / mm 2 Is preferred.

また耐圧強度は抗張力が大きいほど増大するが、連続焼
鈍材を箱焼鈍材に比べて抗張力が同じでも耐圧強度は約
1〜2kgf/mm2高い。このようなBH性を確保するために製
品板の固溶C量は5.0ppm以上含むことが好ましい。
Although the compressive strength increases as the tensile strength increases, the compressive strength of the continuous annealed material is about 1-2 kgf / mm 2 higher than that of the box annealed material even if the tensile strength is the same. In order to secure such BH property, it is preferable that the solid solution C content of the product plate is 5.0 ppm or more.

次に、結晶粒度について説明する。Next, the grain size will be described.

第2図はC:0.0044〜0.076%、Mn:0.16〜0.57%、P:0.00
8〜0.030%、S:0.005〜0.015%、酸可溶Al:0.007〜0.08
0%、N:0.0020〜0.0070%以下の鋼を真空溶解炉で溶製
し、実験室パイロットラインにて製造したDI加工用鋼板
について、JIS結晶粒度番号とDI加工後の伸びフランジ
成形における破断発生までの加工率および耐圧強度の関
係を焼鈍方法との関係で示す。
Fig. 2 shows C: 0.0044 to 0.076%, Mn: 0.16 to 0.57%, P: 0.00
8 to 0.030%, S: 0.005 to 0.015%, acid-soluble Al: 0.007 to 0.08
About 0%, N: 0.0020 to 0.0070% or less steel was melted in a vacuum melting furnace, and about the steel plate for DI processing manufactured in the laboratory pilot line, JIS crystal grain number and fracture occurrence in stretch flange forming after DI processing The relationship between the processing rate and the pressure resistance is shown in relation to the annealing method.

伸びフランジ加工率は、本発明者らの実験室における測
定法の場合9.0%以上が需要家においても合格と評価さ
れることがわかっている。
It is known that the stretch-flange processing rate of 9.0% or more in the case of the measurement method in the laboratory of the inventors of the present invention is evaluated as acceptable even by the customer.

第2図からわかるように、伸びフランジ加工率は細粒で
あるほど(結晶粒度番号が大きいほど)向上し、伸びフ
ランジ加工率9.0%以上を確保するには連続焼鈍材の場
合、結晶粒度番号8.5以上が必要である。また予想に反
し連続焼鈍材の方が箱焼鈍材よりむしろ伸びフランジ成
形性が良好である。一方細粒になるほど伸びフランジ成
形性および耐圧強度は向上するが鋼が硬質化し、結晶粒
度番号が11.5番を越えるとDI加工時の全成形エネルギー
が著しく増大し、かじりが発生するためDI加工が困難と
なる。したがって結晶粒度番号を8.5〜11.5に特性す
る。好ましくは範囲9.0〜11.0番である。
As can be seen from Fig. 2, the stretch-flange processing rate improves as the grain size increases (the larger the grain size number), and in order to secure the stretch-flange processing rate of 9.0% or more, the grain size number in the case of continuous annealed material 8.5 or higher is required. Contrary to expectations, the continuous annealed material has better stretch flange formability than the box annealed material. On the other hand, the finer the grain, the better the stretch flange formability and the compressive strength, but the steel becomes harder, and if the grain size number exceeds 11.5, the total forming energy during DI processing will increase significantly and galling will occur, so DI processing will occur. It will be difficult. Therefore, the grain size number is characterized by 8.5 to 11.5. The preferred range is 9.0 to 11.0.

次に鋼板の析出物寸法について説明する。Next, the precipitate size of the steel sheet will be described.

第3図はC:0.021〜0.045%、Mn:0.16〜0.30%、S:0.005
〜0.04%、P:0.008〜0.017%、酸可溶Al:0.005〜0.100
%、N:0.0010〜0.0070%の鋼を真空溶解炉で溶製し、熱
間圧延前および熱間圧延巻き取り後に種々の条件で熱処
理を行ってMnSおよびAlNの析出物寸法を変化させ、実験
室パイロットラインにて製造したDI加工用鋼板につい
て、膨大な枚数の電子顕微鏡写真から求めたMnSおよびA
lNの析出物平均寸法とDI加工後の伸びフランジ成形にお
ける破断発生までの加工率の関係を示す。図中の数字は
その点のMnSおよびAlNの平均寸法の析出物組織を持つ試
料の伸びフランジ加工率を表し、曲線は伸びフランジ加
工率の等高線を表す。
Fig. 3 shows C: 0.021 to 0.045%, Mn: 0.16 to 0.30%, S: 0.005
~ 0.04%, P: 0.008-0.017%, Acid-soluble Al: 0.005-0.100
%, N: 0.0010 to 0.0070% of steel was melted in a vacuum melting furnace and heat treated under various conditions before hot rolling and after hot rolling and winding to change the precipitate size of MnS and AlN MnS and A obtained from a huge number of electron micrographs of steel sheets for DI processing manufactured in the laboratory pilot line
The relationship between the average size of lN precipitates and the processing rate until fracture occurs in stretch flange forming after DI processing is shown. The numbers in the figure represent the stretch flanging rate of the sample having the precipitate structure of the average size of MnS and AlN at that point, and the curve represents the contour line of the stretch flanging rate.

第3図からわかるように、MnSの平均析出物寸法が0.02
μm未満または0.40μm超、またはAlNの平均析出物寸
法が0.005μm未満または0.20μm超になると伸びフラ
ンジ加工率が劣化する。したがってMnSの平均析出寸法
を0.02μm以上0.40μm以下、AlNの平均析出物寸法を
0.005μm以上、0.20μm以下に特定する。
As can be seen from Fig. 3, the average precipitate size of MnS is 0.02.
If it is less than μm or more than 0.40 μm, or if the average precipitate size of AlN is less than 0.005 μm or more than 0.20 μm, the stretch flangeability deteriorates. Therefore, the average precipitation size of MnS is 0.02 μm or more and 0.40 μm or less, and the average precipitation size of AlN is
Specify from 0.005 μm to 0.20 μm.

次に鋼成分について説明する。Next, steel components will be described.

Cは鋼を硬化するので、その上限を0.0600%とする。C
をより少なくすることは軟質化に有効であるが、Cを0.
0040%未満に減じると固溶Cが著しく減少しBH性が得ら
れないので下限を0.0040%とする。好ましくは範囲は0.
0040〜0.0400%である。
C hardens the steel, so its upper limit is made 0.0600%. C
It is effective for softening to make C less than 0.
If it is reduced to less than 0040%, the solid solution C is significantly reduced and BH property cannot be obtained, so the lower limit is made 0.0040%. Preferably the range is 0.
0040 to 0.0400%.

MnはSによる熱間脆性を防止するため0.05%以上含有さ
せる必要があるが、0.50%を越えるとCと同様に鋼を硬
質化し、本発明の特徴を失う。好ましい範囲は0.10〜0.
30%である。
Mn must be contained in an amount of 0.05% or more to prevent hot embrittlement due to S, but if it exceeds 0.50%, the steel is hardened like C and the characteristics of the present invention are lost. The preferred range is 0.10-0.
30%.

Alは加工性に有害である酸化物系介在物を低減するた
め、脱酸剤として、また鋼中のN固定を通じて、表面処
理等の歪時効による硬質化を抑制するため、少なくとも
酸可溶Alとして0.020%含有させる必要がある。しかし
0.100%を越えると鋼を硬質化し、また表面疵も増加す
る。好ましい範囲は0.030〜0.080%である。
Since Al reduces oxide inclusions that are harmful to workability, it acts as a deoxidizing agent and suppresses hardening due to strain aging such as surface treatment through N fixing in steel. It is necessary to contain 0.020%. However
If it exceeds 0.100%, the steel is hardened and the surface defects are increased. A preferred range is 0.030 to 0.080%.

PとNはともに鋼を著しく硬化させる元素であり、Pと
Nをともに低くすることによって従来考えられていた以
上の顕著な軟質化の効果が得られる。本発明特定のDI缶
用鋼板を得るためには、Pの上限を0.020%、Nの上限
を0.0070%とする。Nの好ましい範囲は0.0030%以下で
ある。
Both P and N are elements that significantly harden the steel, and by lowering both P and N, the remarkable effect of softening, which has been conventionally considered, can be obtained. In order to obtain the steel sheet for DI cans specific to the present invention, the upper limit of P is 0.020% and the upper limit of N is 0.0070%. The preferable range of N is 0.0030% or less.

しかもMnとPには伸びフランジ成形性に関して特殊な相
互作用があり、それぞれの含有量が上記の範囲にあって
も、Mn量およびP量がそれぞれ他方の量に比してアンバ
ランスに多い場合は伸びフランジ成形性が劣化すること
がわかった。実験により回帰式を求めた結果、良好な伸
びフランジ成形性を安定して確保するには、MnとPの含
有量の間に 10〔P重量%〕−0.03≦〔Mn重量%〕≦20〔P重量%〕
+0.14 なる関係が成立する必要がある。
Moreover, there is a special interaction between Mn and P in terms of stretch flange formability, and even if the respective contents are in the above ranges, the Mn amount and the P amount are unbalanced in comparison with the other amounts. It was found that the stretch flange formability deteriorates. As a result of obtaining the regression formula by experiments, it is found that 10 [P wt%]-0.03 ≤ [Mn wt%] ≤ 20 [Pn% between the Mn and P contents is ensured in order to stably secure good stretch flange formability. P wt%]
The relationship of +0.14 must be established.

特に抗張力37kgf/mm2以下、降伏点30kgf/mm2以下のより
軟質でDI加工性に優れた鋼板を製造する場合は、C:0.00
40〜0.0400%、Mn:0.10〜0.25%、酸可溶Al:0.030〜0.0
80%、P:0.015%以下、N:0.025以下とすることが好まし
い。
In particular tensile strength 37 kgf / mm 2 or less, when producing a steel sheet excellent in DI workability at yield 30 kgf / mm 2 or less of the softer, C: 0.00
40-0.0400%, Mn: 0.10-0.25%, acid-soluble Al: 0.030-0.0
80%, P: 0.015% or less, and N: 0.025 or less are preferable.

Sは鋼中の介在物となり、鋼板の表面欠陥、加工時のわ
れ、伸びフランジわれ発生、過大の平均析出物寸法のMn
S生成の原因となるので、上限を0.015%とする。
S becomes inclusions in the steel, surface defects of the steel sheet, cracks during processing, stretch flange cracking, excessive average precipitate size Mn
Since it causes S generation, the upper limit is 0.015%.

本発明における鋼成分は上述の通りであるが、必要によ
り、本発明の鋼成分にさらに炭窒化物形成元素である0.
0050%以下のBおよび0.10%以下のCrのうち一種または
二種を添加することも可能である。これらの元素を添加
することによりDI加工性の優れた鋼板が安定して製造可
能である。
The steel composition in the present invention is as described above, but if necessary, the steel composition of the present invention further contains a carbonitride forming element.
It is also possible to add one or two of B of 0.10% or less and Cr of 0.10% or less. By adding these elements, it is possible to stably manufacture a steel sheet having excellent DI processability.

次に熱間圧延条件について説明する。熱間圧延は捲取温
度およびスラブ加熱温度を特定することにより、軟質で
DI加工性に優れ、しかも適度のBH性を有する連続焼鈍に
よるDI缶用鋼板の製造が可能である。捲取温度が低温に
なると伸びフランジ成形性が劣化し、また抗張力も大と
なるので、600℃以上とする。一方、温度が高いと酸洗
性が劣化するので710℃以下とする。
Next, the hot rolling conditions will be described. Hot rolling can be made soft by specifying the winding temperature and slab heating temperature.
It is possible to manufacture a steel sheet for DI cans by continuous annealing that has excellent DI processability and has an appropriate BH property. When the coiling temperature is low, the stretch-flange formability deteriorates and the tensile strength also increases, so the temperature should be 600 ° C or higher. On the other hand, if the temperature is high, the pickling property deteriorates, so the temperature is set to 710 ° C or lower.

第4図は、C:0.015〜0.040%、Mn:0.15〜0.25%、P:0.0
06〜0.010%、S:0.004〜0.015%、Al:0.03〜0.08%、N:
0.004%以下の鋼について「熱間圧延加熱温度−T*」
(℃)とぶりき板の抗張力、DI加工性の関係を示す。
Fig. 4 shows C: 0.015-0.040%, Mn: 0.15-0.25%, P: 0.0
06-0.010%, S: 0.004-0.015%, Al: 0.03-0.08%, N:
Steel with 0.004% or less "Hot rolling heating temperature-T *"
The relationship between (℃), tensile strength of the tin plate and DI processability is shown.

第4図の製造条件は次のとおりである。The manufacturing conditions of FIG. 4 are as follows.

熱間圧延仕上温度:870〜910℃ 熱間圧延捲取温度:550〜710℃ 冷間圧延率:87〜91% 焼鈍条件:700℃×30秒+400℃×60秒 (一次冷却速度10〜40℃/秒) 調質圧延:1.0% めっき:電気すずめっき 第4図において、抗張力は電気すずめっき後の抗張力を
測定し、DI加工性は実験室DI成形機にて電気すずめっき
製品板をDI加工したのち、拡管した際の伸びフランジ加
工率〔(D−D0)/D0〕×100%を測定した。
Hot rolling finish temperature: 870-910 ℃ Hot rolling coiling temperature: 550-710 ℃ Cold rolling rate: 87-91% Annealing condition: 700 ℃ × 30 seconds + 400 ℃ × 60 seconds (Primary cooling rate 10-40 (℃ / sec) Temper rolling: 1.0% Plating: Electrotin plating In Fig. 4, tensile strength is measured by measuring the tensile strength after electrotin plating. After processing, the expansion flange processing rate [(D-D 0 ) / D 0 ] × 100% when expanded was measured.

第4図からわかるように、捲取温度を600〜710℃にする
ことによって、熱間圧延前の熱履歴および熱間圧延加熱
温度に関係なく、抗張力42kgf/mm2以下でかつ伸びフラ
ンジ成形性のよい鋼板が得られる。さらに、熱間圧延加
熱温度T(℃)が T≦6875/(3.865−log〔Al%+0.015〕)−250 を満足し、かつ捲取温度が600〜710℃の範囲にあれば抗
張力が40kgf/mm2以下となり、DI加工性のきわめて優れ
た表面処理用鋼板を製造することが可能である。
As can be seen from FIG. 4, by setting the winding temperature to 600 to 710 ° C., the tensile strength is 42 kgf / mm 2 or less and the stretch flange formability is irrespective of the heat history before hot rolling and the hot rolling heating temperature. A good steel plate can be obtained. Furthermore, if the hot rolling heating temperature T (° C) satisfies T ≤ 6875 / (3.865-log [Al% + 0.015]) -250 and the winding temperature is in the range of 600 to 710 ° C, the tensile strength is Since it is 40 kgf / mm 2 or less, it is possible to manufacture a steel sheet for surface treatment which has excellent DI processability.

第5図は、C:0.01〜0.06%、Mn:0.10〜0.40%、P:0.006
〜0.020%、Al:0.01〜0.07%、N:0.0015〜0.0070%の鋼
について、熱延加熱温度T−{6875/(3.865−log〔Al
%+0.015〕)−250}とぶりき板の抗張力、DI加工品の
耐圧強度および伸びフランジ加工率の関係を示す。
Fig. 5 shows C: 0.01-0.06%, Mn: 0.10-0.40%, P: 0.006
~ 0.020%, Al: 0.01-0.07%, N: 0.0015-0.0070% steel, hot rolling heating temperature T- {6875 / (3.865-log [Al
% +0.015])-250} and the relationship between the tensile strength of the steel plate, the pressure resistance of the DI processed product and the stretch flange processing rate.

第5図の製造条件は次の通りである。The manufacturing conditions in FIG. 5 are as follows.

熱間圧延仕上温度:870〜910℃ 熱間圧延捲取温度:600〜710℃ 冷間圧延率:87〜91% 焼鈍条件:(600〜800℃)×(30秒〜180秒)+400℃×
(30〜180秒) (一次冷却速度10〜40℃/秒) 調質圧延:1.0% めっき:電気すずめっき 第5図において、抗張力は電気すずめっき後の抗張力を
測定し、耐圧強度および伸びフランジ加工率は実験室に
てDI缶を製作後測定した。第5図でT−{6875/(3.865
−log〔Al%+0.015〕)−250}が約50,100および150の
位置の○印は焼鈍条件を広範囲に変化させ、そのうち抗
張力が40kgf/mm2以下の値を示したデータのみを図中に
プロットした。また第5図には、比較のために従来の箱
焼鈍法で製造された材料から抗張力が40kgf/mm2以下の
値を示した実例のデータを×印にてプロットした。
Hot rolling finish temperature: 870-910 ° C Hot rolling coiling temperature: 600-710 ° C Cold rolling ratio: 87-91% Annealing condition: (600-800 ° C) × (30 seconds-180 seconds) + 400 ° C ×
(30 to 180 seconds) (Primary cooling rate 10 to 40 ° C / second) Temper rolling: 1.0% Plating: Electrotin plating In Fig. 5, tensile strength is measured by measuring the tensile strength after electrotin plating, and the compressive strength and stretch flange. The processing rate was measured after the DI can was manufactured in the laboratory. In Fig. 5, T- {6875 / (3.865
-Log [Al% + 0.015]) -250} at the positions of about 50, 100 and 150 changes the annealing conditions in a wide range, of which only the data showing the tensile strength of 40 kgf / mm 2 or less is shown in the figure. Plotted on. Further, in FIG. 5, for comparison, data of an example showing a tensile strength value of 40 kgf / mm 2 or less from the material manufactured by the conventional box annealing method is plotted with a cross mark.

第5図からわかるように、本発明による表面処理鋼板は
従来の箱焼鈍材に比べて、めっき製品の段階では約半テ
ンパー軟質であるため、DI加工が容易である。またDI加
工後の塗装焼付工程におけるBH効果が大きいため、DI加
工後の耐圧強度は箱焼鈍材と同等か、もしくはそれ以上
である。また伸びフランジ成形性が箱焼鈍材より優れて
いる。
As can be seen from FIG. 5, the surface-treated steel sheet according to the present invention is softer than the conventional box annealed material in the stage of the plated product by about half temper, so that the DI processing is easy. Also, since the BH effect in the paint baking process after DI processing is large, the pressure resistance after DI processing is equal to or higher than the box annealed material. Also, stretch flange formability is superior to box annealed material.

そして熱延加熱温度がT*=6875/(3.865−log〔Al%
+0.015〕)−250以下の範囲において最も軟質かつ伸び
フランジ成形性に優れた最高級のDI缶用鋼板が得られ
る。ここで 熱延加熱温度T≦T* ただしT*=6875/(3.865−log〔Al%+0.015〕)−25
0の関係は鋼成分、熱間圧延条件とぶりきの抗張力、DI
加工性、耐圧強度およびMnSおよびAlN析出物平均寸法と
の関係において有意な関係にあり、Al量および加熱温度
について実験的に求めた式である。その際熱間圧延前の
熱履歴としては、直送圧延を含むいかなる熱履歴をもと
り得るが、特に抗張力40kgf/mm2以下の製品を製造する
場合には、鋼片鋳造後Ar3変態点以下の温度まで冷却し
たのち、上記温度以下に加熱することが好ましい。
And the hot rolling heating temperature is T * = 6875 / (3.865-log [Al%
+0.015]) In the range of -250 or less, the highest grade steel sheet for DI cans is obtained which is the softest and has excellent stretch flange formability. Hot rolling heating temperature T ≦ T * where T * = 6875 / (3.865-log [Al% + 0.015])-25
The relationship of 0 is steel composition, hot rolling conditions and tensile strength of tin, DI
It is a formula that has been found experimentally for the amount of Al and the heating temperature, which has a significant relationship with the workability, the pressure resistance, and the average size of MnS and AlN precipitates. At that time, as the heat history before hot rolling, it is possible to take any heat history including direct rolling, but particularly in the case of manufacturing a product having a tensile strength of 40 kgf / mm 2 or less, after the billet casting, the Ar 3 transformation point or less After cooling to the temperature, it is preferable to heat to the above temperature or lower.

次いで通常の方法で脱スケール後冷間圧延し、連続焼鈍
に供する。
Then, after descaling by a usual method, cold rolling is performed and continuous annealing is performed.

次に連続焼鈍条件について説明する。焼鈍は従来の箱焼
鈍法でなく、連続焼鈍法で行なう。焼鈍サイクルは、ま
ず再結晶温度〜850℃の温度域で5秒〜3分間の短時間
再結晶焼鈍を行う。焼鈍温度が再結晶温度に満たない
と、製品板が冷間加工組織のままとなってID加工ができ
ないので、焼鈍温度の下限を再結晶温度とする。また焼
鈍温度が850℃を越えると、焼鈍中の鋼帯の強度が低下
し通板操業が困難となるので、焼鈍温度の上限を850℃
とする。焼鈍時間が5秒に満たないと、充分な粒成長が
起らず硬質化するので、焼鈍時間の下限を5秒とする。
また焼鈍時間が3分を越えると、通板速度の減速または
長大な連続焼鈍設備が必要となり工業的価値を減ずるの
で、焼鈍時間の上限を3分とする。焼鈍温度の好ましい
範囲は680〜750℃である。次いで冷却を行うが、冷却速
度が大きいと過時効処理前の過飽和固溶C量が過大とな
って過時効進行の駆動力が大きくなり過時効処理後に適
量の固溶Cを残存させることができず、BH性を得られな
いので、その上限を250℃/秒とする。冷却速度が小さ
いと、逆の理由によってBH性は大きくなるものの、製品
板抗張力までも硬質化するため、その下限を5℃/秒と
する。次いで300〜500℃の温度で30〜180秒間の過時効
処理を行う。過時効処理温度を低くするとCの拡散速度
が遅くなり、過時効処理に長時間を要するので、過時効
処理温度の下限を300℃とする。また過時効処理温度を
高くすればCの固溶限が増加し鋼板を硬化するので、過
時効処理温度の上限を500℃とする。過時効処理時間が
短かければ過時効処理が不足となり、鋼板を硬質化する
ので、過時効処理時間の下限を30秒とする。また過時効
処理時間が長ければ過時効処理後の固溶Cが著しく減少
しBH性が得られないので、過時効処理時間の上限を180
秒とする。好ましい過時効処理条件は(350〜450℃)×
(60×120秒)である。
Next, the continuous annealing conditions will be described. The annealing is performed by the continuous annealing method instead of the conventional box annealing method. In the annealing cycle, first, short-time recrystallization annealing is performed in the temperature range of recrystallization temperature to 850 ° C. for 5 seconds to 3 minutes. If the annealing temperature is lower than the recrystallization temperature, the product plate remains in the cold work structure and cannot be subjected to ID processing. Therefore, the lower limit of the annealing temperature is the recrystallization temperature. If the annealing temperature exceeds 850 ° C, the strength of the steel strip during annealing will decrease, making it difficult to operate the strip. Therefore, the upper limit of the annealing temperature is 850 ° C.
And If the annealing time is less than 5 seconds, sufficient grain growth does not occur and the material hardens, so the lower limit of the annealing time is set to 5 seconds.
Further, if the annealing time exceeds 3 minutes, the sheet passing speed must be reduced or long continuous annealing equipment is required, which reduces the industrial value, so the upper limit of the annealing time is set to 3 minutes. The preferable range of the annealing temperature is 680 to 750 ° C. Next, cooling is carried out. However, if the cooling rate is high, the amount of supersaturated solid solution C before overaging treatment becomes too large, the driving force for the progress of overaging becomes large, and an appropriate amount of solid solution C can remain after the overaging treatment. Since the BH property cannot be obtained, the upper limit is set to 250 ° C / sec. If the cooling rate is low, the BH property increases for the opposite reason, but even the tensile strength of the product plate is hardened, so the lower limit is made 5 ° C / sec. Then, overaging treatment is performed at a temperature of 300 to 500 ° C. for 30 to 180 seconds. If the overaging treatment temperature is lowered, the diffusion rate of C becomes slower, and the overaging treatment takes a long time. Therefore, the lower limit of the overaging treatment temperature is set to 300 ° C. Further, if the overaging treatment temperature is raised, the solid solubility limit of C increases and the steel sheet is hardened, so the upper limit of the overaging treatment temperature is set to 500 ° C. If the overaging treatment time is short, the overaging treatment becomes insufficient and the steel sheet is hardened. Therefore, the lower limit of the overaging treatment time is set to 30 seconds. Also, if the overaging treatment time is long, the solid solution C after the overaging treatment is significantly reduced and BH property cannot be obtained, so the upper limit of the overaging treatment time is set to 180.
Seconds. Preferred overaging conditions are (350-450 ° C) ×
(60 x 120 seconds).

次いで通常の方法で調質圧延し、通常行なわれる表面処
理を施す。
Then, temper rolling is performed by a usual method, and a surface treatment which is usually performed is applied.

(実施例) 第1表に本発明の実施例を示す。(Example) Table 1 shows an example of the present invention.

第1表記載の成分を有する鋼を転炉で溶製し、連続鋳造
した鋼片を3.0mmまで熱間圧延し、酸洗し、次いで0.32m
mまで冷間圧延し、次いで第1表記載の焼鈍条件で焼鈍
し、次いで、1.0%の調質圧延を行ない、電気すずめっ
きを行った。
Steel having the components shown in Table 1 was melted in a converter, and continuously cast steel pieces were hot rolled to 3.0 mm, pickled, and then 0.32 m long.
It was cold-rolled to m, then annealed under the annealing conditions shown in Table 1, then temper-rolled at 1.0% and electrotin-plated.

このようにして製造された電気すずめっき鋼板を実験室
のDI加工機にてDI缶に成形した場合の全成形エネルギー
を第2表に示す。該全成形エネルギーが小さいほど、ま
たかじり発生のないほどDI加工性に優れることを表す。
Table 2 shows the total forming energy when the electric tin-plated steel sheet produced in this manner is formed into a DI can by a laboratory DI processing machine. The smaller the total molding energy is, and the less the galling is, the better the DI processability is.

さらに該DI缶の耐圧強度および伸びフランジ加工率を実
験室にて測定した結果を同じく第2表に示す。伸びフラ
ンジ加工率は本発明者らの実験室における測定法の場合
9.0%以上が需要家においても合格と評価されることが
わかっている。
Further, Table 2 also shows the results of measuring the pressure resistance strength and the stretch flange working rate of the DI can in the laboratory. The stretch flanging rate is the case of the measurement method in our laboratory.
It is known that more than 9.0% are evaluated as passing even by customers.

第1表および第2表からわかるように、本発明鋼は全成
形エネルギーが小さく、かじりが発生せず、耐圧強度が
充分高く、伸びフランジ加工率がきわめて高く伸びフラ
ンジ成形性に特に優れていることがわかる。
As can be seen from Tables 1 and 2, the steel of the present invention has a small total forming energy, does not cause galling, has sufficiently high compressive strength, has an extremely high stretch flange forming rate, and is particularly excellent in stretch flange formability. I understand.

なお、本発明鋼はBH硬化により耐圧強度のみならず、缶
の垂直方向での座屈強度も上昇するので、箱焼鈍材に比
して素材強度が同一であれば座屈強度も優れていること
を付言しておく。さらに本発明鋼は伸びフランジ成形性
に特に優れるため、単に伸びフランジ成形での不良率が
低いばかりでなく、さらに厳しい伸びフランジ成形にも
耐える性能を有するものである。
The steel of the present invention is not only resistant to pressure due to BH hardening, but also increases the buckling strength in the vertical direction of the can. Therefore, if the material strength is the same as the box annealed material, the buckling strength is also excellent. Let me add that. Further, the steel of the present invention is particularly excellent in stretch-flange formability, and therefore not only has a low defect rate in stretch-flange forming but also has the ability to withstand even more severe stretch-flange forming.

(発明の効果) 本発明は、連続焼鈍で製造できるので製造コストが安
く、製品材質の均一性に優れ、かつかじりの発生がな
く、DI加工が容易であり、DI加工後の伸びフランジ成形
性に優れ、DI加工後の塗装焼付時に硬化することによっ
て耐圧強度が著しく向上するDI缶用鋼板を提供するもの
であり、その工業的効果は甚大である。
(Effect of the invention) The present invention can be manufactured by continuous annealing, so the manufacturing cost is low, the product material is excellent in uniformity, and no galling occurs, DI processing is easy, and stretch flange formability after DI processing is achieved. The present invention provides a steel sheet for a DI can, which has excellent heat resistance and is significantly improved in pressure resistance by curing during baking of the coating after DI processing, and its industrial effect is enormous.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実験室パイロット・ラインにて製造したDI缶
用鋼板について、製品板の抗張力、DI試験成形機におけ
る全成形エネルギー、成形後塗装焼付処理を行ったDI缶
の耐圧強度、および焼鈍方法の関係を示した図、 第2図は、実験室パイロット・ラインにて製造したDI缶
用鋼板について、JIS結晶粒度番号、DI缶の耐圧強度、D
I加工後の伸びフランジ成形における破断発生までの加
工率、および焼鈍方法の関係を示した図、 第3図は、製品板のMnS析出物平均寸法、AlN析出物平均
寸法、DI加工後の伸びフランジ成形における破断発生ま
での加工率の関係を示した図、 第4図は、実験室パイロット・ラインにて製造したDI缶
用鋼板について、熱延加熱温度T−{6875/(3.865−lo
g〔Al%+0.015〕)−250}とぶりき板の抗張力、DI加
工性の関係を示した図、 第5図は、実験室パイロット・ラインにて製造したDI缶
用鋼板について、熱延加熱温度T−{6875/(3.865−lo
g〔Al%+0.015〕)−250}とぶりき板の抗張力、DI加
工品の耐圧強度および伸びフランジ加工率の関係を示し
た図である。
Figure 1 shows the tensile strength of the product sheet, the total forming energy in the DI test molding machine, the pressure resistance strength of the DI can after the baking process after forming, and the annealing of the steel plate for DI can manufactured in the laboratory pilot line. Fig. 2 shows the relationship between the methods, and Fig. 2 shows the JIS grain size number, the pressure resistance of the DI can, and D for the steel plate for DI can manufactured in the laboratory pilot line.
Fig. 3 is a diagram showing the relationship between the processing rate until breakage occurs in stretch flange forming after I processing and the annealing method. Fig. 3 shows the average size of MnS precipitates, average size of AlN precipitates, and the elongation after DI processing of product sheets. Figure 4 shows the relationship of the processing rate until fracture occurs in flange forming. Figure 4 shows the hot rolling heating temperature T- {6875 / (3.865-lo) for steel sheets for DI cans manufactured in the laboratory pilot line.
g [Al% + 0.015])-250} and tensile strength of tin plate, DI processability, Fig. 5 shows the heat resistance of steel plate for DI can manufactured in the laboratory pilot line. Total heating temperature T- {6875 / (3.865-lo
It is the figure which showed the relationship of g [Al% + 0.015])-250}, the tensile strength of a brass plate, the pressure resistance of DI processed products, and the stretch-flange processing rate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で C:0.0040〜0.0600% Mn:0.05〜0.50% P:0.02%以下 S:0.015%以下 酸可溶Al:0.020〜0.100% N:0.0070%以下、 ただし、〔Mn重量%〕と〔P重量%〕との間に 10〔P重量%〕−0.03≦〔Mn重量%〕≦20〔P重量%〕
+0.14 なる関係を有し、残部がFeおよび不可避的不純物からな
る成分を有する低炭素Alキルド鋼片を熱間圧延し、600
〜710℃の温度で巻き取り、冷間圧延し、次いで連続焼
鈍により、再結晶温度以上850℃以下の温度で5秒〜3
分間の再結晶焼鈍を行ったのち、5〜250℃/秒の冷却
速度で冷却し、300〜500℃の温度で30〜180秒の過時効
処理を施し、42kgf/mm2以下の抗張力、8.5〜11.5の結晶
粒度番号、0.02μm以上0.40μm以下の平均寸法のMnS
および0.005μm以上0.20μm以下の平均寸法のAlNの析
出物組織を有する伸びフランジ成形性の優れたDI缶用鋼
板の製造法。
[Claim 1] C: 0.0040 to 0.0600% Mn: 0.05 to 0.50% P: 0.02% or less S: 0.015% or less Acid-soluble Al: 0.020 to 0.100% N: 0.0070% or less, %] And [P wt%] 10 [P wt%] -0.03 ≤ [Mn wt%] ≤ 20 [P wt%]
A low carbon Al killed steel slab having a relationship of +0.14 with the balance being Fe and inevitable impurities was hot-rolled to 600
Winding up at a temperature of ~ 710 ° C, cold rolling, then continuous annealing for 5 seconds to 3 at a temperature between recrystallization temperature and 850 ° C.
After performing recrystallization annealing for 5 minutes, it is cooled at a cooling rate of 5 to 250 ° C / sec, subjected to overaging treatment at a temperature of 300 to 500 ° C for 30 to 180 seconds, and has a tensile strength of 42 kgf / mm 2 or less, 8.5 ~ 11.5 grain size number, MnS with average size of 0.02μm to 0.40μm
And a method for producing a steel sheet for DI can having a stretch-flange formability and having a precipitate structure of AlN having an average size of 0.005 μm or more and 0.20 μm or less.
【請求項2】重量% C:0.0040〜0.0600% Mn:0.05〜0.50% P:0.02%以下 S:0.015%以下 酸可溶Al:0.020〜0.100% N:0.0070%以下、 ただし、〔Mn重量%〕と〔P重量%〕との間に 10〔P重量%〕−0.03≦〔Mn重量%〕≦20〔P重量%〕
+0.14 なる関係を有し、残部がFeおよび不可避的不純物からな
る成分を有する低炭素Alキルド鋼片をAr3変態点以下の
温度まで冷却し、次いで T*=6875/(3.865−log〔Al%+0.015〕)−250を満
足する温度T*(℃)以下に加熱し、熱間圧延し、600
〜710℃の温度で巻き取り、冷間圧延し、次いで連続焼
鈍法により、再結晶温度以上850℃以下の温度で5秒〜
3分間の再結晶焼鈍を行ったのち、5〜250℃/秒の冷
却速度で冷却し、300〜500℃の温度で30〜180秒の過時
効処理を施し、40kgf/mm2以下の抗張力、8.5〜11.5の結
晶粒度番号、0.02μm以上0.40μm以下の平均寸法のMn
Sおよび0.005μm以上0.20μm以下の平均寸法のAlNの
析出物組織を有する伸びフランジ成形性の優れたDI缶用
鋼板の製造法。
2. Weight% C: 0.0040 to 0.0600% Mn: 0.05 to 0.50% P: 0.02% or less S: 0.015% or less Acid-soluble Al: 0.020 to 0.100% N: 0.0070% or less, provided that [Mn weight% ] [P wt%] 10 [P wt%] -0.03 ≤ [Mn wt%] ≤ 20 [P wt%]
A low carbon Al killed slab having a composition of +0.14 with the balance being Fe and inevitable impurities is cooled to a temperature below the Ar 3 transformation point, and then T * = 6875 / (3.865−log [3.865−log [ Al% + 0.015]) -250, and heat it to a temperature below T * (° C) that satisfies the
~ Winding at 710 ℃, cold rolling, then continuous annealing for 5 seconds at a temperature above recrystallization temperature and below 850 ℃
After performing recrystallization annealing for 3 minutes, it is cooled at a cooling rate of 5 to 250 ° C / sec, subjected to overaging treatment at a temperature of 300 to 500 ° C for 30 to 180 seconds, and a tensile strength of 40 kgf / mm 2 or less, Grain size number from 8.5 to 11.5, Mn of average size from 0.02 μm to 0.40 μm
A method for producing a steel sheet for DI can having excellent stretch flange formability, having S and an AlN precipitate structure having an average size of 0.005 μm or more and 0.20 μm or less.
JP63006934A 1988-01-18 1988-01-18 Manufacturing method of steel plate for DI can with excellent stretch flange formability Expired - Lifetime JPH0676618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63006934A JPH0676618B2 (en) 1988-01-18 1988-01-18 Manufacturing method of steel plate for DI can with excellent stretch flange formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63006934A JPH0676618B2 (en) 1988-01-18 1988-01-18 Manufacturing method of steel plate for DI can with excellent stretch flange formability

Publications (2)

Publication Number Publication Date
JPH01184229A JPH01184229A (en) 1989-07-21
JPH0676618B2 true JPH0676618B2 (en) 1994-09-28

Family

ID=11652083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63006934A Expired - Lifetime JPH0676618B2 (en) 1988-01-18 1988-01-18 Manufacturing method of steel plate for DI can with excellent stretch flange formability

Country Status (1)

Country Link
JP (1) JPH0676618B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494581A (en) * 2017-03-27 2019-11-22 杰富意钢铁株式会社 Two panels steel plate for tanks and its manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2766693B2 (en) * 1989-12-29 1998-06-18 株式会社神戸製鋼所 Manufacturing method of high ductility and high strength cold rolled steel sheet with small anisotropy
JP2816358B2 (en) * 1990-03-09 1998-10-27 東洋鋼鈑 株式会社 Manufacturing method of steel sheet for DI can
JPH03285044A (en) * 1990-03-30 1991-12-16 Kawasaki Steel Corp Manufacture of steel sheet for three-piece can and three-piece can
FR2795742B1 (en) * 1999-07-01 2001-08-03 Lorraine Laminage CALM ALUMINUM CARBON STEEL SHEET FOR PACKAGING
CN103045937A (en) * 2012-12-14 2013-04-17 宝山钢铁股份有限公司 Secondary cold rolled steel and production method thereof
CN103602884A (en) * 2013-12-06 2014-02-26 马钢(集团)控股有限公司 Ultralow-carbon aluminum-killed steel plate and production method thereof
CN114635093A (en) * 2022-03-25 2022-06-17 包头钢铁(集团)有限责任公司 Method for manufacturing cold-rolled low-carbon steel for household appliances

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938338A (en) * 1982-08-30 1984-03-02 Kawasaki Steel Corp Production of ultra thin steel sheet having high yield strength and drawability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938338A (en) * 1982-08-30 1984-03-02 Kawasaki Steel Corp Production of ultra thin steel sheet having high yield strength and drawability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494581A (en) * 2017-03-27 2019-11-22 杰富意钢铁株式会社 Two panels steel plate for tanks and its manufacturing method
CN110494581B (en) * 2017-03-27 2021-07-09 杰富意钢铁株式会社 Two-piece steel sheet for can and method for producing same
US11486018B2 (en) 2017-03-27 2022-11-01 Jfe Steel Corporation Steel sheet for two-piece can and manufacturing method therefor

Also Published As

Publication number Publication date
JPH01184229A (en) 1989-07-21

Similar Documents

Publication Publication Date Title
TW201546296A (en) High-strength steel sheet and production method therefor
JP4943244B2 (en) Steel sheet for ultra-thin containers
JP4853325B2 (en) Thin wall cold-rolled steel sheet for drums and method for producing the same
JP4284815B2 (en) Steel plate for high-strength can and manufacturing method thereof
JPH0676618B2 (en) Manufacturing method of steel plate for DI can with excellent stretch flange formability
JP4486414B2 (en) Thin steel plate for cans with strong can body strength and good press workability and method for producing the same
JPH04337049A (en) Cold rolled steel sheet for can manufacturing having high strength and superior workability and its production
JP2009174055A (en) Mother sheet for high strength extra-thin cold rolled steel sheet, and method for producing the same
JPH0567684B2 (en)
JPS63134645A (en) Steel sheet for di can excellent in stretch-flange formability
JPS5884928A (en) Production of high-strength cold-rolled steel plate for deep drawing having excellent nonaging property, secondary workability and curing performance for baked paint
JPH0478714B2 (en)
JP2004131754A (en) Cold rolled steel sheet excellent in workability and shape fixability and its manufacturing method
JP2004131771A (en) Method for manufacturing cold rolled steel sheet having excellent shape fixability
JPH08269568A (en) Production of steel sheet for can making excellent in flange formability
JP2003268490A (en) Thin steel sheet for working excellent in bake hardenability and aging resistance and its production method
JP6822617B1 (en) Steel sheet for cans and its manufacturing method
US20180112295A1 (en) Steel sheet for can lid and method for producing the same (as amended)
JP5803510B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP2816358B2 (en) Manufacturing method of steel sheet for DI can
JPH08283863A (en) Production of hard steel sheet for can excellent in uniformity of material
JPH01149943A (en) Cold rolled steel sheet extremely excellent in workability
JPS63140039A (en) Production of steel sheet for di can
JPS6330969B2 (en)
JPH08155565A (en) Production of light weight can excellent in bottom pressure withstanding strength

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070928

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 14