JP3309396B2 - High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same - Google Patents

High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same

Info

Publication number
JP3309396B2
JP3309396B2 JP01137191A JP1137191A JP3309396B2 JP 3309396 B2 JP3309396 B2 JP 3309396B2 JP 01137191 A JP01137191 A JP 01137191A JP 1137191 A JP1137191 A JP 1137191A JP 3309396 B2 JP3309396 B2 JP 3309396B2
Authority
JP
Japan
Prior art keywords
less
content
temperature
steel sheet
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01137191A
Other languages
Japanese (ja)
Other versions
JPH05279798A (en
Inventor
健司 田原
俊明 占部
佳弘 細谷
昭彦 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP01137191A priority Critical patent/JP3309396B2/en
Publication of JPH05279798A publication Critical patent/JPH05279798A/en
Application granted granted Critical
Publication of JP3309396B2 publication Critical patent/JP3309396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はCuを添加した極低炭素
鋼を素材とする深絞り用冷延鋼板およびその製造方法に
関するものである。最近の自動車業界では冷延鋼板の高
強度化によって車体重量を軽減するという傾向があり、
本発明はそのような自動車車体用冷延鋼板およびその製
造方法として特に有用なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold-rolled steel sheet for deep drawing using a very low carbon steel to which Cu is added as a raw material and a method for producing the same.
It is about. In the recent automobile industry, there is a tendency to reduce the body weight by increasing the strength of cold-rolled steel sheets,
The present invention is particularly useful as such a cold-rolled steel sheet for an automobile body and a method for producing the same.

【0002】[0002]

【従来技術】一般に、IF(Interstitial Free)鋼
は、粒界上にC等の元素がないため粒界強度が低下し、
耐2次加工脆性が劣化し易いことが知られている。この
特性の劣化を防ぐ手段として、Bを添加して粒界を強化
する方法がある。Cu添加鋼におけるB添加の例として
は特開平2−173213号等があり、この技術では時
効処理前の耐2次加工脆性を向上させている。しかし、
本発明者らは時効処理後ε−Cuが析出することによっ
て耐2次加工脆性が著しく劣化することを経験した。し
たがって、この特性の劣化を防ぐための手段としてBの
添加のみでは不十分である。また、Bを添加することに
よってr値が劣化することが知られており、耐2次加工
脆性の改善のためにあまり多量のBを添加することはで
きない。このためB添加による耐2次加工脆性遷移温度
の向上には限界がある。
2. Description of the Related Art Generally, IF (Interstitial Free) steel has a low grain boundary strength because there is no element such as C on the grain boundary.
It is known that the resistance to secondary working brittleness is easily deteriorated. As a means for preventing the deterioration of the characteristics, there is a method of adding B to strengthen the grain boundaries. As an example of the addition of B in the Cu-added steel, there is JP-A-2-173213 and the like, and this technique improves the resistance to secondary working brittleness before aging treatment. But,
The present inventors have experienced that ε-Cu precipitates after the aging treatment, so that the secondary working brittleness is remarkably deteriorated. Therefore, the addition of B alone is not sufficient as a means for preventing the deterioration of the characteristics. It is also known that the addition of B deteriorates the r-value, and it is not possible to add a large amount of B to improve the resistance to secondary working embrittlement. Therefore, there is a limit to the improvement of the secondary working brittleness transition temperature by the addition of B.

【0003】一方、Cuを多量に添加した鋼を500℃
〜600℃の温度で時効するとε−Cuが析出し、鋼の
強度が上昇することが知られている。一般にIF鋼のr
値を高めるためには、熱延後の巻取温度を高くして、T
iC、Ti422等の析出物を粗大化させることが有
効であると言われているが、Cuが添加されている場
合、巻取後の冷却過程でε−Cuの析出が起こり、Cu
の添加量が増加するにつれてr値はCu無添加の場合よ
りも劣化する。そればかりでなくε−Cuの析出によっ
て硬化し、冷間圧延時の変形抵抗が増加する。このため
特開平2‐145726号では巻取温度をε−Cuの析
出する温度よりも下げているが、この方法では巻取の冷
却過程でε−Cuは析出しないため、高温度巻取に比べ
てε−Cuの析出に起因したr値の劣化は防げるもの
の、巻取温度が低いためTiC、Ti422の析出サ
イズが小さく、本来IF鋼に期待される高r値を得るこ
とは難しい。
On the other hand, steel containing a large amount of Cu
It is known that when aged at a temperature of up to 600 ° C., ε-Cu precipitates and the strength of steel increases. Generally r of IF steel
In order to increase the value, the winding temperature after hot rolling is increased, and T
It is said that it is effective to coarsen precipitates such as iC and Ti 4 C 2 S 2. However, when Cu is added, ε-Cu precipitates during the cooling process after winding. , Cu
As the amount of addition increases, the r value deteriorates as compared with the case where Cu is not added. Not only that, it hardens due to the precipitation of ε-Cu, and the deformation resistance during cold rolling increases. For this reason, in Japanese Patent Application Laid-Open No. 2-145726, the winding temperature is lower than the temperature at which ε-Cu precipitates. However, in this method, ε-Cu does not precipitate during the cooling process of the winding, and therefore, compared to high-temperature winding. Deterioration of the r value due to the precipitation of ε-Cu can be prevented, but the precipitation size of TiC and Ti 4 C 2 S 2 is small due to the low winding temperature, and the high r value originally expected for IF steel can be obtained. Is difficult.

【0004】[0004]

【発明が解決しようとする課題】最近の自動車業界で
は、部品の複雑化に伴い鋼板に高度の成形性が要求され
るとともに、高強度化による薄手化によって燃費の向上
を図ることが要望されている。このような状況下で、従
来のようにBのみを添加した鋼では時効処理後の耐2次
加工脆性を十分に改善することはできなかった。また、
従来の製造方法では、巻取温度が高い場合にはコイルの
徐冷段階でε−Cuが析出してr値が低下し、一方、巻
取温度が低い場合にはTiC等の析出物の粗大化が図れ
ないためr値が低下するという問題があり、高成形性、
高強度化の要求に十分応え得るものではなかった。
In the recent automobile industry, a high degree of formability is required for a steel sheet as parts become more complicated, and it is desired to improve fuel efficiency by making the steel sheet thinner due to higher strength. I have. Under such circumstances, the steel to which only B was added as in the related art could not sufficiently improve the resistance to secondary working brittleness after aging treatment. Also,
In the conventional manufacturing method, when the winding temperature is high, ε-Cu precipitates during the cooling step of the coil, and the r value decreases. On the other hand, when the winding temperature is low, the coarseness of precipitates such as TiC is large. Therefore, there is a problem that the r-value is reduced because the
It could not sufficiently meet the demand for high strength.

【0005】本発明は以上のような問題に鑑みなされた
もので、その目的とするところは、成形後の熱処理によ
って高強度化し、しかも耐2次加工脆性に優れた深絞り
用冷延鋼板を提供すること、また、これらの特性ととも
に高度の成形性を有する深絞り用冷延鋼板の製造方法を
提供することにある。
[0005] The present invention has been made in view of the above problems, and an object thereof is to provide a heat treatment after molding.
Deep drawing with high strength and excellent secondary processing brittleness resistance
Providing cold rolled steel sheets for
Another object of the present invention is to provide a method for producing a cold-rolled steel sheet for deep drawing having a high formability .

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るため本発明者らが検討を重ねた結果、0.5wt%以
上のCuを添加した極低炭素鋼にMoを適量添加するこ
とにより耐2次加工脆性が著しく改善できること、また
熱間圧延後の巻取温度を高くすることによって、TiC
等の析出物を粗大化させてr値を高くし、巻取後にCu
の含有量および巻取温度との関係で規定された冷却速度
で急冷を行いε−Cuの析出を防止すると、高r値を損
なうことがなく、また成形後の熱処理によって著しく強
度が上昇することを新たに知見した。
Means for Solving the Problems As a result of repeated studies by the present inventors to achieve such an object, it has been found that by adding an appropriate amount of Mo to an ultra-low carbon steel to which 0.5 wt% or more of Cu is added. The remarkable improvement in the secondary work brittleness resistance and the increase in the coiling temperature after hot rolling make TiC
And the like are coarsened to increase the r value, and after winding, Cu
Quenching at a cooling rate prescribed by the relationship between the content of and the winding temperature to prevent the precipitation of ε-Cu, without impairing the high r value, and that the strength is significantly increased by heat treatment after molding. Was newly found.

【0007】本発明はこのような知見に基づきなされた
もので、その構成は以下の通りである。 (1) C:0.010wt%以下、Si:1.0wt
%以下、Mn:0.2〜2.5wt%、P:0.05w
t%以下、S:0.01wt%以下、Al:0.10w
t%以下、N:0.0050wt%以下、Cu:0.5
〜2.0wt%、Ni:1.0wt%以下、Ti:0.
005〜0.2wt%を含有し、さらにMoを0.04
8〜1.0wt%であって、且つ、 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02 但し、〔%Mo〕:Mo含有量(wt%) 〔%Cu〕:Cu含有量(wt%) 〔%P〕 :P含有量(wt%) を満足する範囲で含有し、残部Feおよび不可避的不純
物からなることを特徴とする耐2次加工脆性に優れた時
効硬化性を有する深絞り用高強度冷延鋼板。(2) C:0.010wt%以下、Si:1.0wt
%以下、Mn:0.2〜2.5wt%、P:0.05w
t%以下、S:0.01wt%以下、Al:0.10w
t%以下、N:0.0050wt%以下、Cu:0.5
〜2.0wt%、Ni:1.0wt%以下、Ti:0.
005〜0.2wt%、Nb:0.002〜0.1wt
%を含有し、さらにMoを0.048〜1.0wt%で
あって、且つ、 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02 但し、〔%Mo〕:Mo含有量(wt%) 〔%Cu〕:Cu含有量(wt%) 〔%P〕 :P含有量(wt%) を満足する範囲で含有し、残部Feおよび不可避的不純
物からなることを特徴とする耐2次加工脆性に優れた時
効硬化性を有する深絞り用高強度冷延鋼板。 (3) C:0.010wt%以下、Si:1.0wt
%以下、Mn:0.2〜2.5wt%、P:0.05w
t%以下、S:0.01wt%以下、Al:0.10w
t%以下、N:0.0050wt%以下、Cu:0.5
〜2.0wt%、Ni:1.0wt%以下、B:0.0
001〜0.0020wt%、Ti:0.005〜0.
2wt%を含有し、さらにMoを0.048〜1.0w
t%であって、且つ、 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02 但し、〔%Mo〕:Mo含有量(wt%) 〔%Cu〕:Cu含有量(wt%) 〔%P〕 :P含有量(wt%) を満足する範囲で含有し、残部Feおよび不可避的不純
物からなることを特徴とする耐2次加工脆性に優れた時
効硬化性を有する深絞り用高強度冷延鋼板。(4) C:0.010wt%以下、Si:1.0wt
%以下、Mn:0.2〜2.5wt%、P:0.05w
t%以下、S:0.01wt%以下、Al:0.10w
t%以下、N:0.0050wt%以下、Cu:0.5
〜2.0wt%、Ni:1.0wt%以下、B:0.0
001〜0.0020wt%、Ti:0.005〜0.
2wt%、Nb:0.002〜0.1wt%を含有し、
さらにMoを0.048〜1.0wt%であって、且
つ、 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02 但し、〔%Mo〕:Mo含有量(wt%) 〔%Cu〕:Cu含有量(wt%) 〔%P〕 :P含有量(wt%) を満足する範囲で含有し、残部Feおよび不可避的不純
物からなることを特徴とする耐2次加工脆性に優れた時
効硬化性を有する深絞り用高強度冷延鋼板。 (5) C:0.010wt%以下、Si:1.0wt
%以下、Mn:0.2〜2.5wt%、P:0.05w
t%以下、S:0.01wt%以下、Al:0.10w
t%以下、N:0.0050wt%以下、Cu:0.5
〜2.0wt%、Ni:1.0wt%以下、Ti:0.
005〜0.2wt%を含有し、さらにMoを0.04
8〜1.0wt%であって、且つ、 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02 但し、〔%Mo〕:Mo含有量(wt%) 〔%Cu〕:Cu含有量(wt%) 〔%P〕 :P含有量(wt%) を満足する範囲で含有し、残部Feおよび不可避的不純
物からなる鋼を900℃以上で熱間圧延し、620℃以
上で巻取後、570℃以上の温度から、 (v−0.7)×(CT−620)≧4.4〔%Cu〕2+3.9 但し v:冷却速度(℃/min) CT:巻取温度(℃) 〔%Cu〕:Cu含有量(wt%) で規定される冷却速度vで450℃以下の温度まで冷却
し、該熱延鋼板を酸洗、冷間圧延した後、再結晶温度以
上で連続焼鈍することを特徴とする耐2次加工脆性に優
れた時効硬化性を有する深絞り用高強度冷延鋼板の製造
方法。(6) C:0.010wt%以下、Si:1.0wt
%以下、Mn:0.2〜2.5wt%、P:0.05w
t%以下、S:0.01wt%以下、Al:0.10w
t%以下、N:0.0050wt%以下、Cu:0.5
〜2.0wt%、Ni:1.0wt%以下、Ti:0.
005〜0.2wt%、Nb:0.002〜0.1wt
%を含有し、さらにMoを0.048〜1.0wt%で
あって、且つ、 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02 但し、〔%Mo〕:Mo含有量(wt%) 〔%Cu〕:Cu含有量(wt%) 〔%P〕 :P含有量(wt%) を満足する範囲で含有し、残部Feおよび不可避的不純
物からなる鋼を900℃以上で熱間圧延し、620℃以
上で巻取後、570℃以上の温度から、 (v−0.7)×(CT−620)≧4.4〔%Cu〕 2 +3.9 但し v:冷却速度(℃/min) CT:巻取温度(℃) 〔%Cu〕:Cu含有量(wt%) で規定される冷却速度vで450℃以下の温度まで冷却
し、該熱延鋼板を酸洗、冷間圧延した後、再結晶温度以
上で連続焼鈍することを特徴とする耐2次加工脆性に優
れた時効硬化性を有する深絞り用高強度冷延鋼板の製造
方法。 (7) C:0.010wt%以下、Si:1.0wt
%以下、Mn:0.2〜2.5wt%、P:0.05w
t%以下、S:0.01wt%以下、Al:0.10w
t%以下、N:0.0050wt%以下、Cu:0.5
〜2.0wt%、Ni:1.0wt%以下、B:0.0
001〜0.0020wt%、Ti:0.005〜0.
2wt%を含有し、さらにMoを0.048〜1.0w
t%であって、且つ、 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02 但し、〔%Mo〕:Mo含有量(wt%) 〔%Cu〕:Cu含有量(wt%) 〔%P〕 :P含有量(wt%) を満足する範囲で含有し、残部Feおよび不可避的不純
物からなる鋼を900℃以上で熱間圧延し、620℃以
上で巻取後、570℃以上の温度から、 (v−0.7)×(CT−620)≧4.4〔%Cu〕2+3.9 但し v:冷却速度(℃/min) CT:巻取温度(℃) 〔%Cu〕:Cu含有量(wt%) で規定される冷却速度vで450℃以下の温度まで冷却
し、該熱延鋼板を酸洗、冷間圧延した後、再結晶温度以
上で連続焼鈍することを特徴とする耐2次加工脆性に優
れた時効硬化性を有する深絞り用高強度冷延鋼板の製造
方法。(8) C:0.010wt%以下、Si:1.0wt
%以下、Mn:0.2〜2.5wt%、P:0.05w
t%以下、S:0.01wt%以下、Al:0.10w
t%以下、N:0.0050wt%以下、Cu:0.5
〜2.0wt%、Ni:1.0wt%以下、B:0.0
001〜0.0020wt%、Ti:0.005〜0.
2wt%、Nb:0.002〜0.1wt%を含有し、
さらにMoを0.048〜1.0wt%であって、且
つ、 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02 但し、〔%Mo〕:Mo含有量(wt%) 〔%Cu〕:Cu含有量(wt%) 〔%P〕 :P含有量(wt%) を満足する範囲で含有し、残部Feおよび不可避的不純
物からなる鋼を900℃以上で熱間圧延し、620℃以
上で巻取後、570℃以上の温度から、 (v−0.7)×(CT−620)≧4.4〔%Cu〕 2 +3.9 但し v:冷却速度(℃/min) CT:巻取温度(℃) 〔%Cu〕:Cu含有量(wt%) で規定される冷却速度vで450℃以下の温度まで冷却
し、該熱延鋼板を酸洗、冷間圧延した後、再結晶温度以
上で連続焼鈍することを特徴とする耐2次加工脆性に優
れた時効硬化性を有する深絞り用高強度冷延鋼板の製造
方法。
The present invention has been made based on such findings.
The configuration is as follows. (1) C: 0.010 wt% or less, Si: 1.0 wt%
% Or less, Mn: 0.2 to 2.5 wt%, P: 0.05 w
t% or less, S: 0.01 wt% or less, Al: 0.10 w
t% or less, N: 0.0050 wt% or less, Cu: 0.5
~ 2.0 wt%, Ni: 1.0 wt% or less,Ti: 0.
005-0.2 wt%, and Mo
8 to 1.0 wt%, and [% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02 where [% Mo]: Mo content (wt%) [% Cu]: Cu content (wt%) [ % P]: P content (wt%) is contained in a range that satisfies the following, and the balance is Fe and inevitable impurities.
When excellent in secondary processing brittleness, characterized by being made of material
High strength cold-rolled steel sheet for deep drawing with effective hardening.(2) C: 0.010 wt% or less, Si: 1.0 wt%
% Or less, Mn: 0.2 to 2.5 wt%, P: 0.05 w
t% or less, S: 0.01 wt% or less, Al: 0.10 w
t% or less, N: 0.0050 wt% or less, Cu: 0.5
To 2.0 wt%, Ni: 1.0 wt% or less, Ti: 0.1 wt%.
005 to 0.2 wt%, Nb: 0.002 to 0.1 wt%
%, And Mo at 0.048-1.0 wt%
There and [% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02 However, [% Mo]: Mo content (wt%) [% Cu]: Cu content (wt%) [% P]: P content (wt%) In the range that satisfies the following, with the balance being Fe and inevitable impurities.
When excellent in secondary processing brittleness, characterized by being made of material
High strength cold-rolled steel sheet for deep drawing with effective hardening. (3) C: 0.010 wt% or less, Si: 1.0 wt%
% Or less, Mn: 0.2 to 2.5 wt%, P: 0.05 w
t% or less, S: 0.01 wt% or less, Al: 0.10 w
t% or less, N: 0.0050 wt% or less, Cu: 0.5
~ 2.0 wt%, Ni: 1.0 wt% or less, B: 0.0
001 to 0.0020 wt%,Ti: 0.005-0.
2 wt%, and further, Mo is contained in an amount of 0.048 to 1.0 w
t%, and [% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02 where [% Mo]: Mo content (wt%) [% Cu]: Cu content (wt%) [ % P]: P content (wt%) is contained in a range that satisfies the following, and the balance is Fe and inevitable impurities.
When excellent in secondary processing brittleness, characterized by being made of material
High strength cold-rolled steel sheet for deep drawing with effective hardening.(4) C: 0.010 wt% or less, Si: 1.0 wt%
% Or less, Mn: 0.2 to 2.5 wt%, P: 0.05 w
t% or less, S: 0.01 wt% or less, Al: 0.10 w
t% or less, N: 0.0050 wt% or less, Cu: 0.5
~ 2.0 wt%, Ni: 1.0 wt% or less, B: 0.0
001 to 0.0020 wt%, Ti: 0.005 to 0.
2 wt%, Nb: 0.002-0.1 wt%,
Mo is 0.048 to 1.0 wt%, and
One [% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02 However, [% Mo]: Mo content (wt%) [% Cu]: Cu content (wt%) [% P]: P content (wt%) In the range that satisfies the following, with the balance being Fe and inevitable impurities.
When excellent in secondary processing brittleness, characterized by being made of material
High strength cold-rolled steel sheet for deep drawing with effective hardening. (5) C: 0.010 wt% or less, Si: 1.0 wt%
% Or less, Mn: 0.2 to 2.5 wt%, P: 0.05 w
t% or less, S: 0.01 wt% or less, Al: 0.10 w
t% or less, N: 0.0050 wt% or less, Cu: 0.5
~ 2.0 wt%, Ni: 1.0 wt% or less,Ti: 0.
005-0.2 wt%, and Mo
8 to 1.0 wt%, and [% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02 where [% Mo]: Mo content (wt%) [% Cu]: Cu content (wt%) [ % P]: P content (wt%) is contained in a range that satisfies the following, and the balance is Fe and inevitable impurities.
Hot rolled at 900 ° C or higher,
After the above winding, from a temperature of 570 ° C. or more, (v-0.7) × (CT-620) ≧ 4.4 [% Cu]Two+3.9 However, v: Cooling rate (° C / min) CT: Winding temperature (° C) [% Cu]: Cooling to 450 ° C or less at a cooling rate v specified by Cu content (wt%)
After hot-rolled steel sheet was pickled and cold-rolled,
Excellent secondary work brittleness characterized by continuous annealing on top
Of high strength cold-rolled steel sheet for deep drawing with improved age hardening
Method.(6) C: 0.010 wt% or less, Si: 1.0 wt%
% Or less, Mn: 0.2 to 2.5 wt%, P: 0.05 w
t% or less, S: 0.01 wt% or less, Al: 0.10 w
t% or less, N: 0.0050 wt% or less, Cu: 0.5
To 2.0 wt%, Ni: 1.0 wt% or less, Ti: 0.1 wt%.
005 to 0.2 wt%, Nb: 0.002 to 0.1 wt%
%, And Mo at 0.048-1.0 wt%
There and [% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02 However, [% Mo]: Mo content (wt%) [% Cu]: Cu content (wt%) [% P]: P content (wt%) In the range that satisfies
Hot rolled at 900 ° C or higher,
After winding on, from a temperature of 570 ℃ or more, (V-0.7) × (CT-620) ≧ 4.4 [% Cu] Two +3.9 Where v: cooling rate (° C / min) CT: winding temperature (° C) [% Cu]: Cu content (wt%) Cooling to a temperature of 450 ° C or less at a cooling rate v specified in
After hot-rolled steel sheet was pickled and cold-rolled,
Excellent secondary work brittleness characterized by continuous annealing on top
Of high strength cold-rolled steel sheet for deep drawing with improved age hardening
Method. (7) C: 0.010 wt% or less, Si: 1.0 wt%
% Or less, Mn: 0.2 to 2.5 wt%, P: 0.05 w
t% or less, S: 0.01 wt% or less, Al: 0.10 w
t% or less, N: 0.0050 wt% or less, Cu: 0.5
~ 2.0 wt%, Ni: 1.0 wt% or less, B: 0.0
001 to 0.0020 wt%,Ti: 0.005-0.
2 wt%, and further, Mo is contained in an amount of 0.048 to 1.0 w
t%, and [% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02 where [% Mo]: Mo content (wt%) [% Cu]: Cu content (wt%) [ % P]: P content (wt%) is contained in a range that satisfies the following, and the balance is Fe and inevitable impurities.
Hot rolled at 900 ° C or higher,
After the above winding, from a temperature of 570 ° C. or more, (v-0.7) × (CT-620) ≧ 4.4 [% Cu]Two+3.9 However, v: Cooling rate (° C / min) CT: Winding temperature (° C) [% Cu]: Cooling to 450 ° C or less at a cooling rate v specified by Cu content (wt%)
After hot-rolled steel sheet was pickled and cold-rolled,
Excellent secondary work brittleness characterized by continuous annealing on top
Of high strength cold-rolled steel sheet for deep drawing with improved age hardening
Method.(8) C: 0.010 wt% or less, Si: 1.0 wt%
% Or less, Mn: 0.2 to 2.5 wt%, P: 0.05 w
t% or less, S: 0.01 wt% or less, Al: 0.10 w
t% or less, N: 0.0050 wt% or less, Cu: 0.5
~ 2.0 wt%, Ni: 1.0 wt% or less, B: 0.0
001 to 0.0020 wt%, Ti: 0.005 to 0.
2 wt%, Nb: 0.002-0.1 wt%,
Mo is 0.048 to 1.0 wt%, and
One [% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02 However, [% Mo]: Mo content (wt%) [% Cu]: Cu content (wt%) [% P]: P content (wt%) In the range that satisfies
Hot rolled at 900 ° C or higher,
After winding on, from a temperature of 570 ℃ or more, (V-0.7) × (CT-620) ≧ 4.4 [% Cu] Two +3.9 Where v: cooling rate (° C / min) CT: winding temperature (° C) [% Cu]: Cu content (wt%) Cooling to a temperature of 450 ° C or less at a cooling rate v specified in
After hot-rolled steel sheet was pickled and cold-rolled,
Excellent secondary work brittleness characterized by continuous annealing on top
Of high strength cold-rolled steel sheet for deep drawing with improved age hardening
Method.

【0008】[0008]

【作用】以下、本発明における鋼成分と製造条件の限定
理由について説明する。まず、本発明の深絞り用冷延鋼
板における鋼成分の限定理由を説明する。 C:Cは高r値を保つためには少ない方がよいが、実用
上本発明の効果を損なわない範囲として0.010wt
%以下に限定した。 Si:Siは固溶強化元素として鋼板の強化に寄与する
が、1.0wt%を超えて含有すると熱延の加熱時にス
ケールの発生が著しくなるため、1.0wt%以下とし
た。 Mn:MnはSの固定のため、その下限を0.2wt%
とした。一方、2.5wt%を超えて含有するとr値を
著しく劣化させるため、その上限を2.5wt%とし
た。 P:Pは最も安価に鋼を強化できる元素であるが、0.
05wt%を超えて含有すると粒界への偏析が多くなり
2次加工脆化を引き起こすため、0.05wt%以下に
限定した。
The reasons for limiting the steel composition and the manufacturing conditions in the present invention will be described below. First, the cold-rolled steel for deep drawing of the present invention
The reasons for limiting the steel composition in the plate will be described. C: It is better that C is small in order to maintain a high r value, but 0.010 wt% as a range that does not impair the effect of the present invention practically.
% Or less. Si: Si contributes to the strengthening of the steel sheet as a solid solution strengthening element. However, if the content exceeds 1.0 wt%, the scale is remarkably generated at the time of hot rolling, so that the content is set to 1.0 wt% or less. Mn: Mn has a lower limit of 0.2 wt% for fixing S.
And On the other hand, if the content exceeds 2.5 wt%, the r value is remarkably deteriorated, so the upper limit is set to 2.5 wt%. P: P is the element that can strengthen steel at the lowest cost.
If the content exceeds 0.05 wt%, segregation at the grain boundaries increases and secondary working embrittlement occurs, so the content was limited to 0.05 wt% or less.

【0009】 S:Sはできる限り低減した方が望ましく、0.01w
t%を超えて含有すると鋼の延性を劣化させるため、
0.01wt%以下に限定した。 Al:Alは脱酸およびNの固定のために必要である
が、多量に添加するとコストの上昇をもたらすため、
0.10wt%以下に限定した。 N:Nは高r値を得るためには少ない方が望ましく、こ
のため0.0050wt%以下に限定した。 Cu:時効処理によってε−Cuを析出させ鋼の強度を
上昇させるためには、Cuの添加は必須である。Cu
は、0.5wt%未満では強度の上昇がほとんど認めら
れず、一方、2.0wt%を超えて添加してもそれ以上
強度上昇に対して効果がないため、0.5〜2.0wt
%に限定した。 Ni:一般にCu添加鋼では、熱間圧延時にCuが表面
に濃化してCuキズと呼ばれる表面欠陥が生じる。Ni
はこのCuの濃化を防止する元素として添加される。し
かし、あまり多量に添加するとコストの上昇を招くた
め、その上限を1.0wt%とした。 Ti,Nb:Tiを0.005〜0.2wt%の範囲で
添加すると、鋼中のCおよびNが固定され高r値を有す
る鋼板となるため、この範囲に限定した。また、Nbに
よっても鋼中のCおよびNが固定されるため、Tiに加
えてNbを0.002〜0.1wt%の範囲で添加して
もよい。
S: It is desirable to reduce S as much as possible.
If the content exceeds t%, the ductility of the steel deteriorates.
It was limited to 0.01 wt% or less. Al: Al is necessary for deoxidation and fixation of N, but when added in large amounts, increases the cost,
It was limited to 0.10 wt% or less. N: N is preferably as small as possible in order to obtain a high r value, and is therefore limited to 0.0050 wt% or less. Cu: In order to precipitate ε-Cu by aging treatment and increase the strength of steel, addition of Cu is essential. Cu
Is less than 0.5 wt%, almost no increase in strength is observed, while addition of more than 2.0 wt% has no further effect on the increase in strength.
%. Ni: Generally, in Cu-added steel, Cu concentrates on the surface during hot rolling, and a surface defect called Cu flaw occurs. Ni
Is added as an element for preventing the concentration of Cu. However, adding too much increases the cost, so the upper limit was made 1.0 wt%. Ti, Nb: Ti in the range of 0.005 to 0.2 wt%
When added , C and N in the steel are fixed and a steel sheet having a high r value is obtained. Also, Nb
Therefore, since C and N in the steel are fixed, it is added to Ti.
And add Nb in the range of 0.002 to 0.1 wt%
Is also good.

【0010】Mo:Moは本発明において最も重要な添
加元素である。すなわち、MoにはPの粒界への偏析を
抑制する効果があり、耐2次加工脆性を改善する働きが
ある。また、Cu添加鋼においては時効処理後のε−C
uの析出形態を変化させ、耐2次加工脆性が向上すると
考えられる。
Mo: Mo is the most important additive element in the present invention. That is, Mo has an effect of suppressing segregation of P to the grain boundary, and has a function of improving the resistance to secondary working brittleness. In the case of Cu-added steel, ε-C
It is considered that the precipitation form of u is changed to improve the secondary work brittleness resistance.

【0011】以下、Moの限定理由について説明する。
C:0.0020wt%、Si:0.04wt%、M
n:0.25wt%、S:0.005wt%、Sol.
Al:0.03wt%、N:0.0030wt%、N
i:0.5wt%、Ti:0.05wt%、P:0.0
05〜0.05wt%、Cu:0.5〜2.0wt%、
B:0.0005wt%、Mo:0.08〜1.1wt
%の組成の鋼をそれぞれ溶製してスラブとし、これらを
熱間圧延して板厚4.0mmの熱延板とした。巻取温度
は640℃、巻取後の冷却速度はCuの含有量に応じて
0.7〜2.4℃/minの範囲で変化させた。得られ
た熱延板を酸洗後、冷間圧延して板厚0.8mmの冷延
鋼板とした。その後、850℃で連続焼鈍を行ない、
0.5%の調質圧延を施した後、カップ状に深絞りを行
なった試料について550℃×1時間のε−Cu析出処
理を施し、縦割れ試験を行なった。その結果を図1に示
す。同図にから明らかなように、Moの添加量は〔%C
u〕+120〔%P〕で整理することができ、 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02 但し、〔%Mo〕:Mo含有量(wt%) 〔%Cu〕:Cu含有量(wt%) 〔%P〕 :P含有量(wt%) の範囲で縦割れ臨界温度が良好である。このため、Mo
の下限を上記式により規定した。また、Moの添加量の
下限は0.048wt%とした。また、Moを1.0w
t%を超えて添加してもそれ以上の縦割れ性改善効果は
期待できないため、その上限を1.0wt%に限定し
た。
Hereinafter, the reasons for limiting Mo will be described.
C: 0.0020 wt%, Si: 0.04 wt%, M
n: 0.25 wt%, S: 0.005 wt%, Sol.
Al: 0.03 wt%, N: 0.0030 wt%, N
i: 0.5 wt%, Ti: 0.05 wt%, P: 0.0
05-0.05 wt%, Cu: 0.5-2.0 wt%,
B: 0.0005 wt%, Mo: 0.08 to 1.1 wt%
% Of steel was smelted to form slabs, which were hot-rolled to form hot-rolled sheets having a thickness of 4.0 mm. The winding temperature was 640 ° C., and the cooling rate after winding was changed in the range of 0.7 to 2.4 ° C./min according to the Cu content. The obtained hot-rolled sheet was pickled and then cold-rolled to obtain a cold-rolled steel sheet having a thickness of 0.8 mm. After that, continuous annealing is performed at 850 ° C.
After subjecting to a 0.5% temper rolling, the cup-shaped deep drawn sample was subjected to ε-Cu precipitation treatment at 550 ° C. × 1 hour, and a longitudinal crack test was performed. The result is shown in FIG. As is clear from the figure, the amount of Mo added is [% C
u] +120 [% P], [% Mo] ≧ 0.04 ([% Cu] +120 [% P])-0.02, where [% Mo]: Mo content (wt% [% Cu]: Cu content (wt%) [% P]: P content (wt%) The longitudinal crack critical temperature is good. For this reason, Mo
Is defined by the above equation. In addition, the amount of Mo added
The lower limit was 0.048 wt%. In addition, Mo is 1.0w
Even if it is added in excess of t%, a further effect of improving the vertical cracking property cannot be expected, so its upper limit is limited to 1.0 wt%.

【0012】B:BはPと同様に粒界に偏析する元素で
あるが、偏析することによって粒界を強化する働きがあ
り、2次加工脆化の防止がさらに要求される場合、添加
する必要がある。Bは0.0001wt%未満では上述
したような効果がなく、一方、0.0020wt%を超
えて含有するとr値の低下を招くため、0.0001〜
0.0020wt%に限定した。
B: Like P, B is an element that segregates at the grain boundary, but acts to strengthen the grain boundary by segregation, and is added when further prevention of secondary working embrittlement is required. There is a need. If B is less than 0.0001 wt%, the above-mentioned effects are not obtained, while if it is more than 0.0020 wt%, the value of r decreases, so that 0.0001 to 0.0001%.
It was limited to 0.0020 wt%.

【0013】次に、本発明の製造方法の製造条件の限定
理由について説明する。本発明の製造方法では、上述し
た成分組成の鋼の熱間圧延を900℃以上で行う。熱間
圧延温度が900℃未満では、α+γ域或いはα域で熱
間圧延を行なうことになり、熱間圧延後の加工組織が残
存し、冷延焼鈍後の絞り性に良好な再結晶集合組織の発
達に悪影響を及ぼしてしまう。
Next, the reasons for limiting the manufacturing conditions of the manufacturing method of the present invention will be described. In the manufacturing method of the present invention,
Hot rolling of steel having a different component composition is performed at 900 ° C. or higher. If the hot rolling temperature is lower than 900 ° C., hot rolling is performed in the α + γ range or the α range, the work structure after hot rolling remains, and the recrystallized texture has good drawability after cold rolling annealing. Adversely affect their development.

【0014】次に、巻取温度に関しては、通常極低炭素
Ti添加鋼のr値を高くするためには巻取温度を高くし
てTiC、Ti422等の析出物を粗大化させること
が有効であるとされている。このため巻取温度は620
℃以上とした。また、巻取後はコイル内は通常徐冷され
るためε−Cuが析出しr値が低下するばかりでなく、
析出によって硬化するため冷間圧延時の変形抵抗が増加
する。したがって、これを防止するには巻取後急冷して
ε−Cuが析出しないようにすればよい。ε−Cuは約
570℃〜450℃の温度範囲で析出するため、この温
度範囲を急冷する必要がある。また、冷却速度について
も巻取温度およびCu含有量によって変化させる必要が
ある。
Next, regarding the winding temperature, in order to increase the r-value of the ultra-low carbon Ti-added steel, the winding temperature is increased so that precipitates such as TiC and Ti 4 C 2 S 2 are coarsened. It is said to be effective. Therefore, the winding temperature is 620
° C or higher. Further, after winding, the inside of the coil is usually gradually cooled, so that not only ε-Cu precipitates and the r value decreases,
Due to precipitation hardening, deformation resistance during cold rolling increases. Therefore, in order to prevent this, quenching may be performed after winding to prevent ε-Cu from being precipitated. Since ε-Cu precipitates in a temperature range of about 570 ° C. to 450 ° C., it is necessary to rapidly cool this temperature range. Also, the cooling rate needs to be changed depending on the winding temperature and the Cu content.

【0015】以下、この冷却速度の限定理由について説
明する。C:0.0020wt%、Si:0.04wt
%、Mn:0.25wt%、P:0.005wt%、
S:0.005wt%、Sol.Al:0.03wt
%、N:0.0030wt%、Ni:0.5wt%、T
i:0.05wt%、Mo:0.3wt%、Cu:0.
5wt%〜2.0wt%の組成の鋼を溶製してスラブと
し、熱間圧延して板厚4.0mmとした。巻取温度は6
10〜690℃、巻取後の冷却速度は0.7〜2.4℃
/minの範囲でそれぞれ変化させた。このようにして
得られた熱延板を酸洗後、冷間圧延し、板厚を0.8m
mとした。その後、850℃で再結晶焼鈍(連続焼鈍)
を行い、0.5%の調質圧延を施した後、引張試験を行
った。
The reason for limiting the cooling rate will be described below. C: 0.0020 wt%, Si: 0.04 wt
%, Mn: 0.25 wt%, P: 0.005 wt%,
S: 0.005 wt%, Sol. Al: 0.03wt
%, N: 0.0030 wt%, Ni: 0.5 wt%, T
i: 0.05 wt%, Mo: 0.3 wt%, Cu: 0.
Steel having a composition of 5 wt% to 2.0 wt% was melted to form a slab, and hot-rolled to a thickness of 4.0 mm. Winding temperature is 6
10-690 ° C, cooling rate after winding is 0.7-2.4 ° C
/ Min range. The hot-rolled sheet thus obtained is pickled and then cold-rolled to a thickness of 0.8 m.
m. After that, recrystallization annealing at 850 ° C (continuous annealing)
After subjecting to a 0.5% temper rolling, a tensile test was performed.

【0016】その結果を図2および図3に示す。このう
ち図2は、Cu:1.0wt%の場合の冷却速度と巻取
温度がmean−r値に及ぼす影響を示したもので、図
中の数字はその条件で製造した鋼板のmean−r値で
ある。この図において実線で示した境界線より上の領域
でmean−r値は良好な値を示す。すなわち、この条
件は、 (v−0.7)×(CT−620)≧A 但し、 v:冷却速度(℃/min) CT:巻取温度(℃) の式で表すことができ、Cu:1.0wt%のときはA
=8〜9である。次に、図3は上記AがCu含有量によ
って変化することを示した図で、AはCu量の関数で表
し得ることが判る。すなわち、図3からCu量〔wt%
Cu〕に関し、A=4.4〔wt%Cu〕2+3.9と
いう関数で表し得ることが判った。したがって、 (v−0.7)×(CT−620)≧4.4〔wt%Cu〕2+3.9 という関数で規定された冷却速度v(℃/min)で冷
却を行えば、r値を大きく劣化させることなく加工性の
優れた鋼板を製造できることが判明した。したがって、
本発明では巻取後570℃以上の温度から上記式を満足
させる冷却速度vで450℃以下まで冷却することをそ
の条件とする。
The results are shown in FIG. 2 and FIG. FIG. 2 shows the influence of the cooling rate and the winding temperature on the mean-r value when Cu: 1.0 wt%, and the figures in the figure indicate the mean-r of the steel sheet manufactured under the conditions. Value. In this figure, the mean-r value shows a good value in a region above the boundary line shown by the solid line. That is, this condition can be represented by the following equation: (v−0.7) × (CT−620) ≧ A, where v: cooling rate (° C./min) CT: winding temperature (° C.) A at 1.0 wt%
= 8-9. Next, FIG. 3 is a diagram showing that the above A changes depending on the Cu content, and it can be seen that A can be represented by a function of the amount of Cu. That is, from FIG.
Cu], it was found that A can be expressed by a function of A = 4.4 [wt% Cu] 2 +3.9. Therefore, if cooling is performed at a cooling rate v (° C./min) defined by a function of (v−0.7) × (CT-620) ≧ 4.4 [wt% Cu] 2 +3.9, the r value It has been found that a steel sheet having excellent workability can be manufactured without greatly deteriorating the steel. Therefore,
In the present invention, the condition is that after winding, cooling from a temperature of 570 ° C. or higher to 450 ° C. or lower is performed at a cooling rate v satisfying the above equation.

【0017】以上の条件で巻取、冷却した後、酸洗し、
次いで冷間圧延を施した後、再結晶温度以上で連続焼鈍
を行う。この焼鈍を連続焼鈍に限定したのは、箱焼鈍を
行なうとコイルの冷却速度が遅いため冷却時にε−Cu
が析出し、鋼板の加工性を劣化させてしまうからであ
る。連続焼鈍後、必要に応じて適当な調圧率で調質圧延
を行ない、製品とする。
After winding and cooling under the above conditions, pickling is performed.
Next, after performing cold rolling, continuous annealing is performed at a recrystallization temperature or higher. The reason why this annealing was limited to continuous annealing is that, when box annealing is performed, the cooling rate of the coil is low, so that ε-Cu
Is precipitated, thereby deteriorating the workability of the steel sheet. After continuous annealing, if necessary, temper rolling is performed at an appropriate pressure control rate to obtain a product.

【0018】以上のようにして得られる本発明鋼板に対
し、成形後、500℃〜600℃の温度で時効処理を行
えば、ε−Cuが析出し鋼板の強度は著しく増加する。
このように本発明によれば、成形前は深絞り用軟鋼板並
のr値を有し、成形後時効処理を施すことによって著し
く強度が上昇し、しかも耐2次加工脆性にも優れた従来
にない深絞り用高強度冷延鋼板を容易に得ることができ
る。
When the steel sheet of the present invention obtained as described above is subjected to an aging treatment at a temperature of 500 ° C. to 600 ° C. after forming, ε-Cu precipitates and the strength of the steel sheet is significantly increased.
As described above, according to the present invention, prior to forming, the r-value is comparable to that of a mild steel sheet for deep drawing, and the strength is significantly increased by performing aging treatment after forming. A high strength cold-rolled steel sheet for deep drawing that cannot be obtained can be easily obtained.

【0019】[0019]

【実施例】〔実施例1〕 表1に示す組成の鋼を溶製してスラブとし、これを熱間
圧延して、板厚4.0mmの熱延板とした。巻取温度は
640℃、巻取後の冷却速度は1.5℃/minとし
た。得られた熱延板を酸洗後、冷間圧延を施して板厚
0.8mmとした。その後、850℃で連続焼鈍を行な
い、次いで0.5%の調質圧延を行った後、カップ状に
深絞りを行なった試料に550℃×1時間のε−Cu析
出処理を施し、縦割れ試験を行なった。その結果を図4
に示す。同図によれば、Mo無添加の場合、縦割れ臨界
温度は20℃と実用に耐え得ないが、Moの添加量が増
加するにつれて縦割れ臨界温度は低下することが判る。
また、B無添加の場合よりBを添加した方が縦割れ臨界
温度は低下する。つまり、高い耐2次加工脆性が要求さ
れる場合、MoとBの複合添加が必要であることが判
る。
EXAMPLES [Example 1] Steel having the composition shown in Table 1 was melted to form a slab, which was hot-rolled to obtain a hot-rolled sheet having a thickness of 4.0 mm. The winding temperature was 640 ° C., and the cooling rate after winding was 1.5 ° C./min. The obtained hot rolled sheet was pickled and then cold rolled to a sheet thickness of 0.8 mm. Thereafter, continuous annealing was performed at 850 ° C., and then temper rolling of 0.5% was performed. Then, the cup-shaped deep drawn sample was subjected to ε-Cu precipitation treatment at 550 ° C. × 1 hour, and a vertical crack was generated. The test was performed. The result is shown in FIG.
Shown in According to the figure, when Mo is not added, the critical temperature for vertical cracking is 20 ° C. , which cannot be put to practical use, but the critical temperature for vertical cracking decreases as the amount of Mo added increases.
Also, the critical temperature for longitudinal cracking is lower when B is added than when B is not added. In other words, it is understood that when high secondary processing brittleness resistance is required, the composite addition of Mo and B is necessary.

【0020】〔実施例2〕C:0.0020wt%、S
i:0.05wt%、Mn:0.25wt%、P:0.
005wt%、S:0.005wt%、Sol.Al:
0.03wt%、N:0.0030wt%、Ni:0.
5wt%、Ti:0.05wt%、Cu:1.0wt
%、Mo:0.3wt%の組成の鋼を溶製してスラブと
し、熱間圧延して板厚4.0mmとした。巻取温度は6
90℃、650℃、620℃、600℃、550℃、5
00℃と変化させ、冷却条件は冷却速度:1.5℃/m
inの水冷と通常冷却(徐冷)の2水準とした。このよ
うにして得られた熱延板を酸洗後、冷間圧延し、板厚を
0.8mmとした。その後、850℃で連続焼鈍を行
い、0.5%の調質圧延を施した後、引張試験片を採取
し、引張試験を行った。その結果を図5に示す。同図に
よれば、巻取温度が高い方がmean−r値は高く、ま
た、巻取温度が620℃以上では巻取後の冷却速度が速
い方がmean−r値が高くなっていることが判る。
[Example 2] C: 0.0020 wt%, S
i: 0.05 wt%, Mn: 0.25 wt%, P: 0.
005 wt%, S: 0.005 wt%, Sol. Al:
0.03 wt%, N: 0.0030 wt%, Ni: 0.
5 wt%, Ti: 0.05 wt%, Cu: 1.0 wt
%, Mo: steel having a composition of 0.3 wt% was melted to form a slab, and hot-rolled to a thickness of 4.0 mm. Winding temperature is 6
90 ° C, 650 ° C, 620 ° C, 600 ° C, 550 ° C, 5
The temperature was changed to 00 ° C, and the cooling condition was a cooling rate: 1.5 ° C / m
In two levels of water cooling and normal cooling (slow cooling). The hot-rolled sheet thus obtained was pickled and then cold-rolled to a sheet thickness of 0.8 mm. Thereafter, continuous annealing was performed at 850 ° C., and after temper rolling of 0.5% was performed, a tensile test piece was collected and subjected to a tensile test. The result is shown in FIG. According to the figure, the mean-r value is higher when the winding temperature is higher, and the mean-r value is higher when the cooling rate after winding is higher when the winding temperature is 620 ° C. or higher. I understand.

【0021】〔実施例3〕表2に示す組成の鋼を溶製し
てスラブとし、熱間圧延して板厚4.0mmとした。仕
上温度は920℃、また、巻取温度および巻取後の冷却
条件は表3に示す通りである。得られた熱延板を酸洗
後、冷間圧延して板厚0.8mmとした後、850℃で
連続焼鈍を行い、さらに0.5wt%の調質圧延を行っ
た。得られた鋼板から引張試験片を採取し、引張試験を
行った。また、調質圧延した試料に550℃×1時間の
ε−Cu析出処理を施したものについても引張試験を行
った。さらに、調質圧延した試料にカップ状の深絞りを
行なった後、550℃×1時間のε−Cu析出処理を施
し、縦割れ試験を行なった。その結果を表3に示す。こ
れによれば、本発明鋼においては焼鈍後のmean−r
値が高く、時効後に著しく強度が上昇し、さらに縦割れ
臨界温度も−40℃以下と非常に良好である。これに対
し、比較鋼8、9は、それぞれSi、Mnが高いためm
ean−r値が低く、比較鋼10はPが高いため2次加
工脆化遷移温度が高く、比較鋼11、12はMoが低い
ため2次加工脆化遷移温度が高く、また、比較鋼13、
14はそれぞれ巻取温度、冷却速度が本発明の範囲外で
あるため、mean−r値が低下している。
Example 3 A steel having the composition shown in Table 2 was melted into a slab, and hot-rolled to a thickness of 4.0 mm. The finishing temperature is 920 ° C., and the winding temperature and the cooling conditions after winding are as shown in Table 3. After pickling, the obtained hot-rolled sheet was cold-rolled to a sheet thickness of 0.8 mm, continuously annealed at 850 ° C., and further temper-rolled to 0.5 wt%. A tensile test piece was collected from the obtained steel sheet and subjected to a tensile test. A tensile test was also performed on a temper-rolled sample that had been subjected to ε-Cu precipitation treatment at 550 ° C. × 1 hour. Further, after the cup-shaped deep drawing was performed on the temper-rolled sample, ε-Cu precipitation treatment was performed at 550 ° C. × 1 hour, and a longitudinal crack test was performed. Table 3 shows the results. According to this, in the steel of the present invention, mean-r after annealing is used.
The value is high, the strength is significantly increased after aging, and the critical temperature for longitudinal cracking is very good at -40 ° C or less. On the other hand, Comparative Steels 8 and 9 have high
Since the mean-r value is low and the comparative steel 10 has a high P, the secondary work embrittlement transition temperature is high, and the comparative steels 11 and 12 have a low Mo because the Mo is low. ,
In No. 14, since the winding temperature and the cooling rate were out of the ranges of the present invention, the mean-r value was low.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【発明の効果】以上述べたように本発明の深絞り用冷延
鋼板は、成形後の時効処理よって著しく強度が上昇し、
しかも優れた耐2次加工脆性を示す。また、本発明の製
造方法によれば、上記特性に加えて高r値を有し成形性
にも優れた深絞り用冷延鋼板を製造することができる。
As described above, the cold rolling for deep drawing according to the present invention is described above.
The strength of steel sheet increases significantly due to aging treatment after forming,
Moreover, it shows excellent secondary work brittleness resistance. Also, according to the present invention,
According to the manufacturing method, in addition to the above characteristics, it has a high r value and has
Thus, it is possible to produce a cold-rolled steel sheet for deep drawing which is excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Mo含有量と〔%Cu〕+120〔%P〕が縦
割れ臨界温度に及ぼす影響を示す図面である。
FIG. 1 is a drawing showing the effect of Mo content and [% Cu] +120 [% P] on critical temperature for vertical cracking.

【図2】Cu:1.0wt%の場合の巻取温度と巻取後
の冷却速度がmean−r値に及ぼす影響を示す図であ
る。
FIG. 2 is a diagram showing the influence of the winding temperature and the cooling rate after winding on the mean-r value when Cu: 1.0 wt%.

【図3】変数AとCu含有量がmean−r値に及ぼす
影響を示す図面である。
FIG. 3 is a graph showing the influence of a variable A and a Cu content on a mean-r value.

【図4】Mo含有量とB添加が縦割れ臨界温度に及ぼす
影響を示す図面である。
FIG. 4 is a drawing showing the effect of the Mo content and the addition of B on the critical temperature for longitudinal cracking.

【図5】巻取温度がmean−r値に及ぼす影響を示す
図面である。
FIG. 5 is a diagram showing an influence of a winding temperature on a mean-r value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西本 昭彦 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平2−173213(JP,A) 特開 昭58−22332(JP,A) 特開 平4−141554(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 8/02 - 8/04 C21D 9/46 - 9/48 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiko Nishimoto 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Inside Nippon Kokan Co., Ltd. (56) References JP-A-2-173213 (JP, A) JP-A Sho58 -22332 (JP, A) JP-A-4-141554 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38/60 C21D 8/02-8/04 C21D 9/46-9/48

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.010wt%以下、Si:1.
0wt%以下、Mn:0.2〜2.5wt%、P:0.
05wt%以下、S:0.01wt%以下、Al:0.
10wt%以下、N:0.0050wt%以下、Cu:
0.5〜2.0wt%、Ni:1.0wt%以下、
i:0.005〜0.2wt%を含有し、さらにMoを
0.048〜1.0wt%であって、且つ、 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02 但し、〔%Mo〕:Mo含有量(wt%) 〔%Cu〕:Cu含有量(wt%) 〔%P〕 :P含有量(wt%) を満足する範囲で含有し、残部Feおよび不可避的不純
物からなることを特徴とする耐2次加工脆性に優れた時
効硬化性を有する深絞り用高強度冷延鋼板。
1. C: 0.010% by weight or less, Si: 1.
0 wt% or less, Mn: 0.2 to 2.5 wt%, P: 0.
05 wt% or less, S: 0.01 wt% or less, Al: 0.
10 wt% or less, N: 0.0050 wt% or less, Cu:
0.5 to 2.0 wt%, Ni: 1.0 wt% or less, T
i: contains 0.005 to 0.2 wt%, and further contains Mo
0.048 to 1.0 wt%, and [% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02 where [% Mo]: Mo content (wt% ) [% Cu]: Cu content (wt%) [% P]: P content (wt%) in a range satisfying the following, and the balance consists of Fe and unavoidable impurities. High strength cold-rolled steel sheet for deep drawing with excellent brittleness and age hardening.
【請求項2】 C:0.010wt%以下、Si:1.2. C: 0.010 wt% or less, Si: 1.
0wt%以下、Mn:0.2〜2.5wt%、P:0.0 wt% or less, Mn: 0.2 to 2.5 wt%, P: 0.
05wt%以下、S:0.01wt%以下、Al:0.05 wt% or less, S: 0.01 wt% or less, Al: 0.
10wt%以下、N:0.0050wt%以下、Cu:10 wt% or less, N: 0.0050 wt% or less, Cu:
0.5〜2.0wt%、Ni:1.0wt%以下、T0.5 to 2.0 wt%, Ni: 1.0 wt% or less, T
i:0.005〜0.2wt%、Nb:0.002〜i: 0.005 to 0.2 wt%, Nb: 0.002 to
0.1wt%を含有し、さらにMoを0.048〜1.0.1 wt%, and further, Mo is contained in an amount of 0.048 to 1.
0wt%であって、且つ、0 wt%, and 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02[% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02 但し、〔%Mo〕:Mo含有量(wt%)However, [% Mo]: Mo content (wt%) 〔%Cu〕:Cu含有量(wt%)[% Cu]: Cu content (wt%) 〔%P〕 :P含有量(wt%)[% P]: P content (wt%) を満足する範囲で含有し、残部Feおよび不可避的不純In the range that satisfies the following, with the balance being Fe and inevitable impurities.
物からなることを特徴とする耐2次加工脆性に優れた時When excellent in secondary processing brittleness, characterized by being made of material
効硬化性を有する深絞り用高強度冷延鋼板。High strength cold-rolled steel sheet for deep drawing with effective hardening.
【請求項3】 C:0.010wt%以下、Si:1.
0wt%以下、Mn:0.2〜2.5wt%、P:0.
05wt%以下、S:0.01wt%以下、Al:0.
10wt%以下、N:0.0050wt%以下、Cu:
0.5〜2.0wt%、Ni:1.0wt%以下、B:
0.0001〜0.0020wt%、Ti:0.005
〜0.2wt%を含有し、さらにMoを0.048〜
1.0wt% であって、且つ、 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02 但し、〔%Mo〕:Mo含有量(wt%) 〔%Cu〕:Cu含有量(wt%) 〔%P〕 :P含有量(wt%) を満足する範囲で含有し、残部Feおよび不可避的不純
物からなることを特徴とする耐2次加工脆性に優れた時
効硬化性を有する深絞り用高強度冷延鋼板。
3. C: 0.010% by weight or less, Si: 1.
0 wt% or less, Mn: 0.2 to 2.5 wt%, P: 0.
05 wt% or less, S: 0.01 wt% or less, Al: 0.
10 wt% or less, N: 0.0050 wt% or less, Cu:
0.5 to 2.0 wt%, Ni: 1.0 wt% or less, B:
0.0001 to 0.0020 wt%, Ti: 0.005
-0.2 wt%, and further, Mo is 0.048-
1.0 wt% , and [% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02, where [% Mo]: Mo content (wt%) [% Cu ]: Cu content (wt%) [% P]: P content (wt%) is contained in a range satisfying the following, and the balance is made up of Fe and unavoidable impurities. Age-hardened, high-strength cold-rolled steel sheet for deep drawing.
【請求項4】 C:0.010wt%以下、Si:1.4. C: 0.010 wt% or less, Si: 1.
0wt%以下、Mn:0.2〜2.5wt%、P:0.0 wt% or less, Mn: 0.2 to 2.5 wt%, P: 0.
05wt%以下、S:0.01wt%以下、Al:0.05 wt% or less, S: 0.01 wt% or less, Al: 0.
10wt%以下、N:0.0050wt%以下、Cu:10 wt% or less, N: 0.0050 wt% or less, Cu:
0.5〜2.0wt%、Ni:1.0wt%以下、B:0.5 to 2.0 wt%, Ni: 1.0 wt% or less, B:
0.0001〜0.0020wt%、Ti:0.0050.0001 to 0.0020 wt%, Ti: 0.005
〜0.2wt%、Nb:0.002〜0.1wt%を含-0.2 wt%, Nb: 0.002-0.1 wt%
有し、さらにMoを0.048〜1.0wt%であっMo is 0.048 to 1.0 wt%.
て、且つ、And 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02[% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02 但し、〔%Mo〕:Mo含有量(wt%)However, [% Mo]: Mo content (wt%) 〔%Cu〕:Cu含有量(wt%)[% Cu]: Cu content (wt%) 〔%P〕 :P含有量(wt%)[% P]: P content (wt%) を満足する範囲で含有し、残部Feおよび不可避的不純In the range that satisfies the following, with the balance being Fe and inevitable impurities.
物からなることを特徴とする耐2次加工脆性に優れた時When excellent in secondary processing brittleness, characterized by being made of material
効硬化性を有する深絞り用高強度冷延鋼板。High strength cold-rolled steel sheet for deep drawing with effective hardening.
【請求項5】 C:0.010wt%以下、Si:1.
0wt%以下、Mn:0.2〜2.5wt%、P:0.
05wt%以下、S:0.01wt%以下、Al:0.
10wt%以下、N:0.0050wt%以下、Cu:
0.5〜2.0wt%、Ni:1.0wt%以下、
i:0.005〜0.2wt%を含有し、さらにMoを
0.048〜1.0wt%であって、且つ、 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02 但し、〔%Mo〕:Mo含有量(wt%) 〔%Cu〕:Cu含有量(wt%) 〔%P〕 :P含有量(wt%) を満足する範囲で含有し、残部Feおよび不可避的不純
物からなる鋼を900℃以上で熱間圧延し、620℃以
上で巻取後、570℃以上の温度から、 (v−0.7)×(CT−620)≧4.4〔%Cu〕2+3.9 但し v:冷却速度(℃/min) CT:巻取温度(℃) 〔%Cu〕:Cu含有量(wt%) で規定される冷却速度vで450℃以下の温度まで冷却
し、該熱延鋼板を酸洗、冷間圧延した後、再結晶温度以
上で連続焼鈍することを特徴とする耐2次加工脆性に優
れた時効硬化性を有する深絞り用高強度冷延鋼板の製造
方法。
5. C: 0.010% by weight or less, Si: 1.
0 wt% or less, Mn: 0.2 to 2.5 wt%, P: 0.
05 wt% or less, S: 0.01 wt% or less, Al: 0.
10 wt% or less, N: 0.0050 wt% or less, Cu:
0.5 to 2.0 wt%, Ni: 1.0 wt% or less, T
i: contains 0.005 to 0.2 wt%, and further contains Mo
0.048 to 1.0 wt%, and [% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02 where [% Mo]: Mo content (wt% ) [% Cu]: Cu content (wt%) [% P]: P content (wt%) After winding at 620 ° C. or higher, from the temperature of 570 ° C. or higher, (v−0.7) × (CT-620) ≧ 4.4 [% Cu] 2 +3.9, where v: cooling rate (° C. / min) CT: Winding temperature (° C) [% Cu]: Cu content (wt%) Cool to a temperature of 450 ° C or less at a cooling rate v, pickling and cold rolling the hot-rolled steel sheet. After continuous annealing at a temperature higher than the recrystallization temperature, it is characterized by an age hardening property with excellent secondary work brittleness resistance Method of manufacturing a Dohiyanobe steel plate.
【請求項6】 C:0.010wt%以下、Si:1.6. C: 0.010 wt% or less, Si: 1.
0wt%以下、Mn:0.2〜2.5wt%、P:0.0 wt% or less, Mn: 0.2 to 2.5 wt%, P: 0.
05wt%以下、S:0.01wt%以下、Al:0.05 wt% or less, S: 0.01 wt% or less, Al: 0.
10wt%以下、N:0.0050wt%以下、Cu:10 wt% or less, N: 0.0050 wt% or less, Cu:
0.5〜2.0wt%、Ni:1.0wt%以下、T0.5 to 2.0 wt%, Ni: 1.0 wt% or less, T
i:0.005〜0.2wt%、Nb:0.002〜i: 0.005 to 0.2 wt%, Nb: 0.002 to
0.1wt%を含有し、さらにMoを0.048〜1.0.1 wt%, and further, Mo is contained in an amount of 0.048 to 1.
0wt%であって、且つ、0 wt%, and 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02[% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02 但し、〔%Mo〕:Mo含有量(wt%)However, [% Mo]: Mo content (wt%) 〔%Cu〕:Cu含有量(wt%)[% Cu]: Cu content (wt%) 〔%P〕 :P含有量(wt%)[% P]: P content (wt%) を満足する範囲で含有し、残部Feおよび不可避的不純In the range that satisfies the following, with the balance being Fe and inevitable impurities.
物からなる鋼を900℃以上で熱間圧延し、620℃以Hot rolled at 900 ° C or higher,
上で巻取後、570℃以上の温度から、After winding on, from a temperature of 570 ℃ or more, (v−0.7)×(CT−620)≧4.4〔%Cu〕(V-0.7) × (CT-620) ≧ 4.4 [% Cu] 2Two +3.9+3.9 但し v:冷却速度(℃/min)Where v: cooling rate (° C / min) CT:巻取温度(℃)CT: winding temperature (° C) 〔%Cu〕:Cu含有量(wt%)[% Cu]: Cu content (wt%) で規定される冷却速度vで450℃以下の温度まで冷却Cooling to a temperature of 450 ° C or less at a cooling rate v specified in
し、該熱延鋼板を酸洗、冷間圧延した後、再結晶温度以After hot-rolled steel sheet was pickled and cold-rolled,
上で連続焼鈍することを特徴とする耐2次加工脆性に優Excellent secondary work brittleness characterized by continuous annealing on top
れた時効硬化性を有する深絞り用高強度冷延鋼板の製造Of high strength cold-rolled steel sheet for deep drawing with improved age hardening
方法。Method.
【請求項7】 C:0.010wt%以下、Si:1.
0wt%以下、Mn:0.2〜2.5wt%、P:0.
05wt%以下、S:0.01wt%以下、Al:0.
10wt%以下、N:0.0050wt%以下、Cu:
0.5〜2.0wt%、Ni:1.0wt%以下、B:
0.0001〜0.0020wt%、Ti:0.005
〜0.2wt%を含有し、さらにMoを0.048〜
1.0wt%であって、且つ、 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02 但し、〔%Mo〕:Mo含有量(wt%) 〔%Cu〕:Cu含有量(wt%) 〔%P〕 :P含有量(wt%) を満足する範囲で含有し、残部Feおよび不可避的不純
物からなる鋼を900℃以上で熱間圧延し、620℃以
上で巻取後、570℃以上の温度から、 (v−0.7)×(CT−620)≧4.4〔%Cu〕2+3.9 但し v:冷却速度(℃/min) CT:巻取温度(℃) 〔%Cu〕:Cu含有量(wt%) で規定される冷却速度vで450℃以下の温度まで冷却
し、該熱延鋼板を酸洗、冷間圧延した後、再結晶温度以
上で連続焼鈍することを特徴とする耐2次加工脆性に優
れた時効硬化性を有する深絞り用高強度冷延鋼板の製造
方法。
7. C: 0.010 wt% or less, Si: 1.
0 wt% or less, Mn: 0.2 to 2.5 wt%, P: 0.
05 wt% or less, S: 0.01 wt% or less, Al: 0.
10 wt% or less, N: 0.0050 wt% or less, Cu:
0.5 to 2.0 wt%, Ni: 1.0 wt% or less, B:
0.0001 to 0.0020 wt%, Ti: 0.005
-0.2 wt%, and further, Mo is 0.048-
1.0 wt%, and [% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02, where [% Mo]: Mo content (wt%) [% Cu ]: Cu content (wt%) [% P]: steel containing P in a range satisfying the following, and the balance consisting of Fe and unavoidable impurities is hot-rolled at 900 ° C or more, and 620 ° C. After the above winding, from the temperature of 570 ° C. or higher, (v−0.7) × (CT-620) ≧ 4.4 [% Cu] 2 +3.9, where v: cooling rate (° C./min) CT: Winding temperature (° C.) [% Cu]: Cooling to a temperature of 450 ° C. or less at a cooling rate v specified by Cu content (wt%), pickling and cold rolling the hot-rolled steel sheet, High-strength cold-rolled steel sheet for deep drawing with excellent age hardening and excellent secondary work brittleness characterized by continuous annealing at a temperature higher than the crystallization temperature Manufacturing method.
【請求項8】 C:0.010wt%以下、Si:1.8. C: 0.010% by weight or less, Si: 1.
0wt%以下、Mn:0.2〜2.5wt%、P:0.0 wt% or less, Mn: 0.2 to 2.5 wt%, P: 0.
05wt%以下、S:0.01wt%以下、Al:0.05 wt% or less, S: 0.01 wt% or less, Al: 0.
10wt%以下、N:0.0050wt%以下、Cu:10 wt% or less, N: 0.0050 wt% or less, Cu:
0.5〜2.0wt%、Ni:1.0wt%以下、B:0.5 to 2.0 wt%, Ni: 1.0 wt% or less, B:
0.0001〜0.0020wt%、Ti:0.0050.0001 to 0.0020 wt%, Ti: 0.005
〜0.2wt%、Nb:0.002〜0.1wt%を含-0.2 wt%, Nb: 0.002-0.1 wt%
有し、さらにMoを0.048〜1.0wt%であっMo is 0.048 to 1.0 wt%.
て、且つ、And 〔%Mo〕≧0.04(〔%Cu〕+120〔%P〕)−0.02[% Mo] ≧ 0.04 ([% Cu] +120 [% P]) − 0.02 但し、〔%Mo〕:Mo含有量(wt%)However, [% Mo]: Mo content (wt%) 〔%Cu〕:Cu含有量(wt%)[% Cu]: Cu content (wt%) 〔%P〕 :P含有量(wt%)[% P]: P content (wt%) を満足する範囲で含有し、残部Feおよび不可避的不純In the range that satisfies the following, with the balance being Fe and inevitable impurities.
物からなる鋼を900℃以上で熱間圧延し、620℃以Hot rolled at 900 ° C or higher,
上で巻取後、570℃以上の温度から、After winding on, from a temperature of 570 ℃ or more, (v−0.7)×(CT−620)≧4.4〔%Cu〕(V-0.7) × (CT-620) ≧ 4.4 [% Cu] 2Two +3.9+3.9 但し v:冷却速度(℃/min)Where v: cooling rate (° C / min) CT:巻取温度(℃)CT: winding temperature (° C) 〔%Cu〕:Cu含有量(wt%)[% Cu]: Cu content (wt%) で規定される冷却速度vで450℃以下の温度まで冷却Cooling to a temperature of 450 ° C or less at a cooling rate v specified in
し、該熱延鋼板を酸洗、冷間圧延した後、再結晶温度以After hot-rolled steel sheet was pickled and cold-rolled,
上で連続焼鈍することを特徴とする耐2次加工脆性に優Excellent secondary work brittleness characterized by continuous annealing on top
れた時効硬化性を有する深絞り用高強度冷延鋼板の製造Of high strength cold-rolled steel sheet for deep drawing with improved age hardening
方法。Method.
JP01137191A 1991-01-07 1991-01-07 High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same Expired - Fee Related JP3309396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01137191A JP3309396B2 (en) 1991-01-07 1991-01-07 High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01137191A JP3309396B2 (en) 1991-01-07 1991-01-07 High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05279798A JPH05279798A (en) 1993-10-26
JP3309396B2 true JP3309396B2 (en) 2002-07-29

Family

ID=11776159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01137191A Expired - Fee Related JP3309396B2 (en) 1991-01-07 1991-01-07 High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3309396B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530076B1 (en) * 2001-12-21 2005-11-22 주식회사 포스코 Drawing High Strength Steel Sheet With Secondary Working Brittleness Resistance and Press Formability and A Method for Manufacturing thereof

Also Published As

Publication number Publication date
JPH05279798A (en) 1993-10-26

Similar Documents

Publication Publication Date Title
US3988173A (en) Cold rolled steel sheet having excellent workability and method thereof
JPH024657B2 (en)
JP4414883B2 (en) High-strength cold-rolled steel sheet for ultra-deep drawing excellent in formability and weldability and its manufacturing method
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JP3449003B2 (en) Steel plate for cans and manufacturing method thereof
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
JPH09209039A (en) Production of high strength cold rolled steel sheet excellent in deep drawability
JP3309396B2 (en) High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same
JP3293424B2 (en) Manufacturing method of non-age steel non-aging ultra low carbon cold rolled steel sheet
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JPS6237341A (en) Hot-rolled steel plate for superdrawing having superior resistance to secondary operation brittleness
JP3288514B2 (en) Manufacturing method of high-strength cold-rolled steel sheet for deep drawing
JP3911075B2 (en) Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability
JP4094498B2 (en) Deep drawing high strength cold-rolled steel sheet and method for producing the same
JP3111588B2 (en) Manufacturing method of cold rolled steel sheet that has both excellent deep drawability and secondary work brittleness resistance
JP3175063B2 (en) Ferrite single-phase cold-rolled steel sheet for non-aging deep drawing at room temperature and method for producing the same
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JP3043901B2 (en) Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability
JPS63179046A (en) High-strength sheet metal excellent in workability and season cracking resistance and its production
JPH07118755A (en) Production of steel sheet for porcelain enameling excellent in deep drawability
JP3142975B2 (en) Manufacturing method of high strength cold rolled steel sheet with excellent deep drawability
JP2823974B2 (en) High-temperature cold-rolled steel sheet for non-ageing BH type drawing at room temperature and method for producing the same
JPH0892656A (en) Production of cold rolled steel sheet excellent in deep drawability
JPH0776410B2 (en) High-strength cold-rolled steel sheet for non-aging deep drawing excellent in bake hardenability and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees