JPS6349300Y2 - - Google Patents

Info

Publication number
JPS6349300Y2
JPS6349300Y2 JP1984039019U JP3901984U JPS6349300Y2 JP S6349300 Y2 JPS6349300 Y2 JP S6349300Y2 JP 1984039019 U JP1984039019 U JP 1984039019U JP 3901984 U JP3901984 U JP 3901984U JP S6349300 Y2 JPS6349300 Y2 JP S6349300Y2
Authority
JP
Japan
Prior art keywords
dispersion
liquid
outer cylinder
inner cylinder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984039019U
Other languages
Japanese (ja)
Other versions
JPS60151533U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984039019U priority Critical patent/JPS60151533U/en
Publication of JPS60151533U publication Critical patent/JPS60151533U/en
Application granted granted Critical
Publication of JPS6349300Y2 publication Critical patent/JPS6349300Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Accessories For Mixers (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、分散液を分散媒中に微粒子状に分散
させる分散液滴の製造装置に関し、特に相対的に
回転する外筒と内筒の間隙に分散媒と分散液の混
合液を通して分散液の均一な微粒子化を行う分散
液滴製造装置の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a dispersion droplet production device for dispersing a dispersion liquid in the form of fine particles in a dispersion medium, and particularly relates to a device for producing dispersion droplets that disperses a dispersion liquid in the form of fine particles in a dispersion medium. The present invention relates to an improvement in a dispersion droplet production device that uniformly turns a dispersion into fine particles by passing a mixture of a dispersion medium and a dispersion liquid into a gap.

〔従来技術〕[Prior art]

本考案者らは先に、液槽にスタチツクミキサー
とかホモミキサー、ホモジナイザーあるいはコロ
イドミルなどと称せられる撹拌手段を用いる従来
の分散液滴製造装置に対して、内筒と外筒とを相
対的に回転させ、内筒と外筒との間隙に分散媒と
分散液の混合液を流して分散液の均一な微粒子化
を行う分散液滴製造装置を発明した。この発明
は、特願昭57−135665号として出願されている。
この分散液滴製造装置を分散液造粒法に用いる
と、極めて均一な粒径の微粒子から成る電子写真
記録装置用トナーや写真フイルム用マツト材等を
作ることができる。
The present inventors first compared the inner cylinder and outer cylinder to the conventional dispersion droplet manufacturing apparatus that uses a stirring means called a static mixer, homomixer, homogenizer, or colloid mill in a liquid tank. We have invented a dispersion droplet production device that uniformly turns the dispersion liquid into fine particles by rotating the dispersion liquid and flowing the mixture of the dispersion medium and the dispersion liquid into the gap between the inner cylinder and the outer cylinder. This invention has been filed as Japanese Patent Application No. 57-135665.
When this dispersion droplet production apparatus is used in a dispersion granulation method, it is possible to produce toner for electrophotographic recording devices, matting material for photographic films, etc., which are made of fine particles having extremely uniform particle diameters.

しかし、この分散液滴製造装置においては、内
筒と外筒の間隙を流れる混合液が内筒と外筒の相
対回転によつて与えられる剪断力により発熱し易
く、昇温によつて反応が促進したり、物性が劣化
したりするような分散媒や分散液から成る混合液
を処理する場合に、思わぬ不良結果が得られたり
することがある。また、例えばゼラチン水溶液の
ように、分散液の微粒子化を行うについて混合液
の温度を高く保つ必要がある場合、剪断力による
発熱だけでは液温の維持ができずに放熱によつて
液温が降下し、そのために分散液がゲル化して良
好な微粒子化が行われなくなつたり、さらには送
液抵抗の増加により送液ポンプに過大な負荷が掛
り、極端な場合は送液が不能になつたりするよう
なことも起る。さらに、普通は、混合液特に分散
媒が、剪断力による発熱によつて昇温すると粘度
を低下し、粘度が低下すると剪断力が低下して発
熱も減少すると云つた工合に、自動調節機能を示
し、したがつて、内筒と外筒の相対回転速度に応
じて安定して所望の微粒子化された分散液滴を得
ることができるが、例えばグリセリンやヒマシ油
等のように、温度と粘度の変化の関係から自動調
節機能が得られない物質を分散媒とした混合液を
処理する場合、内筒と外筒の相対回転速度を上げ
ても徒らに昇温して、目的の微粒子化された分散
液滴が得られないことがある。
However, in this dispersion droplet production device, the mixed liquid flowing through the gap between the inner cylinder and the outer cylinder is likely to generate heat due to the shear force exerted by the relative rotation of the inner cylinder and the outer cylinder, and the reaction is inhibited by increasing the temperature. When processing a mixed liquid consisting of a dispersion medium or a dispersion liquid that accelerates or deteriorates physical properties, unexpected poor results may be obtained. In addition, when it is necessary to keep the temperature of the mixed liquid high in order to make the dispersion into fine particles, such as an aqueous gelatin solution, it is not possible to maintain the liquid temperature only by heat generation due to shear force, and the liquid temperature increases due to heat radiation. As a result, the dispersion liquid gels and good atomization cannot be achieved, and furthermore, the liquid feeding resistance increases, putting an excessive load on the liquid feeding pump, and in extreme cases, liquid feeding becomes impossible. Things like that happen. Furthermore, when the temperature of a mixed liquid, particularly a dispersion medium, increases due to heat generation due to shear force, the viscosity decreases, and when the viscosity decreases, the shear force decreases and heat generation also decreases. Therefore, it is possible to stably obtain the desired finely dispersed droplets depending on the relative rotational speed of the inner cylinder and the outer cylinder. When processing a mixed liquid using a dispersion medium containing a substance for which an automatic adjustment function cannot be obtained due to the relationship between changes in Dispersed droplets may not be obtained.

〔考案の目的〕 本考案は、混合液が相対回転する内筒と外筒の
間隙を通過する際の温度を制御することができ
て、上述のいずれの場合においても安定して良質
の目的とする微粒子化のなされた分散液滴が得ら
れる分散液滴製造装置を提供するものである。
[Purpose of the invention] The purpose of the invention is to be able to control the temperature of the mixed liquid as it passes through the gap between the relatively rotating inner and outer cylinders, and to achieve stable and high quality in any of the above cases. The object of the present invention is to provide a dispersion droplet manufacturing apparatus that can obtain dispersion droplets that have been made into fine particles.

〔考案の構成〕[Structure of the idea]

本考案は、相対的に回転する外筒と内筒の間隙
に分散媒と分散液の混合液を通して分散液の均一
な微粒子化を行う分散液滴製造装置において、外
壁にフインまたは溝を設けた外筒の外側に冷却ま
たは加熱用の流体を通すようにしたことを特徴と
する分散液滴製造装置にあり、この構成によつて
上述の目的を達成したものである。
The present invention is a dispersion droplet production device that uniformly atomizes a dispersion liquid by passing a mixture of a dispersion medium and a dispersion liquid into the gap between an outer cylinder and an inner cylinder that rotate relatively. The present invention is a dispersion droplet manufacturing apparatus characterized in that a cooling or heating fluid is passed through the outside of the outer cylinder, and with this configuration, the above-mentioned object is achieved.

〔実施例〕〔Example〕

以下、本考案を図面を参照して説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第1図は本考案分散液滴製造装置の一例を示す
断面図、第2図および第3図はそれぞれ外筒の熱
交換効率を高めるための外壁形状の例を示す部分
断面図である。
FIG. 1 is a cross-sectional view showing an example of the dispersion droplet manufacturing apparatus of the present invention, and FIGS. 2 and 3 are partial cross-sectional views showing examples of the outer wall shape for increasing the heat exchange efficiency of the outer cylinder.

図において、1は分散媒と分散液を適当な割合
に調合する調合槽、2は調合槽1の調合液を撹拌
混合する撹拌手段、3は調合槽1の混合液を外筒
4の下方小径部に設けた液入口4aから外筒4内
に送り込む送液ポンプ、5は軸5aによつて回転
される内筒であり、外筒4内に送り込まれた混合
液は、内筒5と外筒4の間隙を通つて、外筒4の
上方小径部に設けた液出口4bから外筒4外に出
るまでの間に内筒5の回転によつて剪断力を与え
られ、分散液を微粒子化される。外筒4の液出口
4bから排出された混合液はバルブ6を径て図示
してない回収槽に送られる。
In the figure, 1 is a mixing tank for mixing the dispersion medium and the dispersion liquid in an appropriate ratio, 2 is a stirring means for stirring and mixing the mixed liquid in the mixing tank 1, and 3 is a stirring means for stirring and mixing the mixed liquid in the mixing tank 1 in the lower diameter of the outer cylinder 4. 5 is an inner cylinder that is rotated by a shaft 5a, and the mixed liquid sent into the outer cylinder 4 is transferred between the inner cylinder 5 and the outer cylinder. A shearing force is applied by the rotation of the inner cylinder 5 while the liquid passes through the gap in the cylinder 4 and exits the liquid from the outlet 4b provided at the upper small diameter part of the outer cylinder 4 to the outside of the outer cylinder 4, causing the dispersion to become fine particles. be converted into The mixed liquid discharged from the liquid outlet 4b of the outer cylinder 4 is sent through a valve 6 to a recovery tank (not shown).

この分散液滴製造装置は、内筒5と外筒4の間
隙を通る間に分散液を微粒子化される混合液の液
温を任意に制御し得るように、外筒4の外側をジ
ヤケツト7で囲み、送液口7aから冷却または加
熱のため温度を制御した液体をジヤケツト7内に
送り込んで排液口7bから排出するようにしてい
る。これによつて、混合液の物性劣化を防止した
り、反応促進を押えたり、ゲル化を防止したり、
徒らに温度上昇させることなく内筒5の回転数を
上げて所望の微粒子化された分散液滴を得るよう
にしたりすることが容易にできる。なお、ジヤケ
ツト7内の外筒4の外壁に、表面積を大きくする
ために、第2図に見るようなフインを設けたり、
第3図に見るような溝を設けたりして、ジヤケツ
ト7内に通す液体による混合液の温度制御効果を
十分にしている。
This dispersion droplet manufacturing device has a jacket 7 on the outside of the outer cylinder 4 so that the temperature of the liquid mixture, which is made into fine particles from the dispersion liquid while passing through the gap between the inner cylinder 5 and the outer cylinder 4, can be controlled arbitrarily. A temperature-controlled liquid for cooling or heating is fed into the jacket 7 from the liquid feeding port 7a and is discharged from the liquid draining port 7b. This prevents deterioration of the physical properties of the mixed liquid, suppresses reaction acceleration, and prevents gelation.
It is easy to increase the rotational speed of the inner cylinder 5 to obtain the desired finely dispersed droplets without unnecessarily increasing the temperature. In addition, in order to increase the surface area on the outer wall of the outer cylinder 4 inside the jacket 7, fins as shown in FIG. 2 may be provided.
By providing grooves as shown in FIG. 3, the temperature of the mixed liquid by the liquid passed through the jacket 7 is sufficiently controlled.

本考案は、内筒5の周径が一様な図示列に限ら
れず、内筒5の周径や外筒4の内外径等が変化す
るものであつてもよいし、また、内筒5が片側に
のみ軸5aを有して片持ち支持されたものでもよ
い。さらに、軸5aを利用して内筒5の内部に加
熱、冷却用の流体を通すようにしてもよい。
The present invention is not limited to the illustrated row in which the circumferential diameter of the inner cylinder 5 is uniform, but may be such that the circumferential diameter of the inner cylinder 5 and the inner and outer diameters of the outer cylinder 4 change, and the inner cylinder 5 may have a uniform circumference. may be supported in a cantilevered manner with the shaft 5a only on one side. Furthermore, the shaft 5a may be used to pass heating and cooling fluid through the interior of the inner cylinder 5.

次に本考案を実施例と比較例によつて説明す
る。
Next, the present invention will be explained with reference to Examples and Comparative Examples.

実施例 1 第1図の装置を用いた。Example 1 The apparatus shown in FIG. 1 was used.

スチレン100gに重合用開始剤として、ラウロ
イルパーオキサイド2gを加え溶解させたものを
分散液とする。また、水中分散安定剤としてコロ
イド状リン酸三カルシウムを1wt%、ドデシルベ
ンゼンスルホン酸ソーダ0.005wt%含有する水500
mlを分散媒として用意する。調合槽1でスチレン
溶液を分散媒に混合し、スチレン滴の平均粒径が
おおよそ1mm〜0.1mmになるように撹拌する。つ
いで、この混合液を外筒4内に0.5/minの流
量で送りこむ。このときジヤケツト7に一定温度
の温水を通し混合液の温度が30℃に保たれるよう
にした。外筒4と回転内筒4の間隙を通過した混
合液のスチレン滴は、約10〜20μmの平均粒径を
もつものとなつた。ついで、別途用意した重合用
フラスコにて70℃、6〜10hr重合することによ
り、平均粒径15μのスチレン粒子を得ることがで
きた。
A dispersion is prepared by adding and dissolving 2 g of lauroyl peroxide as a polymerization initiator to 100 g of styrene. In addition, 500% water containing 1wt% of colloidal tricalcium phosphate and 0.005wt% of sodium dodecylbenzenesulfonate as an aqueous dispersion stabilizer.
ml as a dispersion medium. A styrene solution is mixed with a dispersion medium in a mixing tank 1, and stirred so that the average particle size of styrene droplets is approximately 1 mm to 0.1 mm. Next, this liquid mixture is fed into the outer cylinder 4 at a flow rate of 0.5/min. At this time, hot water at a constant temperature was passed through the jacket 7 to maintain the temperature of the mixed liquid at 30°C. The styrene droplets of the mixed liquid that passed through the gap between the outer cylinder 4 and the rotating inner cylinder 4 had an average particle size of about 10 to 20 μm. Then, by polymerizing at 70° C. for 6 to 10 hours in a separately prepared polymerization flask, styrene particles with an average particle size of 15 μm could be obtained.

実施例 2 第1図の装置を用いた。Example 2 The apparatus shown in FIG. 1 was used.

ポリスチレンを塩化メチレンに濃度が30wt%
になるように溶解した溶液を1用意し、これを
分散液とする。また、実施例1で示した分散媒を
5用意する。調合槽1でポリスチレンの塩化メ
チレン溶液と分散媒を混合し、分散液がおおむね
1mm〜0.1mmの油滴となるように混合する。つい
で、この混合液を外筒4内に0.5/minの流量
で送り込む。このときジヤケツト7に一定温度の
水を通し、混合液の温度が室温より2〜3℃高い
温度に保たれるようにした。そのために、沸点が
約40℃の塩化メチレンの蒸発は起らなかつた。外
筒4と回転内筒5の間隙を通過した分散油滴の平
均粒径は10μmであつた。
Concentration of polystyrene to methylene chloride is 30wt%
Prepare a solution in which the following is obtained and use this as a dispersion liquid. Further, five dispersion mediums shown in Example 1 are prepared. In a mixing tank 1, a polystyrene methylene chloride solution and a dispersion medium are mixed so that the dispersion liquid becomes oil droplets approximately 1 mm to 0.1 mm in size. Next, this liquid mixture is fed into the outer cylinder 4 at a flow rate of 0.5/min. At this time, water at a constant temperature was passed through the jacket 7 so that the temperature of the liquid mixture was maintained at a temperature 2 to 3° C. higher than room temperature. Therefore, no evaporation of methylene chloride, which has a boiling point of about 40°C, took place. The average particle diameter of the dispersed oil droplets that passed through the gap between the outer cylinder 4 and the rotating inner cylinder 5 was 10 μm.

比較例 1 外筒にジヤケツトが設けられていないほかは第
1図の装置と変らない装置を用いて、実施例1と
同様の条件でスチレン粒子を製造した。この場
合、外筒と内筒の間隙を通過する間に混合液が約
60℃に昇温し、一部重合が開始されて、得られた
粒子のサイズが不均一となつた。これは、重合熱
の発生により、分散安定剤の効果が失われ、一部
油滴の合一が起つたためであると考えられる。
Comparative Example 1 Styrene particles were produced under the same conditions as in Example 1 using an apparatus that was the same as the apparatus shown in FIG. 1 except that a jacket was not provided on the outer cylinder. In this case, the mixed liquid passes through the gap between the outer cylinder and the inner cylinder.
When the temperature was raised to 60°C, some polymerization started and the size of the obtained particles became non-uniform. This is considered to be because the effect of the dispersion stabilizer was lost due to the generation of polymerization heat, and some of the oil droplets coalesced.

比較例 2 比較例1と同じ装置を用いて、実施例2と同様
の条件で分散油滴の製造を行つた。この場合も混
合液の温度が上昇し、塩化メチレンの蒸発が起
り、油滴には合一等が生じて、得られたものは油
滴の粒径が不均一で、塩化メチレンがかなり蒸発
してしまつているものであつた。
Comparative Example 2 Dispersed oil droplets were produced using the same apparatus as in Comparative Example 1 and under the same conditions as in Example 2. In this case as well, the temperature of the mixed liquid increases, evaporation of methylene chloride occurs, and coalescence of oil droplets occurs, resulting in uneven particle sizes of oil droplets and considerable evaporation of methylene chloride. It was something that had been kept away.

〔考案の効果〕[Effect of idea]

本考案分散液滴製造装置によれば、分散媒や分
散液の性質に応じた最適の温度条件を維持して均
一に良質の目的とする微粒子化された分散液滴を
製造することができる。
According to the dispersion droplet production apparatus of the present invention, it is possible to uniformly produce fine-grained dispersion droplets of high quality while maintaining optimal temperature conditions according to the properties of the dispersion medium and dispersion liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案分散液滴製造装置の一例を示す
断面図、第2図および第3図はそれぞれ外筒の熱
交換効率を高めるための外壁形状の例を示す部分
断面図である。 1……調合槽、2……撹拌手段、3……送液ポ
ンプ、4……外筒、5……内筒、7……ジヤケツ
ト、7a……送液口、7b……排出口。
FIG. 1 is a cross-sectional view showing an example of the dispersion droplet manufacturing apparatus of the present invention, and FIGS. 2 and 3 are partial cross-sectional views showing examples of the outer wall shape for increasing the heat exchange efficiency of the outer cylinder. DESCRIPTION OF SYMBOLS 1... Preparation tank, 2... Stirring means, 3... Liquid feeding pump, 4... Outer cylinder, 5... Inner cylinder, 7... Jacket, 7a... Liquid feeding port, 7b... Outlet.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 相対的に回転する外筒と内筒の間隙に分散媒と
分散液の混合液を通して分散液の均一な微粒子化
を行う分散液滴製造装置において、外壁にフイン
または溝を設けた外筒の外側に冷却または加熱用
の流体を通すようにしたことを特徴とする分散液
滴製造装置。
In a dispersion droplet manufacturing device that uniformly atomizes a dispersion liquid by passing a mixture of a dispersion medium and a dispersion liquid into the gap between an outer cylinder and an inner cylinder that rotate relatively, the outer side of the outer cylinder has fins or grooves on the outer wall. A dispersion droplet production device characterized in that a cooling or heating fluid is passed through the device.
JP1984039019U 1984-03-21 1984-03-21 Dispersion droplet production equipment Granted JPS60151533U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984039019U JPS60151533U (en) 1984-03-21 1984-03-21 Dispersion droplet production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984039019U JPS60151533U (en) 1984-03-21 1984-03-21 Dispersion droplet production equipment

Publications (2)

Publication Number Publication Date
JPS60151533U JPS60151533U (en) 1985-10-08
JPS6349300Y2 true JPS6349300Y2 (en) 1988-12-19

Family

ID=30546575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984039019U Granted JPS60151533U (en) 1984-03-21 1984-03-21 Dispersion droplet production equipment

Country Status (1)

Country Link
JP (1) JPS60151533U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899752A (en) * 1972-03-30 1973-12-17
JPS5920129A (en) * 1982-07-27 1984-02-01 東芝機械株式会社 Coffee brewing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899752A (en) * 1972-03-30 1973-12-17
JPS5920129A (en) * 1982-07-27 1984-02-01 東芝機械株式会社 Coffee brewing apparatus

Also Published As

Publication number Publication date
JPS60151533U (en) 1985-10-08

Similar Documents

Publication Publication Date Title
JP3773275B2 (en) Method for producing finely divided colorant or active substance preparation
Nocent et al. Definition of a solvent system for spherical crystallization of salbutamol sulfate by quasi‐emulsion solvent diffusion (QESD) method
US5538191A (en) Methods and apparatus for high-shear material treatment
JPH03258332A (en) Method and equipment for production of emulsion
JPS5814253B2 (en) Bisyou capsule no Seizouhouhou
JP3306131B2 (en) Manufacturing method of microcapsules
Su et al. Continuous nanoparticle production by microfluidic-based emulsion, mixing and crystallization
US5558820A (en) Process for preparing microcapsules
US5110717A (en) Stability improvement of amorphous particle dispersions
JPS6349300Y2 (en)
GB2192558A (en) Emulsifying equipment and method
WO1986001742A1 (en) Continuous dispersion apparatus having multi-step dispersion chambers
JP4122959B2 (en) Method for producing inorganic spherical body
JP4161310B2 (en) Emulsification method and apparatus
JP2013063378A (en) Preparation device and preparation method for aqueous foam liquid
JPS5946125A (en) Preparation of microcapsule
JP3318001B2 (en) Continuous production method of fine cellulose-based solidified particles
JP3992938B2 (en) Method for producing cationic resin-modified silica dispersion
Taguchi et al. Preparation of thermosensitive microcapsules containing water soluble powder by melting dispersion cooling method
JP2832867B2 (en) Suspension polymerization method
JPH06102684B2 (en) Suspension polymerization method
US2968066A (en) Formation of solid beads by congelation of suspended liquid droplets
JPH08196896A (en) Fine particle producing device
JP2593834B2 (en) Continuous production apparatus of fine cellulose-based solidified particles and production method thereof
JP2562759B2 (en) Suspension polymerization method