JPH08196896A - Fine particle producing device - Google Patents

Fine particle producing device

Info

Publication number
JPH08196896A
JPH08196896A JP7013851A JP1385195A JPH08196896A JP H08196896 A JPH08196896 A JP H08196896A JP 7013851 A JP7013851 A JP 7013851A JP 1385195 A JP1385195 A JP 1385195A JP H08196896 A JPH08196896 A JP H08196896A
Authority
JP
Japan
Prior art keywords
solution
collision chamber
liquid
fine particles
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7013851A
Other languages
Japanese (ja)
Inventor
Isao Tabayashi
勲 田林
Sumio Yamazaki
純夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP7013851A priority Critical patent/JPH08196896A/en
Publication of JPH08196896A publication Critical patent/JPH08196896A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce fine particles uniform in particle size distribution by passing a soln. or a suspension and a soln. of a different nature through respective pipelines and colliding the solns. with each other in a collision chamber. CONSTITUTION: The respective aq. soln. and org. solvent soln. in a feed tanks 2 with a jacket kept at a constant temp. by a heating and cooling device 1 are mixed by pumps 3 through a pneumatic three-way valve 4 and a check valve 5. At this time, the excess solns. are returned to the feed tanks 2 through a circulating line 6, and the solns. are stably supplied. The liq. mixture is sent to a high-pressure pump 10 after adjusting the supply amount by a needle valve 9. The liq. mixture pressurized by the pump 10 is sent to a collision chamber 12 through a filter 11 and separated into two liqs. in the chamber 12. The two liqs. are collided with a flat part in a flow passage or with each other at a mutual pressure of >=300kg/cm<2> , and a fine particle is produced. The obtained particle-contg. liq. is cooled by a cooler 13 and recovered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微粒子、特に微粒子分散
液の製造装置に関し、更に詳しくは、溶液又は分散液
(A)と異質の溶液(B)とを別々の配管を通して衝突
チャンバー内で衝突させる機構を有する微粒子の製造装
置に関する。本発明は特にインキ、塗料、電子写真用ト
ナー、医薬、食品、写真、製紙等の様々な分野に適用可
能な微粒子を製造し得る装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing fine particles, particularly fine particle dispersion liquid, and more specifically, a solution or dispersion liquid (A) and a heterogeneous solution (B) are collided in separate collision chambers in a collision chamber. The present invention relates to an apparatus for producing fine particles having a mechanism for making it. The present invention relates to an apparatus capable of producing fine particles applicable to various fields such as inks, paints, electrophotographic toners, pharmaceuticals, foods, photography and papermaking.

【0002】[0002]

【従来の技術】混合すると新たに粒子を発生するか、既
にある粒子が改質される、異なる性質の2液を混合して
微粒子を製造する方法は、一般的には2液を混合して強
く攪拌するか、一つの液を攪拌しながら他の1液を滴下
する方法が一般的であった。
2. Description of the Related Art A method for producing fine particles by mixing two liquids having different properties such that particles are newly generated when mixed or existing particles are modified is generally a method of mixing two liquids. A general method was to stir vigorously or drop one solution while stirring one solution.

【0003】例えば、アルコキシシランの有機溶媒溶液
と、アルカリ調整水と有機溶媒の混合溶液との混合反応
によるシリカ球状粒子の従来の製造方法では、アルコキ
シシランの濃度が高いと粒度分布のシャープな単分散球
状シリカが得られなくなるという欠点があり、特開平6
−191827号公報ではアルコキシシランの有機溶媒
溶液と、アルカリ調整水のpHを11〜14に範囲に設
定した有機溶媒との混合液を従来の方法で混合し、混合
反応液のアルコキシシラン濃度と温度をコントロールし
て粒径が分布がシャープで生産効率が向上したシリカ球
状単分散粒子の製造方法が提案されている。
For example, in a conventional method for producing spherical silica particles by mixing a solution of an alkoxysilane in an organic solvent and a mixed solution of alkali-adjusted water and an organic solvent, when the concentration of the alkoxysilane is high, the particle size distribution is sharp. There is a drawback that dispersed spherical silica cannot be obtained.
In Japanese Patent Laid-Open No. 191827, a mixed solution of an alkoxysilane organic solvent solution and an organic solvent in which the pH of alkali-adjusted water is set to a range of 11 to 14 is mixed by a conventional method, and the alkoxysilane concentration and temperature of the mixed reaction solution are mixed. A method for producing spherical monodispersed silica particles having a sharp particle size distribution and improved production efficiency has been proposed.

【0004】また、マイクロカプセルや乳化は、インキ
・塗料・電子写真用トナー・医薬・食品・写真・製紙等
様々な分野で利用されており、そのためのマイクロカプ
セル化技術あるいは乳化技術は現在も盛んに研究されて
いるが、マイクロカプセル製造装置あるいは乳化装置
は、単純に有機溶剤溶液(油相)と水溶液(水相)を攪
拌機で混合攪拌する方法、油相と水相を混合後、強力な
分散機を用いて大きなシェアをかけて乳化分散する方
法、油相または水相を攪拌しながら異なる相質の液体を
滴下する方法が一般的であった。またその結果、一般的
に得られる乳化物あるいはマイクロカプセルは微粒子で
安定であると思われていた。
Microcapsules and emulsifications are used in various fields such as inks, paints, toners for electrophotography, medicines, foods, photography and papermaking, and microcapsulation techniques or emulsification techniques therefor are still active. Microcapsule production equipment or emulsification equipment is a method of simply mixing and stirring an organic solvent solution (oil phase) and an aqueous solution (water phase) with a stirrer. A general method is to emulsify and disperse a large share using a disperser, and a method to add liquids of different phases while stirring an oil phase or an aqueous phase. As a result, generally obtained emulsions or microcapsules were considered to be fine particles and stable.

【0005】上記の異なる性質の2液を混合して微粒子
を製造する方法は、以下のような問題を有していた。す
なわち、上記アルコキシシランの加水分解によるシリカ
単分散微粒子を得るアルコキシド法では、組成および熟
成温度条件の改良にも関わらず、混合直後の加水分解反
応とそれに引き続く縮重合反応のうち、加水分解反応直
後に生じたシリカ粒子の粒径分布が必ずしも均一ではな
く、引き続く縮重合反応、すなわち加熱熟成後に得られ
るシリカ粒子の粒径分布の広がりや粗大粒子発生の原因
になっていた。
The method for producing fine particles by mixing the two liquids having different properties has the following problems. That is, in the alkoxide method for obtaining silica monodisperse fine particles by hydrolysis of the above-mentioned alkoxysilane, in the hydrolysis reaction immediately after mixing and the subsequent condensation polymerization reaction, immediately after the hydrolysis reaction, despite the improvement of the composition and the aging temperature condition. The particle size distribution of the silica particles generated in 1) was not always uniform, and was a cause of the subsequent polycondensation reaction, that is, the spread of the particle size distribution of the silica particles obtained after heat aging and the generation of coarse particles.

【0006】同様に、金属セラッミクスは2種以上含む
複合酸化物で、原料粉体が高純度で組成が均一、焼結性
が良い超微粒子が必要とされるため、BaCl2とTi
Cl4のような金属塩の混合溶液にシュウ酸のような沈
殿剤を加えた沈殿粒子を得る共沈法では、得られるBa
TiO(C242・4H2Oの沈殿物の粒子分布が不均
一でこのシュウ酸塩の熱分解によって生じるBaTiO
3の粒子径に影響を与えていた。
Similarly, metal ceramics is a composite oxide containing two or more kinds of metal oxides. Since ultrafine particles of raw material powder having high purity, uniform composition and good sinterability are required, BaCl 2 and Ti are required.
In a coprecipitation method in which a precipitation solution such as oxalic acid is added to a mixed solution of a metal salt such as Cl 4 to obtain precipitated particles, Ba
The particle distribution of the precipitate of TiO (C 2 O 4 ) 2 .4H 2 O is non-uniform, and BaTiO 3 produced by the thermal decomposition of this oxalate salt.
The particle size of 3 was affected.

【0007】前記の例のように、異なる2液の混合によ
って生成する粒子は、粒子径が安定なレベルに達する間
に粒子間の凝集や合一に伴って、多分散化やゲル化が生
じるか、場合によっては粒度分布計ではカウントできな
いような微量の粗大粒子が発生しやすいという欠点を有
していた。
As in the above example, the particles produced by mixing two different liquids undergo polydispersion or gelation due to aggregation or coalescence between particles while the particle size reaches a stable level. In some cases, however, there is a defect that a very small amount of coarse particles that cannot be counted by a particle size distribution meter are likely to be generated.

【0008】[0008]

【発明が解決しようとする課題】本発明は、溶液又は分
散液(A)と異質の溶液(B)とを別々の配管を通して
衝突チャンバー内で衝突させることにより粒度分布の均
一性の高い微粒子を製造できる装置を提供することにあ
る。
DISCLOSURE OF THE INVENTION According to the present invention, a solution or dispersion liquid (A) and a heterogeneous solution (B) are made to collide in a collision chamber through separate pipes to form fine particles having a high uniformity of particle size distribution. It is to provide a device that can be manufactured.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記の課
題を解決するために鋭意研究を重ねた結果、本発明を解
決するに至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above problems, and as a result, have solved the present invention.

【0010】即ち、本発明は(1)混合することにより
微粒子を生成するか、又は微粒子を改質することができ
る溶液又は分散液(A)と異質の溶液(B)とを別々の
配管を通して衝突チャンバーの手前で混合して衝突チャ
ンバー内で衝突させるか、又は該溶液又は分散液(A)
と異質の溶液(B)を別々の配管を通して衝突チャンバ
ー内で衝突させる機構を有することを特徴とする微粒子
製造装置、(2)該装置がさらに生成した微粒子を冷却
する冷却機構を有することを特徴とする微粒子製造装
置、(3)上記(1)の装置に溶液又は分散液(A)と
異質の溶液(B)とを定量ポンプで供給し、かつ両液の
混合部位の手前または両液を衝突チャンバーに供給する
手前に各々の液供給タンクへの液循環配管を設置したこ
とを特徴とする微粒子製造装置を提供する。
That is, according to the present invention, (1) a solution or dispersion (A) capable of producing fine particles by mixing or modifying the fine particles and a heterogeneous solution (B) are passed through separate pipes. Mixing before the collision chamber and causing collision in the collision chamber, or the solution or dispersion (A)
And a heterogeneous solution (B) through separate pipes in a collision chamber to collide with each other. (2) The device further comprises a cooling mechanism for cooling the generated fine particles. (3) A solution or dispersion (A) and a heterogeneous solution (B) are supplied to the apparatus of (1) above with a metering pump, and the solution or dispersion (A) is mixed before or at the mixing site of both solutions. Provided is a fine particle production apparatus characterized in that a liquid circulation pipe to each liquid supply tank is installed before supplying the liquid to a collision chamber.

【0011】本発明の装置に適用され得る、混合するこ
とにより微粒子を生成するか、又は微粒子を改質するこ
とができる溶液又は分散液(A)と異質の溶液(B)
は、特に限定されるものではないが、両者を混合した時
に化学的又は物理的な作用により微粒子を形成するか、
若しくは含有する微粒子を改質するものであれば差し支
えない。
A solution or dispersion (A) and a foreign solution (B) which can be applied to the apparatus of the present invention and which can produce fine particles by mixing or can modify fine particles.
Is not particularly limited, but when they are mixed, they form fine particles by a chemical or physical action,
Alternatively, any fine particles that modify the contained fine particles may be used.

【0012】上記溶液又は分散液(A)と異質の溶液
(B)との混合から微粒子を得る例としては、例えば次
のようなものが挙げられる。 (1)アルコキシシランのアルコール溶液とアルコール
の水溶液を混合し両液を衝突させることによりシリカの
単分散粒子が得られる。この場合、アルコキシシランが
加水分解してシリカ微粒子の分散液が生成する。ここで
使用されるアルコールとしては、アルコキシシラン溶液
では例えばメタノール、エタノール、プロパノール、ブ
タノール等で、加水分解を生じせしめるアルコール水溶
液では例えばメタノール、エタノール等のアルコールの
水溶液が好ましい。
The following are examples of obtaining fine particles from the mixture of the above solution or dispersion (A) and the heterogeneous solution (B). (1) Monodispersed particles of silica are obtained by mixing an alcohol solution of alkoxysilane and an aqueous solution of alcohol and making both solutions collide with each other. In this case, the alkoxysilane is hydrolyzed to produce a dispersion liquid of silica fine particles. The alcohol used here is preferably methanol, ethanol, propanol, butanol or the like in the alkoxysilane solution, and is preferably an aqueous alcohol solution such as methanol or ethanol in the alcohol aqueous solution which causes hydrolysis.

【0013】(2)金属塩の混合溶液に沈殿剤溶液を加
えて沈殿粒子が得られる。この場合、金属塩の混合溶液
と沈殿剤溶液とを衝突せしめることにより良好な微粒子
を沈殿せしめることができる。金属塩の混合溶液として
は、例えばBaCL2とTiCL4の混合水溶液、MnC
2とFeCL3の混合水溶液、ZnCL2とTFeCL3
の混合水溶液等が挙げられ、また、沈殿剤溶液として
は、例えばシュウ酸が挙げられる。
(2) Precipitant particles are obtained by adding a precipitant solution to a mixed solution of metal salts. In this case, fine particles can be precipitated by colliding the mixed solution of the metal salt and the precipitant solution. As the mixed solution of the metal salt, for example, a mixed aqueous solution of BaCL 2 and TiCL 4 , MnC
A mixed aqueous solution of L 2 and FeCL 3 , ZnCL 2 and TFeCL 3
Examples of the precipitant solution include oxalic acid.

【0014】(3)マイクロカプセル製造については、
コアセルベーション法(相分離法)、界面沈殿法(液中
乾燥法)や転相乳化法等があり、代表的な例としては水
に溶解可能な有機溶剤をベースとした溶液と水または添
加剤等を含む多量の水溶液とを、いずれかにマイクロカ
プセル成分を含有して衝突せしめることによって、マイ
クロカプセル化した微粒子を含む分散液が得られる。
(3) Regarding the production of microcapsules,
There are coacervation method (phase separation method), interfacial precipitation method (in-liquid drying method), phase inversion emulsification method, and the like. Typical examples are water-soluble organic solvent-based solution and water or addition. A large amount of an aqueous solution containing an agent or the like is caused to collide with any one of the microcapsule components to obtain a dispersion liquid containing microencapsulated fine particles.

【0015】この際に使用される水に溶解可能な有機溶
剤とは、水と有機溶剤が自由に相溶する必要はなく、僅
かでも溶解度を有しているものを指し、例えば、メタノ
ール、エタノール、プロパノール等の脂肪族アルコール
類;アセトン、ジメチルケトン、メチルエチルケトン等
のケトン類;酢酸エチル等の酢酸エステル類;セロソル
ブやカルビトール等のグリコールエーテル類;グリコー
ルエステル類;アミド類等があるがこれらの溶剤は二種
類以上組合わせて使用することも可能であり、水溶液の
組み合わせで安定なマイクロカプセルを形成するような
ものを選択すればよい。
The water-soluble organic solvent used in this case means that the water and the organic solvent do not have to be freely compatible with each other, and have a slight solubility, for example, methanol and ethanol. , Aliphatic alcohols such as propanol; ketones such as acetone, dimethyl ketone, and methyl ethyl ketone; acetic acid esters such as ethyl acetate; glycol ethers such as cellosolve and carbitol; glycol esters; amides. It is also possible to use two or more kinds of solvents in combination, and it is only necessary to select one that forms stable microcapsules when combined with an aqueous solution.

【0016】水に溶解可能な有機溶剤に溶解、若しくは
分散しているカプセル成分としては、可溶性樹脂や可溶
性染料や染料前駆体、カ−ボンブラック等の無機顔料、
有機顔料等の着色剤、医薬有効成分、食品抽出物等があ
り、必要に応じて乳化剤などの添加剤を加えることがで
きる。
The capsule component dissolved or dispersed in a water-soluble organic solvent is a soluble resin, a soluble dye or a dye precursor, an inorganic pigment such as carbon black,
There are colorants such as organic pigments, pharmaceutically active ingredients, food extracts and the like, and additives such as emulsifiers can be added as necessary.

【0017】この際の可溶性樹脂としては、酸価が50
〜150の合成樹脂の少なくとも一部がアルカリ性中和
剤で中和され、水に溶解可能な有機溶剤に溶解する自己
水分散性樹脂が好ましい。かかる樹脂は、アクリル酸、
メタクリル酸等の酸基含有ビニルモノマーとスチレン、
酢酸ビニル、アクリル酸アルキルエステル、メタクリル
酸アルキルエステル等の他のビニルモノマーとの共重合
樹脂が好ましい。しかし、本発明の製造装置において水
または添加剤等を含む水溶液との衝突によりカプセルを
形成する樹脂であれば使用できる。即ち、水溶液中に含
有する保護コロイドや乳化剤等によってカプセルを形成
して分散化し得る樹脂が相当する。
In this case, the soluble resin has an acid value of 50.
A self-water-dispersible resin in which at least a part of the synthetic resins of 150 to 150 is neutralized with an alkaline neutralizing agent and which is soluble in a water-soluble organic solvent is preferable. Such resin is acrylic acid,
Acid group-containing vinyl monomers such as methacrylic acid and styrene,
Copolymer resins with other vinyl monomers such as vinyl acetate, acrylic acid alkyl ester, and methacrylic acid alkyl ester are preferable. However, any resin can be used as long as it forms a capsule by collision with water or an aqueous solution containing additives in the production apparatus of the present invention. That is, it corresponds to a resin that can be dispersed by forming a capsule with a protective colloid or an emulsifier contained in an aqueous solution.

【0018】水溶液中に含有する添加剤成分としては、
保護コロイド、例えばゼラチン・卵白・レシチン等の天
然樹脂、ポリビニルアルコール・ポリビニルピロリドン
・カルボキシメチルセルロース等の水溶性樹脂;水溶性
染料、分散染料等の染料や染料前駆体;カ−ボンブラッ
ク等の無機顔料、有機顔料等の着色剤、があり、必要に
応じてpH調整剤、水溶性有機溶剤、乳化剤、防腐剤、
キレート剤等を併用することができる。
The additive component contained in the aqueous solution is
Protective colloids such as natural resins such as gelatin, egg white and lecithin, water-soluble resins such as polyvinyl alcohol, polyvinylpyrrolidone and carboxymethyl cellulose; dyes such as water-soluble dyes and disperse dyes and dye precursors; inorganic pigments such as carbon black , A colorant such as an organic pigment, and if necessary, a pH adjusting agent, a water-soluble organic solvent, an emulsifier, a preservative,
A chelating agent or the like can be used in combination.

【0019】本発明の製造装置に上記各成分を適用する
ことによって微粒子で分散安定性に優れたマイクロカプ
セルが得られる。有機溶剤可溶性カプセル成分を含む有
機溶剤溶液と水または水溶液とを混合後に得られるマイ
クロカプセルは、比較的短時間にある粒径に達するが、
有機溶剤と水とが混和する結果、カプセル成分の不溶化
や着色剤等他の固形成分の凝集に伴い系は不安定とな
り、極短時間に粒径が増大してくる。この場合、従来の
ような製造方法であれば形成したカプセルは両溶性でな
いため粒子が固体状態となり、そのまま放置すると再分
散化しなくなる。しかし、本発明の製造装置であればカ
プセルが固形化する前に衝突による強力なシェアがかか
るため、微粒子の状態でカプセルが安定化されて分散安
定性に優れたマイクロカプセルが得られる。本発明の製
造装置においては、水溶液と有機溶剤溶液との混合後直
ちに装置内でカプセル化を完了させる必要があり、好ま
しくは1分以内、さらに好ましくは10秒以内、できれ
ば装置の衝突機構内に別々の配管を通して有機溶剤溶液
と水溶液を供給することが望ましい。
By applying each of the above components to the production apparatus of the present invention, microcapsules containing fine particles and excellent in dispersion stability can be obtained. Microcapsules obtained after mixing an organic solvent solution containing an organic solvent-soluble capsule component and water or an aqueous solution reach a certain particle size in a relatively short time,
As a result of mixing the organic solvent and water, the system becomes unstable due to the insolubilization of the capsule component and the aggregation of other solid components such as the colorant, and the particle size increases in an extremely short time. In this case, if the conventional manufacturing method is used, the formed capsules are not water-soluble, so that the particles are in a solid state and do not re-disperse when left alone. However, in the production apparatus of the present invention, a strong share is applied by collision before the capsule is solidified, so that the capsule is stabilized in the state of fine particles and a microcapsule excellent in dispersion stability can be obtained. In the production apparatus of the present invention, it is necessary to complete the encapsulation in the apparatus immediately after mixing the aqueous solution and the organic solvent solution, preferably within 1 minute, more preferably within 10 seconds, and preferably within the collision mechanism of the apparatus. It is desirable to supply the organic solvent solution and the aqueous solution through separate pipes.

【0020】上記のマイクロカプセル化を行う場合、本
発明の製造装置では、水または水溶液と有機溶剤溶液を
別々の配管を通して衝突チャンバーの手前で混合し、さ
らに混合液を2つの流路に分けてそれらの混合液を衝突
チャンバー内の流路に導入するか、水溶液と有機溶剤溶
液を別々の配管を通して衝突チャンバー内に導入して、
衝突チャンバーの流路内の平面部あるいは流路内の混合
物同士の衝突によりマイクロカプセル化を行うよう工夫
される。
When performing the above-mentioned microencapsulation, in the production apparatus of the present invention, water or an aqueous solution and an organic solvent solution are mixed before the collision chamber through separate pipes, and the mixed solution is further divided into two channels. Introduce the mixed solution into the flow path in the collision chamber, or introduce the aqueous solution and the organic solvent solution into the collision chamber through separate pipes,
It is devised to carry out microencapsulation by collision of the flat portion in the flow path of the collision chamber or the mixture in the flow path.

【0021】本発明のマイクロカプセル製造装置では、
混合することにより微粒子を生成するか、又は微粒子を
改質することができる溶液又は分散液(A)と異質の溶
液(B)との衝突圧力を、より微粒子化するために30
0kg/cm2以上、好ましくは500kg/cm2以上
となるように設定するのが望ましい。このような高圧で
2液を衝突させた場合、特に300kg/cm2以上の
圧力で衝突させてマイクロカプセル化を行う場合には、
得られたマイクロカプセル分散液が衝突エネルギーのた
めかなり昇温して、マイクロカプセルの凝集が起こりや
すいことから、それを防ぐために該装置の衝突チャンバ
ーの後部に冷却装置を有することが望ましい。
In the microcapsule manufacturing apparatus of the present invention,
In order to further reduce the collision pressure between the solution or dispersion (A) capable of forming fine particles by mixing or modifying the fine particles to the heterogeneous solution (B),
It is desirable to set it to be 0 kg / cm 2 or more, preferably 500 kg / cm 2 or more. When the two liquids are collided at such a high pressure, particularly when colliding at a pressure of 300 kg / cm 2 or more for microencapsulation,
Since the obtained microcapsule dispersion is considerably heated due to collision energy and aggregation of the microcapsules is likely to occur, it is desirable to have a cooling device at the rear of the collision chamber of the device in order to prevent the aggregation.

【0022】水または水溶液と有機溶剤溶液とを一定比
率で安定して混合し、衝突チャンバーに供給したり、両
液を別々の流路を経て衝突チャンバーに供給する装置
は、連続的にマイクロカプセルを生産する手段として極
めて重要であり、供給手段が定量ポンプで、かつ両液の
混合部位や衝突チャンバーの手前に各々の液供給タンク
への液循環配管を設置することによって一定比率で安定
した液の供給が可能になる。
An apparatus for stably mixing water or an aqueous solution and an organic solvent solution at a constant ratio and supplying the solution to the collision chamber or supplying both solutions to the collision chamber through separate flow paths is a continuous microcapsule. It is extremely important as a means to produce liquid, and the supply means is a constant volume pump, and liquid circulation pipes to each liquid supply tank are installed in front of the mixing part of both liquids and the collision chamber so that a stable liquid can be obtained at a constant ratio. Can be supplied.

【0023】本発明の製造装置でマイクロカプセル化を
行う場合、両液の温度はマイクロカプセルの粒子径等に
大きく影響するため、装置全体の温度コントロールを行
うことが好ましいが、実際には両液の供給からマイクロ
カプセル化までの時間を極めて短時間にできるため、製
造装置における液供給タンク等の液供給系を恒温に制御
して実施してもよい。
When performing microencapsulation with the production apparatus of the present invention, the temperature of both solutions has a large effect on the particle size of the microcapsules, so it is preferable to control the temperature of the entire apparatus, but in reality, both solutions are controlled. Since the time from the supply of the solution to the microencapsulation can be made extremely short, the solution supply system such as the solution supply tank in the manufacturing apparatus may be controlled at a constant temperature.

【0024】次に本発明の製造装置の一例を図面に示
す。図1は供給する二種類の液が衝突する前に混合され
る場合における、衝突チャンバー部分を含む本発明の製
造装置のシステムダイヤグラム図である。図1中のブロ
ックAは液供給装置部分の概略図であり、またブロック
Bは衝突チャンバーを含む部分の概略図である。加熱冷
却装置1で恒温に保たれたジャケット付き供給タンク2
のそれぞれの水溶液と有機溶剤溶液とはポンプ3によっ
て各々一定の比率でエアー式三方弁4と逆止弁5を経て
混合される。この時、循環ライン6によって過剰の液が
供給タンク2に戻されることにより、安定した液の供給
が可能となる。安全性を考慮してリリーフ弁7を設置し
た方がよい。また検量用バルブ8から液を取り出して液
の供給量を知ることができる。
Next, an example of the manufacturing apparatus of the present invention is shown in the drawings. FIG. 1 is a system diagram of a manufacturing apparatus of the present invention including a collision chamber portion when two kinds of liquids to be supplied are mixed before collision. Block A in FIG. 1 is a schematic view of a liquid supply device part, and block B is a schematic view of a part including a collision chamber. Supply tank with jacket 2 kept at a constant temperature by heating / cooling device 1
The respective aqueous solution and the organic solvent solution are mixed at a constant ratio by the pump 3 through the air type three-way valve 4 and the check valve 5. At this time, the excess liquid is returned to the supply tank 2 by the circulation line 6, so that the stable supply of the liquid becomes possible. It is better to install the relief valve 7 in consideration of safety. Further, it is possible to know the supply amount of the liquid by taking out the liquid from the calibration valve 8.

【0025】混合された液はニードル弁9で供給量を調
整した後、高圧ポンプ10に送られる。高圧ポンプ10
で加圧された混合液はフィルター11を経て衝突チャン
バー12に送られ、該チャンバー内で二液に分けられた
後300kg/cm2以上の圧力で流路内の平面部ある
いは液同士が衝突し、微粒子の製造が行われる。得られ
た微粒子含有液は冷却装置13で冷却されて回収され
る。図1の衝突チャンバー12では、そのディスク原理
図である図3に示すように予め2液が混合され、次いで
その混合液を2分し、それぞれをチャンバー内の貫通孔
を通過し、先ずチャンバー内の壁に衝突し、貫通孔の断
面積よりも小さい断面積を有するオリフィス部分で加速
されることによって、両液が激しく衝突した後、衝突チ
ャンバー内から外に流出する。
The mixed liquid is supplied to the high-pressure pump 10 after the supply amount is adjusted by the needle valve 9. High pressure pump 10
The mixed liquid pressurized by is sent to the collision chamber 12 through the filter 11 and divided into two liquids in the chamber, and then the flat surface or liquids in the flow channel collide with each other at a pressure of 300 kg / cm 2 or more. The production of fine particles is performed. The obtained fine particle-containing liquid is cooled by the cooling device 13 and collected. In the collision chamber 12 of FIG. 1, the two liquids are mixed in advance as shown in FIG. 3, which is a disk principle diagram, and then the mixed liquid is divided into two parts, each of which passes through a through hole in the chamber, and firstly in the chamber. After colliding with the wall of the through hole and being accelerated by an orifice portion having a cross-sectional area smaller than the cross-sectional area of the through hole, both liquids collide violently and then flow out from the collision chamber to the outside.

【0026】また、図2は供給する二種類の液が予め混
合されることなく衝突される場合における、衝突チャン
バー部分を含む本発明の製造装置のシステムダイヤグラ
ム図である。図2中のブロックAは液供給装置部分の概
略図であり、またブロックBは衝突チャンバーを含む部
分の概略図である。加熱冷却装置1で恒温に保たれたジ
ャケット付き供給タンク2のそれぞれの水溶液と有機溶
剤溶液はポンプ3によって各々一定の比率で衝突式マイ
クロカプセル化装置の高圧ポンプ10に送られる。この
時、循環ライン6によって過剰の液が供給タンク2に戻
されることにより、安定した液の供給が可能となる。安
全性を考慮してリリーフ弁7を設置した方がよい。また
検量用バルブ8から液を取り出して液の供給量を知るこ
とができる。高圧ポンプは2つの液を別々の配管を通し
て一定の比率でチャンバーに供給するために、ダブルプ
ランジャーポンプのような同期のとれる高圧ポンプが必
要である。
FIG. 2 is a system diagram of the manufacturing apparatus of the present invention including the collision chamber portion when two kinds of liquids to be supplied are collided without being mixed in advance. Block A in FIG. 2 is a schematic view of a liquid supply device part, and block B is a schematic view of a part including a collision chamber. Each of the aqueous solution and the organic solvent solution in the jacketed supply tank 2 which is kept at a constant temperature by the heating / cooling device 1 is sent by the pump 3 to the high pressure pump 10 of the collision type microencapsulation device at a constant ratio. At this time, the excess liquid is returned to the supply tank 2 by the circulation line 6, so that the stable supply of the liquid becomes possible. It is better to install the relief valve 7 in consideration of safety. Further, it is possible to know the supply amount of the liquid by taking out the liquid from the calibration valve 8. The high pressure pump requires a synchronized high pressure pump such as a double plunger pump in order to supply the two liquids to the chamber at a constant ratio through separate pipes.

【0027】高圧ポンプで加圧された水溶液と有機溶剤
溶液は別々の配管を経てフィルター11を経て衝突チャ
ンバー12に送られ、300kg/cm2以上の圧力で
流路内の平面部あるいは液同士が衝突し、マイクロカプ
セル化が行われる。得られた微粒子含有液は冷却装置1
3で冷却されて回収される。図2の衝突チャンバー12
では、そのディスク原理図である図4に示すように異な
る2液がそれぞれチャンバー内の貫通孔を通過し、先ず
チャンバー内の壁に衝突し、貫通孔の断面積よりも小さ
い断面積を有するオリフィス部分で加速されることによ
って、両液が激しく衝突した後、衝突チャンバー内から
外に流出する。
The aqueous solution and the organic solvent solution pressurized by the high-pressure pump are sent to the collision chamber 12 via the filter 11 via separate pipes, and the flat portion or liquids in the flow path are separated by a pressure of 300 kg / cm 2 or more. Collision and microencapsulation takes place. The obtained fine particle-containing liquid is used as a cooling device 1.
It is cooled in 3 and collected. Collision chamber 12 of FIG.
Then, as shown in FIG. 4, which is a diagram of the disk principle, two different liquids respectively pass through the through holes in the chamber, first collide with the wall in the chamber, and have an orifice having a cross sectional area smaller than the cross sectional area of the through holes. Due to the partial acceleration, both liquids collide violently and then flow out from the collision chamber to the outside.

【0028】本発明の装置では、チャンバー内の2つの
流路にバランスのとれた加圧を維持してかつ任意に2液
の比率を設定するために、プランジャーの断面積と衝突
チャンバーの図3及び4の貫通孔及びオリフィスの断面
積の比率を調整する等の工夫が必要である。また、該オ
リフィスで2液が衝突し、その後オリフィスから噴出し
て一層混合されることになる。
In the apparatus of the present invention, in order to maintain a balanced pressurization in the two flow paths in the chamber and arbitrarily set the ratio of the two liquids, the cross-sectional area of the plunger and the collision chamber are illustrated. It is necessary to take measures such as adjusting the ratio of the cross-sectional areas of the through holes 3 and 4 and the orifice. Further, the two liquids collide with each other at the orifice, and then eject from the orifice to be further mixed.

【0029】尚、本発明の製造装置に用いられる衝突チ
ャンバー12の例を図5〜7に示す。
An example of the collision chamber 12 used in the manufacturing apparatus of the present invention is shown in FIGS.

【0030】[0030]

【実施例】次に実施例及び比較例を挙げて本発明を更に
具体的に説明する。尚、以下の実施例中における「部」
は『重量部』を表わす。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples and Comparative Examples. Incidentally, "part" in the following examples
Represents "parts by weight".

【0031】〔実施例1〕 (有機溶剤溶液) カ−ボンブラック 20部 スチレンアクリル酸樹脂(酸価40) 20部 MEK 60部 ガラスビーズ 150部 の配合物をペイントシェーカーで4時間練肉し、 MEK 30部 IPA 45部 を加えて取り出し、有機溶剤溶液150部を得た。 (水溶液) イオン交換水 598部 N−メチル−ジエタノールアミン 2部 上記有機溶剤溶液と上記水溶液を図1の装置を用いて液
温20℃、混合比率1:4で700kg/cm2の圧力
で衝突チャンバー内で衝突せしめてマイクロカプセル化
を行った。この時2液が混合してからマイクロカプセル
化装置を出るまでの時間は5秒であった。得られたマイ
クロカプセル液をロータリーエバポレーターを用いて有
機溶剤を留去し、最終の着色マイクロカプセル水分散物
を得た。
[Example 1] (Organic solvent solution) Carbon black 20 parts Styrene acrylic acid resin (acid value 40) 20 parts MEK 60 parts Glass beads 150 parts The mixture was kneaded for 4 hours with a paint shaker, MEK 30 parts and IPA 45 parts were added and taken out to obtain 150 parts of an organic solvent solution. (Aqueous solution) Ion-exchanged water 598 parts N-methyl-diethanolamine 2 parts The above organic solvent solution and the above aqueous solution are used in the collision chamber at a liquid temperature of 20 ° C. and a mixing ratio of 1: 4 and a pressure of 700 kg / cm 2 using the apparatus of FIG. Micro-encapsulation was carried out by colliding them inside. At this time, the time from the mixing of the two liquids to the exit from the microencapsulation device was 5 seconds. The organic solvent was distilled off from the obtained microcapsule liquid using a rotary evaporator to obtain a final aqueous dispersion of colored microcapsules.

【0032】得られたマイクロカプセル水分散液は平均
0.2μmの粒径を有し、粒径分布がシャープで凝集物
もなく長期にわたって安定な分散を示した。 〔比較例1〕実施例1で用いた有機溶剤溶液150部に
実施例1で用いた水溶液600部を、有翼攪拌機を用い
て500回転で攪拌しながら毎分10部の滴下速度で滴
下混合して、1時間後に滴下・攪拌を終了し、実施例1
と同様に有機溶剤を留去し、最終の着色マイクロカプセ
ル水分散液を得た。
The obtained aqueous dispersion of microcapsules had an average particle size of 0.2 μm, had a sharp particle size distribution and showed stable dispersion over a long period of time without aggregates. [Comparative Example 1] To 150 parts of the organic solvent solution used in Example 1, 600 parts of the aqueous solution used in Example 1 was dropped and mixed at a dropping rate of 10 parts per minute while stirring at 500 rpm with a bladed stirrer. Then, after 1 hour, the dropping and stirring were completed, and
The organic solvent was distilled off in the same manner as in 1. to obtain the final aqueous dispersion of colored microcapsules.

【0033】得られたマイクロカプセル水分散液は平均
0.5μmの粒径を有し、粒径分布がシャープでなく、
しかも目視可能な凝集物が多量に存在していた。
The resulting microcapsule aqueous dispersion had an average particle size of 0.5 μm, and the particle size distribution was not sharp,
Moreover, a large amount of visible aggregates were present.

【0034】[0034]

【発明の効果】本発明の製造装置は、混合することによ
り微粒子を生成するか、又は微粒子を改質することがで
きる溶液又は分散液(A)と異質の溶液(B)とを別々
の配管を通して衝突チャンバーの手前で混合して衝突チ
ャンバー内で衝突させるか、又は該溶液又は分散液
(A)と異質の溶液(B)を別々の配管を通して衝突チ
ャンバー内で衝突させることによって、粒子径分布が比
較的均一な微粒子を形成することができ、更にマイクロ
カプセル含有分散液では分散安定性をも向上せしめ得る
ものである。
INDUSTRIAL APPLICABILITY In the production apparatus of the present invention, a solution or dispersion liquid (A) capable of producing fine particles by mixing or modifying the fine particles and a heterogeneous solution (B) are provided in separate pipes. Particle size distribution by mixing in front of the collision chamber through and colliding in the collision chamber, or by colliding the solution or dispersion (A) and the foreign solution (B) in the collision chamber through separate pipes. Can form relatively uniform fine particles, and the dispersion stability of the microcapsule-containing dispersion liquid can also improve the dispersion stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】2液混合マイクロカプセル製造装置システムダ
イアグラム図。
FIG. 1 is a system diagram of a two-liquid mixing microcapsule manufacturing apparatus.

【図2】2液別供給マイクロカプセル製造装置システム
ダイアグラム図。
FIG. 2 is a system diagram diagram of a microcapsule manufacturing apparatus for supplying two separate liquids.

【図3】図1の衝突チャンバー12のディスク原理図。3 is a disk principle diagram of the collision chamber 12 of FIG.

【図4】図2の衝突チャンバー12のディスク原理図。4 is a disk principle diagram of the collision chamber 12 of FIG.

【図5】図1及び図2の衝突チャンバー12のディスク
組立斜視図。
5 is a perspective view of a disk assembly of the collision chamber 12 of FIGS. 1 and 2. FIG.

【図6】図1の衝突チャンバー12の一例を示すディス
ク原理図。
FIG. 6 is a disk principle diagram showing an example of the collision chamber 12 of FIG. 1.

【図7】図2の衝突チャンバー12の一例を示すディス
ク原理図。
FIG. 7 is a disk principle diagram showing an example of the collision chamber 12 of FIG.

【符号の説明】[Explanation of symbols]

16 ディスクA 17 ディスクB 18 貫通孔 19 連結溝 16 disc A 17 disc B 18 through hole 19 connecting groove

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 2/02 A G03G 9/087 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B01J 2/02 A G03G 9/087

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 混合することにより微粒子を生成する
か、又は微粒子を改質することができる溶液又は分散液
(A)と異質の溶液(B)とを別々の配管を通して衝突
チャンバーの手前で混合して衝突チャンバー内で衝突さ
せるか、又は該溶液又は分散液(A)と異質の溶液
(B)を別々の配管を通して衝突チャンバー内で衝突さ
せる機構を有することを特徴とする微粒子製造装置。
1. A solution or dispersion (A) capable of forming fine particles by mixing or modifying fine particles and a heterogeneous solution (B) are mixed in separate pipes before a collision chamber. A fine particle production apparatus comprising a mechanism for causing the solution or the dispersion liquid (A) and the heterogeneous solution (B) to collide in the collision chamber through separate pipes.
【請求項2】 衝突チャンバー内での溶液又は分散液
(A)と異質の溶液(B)の衝突圧力が300kg/c
2以上であることを特徴とする請求項1記載の微粒子
製造装置。
2. The collision pressure of the solution or dispersion (A) and the foreign solution (B) in the collision chamber is 300 kg / c.
The fine particle producing apparatus according to claim 1, wherein the fine particle producing apparatus is m 2 or more.
【請求項3】 生成した微粒子を冷却する冷却機構を有
することを特徴とする請求項1記載の微粒子製造装置。
3. The fine particle production apparatus according to claim 1, further comprising a cooling mechanism for cooling the produced fine particles.
【請求項4】 溶液又は分散液(A)と異質の溶液
(B)とを定量ポンプで供給し、かつ両液の混合部位の
手前または両液を衝突チャンバーに供給する手前に各々
の液供給タンクへの液循環配管を設置したことを特徴と
する請求項1記載の微粒子製造装置。
4. A solution or dispersion liquid (A) and a heterogeneous solution (B) are supplied by a metering pump, and each liquid is supplied before a mixing site of both liquids or before both liquids are supplied to a collision chamber. The fine particle manufacturing apparatus according to claim 1, wherein a liquid circulation pipe to the tank is installed.
【請求項5】 液供給機構が恒温に制御されたことを特
徴とする請求項1又は4記載の微粒子製造装置。
5. The fine particle production apparatus according to claim 1, wherein the liquid supply mechanism is controlled to a constant temperature.
JP7013851A 1995-01-31 1995-01-31 Fine particle producing device Pending JPH08196896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7013851A JPH08196896A (en) 1995-01-31 1995-01-31 Fine particle producing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7013851A JPH08196896A (en) 1995-01-31 1995-01-31 Fine particle producing device

Publications (1)

Publication Number Publication Date
JPH08196896A true JPH08196896A (en) 1996-08-06

Family

ID=11844789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7013851A Pending JPH08196896A (en) 1995-01-31 1995-01-31 Fine particle producing device

Country Status (1)

Country Link
JP (1) JPH08196896A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103421A (en) * 2003-09-30 2005-04-21 Shiseido Co Ltd Micronized emulsion and its preparing method
US7544230B2 (en) 2003-03-05 2009-06-09 Fujifilm Corporation Method of manufacturing magnetic particle, magnetic particle and magnetic recording medium
CN114797515A (en) * 2022-03-18 2022-07-29 成都科建生物医药有限公司 Preparation device and preparation method of traditional Chinese medicine extract liposome

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544230B2 (en) 2003-03-05 2009-06-09 Fujifilm Corporation Method of manufacturing magnetic particle, magnetic particle and magnetic recording medium
JP2005103421A (en) * 2003-09-30 2005-04-21 Shiseido Co Ltd Micronized emulsion and its preparing method
CN114797515A (en) * 2022-03-18 2022-07-29 成都科建生物医药有限公司 Preparation device and preparation method of traditional Chinese medicine extract liposome
CN114797515B (en) * 2022-03-18 2023-01-31 成都科建生物医药有限公司 Preparation device and preparation method of traditional Chinese medicine extract liposome

Similar Documents

Publication Publication Date Title
EP0797122B1 (en) Manufacturing method for toner used in electrophotography
US9211510B2 (en) Method for producing nanoparticles by forced ultrathin film rotary processing
JP2006342304A (en) Organic pigment fine particle and method for producing the same
JP4743068B2 (en) Method for producing organic pigment fine particles
JPS6295366A (en) Preparation of inkject composition
US8535802B2 (en) Continuous emulsification method and emulsification apparatus therefor
JP2011048362A (en) Supercritical fluid microencapsulation of dye into latex for improved emulsion aggregation toner
CN101815572A (en) Method and apparatus for regulating particle diameter and particle diameter distribution of emulsified particles in emulsion
EP3408015A1 (en) Method for producing emulsions
CN102151527A (en) Preparation method of monodisperse silicon oxide magnetic microspheres used for DNA purification and protein separation
JPH08196896A (en) Fine particle producing device
KR20010045384A (en) Process for Microencapsulat ed Phase Change Material Slurry
US20120116006A1 (en) Polymer Encapsulation Of Particles
JPH07303829A (en) Preparation of microcapsule and cosmetic formulated with said capsule
JP2004161824A (en) Method for producing colored resin particle
JP3555296B2 (en) Method for producing colored resin particles
JP3334305B2 (en) Method for producing urethane crosslinked fine particles
CN103599714B (en) Dispersive droplet emulsion and preparation method thereof
Inohara et al. Synthesis of small lipid nanoparticles using an inkjet mixing system aiming to reduce drug loss
JP3318001B2 (en) Continuous production method of fine cellulose-based solidified particles
JP2712064B2 (en) Suspension polymerization method
JPH06102684B2 (en) Suspension polymerization method
CN100404119C (en) Method for preparing quasi-uniform electronic ink micro capsule
JP2832867B2 (en) Suspension polymerization method
JP2002336667A (en) Mixing chamber system for producing solid deposit by mixing two or more liquids at high speed

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404