JPS6345367A - Film formation by transporting type sputtering - Google Patents

Film formation by transporting type sputtering

Info

Publication number
JPS6345367A
JPS6345367A JP18822286A JP18822286A JPS6345367A JP S6345367 A JPS6345367 A JP S6345367A JP 18822286 A JP18822286 A JP 18822286A JP 18822286 A JP18822286 A JP 18822286A JP S6345367 A JPS6345367 A JP S6345367A
Authority
JP
Japan
Prior art keywords
cathode
film
anode
sputtered
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18822286A
Other languages
Japanese (ja)
Other versions
JPH0214427B2 (en
Inventor
Kiyoshi Ishii
清 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP18822286A priority Critical patent/JPS6345367A/en
Publication of JPS6345367A publication Critical patent/JPS6345367A/en
Publication of JPH0214427B2 publication Critical patent/JPH0214427B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sputtered film at a high speed under the higher pressure than heretofore by inserting an anode consisting of the atoms to be sputtered and having the same shape as the shape of an anode having a hollow shape into said anode and introducing an atmosphere gas from one end side of a cathode to a substrate provided at the other end to transport sputtering particles. CONSTITUTION:The inside of a vacuum vessel 1 is thoroughly evacuated by the operation of an oil diffusion pump 3 to decrease the influence of impurities for the purpose of depositing the film on the substrate 11. A needle valve 10 is opened in this state to introduce gaseous Ar into the vessel and an oil rotary pump 5 is operated to discharge a large volume of the air by which the flow of the gaseous Ar is set. Electric discharge is then started by impressing a DC power source 9 to the cathode 6 to maintain the same at a negative potential and to ionize the gaseous Ar. Sputtering is started by bringing Ar<+> into collision against the cathode 6. The sputtering particles are likewise transported downward by the flow of the gaseous Ar. A shutter 14 is opened to form the film on the substrate 11 when the attainment of the stationary state in transportation is confirmed after the specified time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、全屈、半導体、絶縁体等の各挿脱の形成に利
用される輸送型スパックリング成膜法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a transport-type sputtering film forming method used for forming insertion/removal of materials such as full bending, semiconductors, and insulators.

(従来の技術) 従来、基板上に各種物質をスパッタして膜を形成するス
パッタリング法には、原理上2つの方式、すなわちプラ
ズマスパッタリング法とイオンビームスパッタリング法
が考えられている。さらに、これらのスパッタリング法
は電子の封じ込め方法や電極の形状等によって種々のス
パッタリング装置に区分されている。そして、これらの
スパッタリング装置では雰囲気ガスの圧力が102Pa
  (パスカル)程度以下の雰囲気中でスパックリング
及び膜形成が行われている。
(Prior Art) Conventionally, two methods have been considered in principle for sputtering methods for forming films by sputtering various substances on a substrate, namely, plasma sputtering method and ion beam sputtering method. Furthermore, these sputtering methods are classified into various sputtering apparatuses depending on the method of confining electrons, the shape of the electrodes, and the like. In these sputtering devices, the pressure of the atmospheric gas is 102 Pa.
Spackling and film formation are performed in an atmosphere of (Pascal) or less.

(発明が解決しようとする問題点) 従来のスパッタリング装置では、陰極からスパッタされ
た原子であるスパッタ粒子は、雰囲気ガス中を散乱過程
あるいは拡散過程を経て飛来し、これらの過程に支配さ
れて膜形成がなされる。このため、102Pa程度以上
の高圧力下では不パソタリング成膜ができない。また、
102Pa程度以下の雰囲気中で膜形成を行うので、ス
パッタ粒子の平均自由行程が長くなるので、高エネルギ
ーのイオンや電子、また中性原子が基(反面上に入射す
るので、形成された膜に損傷を与える場合がある。さら
に、スパッタ粒子も平均自由行程が長いために真空遭内
で広い範囲にねたりスパッタ粒子が飛ぶので、基板上へ
の材料の回収率を高くすることが難しいという問題があ
る。さらに、近時ガスセンサや磁気メモリ媒体等に用い
られる各種超微粒子を生成するためには、従来のスパッ
タリング法を利用することができない場合が多い。
(Problems to be Solved by the Invention) In conventional sputtering equipment, sputtered particles, which are atoms sputtered from a cathode, fly through an atmospheric gas through a scattering process or a diffusion process, and are controlled by these processes to form a film. A formation is made. For this reason, it is not possible to form a film by non-pastoring under a high pressure of about 102 Pa or higher. Also,
Since the film is formed in an atmosphere of about 102 Pa or less, the mean free path of the sputtered particles becomes long, so high-energy ions, electrons, and neutral atoms enter the formed film. In addition, since sputtered particles have a long mean free path, they tend to spread over a wide range in the vacuum environment, making it difficult to increase the recovery rate of material onto the substrate. Further, in order to generate various ultrafine particles used in recent gas sensors, magnetic memory media, etc., conventional sputtering methods cannot often be used.

(問題点を解決するための手段) 本発明に係るスパッタリング成膜法は、中空形状になさ
れた陽極内に、同じく中空形状になされたスパッタすべ
き原子からなる陰極を内挿して放電機構を構成し、該陰
極の一端側から他端側に設けた基板へ雰囲気ガスを通入
し、陰極内部で生成されたスパッタ粒子を前記雰囲気ガ
スの流れにより基板側へ輸送する方法である。
(Means for Solving the Problems) In the sputtering film forming method according to the present invention, a discharge mechanism is constructed by inserting a hollow cathode made of atoms to be sputtered into a hollow anode. In this method, atmospheric gas is introduced from one end of the cathode to a substrate provided at the other end, and sputtered particles generated inside the cathode are transported to the substrate by the flow of the atmospheric gas.

(作用) 陽極と陰極間は、例えば2重筒構造になされており、こ
れらの間に電圧が印加され放電が行われる。この陰極内
に雰囲気ガス(例えばArガス)を導入すると、イオン
化されたガス成分が電界に加速されて陰極に衝突しスパ
ッタ原子をはじき出す。かかる状態において、雰囲気ガ
スの流れに沿って陰極からスパッタされたスパッタ粒子
が輸送され、基板上に堆積される。
(Function) The anode and cathode have, for example, a double cylinder structure, and a voltage is applied between them to cause discharge. When an atmospheric gas (for example, Ar gas) is introduced into the cathode, ionized gas components are accelerated by the electric field and collide with the cathode to eject sputtered atoms. In this state, sputtered particles sputtered from the cathode are transported along the flow of atmospheric gas and deposited on the substrate.

(実施例) 以下、本発明の実施例について図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明に係る輸送型スパッタリング成膜法に
供されるスパッタリング装置の実施例を示す概略図であ
る。
FIG. 1 is a schematic diagram showing an embodiment of a sputtering apparatus used in the transport type sputtering film forming method according to the present invention.

真空槽1は2つの排気系を有するとともに、雰囲気ガス
(本例ではArガス)の導入系を有している。排気系と
しては、本例では高真空用の予備排気系としてバルブ2
の開閉によって真空槽1内を排気するオイル拡散ポンプ
3と、バルブ4の開閉によって排気する低真空用の大容
量排気系である油回転ポンプ5が設けられている。
The vacuum chamber 1 has two exhaust systems as well as an introduction system for atmospheric gas (Ar gas in this example). In this example, the exhaust system uses valve 2 as a preliminary exhaust system for high vacuum.
An oil diffusion pump 3 which evacuates the inside of the vacuum chamber 1 by opening and closing a valve 4, and an oil rotary pump 5 which is a large capacity exhaust system for low vacuum which evacuates the inside of the vacuum chamber 1 by opening and closing a valve 4 are provided.

スパッタすべき金属原子からなる陰極6は、円筒形にな
されている。この陰極6は、同じく円筒形になされた陽
極7と絶縁体(例えばアルミナ等)8を介して一定間隔
を保持して内挿されている。
The cathode 6 made of metal atoms to be sputtered has a cylindrical shape. This cathode 6 is interposed with an anode 7, which is also cylindrical, and an insulator (eg, alumina) 8 interposed therebetween at a constant distance.

なお、陰極6及び陽極7の形状は本例の如(円筒形の場
合に限らず中空形状であればよい。直流型a9は陰極6
と陽極7間で放電を起こすための電源で、陰極6側を9
L電位とし、陽極7を接地電位とする電圧が印加されて
いる。一方、Arガスの導入系は陰極6の一端側(本例
では上端側)に設けたニードルバルブ10の開閉によっ
て導入されるようになされている。陰極6の他端側(本
例では下端側)には、所定間隔をおいて、膜を堆積すべ
き基板11が基板ホルダ12上に載置されて設けられて
いる。陰極6と基板11との間には、シャッター14が
設けられており、このシャッター14の開閉によって膜
堆積の開始タイミング及び堆積量の調整がなされる。さ
らに、真空槽1内の圧力を確認するための真空計15及
び導入ガスの圧力を計測するための圧力計16がそれぞ
れ設けられている。
The shapes of the cathode 6 and the anode 7 are as shown in this example (not limited to cylindrical shapes, but may be hollow shapes. For the DC type a9, the cathode 6
This is a power supply for causing discharge between the anode 7 and the anode 7, and the cathode 6 side is connected to 9
A voltage is applied that sets the anode 7 to the L potential and sets the anode 7 to the ground potential. On the other hand, the Ar gas introduction system is configured to introduce Ar gas by opening and closing a needle valve 10 provided at one end side (in this example, the upper end side) of the cathode 6. On the other end side (lower end side in this example) of the cathode 6, a substrate 11 on which a film is to be deposited is placed on a substrate holder 12 at a predetermined interval. A shutter 14 is provided between the cathode 6 and the substrate 11, and opening and closing of the shutter 14 adjusts the timing of starting film deposition and the amount of deposition. Furthermore, a vacuum gauge 15 for checking the pressure inside the vacuum chamber 1 and a pressure gauge 16 for measuring the pressure of the introduced gas are provided, respectively.

第2図は、前記陰極6の形状を詳細に示す断面図である
FIG. 2 is a sectional view showing the shape of the cathode 6 in detail.

本例の陰極6は軸方向に沿って向い合せに小孔17が複
数個穿設されている。この小孔17は、陰極6内のプラ
ズマ電位を陰極6の軸方向にわたって一定の値に保ち、
均一なスバ、り侵食を行わせる働きをする。すなわち、
陰極6と陽極7間の放電によって生成された電子がある
一定の割合でこの小孔17を通して陽極7側に流れ込む
ことにより、陰極6内の放電が維持されるのである。
In the cathode 6 of this example, a plurality of small holes 17 are formed facing each other along the axial direction. This small hole 17 maintains the plasma potential within the cathode 6 at a constant value in the axial direction of the cathode 6.
It works to cause uniform splintering and erosion. That is,
Electrons generated by the discharge between the cathode 6 and the anode 7 flow into the anode 7 side through the small holes 17 at a certain rate, thereby maintaining the discharge within the cathode 6.

前記雰囲気ガスであるArガスには高純度なガスを使用
し、一定の流量で導入し、陰極6と陽極7との間で放電
を発生させ持続させる作用を果たすとともに、イオン化
されたArガスが陰極6の内面に衝突し、陰極原子をス
パッタさせ、さらにこのスパッタされた粒子を基板11
側に輸送する働きを有する。
A high-purity Ar gas is used as the atmospheric gas, and it is introduced at a constant flow rate to generate and sustain a discharge between the cathode 6 and anode 7, and the ionized Ar gas The particles collide with the inner surface of the cathode 6 to sputter cathode atoms, and the sputtered particles are further transferred to the substrate 11.
It has the function of transporting to the side.

陰極6と陽極7との放電が開始することにより発生する
プラズマは、陰極6の内周面側と外周面側の双方の領域
に存在するが、陰極6の内周面側ではT電子の閉じ込め
作用により、外周面側に比べてプラズマ密度が高くなる
。この結果、陰極6に入射する正イオン(アルゴンイオ
ン)の量は、陰極6の内周面側の方が多くなり、スパッ
タ侵食も内周面側の方が多くなる。つまり、陰極6の内
周面がおもにスパックされることになり、このスパック
された粒子がArガスの流れに乗って基板ll上に輸送
されることになる。
Plasma generated by the start of discharge between the cathode 6 and the anode 7 exists on both the inner and outer peripheral surfaces of the cathode 6, but T electrons are confined on the inner peripheral surface of the cathode 6. Due to this action, the plasma density becomes higher than that on the outer peripheral surface side. As a result, the amount of positive ions (argon ions) incident on the cathode 6 is greater on the inner circumferential surface side of the cathode 6, and sputter erosion is also greater on the inner circumferential surface side. That is, the inner circumferential surface of the cathode 6 is mainly spun, and the spucked particles are transported onto the substrate 11 by the flow of Ar gas.

前記陰極6と陽極7との放電を維持するための圧力は、
陰極6と陽極7間の距離に関係するが、本例のスパッタ
リング装置では、陰極径に比べ陰極長を長くしており、
スパッタ粒子の平均自由行程がこの長さに比べて十分小
さくなるようにArガスの圧力を決定しているので、ス
パッタ粒子は陰極6から外へ流出することがほとんどな
い。そこで、この陰極6内に高速でArガスを導入する
ことにより、その流れにスパッタ粒子をのせて外部へ放
出させている。
The pressure for maintaining discharge between the cathode 6 and anode 7 is:
Although it is related to the distance between the cathode 6 and the anode 7, in the sputtering apparatus of this example, the cathode length is longer than the cathode diameter.
Since the pressure of the Ar gas is determined so that the mean free path of the sputtered particles is sufficiently small compared to this length, the sputtered particles hardly flow out from the cathode 6. Therefore, by introducing Ar gas into the cathode 6 at high speed, sputtered particles are carried by the flow and released to the outside.

陰極6内に導入されるArガスの流れは、スパッタ粒子
を外部へ押し出すためにいわゆる粘性流の働きをするこ
とが好ましい、このために例えば陰極6内の圧力が30
0Pa以上とすると、その時の平均自由行程は10−2
cm程度以下となるので、例えば陰極内径を数龍とすれ
ばよい。そしてこの時、真空槽1内のArガスの圧力は
、陰極6内の圧力より1桁程度低い値になっている。す
なわち、A「ガスは粘性流となって、陰極6内を通過し
、圧力の十分低い領域へ噴出している状態になっている
It is preferable that the flow of Ar gas introduced into the cathode 6 acts as a so-called viscous flow in order to push the sputtered particles to the outside.
If it is 0 Pa or more, then the mean free path is 10-2
Since it is about cm or less, the inner diameter of the cathode may be set to, for example, a few centimeters. At this time, the pressure of the Ar gas in the vacuum chamber 1 is about an order of magnitude lower than the pressure in the cathode 6. That is, A: The gas becomes a viscous flow, passes through the cathode 6, and is ejected to a region where the pressure is sufficiently low.

上記構成からなるスパッタリング装置において、基板1
1上に膜を堆積するためには、まず真空槽1内を前記オ
イル拡散ポンプ3の作動によって十分排気して、不純物
の影響を少なくした後に前記ニードルパルプ10を開き
、高純度のA「ガスを黒人するとともに、前記油回転ポ
ンプ5を作動させ大容量の排気を行い、Arガスの流れ
を設定する。次に、前記直流電源9を印加し、陰極6を
負電位とする放電を開始し、前記Arガスのイオン化と
ともに、陰極6にアルゴンイオンを衝突させ、スパッタ
を開始する。そして、同じ(Arガスの流れにより、こ
のスパッタ粒子を下方へ輸送させる。そして、この輸送
状態が定常状態になったのを一定時間後確認すると、前
記シャッター14を開いて基板11上に膜を形成する。
In the sputtering apparatus having the above configuration, the substrate 1
In order to deposit a film on the vacuum chamber 1, first, the inside of the vacuum chamber 1 is sufficiently evacuated by operating the oil diffusion pump 3 to reduce the influence of impurities, and then the needle pulp 10 is opened and high-purity A gas At the same time, the oil rotary pump 5 is activated to exhaust a large volume of Ar gas, and the flow of Ar gas is set.Next, the DC power supply 9 is applied to start discharging the cathode 6 to a negative potential. As the Ar gas is ionized, argon ions collide with the cathode 6 to start sputtering. Then, the flow of the Ar gas transports the sputtered particles downward. Then, this transport state becomes a steady state. When this is confirmed after a certain period of time, the shutter 14 is opened to form a film on the substrate 11.

次に、上述したスパッタリング装置における実験例をグ
ラフを参照して説明する。
Next, an experimental example using the above-mentioned sputtering apparatus will be explained with reference to graphs.

第3図ないし第5図に示すグラフを参照して説明する。This will be explained with reference to the graphs shown in FIGS. 3 to 5.

なお、以下に示す実験では、陰極の材料を銅(C1)に
よって作成し、陰極内径を81、陽極内径を2011、
小孔17のピッチ間隔をlQmm、小孔17の内径を5
龍に設定している。
In the experiment shown below, the cathode material was made of copper (C1), the cathode inner diameter was 81, the anode inner diameter was 2011,
The pitch interval of the small holes 17 is lQmm, and the inner diameter of the small holes 17 is 5.
It is set as a dragon.

第3図は、前記直流型#9の印加電圧とこの電圧による
放電電流の関係を示すグラフであり、このグラフによれ
ば、印加電圧が350ボルト以下の比較的低電圧で大き
な放電電流が得られており、この時に陰極6内で高いイ
オン化が行われているのが理解される。
FIG. 3 is a graph showing the relationship between the applied voltage of the DC type #9 and the discharge current due to this voltage. According to this graph, a large discharge current can be obtained with a relatively low applied voltage of 350 volts or less. It is understood that high ionization occurs within the cathode 6 at this time.

なお、第3図ではガス導入口のアルゴン圧力を540P
aとし、真空槽1内の圧力を20Paとしており、グラ
フ20.21.22は陰極6の全長!(第2図参照)を
それぞれ100ss、 150m(300m−に変更し
た場合の特性を示している。
In addition, in Figure 3, the argon pressure at the gas inlet is set to 540P.
a, the pressure inside the vacuum chamber 1 is 20 Pa, and graphs 20, 21, and 22 are the total length of the cathode 6! (See Figure 2) are changed to 100ss and 150m (300m), respectively.

第4図は、入力電力(印加電圧×放電電流)に対するス
パッタ膜の堆積速度(Deposition  rat
e、単位人/m1n)を示しており、このグラフはガス
導入口の、A rガス圧力を540Paとし、陰極6と
基板11間の距離をl cmとした場合であり、グラフ
23.24.25はそれぞれ前記陰極6の全長lが15
0論震、100mm、3001mの場合を示してる。同
図によれば、比較的低入力電力でも高速でスパッタ膜の
形成がIi1!誌された。
Figure 4 shows the deposition rate (Deposition rate) of sputtered film with respect to input power (applied voltage x discharge current).
e, unit person/m1n), and this graph shows the case where the Ar gas pressure at the gas inlet is 540 Pa, and the distance between the cathode 6 and the substrate 11 is l cm, and graphs 23.24. 25, the total length l of the cathode 6 is 15, respectively.
It shows the case of zero earthquake, 100mm, and 3001m. According to the figure, the sputtered film can be formed at high speed even with relatively low input power. It was published.

第5図は、スパッタ膜の堆積速度のArガス圧力の依存
性を示すグラフである。
FIG. 5 is a graph showing the dependence of the sputtered film deposition rate on Ar gas pressure.

陰極6と基板11の距離をl cn+とし、グラフ26
はJ=100im、入力ミノJ55w、グラフ27は1
 =300 ax、入力電力160W、グラフ28はj
!=150mn、入力電力80wの場合をそれぞれ示し
ている。また、これらの3つの特性と同し条件でArの
流れがない場合におけるスパッタ膜の堆積速度はそれぞ
れ雰に近いので、Arガスの流れが本例における膜形成
に重要な条件となっているのがわかる。
The distance between the cathode 6 and the substrate 11 is l cn+, and graph 26
is J=100im, input mino J55w, graph 27 is 1
= 300 ax, input power 160W, graph 28 is j
! = 150 mn and the input power is 80 W. Furthermore, under the same conditions as these three characteristics, the deposition rate of the sputtered film in the absence of Ar flow is close to that of the atmosphere, so the flow of Ar gas is an important condition for film formation in this example. I understand.

なお、上述した実験例では陰極6をCuによって作成し
、Cu膜を生成する場合を例示したが、この他にF。膜
、N、膜や他の物質についても同様にスパッタ膜を生成
することができる。また、上述した実施例では陰極6と
陽極7とを2重筒構造に構成しているので、スパッタ粒
子は陰′fIiA6の下方だけに輸送され、一定範囲に
限って膜堆積を行うことができる。
In addition, in the above-mentioned experimental example, the case where the cathode 6 was made of Cu and a Cu film was produced was exemplified, but in addition to this, F. Similarly, sputtered films can be produced using films, N, films, and other materials. Furthermore, in the embodiment described above, since the cathode 6 and the anode 7 have a double cylinder structure, the sputtered particles are transported only below the cathode 'fIiA6, and the film can be deposited only in a certain range. .

また、上述した実験例の他に本例の輸送型スバ・/クリ
ング成膜法を用いることで8微粒子が生成されるのを確
認した。すなわち、放電に要する入力電力を増した場合
に生成される膜を電子顕微鏡で観察すると、この粒径が
数10人の超微粒子が生成されていた。これは、スパッ
タ粒子がArガスに輸送されている間に相互に合体して
、超微粒子が生成されたと考えられる。よって、本例の
スパッタリング’Wffのスパッタ条件をコントロール
すれば、スパッタ粒子が相互に合体して超微粒子が生成
される条件と、合体せずに原子上で基板11まで到達す
る条件とを適宜変更することができるので、超微粒子と
通常のスパッタ粒子の生成切換を容易に行うことができ
る。
Furthermore, in addition to the experimental examples described above, it was confirmed that 8 fine particles were produced by using the transport type Suba/Kling film forming method of this example. That is, when the film produced when the input power required for discharge was increased was observed with an electron microscope, ultrafine particles with a particle size of several tens of nanometers were produced. This is considered to be because the sputtered particles coalesced with each other while being transported by the Ar gas, and ultrafine particles were generated. Therefore, by controlling the sputtering conditions of the sputtering Wff in this example, the conditions under which sputtered particles coalesce with each other to produce ultrafine particles and the conditions under which sputtered particles reach the substrate 11 on atoms without coalescing can be changed as appropriate. Therefore, generation of ultrafine particles and normal sputtered particles can be easily switched.

(発明の効果) 以上述べたように、本発明によれば、従来よりも高圧力
下で高速でスパッタ膜の作成ができる。
(Effects of the Invention) As described above, according to the present invention, a sputtered film can be formed at a higher speed and at a higher pressure than before.

このため、原子イオン等の平均自由行程が短い状態でス
パッタを行うことができるので、成長膜面に畜エネルギ
ー粒子が入射せず、膜の損傷が防止される。また、この
とき平均自由行程が短いので、スパッタ粒子は基板に対
し2次元的な広がりをもって入射して、いわゆるステノ
プカバレノジがよい。さらに、スパッタ粒子は雰囲気ガ
スの流れで輸送されるので、膜の堆積場所を任意にコン
トロールできる。また、陽極と陰極間に入力する電力を
制御することで、超微粒子の生成も可能となった。
Therefore, since sputtering can be performed in a state where the mean free path of atomic ions or the like is short, energetic particles do not enter the surface of the grown film, and damage to the film is prevented. Further, since the mean free path is short at this time, the sputtered particles are incident on the substrate with a two-dimensional spread, resulting in a so-called stenop coverage technology. Furthermore, since the sputtered particles are transported by the flow of atmospheric gas, the location where the film is deposited can be controlled as desired. Furthermore, by controlling the power input between the anode and cathode, it has become possible to generate ultrafine particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る輸送型スパッタリング成膜法に供
されるスパッタリング装置の全体構成を示すブロック図
、第2図は陽極と陰極の形状を詳細に示T断面図、第3
図ないし第5図は実験例を示すグラフであり、第3図は
印加電圧と放電電流の関係を例示するグラフ、第4図は
入力電力とスパッタ膜の堆積速度の関係を例示するグラ
フ、第5図はガス導入口のAr圧力とスパッタ膜の堆積
速度の関係を例示するグラフである。 1・・・真空槽     3・・・オイル拡散ポンプ5
・・・油回転ポンプ  6・・・陰極7・・・陽極  
   11・・・基板17・・・小孔
FIG. 1 is a block diagram showing the overall configuration of a sputtering apparatus used in the transport type sputtering film forming method according to the present invention, FIG. 2 is a T cross-sectional view showing the shapes of an anode and a cathode in detail, and FIG.
5 to 5 are graphs showing experimental examples, FIG. 3 is a graph illustrating the relationship between applied voltage and discharge current, FIG. 4 is a graph illustrating the relationship between input power and sputtered film deposition rate, and FIG. FIG. 5 is a graph illustrating the relationship between the Ar pressure at the gas inlet and the deposition rate of the sputtered film. 1... Vacuum chamber 3... Oil diffusion pump 5
...Oil rotary pump 6...Cathode 7...Anode
11...Substrate 17...Small hole

Claims (1)

【特許請求の範囲】[Claims] 1)中空形状になされた陽極内に、同じく中空形状にな
されたスパッタすべき原子からなる陰極を内挿して放電
機構を構成し、該陰極の一端側から他端側に設けた基板
へ雰囲気ガスを導入し、陰極内部で生成されたスパッタ
粒子を前記雰囲気ガスの流れにより基板側へ輸送するこ
とを特徴とする輸送型スパッタリング成膜法。
1) A discharge mechanism is constructed by inserting a hollow cathode made of atoms to be sputtered into a hollow anode, and atmospheric gas is transferred from one end of the cathode to a substrate provided at the other end. A transport type sputtering film forming method characterized in that the sputtered particles generated inside the cathode are transported to the substrate side by the flow of the atmospheric gas.
JP18822286A 1986-08-11 1986-08-11 Film formation by transporting type sputtering Granted JPS6345367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18822286A JPS6345367A (en) 1986-08-11 1986-08-11 Film formation by transporting type sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18822286A JPS6345367A (en) 1986-08-11 1986-08-11 Film formation by transporting type sputtering

Publications (2)

Publication Number Publication Date
JPS6345367A true JPS6345367A (en) 1988-02-26
JPH0214427B2 JPH0214427B2 (en) 1990-04-09

Family

ID=16219908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18822286A Granted JPS6345367A (en) 1986-08-11 1986-08-11 Film formation by transporting type sputtering

Country Status (1)

Country Link
JP (1) JPS6345367A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2287884A2 (en) 2009-08-18 2011-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gas flow sputter source
JP2013520573A (en) * 2010-02-24 2013-06-06 ティア・エービー Plasma sputtering process for producing particles
CN103751305A (en) * 2013-12-11 2014-04-30 内蒙古元和药业股份有限公司 Drug for treatment of rheumatoid arthritis and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399833U (en) * 1990-01-31 1991-10-18
CA2564539C (en) 2005-11-14 2014-05-06 Sulzer Metco Coatings B.V. A method for coating of a base body with a platinum modified aluminide ptmal by means of a physical deposition out of the gas phase
WO2022009536A1 (en) * 2020-07-07 2022-01-13 ソニーグループ株式会社 Sputtering apparatus and sputtering film forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2287884A2 (en) 2009-08-18 2011-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gas flow sputter source
DE102009037853B3 (en) * 2009-08-18 2011-03-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gas flow sputtering source
JP2013520573A (en) * 2010-02-24 2013-06-06 ティア・エービー Plasma sputtering process for producing particles
CN103751305A (en) * 2013-12-11 2014-04-30 内蒙古元和药业股份有限公司 Drug for treatment of rheumatoid arthritis and preparation method thereof

Also Published As

Publication number Publication date
JPH0214427B2 (en) 1990-04-09

Similar Documents

Publication Publication Date Title
US7327089B2 (en) Beam plasma source
DE3708717C2 (en)
JP2824502B2 (en) Sputtering apparatus and sputtering deposition method using charged particles
US4541890A (en) Hall ion generator for working surfaces with a low energy high intensity ion beam
US3354074A (en) Cylindrical cathode sputtering apparatus including means for establishing a quadrupole magnetic field transverse of the discharge
US5899666A (en) Ion drag vacuum pump
JPS6345367A (en) Film formation by transporting type sputtering
JPH1161401A (en) Sputtering and device therefor
JP3099819B2 (en) Method for manufacturing semiconductor device
JP3647507B2 (en) Method for forming gas clusters and gas cluster ions
EP2840163B1 (en) Deposition device and deposition method
US3369990A (en) Cathodic sputtering apparatus including thermionic means for increasing sputtering efficiency
JPH03104881A (en) Formation of thin film of iron-iron nitride
RU2173911C2 (en) Production of electric-arc plasma in curvilinear plasma guide and application of coating on supporting structure
Karpov et al. Numerical simulation of low pressure gas metal arc plasma
US5149415A (en) Film forming apparatus
JPH06220621A (en) Device for forming film by sputtering
JPS63307254A (en) Apparatus for forming thin oxide film
JPH11172419A (en) Thin film forming device and thin film formation
DD146625A1 (en) DEVICE FOR ION-PROTECTED COATING AND IONING OF SUBSTRATES
JPS594045Y2 (en) Ionization device for thin film production
JPH03129652A (en) Ion source device
US6639222B2 (en) Device and method for extracting a constituent from a chemical mixture
JPH05195213A (en) Sputtering device
Korolev et al. Equilibrium gas pressure in various operating modes of ion-plasma accelerators